金属的塑性与断裂

合集下载

金属材料的高压下行为与性能

金属材料的高压下行为与性能

金属材料的高压下行为与性能金属材料是跨越人类历史长河的一种材料,它们的强度、韧性以及耐用性等优点被广泛应用于各种领域。

随着现代科技的迅猛发展,金属材料也在不断地进步和创新。

其中,高压下的金属材料行为与性能研究是现代科技领域的一大热点话题,它对于解决当前工程技术中的许多难题有着不可替代的重要作用。

一、高压下的金属材料行为高压下,金属材料的物理和力学性质与常温常压下的材料有着显著的区别。

在高压下,金属材料易发生塑性、断裂等变形,这也就意味着高压下的金属材料行为需要重点研究。

1.塑性变形金属材料在高压下会出现塑性变形现象。

由于高压下金属材料的晶格结构的改变,其内部微观结构发生了变化,因此金属材料的分子间距会缩小,分子对分子之间的距离降低。

当这些离子交换位置或移动时,材料就能够发生塑性变形。

2.断裂高压下的金属材料往往会因为承受了过多的压力而失去稳定,从而导致断裂现象。

在当前研究中,人们一直在探究如何消除这种缺陷问题,以使金属材料可以承受更高的压力。

二、高压下的金属材料性能高压下的金属材料还拥有很多优异的性能特征,其中最值得注意的就是其高强度和高导电性质。

这些优点对于很多应用领域都具有重要的意义。

1.高强度高压下的金属材料因其分子间的距离变小,因此纯度较高的材料具有更小的晶体尺寸。

由于高压下的材料在微观结构上变得更加紧密,因此具有更高的应力强度。

这些性质的优越性使得金属材料能够在低压力环境下具有高强度和高韧性。

2.高导电性质金属材料的导电性质与其原子结构、材料的压力和温度等密切相关。

高压下金属材料晶格结构的改变可以对材料的导电性质产生有利的影响。

此外,由于高压下的金属材料具有更高的纯度,因此可以降低金属材料电阻率,提高导电性质。

这些特性在电子领域,尤其是在电力传输和缺陷表征中发挥着重要的作用。

三、金属材料高压下行为与性能应用领域金属材料高压下行为与性能应用于很多领域,其中最重要的就是材料科学和金属工艺。

金属断裂的概念

金属断裂的概念

金属断裂的概念金属断裂是指金属材料在外力作用下破裂、分离成两个或多个部分的现象。

金属材料的断裂是一种自发性的现象,通常发生在金属材料的应力达到其极限强度时。

金属断裂可以分为塑性断裂和脆性断裂两种类型。

在应力作用下,金属材料会发生形变。

如果金属材料发生较大的形变,伴随有高强度的外力,金属材料会发生塑性断裂;反之,如果金属材料发生较小的形变,伴随有较低的外力,金属材料会发生脆性断裂。

塑性断裂是指金属材料在应力作用下发生较大形变后破裂。

当金属材料受到外力的作用,应力会造成材料内部的原子、晶体发生移动和形变,这种形变称为塑性变形。

在材料受到的外力超过其强度极限时,塑性变形会加剧,形成裂纹。

当这些裂纹达到一定长度后,金属材料在该处发生断裂。

塑性断裂通常伴随有较大的能量吸收,因为塑性变形需要消耗较多的能量。

脆性断裂是指金属材料在应力作用下发生较小形变后破裂。

当金属材料受到外力的作用,应力会造成材料内部的原子、晶体发生微小的移动和形变,这种形变称为弹性变形。

在材料受到的外力超过其强度极限时,弹性变形无法继续,出现了局部的原子层位错和离子层位错,从而形成了裂纹。

当这些裂纹快速扩展并连接到材料的负载区域时,金属材料在该处发生断裂。

脆性断裂通常伴随有较少的能量吸收,因为形变较小,能量损失较小。

金属断裂的方式有很多种。

最常见的是拉伸断裂,即金属材料沿着外力的方向发生破裂。

此外,还有层理断裂,即金属材料沿着晶格面的层理面破裂;韧窝断裂,即金属材料表面产生韧窝状破裂;穿晶断裂,即金属材料沿着晶界和晶内形成裂纹并扩展;疲劳断裂,即金属材料在长时间重复加载下出现破裂。

金属断裂的研究对于工程材料的设计和使用具有重要意义。

通过研究金属断裂的机理和特性,可以确定金属材料的断裂强度和疲劳寿命,从而指导工程实践中金属材料的选择和设计。

此外,研究金属断裂还有助于提高材料的韧性,降低脆性,从而提高材料的安全性和可靠性。

总之,金属断裂是金属材料在外力作用下发生破裂和分离的现象。

金属断裂机理

金属断裂机理

金属断裂机理
金属断裂是指金属材料在外力作用下发生破裂或断裂的过程。

金属的断裂机理主要包括以下几种:
1. 脆性断裂:脆性断裂是指金属材料在受到外力作用下几乎没有可见的塑性变形就突然破裂。

脆性断裂主要由金属的晶体结构和缺陷引起,如晶界的弱化、镍效应等。

常见的脆性断裂包括贝氏体断裂、冷脆断裂等。

2. 韧性断裂:韧性断裂是指金属材料在受到外力作用下先经历一定的可见塑性变形,然后发生破裂。

韧性断裂主要由金属的晶体结构、析出物和晶界等因素影响。

常见的韧性断裂模式包括韧突型断裂、韧性断裂等。

3. 疲劳断裂:疲劳断裂是指金属材料在长时间受到周期性应力作用下发生的破裂。

疲劳断裂主要由金属的晶间滑移、晶界变形和微观裂纹的扩展等因素引起。

疲劳断裂常发生在受振动或循环应力作用下的金属构件中。

4. 腐蚀断裂:腐蚀断裂是指金属材料在受到腐蚀介质作用下发生的破裂。

腐蚀断裂主要由金属与环境介质之间的电化学反应引起,如应力腐蚀断裂、氢脆断裂等。

总之,金属断裂机理是一个复杂的过程,受到多种因素的综合影响。

为了提高金属材料的断裂强度和韧性,需要通过合理的合金设计、热处理和表面处理等方法来改善金属的断裂性能。

大学材料科学基础第八章材料的变形与断裂(1)

大学材料科学基础第八章材料的变形与断裂(1)

六方晶系则需画图判定。
滑移系数量与金属的塑性 滑移系代表了晶体滑移时可能采取的空间取向,晶 体中滑移系数量越多,滑移时可能采取的空间取向就 越多,滑移就越容易进行,金属的塑性便越好。 面 心 立 方 金 属 : Cu,Al,Au,Ag,,Ni,γ-Fe, 奥氏体钢,体心立方金属α-Fe,铁素体,Mo,Nb的 塑性很好,而密排六方金属Mg,Zr,Be,Zn的塑性 则较差。当然滑移系数量并不是决定金属塑性高低唯 一的因素,合金的成分、强度的高低、加工硬化的能 力等也会影响到金属的塑性。试验表明,奥氏体钢的 塑性要优于铁素体钢。
金属拉伸曲线分析。 1 弹性变形阶段:ζ-ε呈直线关系。
(弹)塑性变形阶段: ζ-ε不遵循虎克定律
2 均匀塑性变形阶段:屈服阶段:ε增加,ζ基本保 持不变, ζ-ε呈非线性关系。 3 颈缩阶段(局部变形阶段):变形集中在局部区 域。 4 断裂阶段:从颈缩到断裂。
拉伸试验可以得到以下强度指标和塑性指标:
拉伸条件下滑移系上分切应力的计算。
(c)2003 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learning ™ is a trademark used herein under license.
θ-滑移面法线与拉伸轴的夹角
4 力轴作用在任意方向
二、孪晶(孪生)变形
孪生也是金属塑性变形的一种形式,一般情况下, 金属晶体优先以滑移的方式进行塑性变形,但是当滑 移难以进行时,塑性变形就会以生成孪晶的方式进行, 称为孪生。例如滑移系较少的密排六方晶格金属,当 处于硬取向时,滑移系难以开动,就常以孪生方式进 行变形。滑移系较多的fcc、bcc结构的金属一般不发 生孪生变形,但在极低的温度下变形或是形变速度极 快时,也会以孪生的方式进行塑性变形。 定义:晶体在难以进行滑移时而发生的另一种塑 性变形方式,其特点是变形以晶体整体切变的形式 进行而不是沿滑移系发生相对位移。

金属塑性成形过程韧性断裂的准则及其数值模拟

金属塑性成形过程韧性断裂的准则及其数值模拟
式中的参数与式( 中相同。 2 )
R e r y在1 9 es 9 年提出了三向应力作 i 和Tc l 6 c a ]
用下材料的韧性断裂准则为:
的应用。最后介绍作者对几个典型工艺模拟的结
果。
1 .
2韧性断裂准则
金属在加工过程中发生的断裂大多是韧性断 裂,很少发生脆性断裂。一般认为,金属中的韧
Kc nv 1 8 a a 在 9 年首先提出的另一种分析方 ho 5
法。这种研究方法主要是从细观 ( e s l m s ce oa) 的角度进行研究,对空洞的萌生和扩展角度进
行预测,建立空洞萌生准则。因为韧性断裂的
调整,局部调整还包括单元删除 ( e tn D l o)、 e i
50 3

国家杰出青年科学基金资助项目( 851) 5 21 . 9 7
58 2
主要是通过标准的常规实验来获取材料的实验数 据,然后用于对材料成形过程中的韧性断裂的判 断上,它还分二种,即应力、应变和应变能准 则,这类准则的代表是 C cr t a a 准则。 ok fLt m o- h 从所分析的尺度和方法上讲,它属于宏观断裂力 学的范畴。这种方法的缺陷是简单的力学实验条

虽然断裂问题在金属塑性加工中是一种常见 的现象,但是在早期的金属塑性加工数值模拟 中,却很少涉及到断裂问题的模拟。对工件断裂 的判断往往停留在强度理论上,以等效应力或等 效应变作为是否出现断裂的判据,这显然是承袭 了结构设计中的思想,实际上并不能满足加工工 艺研究的需要。于是许多学者提出了各种韧性断 裂破坏的判断方法,这些方法分为两类,第 类 称为基于实验的准则 (m i a Cir ) 它 E pi l ea 法, r c r i t
世纪二十年代开始由A .r h .G咖t发展起来的, A 经

焊接材料的塑性变形与断裂机理

焊接材料的塑性变形与断裂机理

焊接材料的塑性变形与断裂机理焊接是一种常见的金属加工方法,通过高温加热和冷却过程将两个或多个金属材料连接在一起。

在焊接过程中,焊接材料的塑性变形和断裂机理是非常重要的因素,它们直接影响着焊接接头的质量和性能。

首先,我们来探讨焊接材料的塑性变形机理。

塑性变形是指金属材料在受到外力作用下发生的可逆形变过程。

在焊接过程中,焊接材料会受到焊接电弧或热源的加热,从而达到熔化温度。

一旦焊接材料熔化,它就会变得可塑性,可以通过外力进行塑性变形。

焊接材料的塑性变形主要是通过热塑性变形和冷塑性变形来实现的。

热塑性变形是指焊接材料在高温下受到外力作用时发生的塑性变形。

在焊接过程中,焊接材料受到焊接电弧或热源的加热,使其达到熔化温度,然后通过焊接工具施加的外力进行塑性变形。

热塑性变形的优点是能够使焊接接头的形状更加精确,缺点是容易产生热裂纹和变形。

冷塑性变形是指焊接材料在冷却过程中受到外力作用时发生的塑性变形。

在焊接过程中,焊接材料在熔化后会迅速冷却,形成焊缝。

在冷却过程中,焊接材料会受到外力的作用,使其发生塑性变形。

冷塑性变形的优点是能够增加焊接接头的强度和硬度,缺点是容易产生冷裂纹和变形。

除了塑性变形,焊接材料的断裂机理也是非常重要的。

断裂机理是指焊接材料在受到外力作用下发生破裂的过程。

在焊接过程中,焊接材料会受到焊接电弧或热源的加热和冷却过程的影响,从而产生内部应力。

如果这些内部应力超过了焊接材料的强度极限,就会导致焊接接头的断裂。

焊接材料的断裂机理主要有两种,一种是脆性断裂,另一种是韧性断裂。

脆性断裂是指焊接材料在受到外力作用下迅速破裂的过程。

脆性断裂的特点是断口平整,没有明显的塑性变形。

脆性断裂主要是由于焊接材料中存在的缺陷或内部应力引起的。

韧性断裂是指焊接材料在受到外力作用下发生延展性破裂的过程。

韧性断裂的特点是断口不平整,有明显的塑性变形。

韧性断裂主要是由于焊接材料中的晶粒细化和断口韧化等因素引起的。

综上所述,焊接材料的塑性变形和断裂机理是影响焊接接头质量和性能的重要因素。

金属的断裂条件及断口

金属的断裂条件及断口

金属的断裂条件及断口金属在外加载荷的作用下,当应力达到材料的断裂强度时,发生断裂。

断裂是裂纹发生和发展的过程。

1. 断裂的类型根据断裂前金属材料产生塑性变形量的大小,可分为韧性断裂和脆性断裂。

韧性断裂:断裂前产生较大的塑性变形,断口呈暗灰色的纤维状。

脆性断裂:断裂前没有明显的塑性变形,断口平齐,呈光亮的结晶状。

韧性断裂与脆性断裂过程的显著区别是裂纹扩散的情况不同。

韧性断裂和脆性断裂只是相对的概念,在实际载荷下,不同的材料都有可能发生脆性断裂;同一种材料又由于温度、应力、环境等条件的不同,会出现不同的断裂。

2. 断裂的方式根据断裂面的取向可分为正断和切断。

正断:断口的宏观断裂面与最大正应力方向垂直,一般为脆断,也可能韧断。

切断:断口的宏观断裂面与最大正应力方向呈45°,为韧断。

3. 断裂的形式裂纹扩散的途径可分为穿晶断裂和晶间断裂。

穿晶断裂:裂纹穿过晶粒内部,韧断也可为脆断。

晶间断裂:裂纹穿越晶粒本身,脆断。

机器零件断裂后不仅完全丧失服役能力,而且还可能造成不应有的经济损失及伤亡事故。

断裂是机器零件最危险的失效形式。

按断裂前是否产生塑性变形和裂纹扩展路径做如下分类。

韧性断裂的特征是断裂前发生明显的宏观塑性变形,用肉眼或低倍显微镜观察时,断口呈暗灰色纤维状,有大量塑性变形的痕迹。

脆性断裂则相反,断裂前从宏观来看无明显塑性变形积累,断口平齐而发亮,常呈人字纹或放射花样。

宏观脆性断裂是一种危险的突然事故。

脆性断裂前无宏观塑性变形,又往往没有其他预兆,一旦开裂后,裂纹迅速扩展,造成严重的破坏及人身事故。

因而对于使用有可能产生脆断的零件,必须从脆断的角度计算其承载能力,并且应充分估计过载的可能性。

. 金属材料产生脆性断裂的条件(1)温度任何一种断裂都具有两个强度指标,屈服强度和表征裂纹失稳扩散的临界断裂强度。

温度高,原子运动热能大,位错源释放出位错,移动吸收能量;温度低反之。

(2)缺陷材料韧性裂纹尖端应力大,韧性好发生屈服,产生塑性变形,限制裂纹进一步扩散。

金属材料的塑性指标

金属材料的塑性指标

金属材料的塑性指标
金属材料的塑性指标是指金属在受力作用下发生塑性变形的能力。

塑性指标是
评价金属材料加工性能的重要指标之一,对于金属材料的选择和加工具有重要的指导作用。

常见的金属材料的塑性指标包括屈服强度、延伸率、冷加工硬化指数等。

首先,屈服强度是金属材料在拉伸试验中开始发生塑性变形时的应力值。

屈服
强度越大,表示金属材料的抗拉性能越好,具有更高的塑性。

屈服强度是评价金属材料抗拉性能的重要参数,对于金属材料在工程结构中的应用具有重要的指导意义。

其次,延伸率是金属材料在拉伸试验中断裂前的变形量与原始标距的比值。


伸率越大,表示金属材料的塑性越好,具有更好的加工性能。

延伸率是评价金属材料加工性能的重要指标之一,对于金属材料的选择和加工具有重要的指导作用。

另外,冷加工硬化指数是金属材料在冷加工过程中硬化速率的指标。

冷加工硬
化指数越小,表示金属材料的塑性越好,具有更好的冷加工性能。

冷加工硬化指数是评价金属材料冷加工性能的重要参数,对于金属材料的冷加工工艺设计具有重要的指导意义。

总之,金属材料的塑性指标是评价金属材料加工性能的重要指标,对于金属材
料的选择和加工具有重要的指导作用。

通过对金属材料的屈服强度、延伸率、冷加工硬化指数等塑性指标的评价,可以有效地指导金属材料的应用和加工工艺的设计,提高金属材料的加工质量和效率,促进金属材料在工程结构中的应用。

因此,加强对金属材料塑性指标的研究和应用具有重要的意义,有助于推动金属材料领域的发展和进步。

谈塑性变形与断裂的关系

谈塑性变形与断裂的关系

谈塑性变形与断裂的关系----------------------塑性变形是断裂的基础,断裂是塑性变形的最终结果。

0 引言塑性变形指的是永不可恢复的变形,其具体的机制包括位错滑移、孪生、晶界滑动、扩散性蠕变。

其中一般情况下位错滑移起主要作用,孪生多发生在低温、高应变速率时滑移系少的材料中,而晶界滑动与扩散性蠕变一般在高温下发生。

断裂指材料在应力的作用下分离两个或多个部分的现象。

如若有上文四种机制的作用,我们便可认为材料发生了塑性变形,因此,讨论塑性变形与断裂的关系就可转化为讨论各种不同断裂的机理与塑性变形机制的关系,以明确塑性变形在断裂中的作用,阐明他们之间的必然联系。

本文核心论点为:塑性变形是断裂的基础,断裂是塑性变形的必然结果。

接下来讨论以下从八个具有不同断裂机理的断裂,以阐明塑性变形与断裂的关系,论证塑性变形是断裂的基础,断裂是塑性变形的最终结果。

1延性断裂延性断裂是指在断裂过程中,塑性变形起主导作用的断裂形式,包括切离和微孔聚集型断裂。

首先来看切离断裂,单晶体在拉伸塑性变形中只有一个滑移系统开动(如hcp中只沿基面滑移的情况),试样将沿着滑移面分离,对于多晶体,多滑移系统同时动作,协调变形,试样将经过均匀变形和颈缩等阶段,变形至颈部截面积为零时断裂,形成尖锥状的断口。

切离断裂是位错无限发展的结果,位错运动贯穿切离断裂的始终,没有位错不断滑移,就不可能发生切离断裂。

由微孔的形核、长大聚合而导致的断裂叫做微孔聚集型断裂,微孔形成的机制共有三种,分别为空位扩散机制、强化相脱粘机制与强化相碎裂机制。

空位的形成是由于位错割阶的非保守运动而产生的,空位的扩散聚集成为微孔,其过程是通过位错的运动。

而强化相脱粘机制与强化相碎裂机制是由于强化相在材料中阻碍滑移,使得强化相前方位错塞积,应力集中,当应力大于强化相强度或者强化相与基体的结合强度时,就导致了强化相本身的折断或者脱离,也即在此处产生了微孔。

而微孔的长大与连接也是塑性变形的结果:微孔间的材料形成“内颈缩”并随位错运动越来越细,内颈缩断裂,使得微孔与最近微孔相连,微孔不断聚合导致裂纹扩展,最终断裂。

《金属材料与热处理》第三章金属的塑性变形对组织性能

《金属材料与热处理》第三章金属的塑性变形对组织性能
➢再结晶温度指的是最低再结晶温度(T再):用经过严
重冷塑性变形的金属,经1小时加热后能完全再结晶的 最低温度来表示。
最低再结晶温度:
T再=0.4T熔点 式中温度单位为绝对温度(K)。
8
学习情境三:金属的塑性变形对组织性能的影响 3.2
(3)再结晶温度影响因素:
1)变形程度 ➢2)金金属属再纯结度晶前:塑纯性度变越形高的, 最相低对再变结形晶量温称度为也预就先越变低形 度➢。3)预;加先热变速形度越大, 金属的晶体缺陷就越多, 组织越不 稳➢➢杂再定质结, 最和晶低合是再金一结元扩晶素散温(过度高程也熔, 需就点一越元定低素时;)间阻才碍能原完子成扩;散和晶 ➢界➢当提迁预高移先加, 可变热显形速著度度提达会高一使最定再低大结再小晶结后在晶,较最温高低度温再;度结下晶发温生度;趋于某 一➢高原稳纯始定度晶值铝粒。(越99粗.9大9,9再%结)最晶低温再度结越晶高温。度为80 ℃; ➢工业纯铝(99.0%)最低再结晶温度提高到290 ℃。
3
学习情境三:金属的塑性变形对组织性能的影响 3.2
3、热加工晶粒大小控制措施
(1).控制较低的加工终了温度 (2).控制较大的变形程度 (3).控制较快的冷却速度
0
学习情境三:金属的塑性变形对组织性能的影响 3.2
3、产生残余内应力 ➢定义:外力去除后,金属内部残留下来的应力。
产生原因:金属发生塑性变形时,内部变形不均匀, 位错、空位等晶体缺陷增多,会产生残余内应力。
➢1)宏观内应力 ➢2)微观残余应力 ➢3)晶格畸变应力
1
学习情境三:金属的塑性变形对组织性能的影响 3.2
3
学习情境三:金属的塑性变形对组织性能的影响 3.1
第一节 金属的塑性变形

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能
金属材料的力学性能主要包括以下几个方面:
1. 强度:金属材料的强度是指它抵抗外力的能力。

通常用屈服强度、抗拉强度或抗压强度来表示材料的强度。

2. 延展性:金属材料的延展性是指其在受力下能够发生塑性变形的
能力。

常用的评价指标有伸长率、断面收缩率和断裂延伸率。

3. 硬度:金属材料的硬度是指其抵抗局部划痕或压痕的能力。

常用
的硬度测试方法有布氏硬度、洛氏硬度和维氏硬度等。

4. 韧性:金属材料的韧性是指其抵抗断裂的能力。

韧性与强度和延
展性密切相关,一般用冲击韧性和断裂韧性来评价材料的韧性。

5. 塑性:金属材料的塑性是指其在受力作用下发生可逆形变的能力。

塑性是金属材料特有的力学性能,它使得金属材料可以制成各种形状。

6. 疲劳性能:金属材料的疲劳性能是指其在交变或周期性载荷下抵抗疲劳损伤的能力。

疲劳性能的评价指标包括疲劳寿命和疲劳极限等。

不同的金属材料具有不同的力学性能,这些性能会受到材料的化学成分、晶体结构、热处理和加工工艺等因素的影响。

因此,在选择和使用金属材料时,需要根据具体的工程要求和环境条件来考虑其力学性能。

什么是金属材料的塑性

什么是金属材料的塑性

什么是金属材料的塑性金属材料的塑性是指金属在外力作用下发生形变的性质。

金属材料的塑性是金属材料的重要性能之一,也是金属材料被广泛应用的重要原因之一。

金属材料的塑性是由金属内部晶格结构和金属原子之间的结合力所决定的。

金属材料的塑性特点主要表现在以下几个方面:1. 金属材料的塑性是指金属在外力作用下能够发生形变而不断改变其形状。

这种形变是可逆的,即在去除外力后,金属可以恢复原来的形状。

这种特性使得金属材料可以被轻松地加工成各种形状,满足不同工程需求。

2. 金属材料的塑性是指金属在外力作用下可以延展、挤压、弯曲等形变,而且在形变过程中不易发生断裂。

这种特性使得金属材料可以被用来制造各种零部件和构件,如汽车零部件、机械构件等。

3. 金属材料的塑性是指金属在外力作用下可以发生局部变形,而不影响整体结构。

这种特性使得金属材料可以承受一定程度的变形而不失去原有的功能,从而延长了金属材料的使用寿命。

金属材料的塑性是由金属内部晶格结构和金属原子之间的结合力所决定的。

金属的晶格结构决定了金属材料的塑性,晶格结构越规整,金属材料的塑性越好。

金属原子之间的结合力也会影响金属材料的塑性,结合力越强,金属材料的塑性越差。

金属材料的塑性还受到温度、应变速率、晶粒大小等因素的影响。

温度升高可以提高金属材料的塑性,使得金属材料更容易发生形变。

应变速率也会影响金属材料的塑性,应变速率越大,金属材料的塑性越好。

晶粒大小对金属材料的塑性也有一定影响,晶粒越细小,金属材料的塑性越好。

总的来说,金属材料的塑性是金属材料的重要性能之一,也是金属材料被广泛应用的重要原因之一。

金属材料的塑性特点主要表现在金属在外力作用下能够发生形变而不断改变其形状、可以延展、挤压、弯曲等形变,而且在形变过程中不易发生断裂、可以发生局部变形而不影响整体结构。

金属材料的塑性是由金属内部晶格结构和金属原子之间的结合力所决定的,同时还受到温度、应变速率、晶粒大小等因素的影响。

金属学及热处理课后习题答案解析第六章

金属学及热处理课后习题答案解析第六章

⾦属学及热处理课后习题答案解析第六章第六章⾦属及合⾦的塑性变形和断裂2)求出屈服载荷下的取向因⼦,作出取向因⼦和屈服应⼒的关系曲线,说明取向因⼦对屈服应⼒的影响。

答:1)需临界临界分切应⼒的计算公式:τk=σs cosφcosλ,σs为屈服强度=屈服载荷/截⾯积需要注意的是:在拉伸试验时,滑移⾯受⼤⼩相等,⽅向相反的⼀对轴向⼒的作⽤。

当载荷与法线夹⾓φ为钝⾓时,则按φ的补⾓做余弦计算。

2)c osφcosλ称作取向因⼦,由表中σs和cosφcosλ的数值可以看出,随着取向因⼦的增⼤,屈服应⼒逐渐减⼩。

cosφcosλ的最⼤值是φ、λ均为45度时,数值为0.5,此时σs为最⼩值,⾦属最易发⽣滑移,这种取向称为软取向。

当外⼒与滑移⾯平⾏(φ=90°)或垂直(λ=90°)时,cosφcosλ为0,则⽆论τk数值如何,σs均为⽆穷⼤,表⽰晶体在此情况下根本⽆法滑移,这种取向称为硬取向。

6-2 画出铜晶体的⼀个晶胞,在晶胞上指出:1)发⽣滑移的⼀个滑移⾯2)在这⼀晶⾯上发⽣滑移的⼀个⽅向3)滑移⾯上的原⼦密度与{001}等其他晶⾯相⽐有何差别4)沿滑移⽅向的原⼦间距与其他⽅向有何差别。

答:解答此题⾸先要知道铜在室温时的晶体结构是⾯⼼⽴⽅。

1)发⽣滑移的滑移⾯通常是晶体的密排⾯,也就是原⼦密度最⼤的晶⾯。

在⾯⼼⽴⽅晶格中的密排⾯是{111}晶⾯。

2)发⽣滑移的滑移⽅向通常是晶体的密排⽅向,也就是原⼦密度最⼤的晶向,在{111}晶⾯中的密排⽅向<110>晶向。

3){111}晶⾯的原⼦密度为原⼦密度最⼤的晶⾯,其值为2.3/a2,{001}晶⾯的原⼦密度为1.5/a24)滑移⽅向通常是晶体的密排⽅向,也就是原⼦密度⾼于其他晶向,原⼦排列紧密,原⼦间距⼩于其他晶向,其值为1.414/a。

6-3 假定有⼀铜单晶体,其表⾯恰好平⾏于晶体的(001)晶⾯,若在[001]晶向施加应⼒,使该晶体在所有可能的滑移⾯上滑移,并在上述晶⾯上产⽣相应的滑移线,试预计在表⾯上可能看到的滑移线形貌。

金属及合金的塑性变形与断裂PPT课件

金属及合金的塑性变形与断裂PPT课件

03
02
延性断裂的断口呈纤维状,色泽灰暗,表面 有明显的塑性变形。
04Biblioteka 脆性断裂:材料在断裂前几乎没有塑性变 形,断裂突然发生。
脆性断裂的断口呈结晶状,色泽光亮,没 有明显的塑性变形。
05
06
脆性断裂多发生在脆性材料中,如玻璃、 陶瓷等。
疲劳断裂与环境断裂
疲劳断裂:材料在循环载荷作用下发 生的断裂现象。
THANKS.
塑性变形机制
滑移
金属晶体在切应力作用下,晶体的一 部分相对于另一部分沿一定的晶面和 一定的晶向相对移动的现象。
孪生
金属晶体在切应力作用下,沿一定的 晶面和一定的晶向发生切变的现象。
晶界滑移
在多晶体金属中,晶界在切应力作用 下发生相对移动的现象。
晶界滑移与位错交互作用
晶界滑移与位错运动之间的相互作用, 影响金属的塑性变形行为。
金属及合金的塑性变形与断裂 涉及到材料科学、物理学、力 学等多个学科领域,开展跨学 科研究有助于深入理解其内在 机制,推动相关领域的发展。
通过实验与计算模拟相结合的 方法,可以更全面地揭示金属 及合金的塑性变形与断裂行为 ,为实际应用提供更准确的指 导。
将智能化与自动化技术应用于 金属及合金的塑性变形与断裂 研究中,可以提高研究效率, 降低实验成本,为实际生产提 供有力支持。
屈服准则
描述材料开始进入塑性变形的应力条件 。例如,Tresca和Von Mises屈服准则。
VS
应力-应变关系
描述金属或合金在塑性变形过程中应力与 应变之间的关系,通常呈现非线性特征。
加工硬化与软化现象
加工硬化
随着塑性变形的增加,金属或合金的强度和 硬度提高,但延展性和韧性下降的现象。

金属的力学性能

金属的力学性能

• 强度与塑性是一对相互矛盾的性能指标。在金属材 料的工程应用中,要提高强度,就要牺牲一部分塑 性。反之,要改善塑性,就必须牺牲一部分强度。 • 正所谓“鱼和熊掌二者不能兼得”。但通过细化金 属材料的显微组织,可以同时提高材料的强度和塑 性。
通常情况下金属的伸长率不超过90% ,而有些金属 及其合金在某些特定的条件下,最大伸长率可高达 1000%~2000% ,个别的可达6000% ,这种现象称 为超塑性。由于超塑性状态具有异常高的塑性,极 小的流动应力,极大的活性及扩散能力,在压力加 工、热处理、焊接、铸造、甚至切削加工等很多领 域被中应用。
屈服阶段 强化阶段 颈缩现象
(a)试样 (b)伸长 (c)产生缩颈 (d)断裂
拉 伸 试 样 的 颈 缩 现 象
3. 脆性材料的拉伸曲线(与低碳钢试样相对比)
F
0
ΔL
脆性材料在断裂前没有明显的屈服现象。
应力 = P/F0 应变 = (l-l0)/l0
三、强度 ——金属材料在外力作用下抵抗塑性变形和 破坏的能力
按作用形式不同分:
6、变形:材料在外力的作用下将发生形状和尺寸变化, 称为变形。分为弹性变形与塑性变形 外力去处后能够恢复的变形称为弹性变形。 外力去处后不能恢复的变形称为塑性变形。
一、强度 概念:强度是指金属抵抗永久变形(塑性变形)和断裂 的能力 。通过拉伸试验测得大小。强度的大小通常用应力来表示。
第一章 金属材料的力学性能
本节重点:金属材料的力学性能 本节难点:各性能指标的物理意义和测定方法
主要内容:金属材料的力学性能,包括材料的强 度 、硬度、塑性、冲击韧性、疲劳 强度等。
金属材料
陶瓷材料
材料分类
高分子材料
复合材料

第六章 金属材料性能与塑性变形

第六章 金属材料性能与塑性变形
储能
???
减震
恒力碟簧支吊架
第二节 弹性变形
1.2.5 滞弹性
(1)突然加载OA,产生瞬时应 变Oa ,而后产生附加应变Ah (2)快速卸载Be,产生瞬时应 变He 而后产生附加应变eO
滞弹性
在弹性范围内快速加载或卸载后,随时间延长产生附 加弹性应变的现象。
产生原因:可能与金属中点缺陷的移动有关。 在仪表和精密机械中,选用重要传感元件的材料时,需要考虑滞弹性问题。
P 载 荷 (N)
b
e p Pp s
(MPa) k
Pk
0
lk b (低碳钢的拉伸力-伸长曲线)
l
lu
l伸长 0 (mm)
p
b
k
u
(低碳钢的应力-应变曲线)
k
(%)
低碳钢的应力-应变曲线 (M Pa) b k
a
a′
0a段 aa ′段 a ′b段
弹性变形 阶段 塑性变形 阶段
但是,通常拉开n分之一个原子间距就发生了塑性变形——塑性变 形机理取代弹性变形
第二节 弹性变形
1.2.2 胡克定律
(一) 简单应力状态的胡克定律 1.单向拉伸
y

y
2.剪切和扭转
x z y
E
y
E
(1-1)
G
E G 3.E、G的关系 2(1 )
断口特征
第一节 应力-应变曲线
1.1.1 脆性材料的拉伸性能

在拉伸时只产生弹性变形,不产生或产生微量的塑性变形 强度高、塑性差的材料:玻璃、陶瓷、高强钢、铸铁

材料完全脆性的- 曲线
弹性变形阶段 应力-应变成正比
E G

金属及合金的塑性变形与断裂

金属及合金的塑性变形与断裂

晶粒。
工业纯铁在塑性变形前后的组织变化
(a) 正火态
(b) 变形40%
(c) 变形80%
5%冷变形纯铝中的位错网
塑性变形对金属组织的影响
晶粒拉长,纤维组织 → 各向异性 (沿纤维方向的强度、塑性最大)
变形10% 100×
变形80% 纤维组织
100×
变形40% 100×
工业纯铁 不同变形度 的显微组织
2.位错的增殖

位错增值模型.swf 螺位错双交滑移增殖模型.swf
3.位错的交割与塞积
位错在障碍物前的塞积
位错:AB 、CD (固定不动)
mn⊥b2
位错

当两条位错线交割时,每条位错线上都可能出 现长度相当于另一条位错线b的割阶,这就增加
了位错长度,是位错能量升高,是变形所需的
总能量升高; 另外,当割阶垂直于滑移面时, 此割阶有阻止位错运动的作用,会使晶体进一 步滑移的抗力增加,这是加工硬化的主要原因。
量和分布有关。第二相
可以是纯金属、固溶体
或化合物,工业合金中
第二相多数是化合物。
+钛合金(固溶体第二相)

当在晶内呈颗粒状弥散分布时,第二相颗粒越细, 分布越均匀,合金的强度、硬度越高,塑性、韧性 略有下降,这种强化方法称弥散强化或沉淀强化。 弥散强化的原因是由于硬的颗粒不易被切变,因而 阻碍了位错的运动,提高了变形抗力。

固溶强化的实质是溶质原子与位错的弹性交互作用阻碍了位错 的运动。即溶质原子与位错弹性交互作用的结果,如下图所示,使 溶质原子趋于聚集在位错的周围,以减小畸变,使系统更加稳定, 此即称为柯氏(cotrell)气团。显然,柯氏气团对位错有“钉扎”作用。 为了使位错挣脱气团而运动,必须施加更大的外力。因此,固溶体 合金的塑性变形抗力要高于纯金属。

金属材料的塑性变形与断裂机理

金属材料的塑性变形与断裂机理

金属材料的塑性变形与断裂机理金属材料是广泛应用于工业和制造领域的重要材料之一。

塑性变形和断裂机理是金属材料力学行为的基本特征,对于理解金属材料的性能和改善其工程应用具有重要意义。

本文将从塑性变形和断裂机理两个方面进行论述,以帮助读者更好地理解金属材料的性质和行为。

一、塑性变形机理1.1 密排层错结构金属材料中晶体的构造对其塑性变形性能具有重要影响。

密排层错结构是金属材料中晶体排列的一种常见结构。

该结构可以使晶体在受力时发生滑移,从而引发材料的塑性变形。

滑移过程中,晶体内的原子相互滑动,使材料发生变形,从而增加其塑性。

1.2 双曲面交错结构双曲面交错结构是另一种常见的金属材料晶体排列方式。

在受力作用下,晶体发生双曲面滑移,从而引起材料的塑性变形。

该结构可以增加晶体滑移的方向,提高材料的塑性。

1.3 变形机制金属材料的塑性变形机制主要包括滑移、孪晶形成和机械孪生等。

滑移是晶体中原子相互滑动引起的变形机制,主要通过滑移面和滑移方向来确定滑移产生的位置。

孪晶形成是在某些条件下晶体内部形成镜像结构,从而产生变形。

机械孪生是晶体中发生变形所产生的一种特殊形态。

二、断裂机理2.1 断裂类型金属材料的断裂类型包括韧性断裂、脆性断裂和疲劳断裂。

韧性断裂是材料发生延性断裂,即在承受一定载荷后,材料仍能继续变形;脆性断裂是材料在承受载荷后突然断裂,变形能力较差;疲劳断裂是材料在长时间重复加载的作用下产生的断裂现象。

2.2 断裂因素金属材料的断裂受到多种因素的影响,主要包括应力、环境和缺陷等。

应力是导致材料发生断裂的最主要因素,当应力超过材料的承受能力时,断裂就会发生。

环境因素如温度、湿度等也会对金属材料的断裂行为产生影响。

此外,材料内部的缺陷如裂纹、夹杂等也会加速材料的断裂。

2.3 断裂表征方法断裂行为的表征对于评估材料的性能具有重要意义。

常见的断裂表征方法包括断口形貌观察、断口分析和断裂韧性测试等。

通过观察断口形貌可以了解材料的断裂模式,进一步深入分析可以推测断裂的原因。

金属材料的断裂和断裂韧性

金属材料的断裂和断裂韧性
纤维区:试样中心,裂纹形成区,颜色灰暗,较粗 糙,裂纹扩展时塑变大,扩展慢。 放射区:较光亮平坦,放射状条纹,裂纹扩展快。 剪切唇:试样边缘,应力状态改变,剪切断裂,表 面粗糙,深灰色。
4.1 脆性断裂
➢ 断裂前无明显塑变,吸收能量少,裂纹扩展速度快,几近
音速,后果严重。
➢ 断裂面与正应力垂直,断口平齐光亮,呈放射状或结
➢ρ=8a0/π,为Griffith公式。
➢ρ<8a0/π,用Griffith公式。
线弹性条件下的断裂韧性
►研究带有裂纹的线弹性体,假定裂纹尖端应
力仍服从虎克定律。
►玻璃和陶瓷:理想的弹性体 ►金属:裂纹尖端塑性区尺寸远小于裂纹长度

►Griffith—Orowan:能量理论 ►Irwin:应力场强度因子理论
走向 沿晶断裂 裂纹沿晶界扩展
断裂 机理
解理断裂 无明显塑性变形,沿解理面分离,穿晶断裂
微孔聚集 沿晶界微孔聚合,沿晶断裂 型断裂 在晶内微孔聚合,穿晶断裂
解理型断口
微孔聚合型断口
沿晶断裂
穿晶断裂
a沿晶脆断 b 穿晶/解理 断裂 c 准解理断 d 微孔聚集
4.4 断裂力学与断裂韧度
断裂-低于许用应力
韧窝形状取决于应力状态;
临界或失稳状态时,KI记作KIC或KC。
介于解理断裂和韧窝断裂之间一种过渡断裂形式。
金属、高分子:塑性变形功 p ,Orowan修正公式:
沿大间距密排结晶面发生解理破坏,断口光滑,无特征判定裂纹源。 KC KIC 的区别
弹性应变能
微孔成核源:第二相粒子。
陶瓷:几乎或完全不能发生滑移,无塑性。
和高温的复合作用在晶界造成损伤。 例:钢的高温回火脆性是微量有害元素P,Sb,As,Sn等偏
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 塑性与柔软性的区别是什么? 塑性反映材料产生永久变形的能力。 柔软性反映材料抵抗变形的能力。
➢不锈钢------塑性好,但变形抗力高 ➢铅----------塑性好,变形抗力小
金属在高温下变形抗力都很小,具有很好的柔软 性,但绝对不能肯定它们必然有良好的塑性。
结论:塑性与柔氮 产生时效脆性(高温 度、硬度 、塑性、韧性 )
低温,Fe4N析出使钢的强
氢 引起氢脆现象,钢的塑性 (白点)
(二)合金元素对钢的塑性的影响
合金元素 塑性降低 、变形抗力
可以从以下几个方面来解释: 1. 合金元素溶入固溶体中,使其原子的晶体点阵发生畸
变; 2. 合金元素与碳形成脆而硬的碳化物; 3. 合金元素改变钢中相的组成,形成多相组织; 4. 合金元素与钢中的O、S形成氧化物或硫化物,造成钢
➢探索塑性变化规律 ➢寻求改善塑性途径 ➢选择合理加工方法 ➢确定最佳工艺制度 ➢提高产品质量
塑性指标及其测量方法
➢塑性指标的测量方法 ➢塑性指标
塑性指标
概 念: 金属在破坏前产生的最大变 形程度,即极限变形量。
表示方法: 断面收缩率 延伸率 冲击韧性 最大压缩率 扭转角(或扭转数) 弯曲次数
塑性指标的测量方法
➢ 应用:合理选择加工方法 制定冷热变形工艺
确定MB5镁合金热加工工艺步骤
➢ 根据产品确定加工方式(慢速、快速等) ➢ 根据相图确定合金的相组成 ➢ 根据塑性图确定热变形温度范围
根据力学性能要求确立 MB5主要成分为: Al 5. 5 ~ 7. 0% Mn 0. 15 ~ 0. 5% Zn 0. 5 ~ 1. 5%.
随着变形速度增加 (1)由于加工硬化导致变形抗力增加,从而使得塑性降低; (2)温度效应所引起的塑性增加。
从工艺性能的角度来看,提高变形速度有以下有利 作用: 1. 降低摩擦系数 降低金属流动阻力。 2. 减少热成形时的热量损失。 3.出现惯性流动,有利于复杂工件的成形。
三、塑性图
➢ 概念:表示金属塑性指标与变形温度及加载方式 的关系曲线图形,简称塑性图。
第七章 金属的塑性与断裂
§7-1 §7-2
§7-3 §7-4 §7-5 §7-6 §7-7
塑性和塑性指标 金属的化学成分和组织对塑性的影 响 变形温度、变形速度对塑性的影响 应力状态对塑性的影响 提高金属塑性的主要途径 金属的超塑性 金属的断裂
§7-1 塑性和塑性指标
➢ 什么是塑性? 塑性是金属在外力作用下产生永久变 形而不破坏其完整性的能力。
H0 Hh 100%
H0
式中: ——压下率; H0——试样原始高度; Hh——试样压缩后,在侧表面出现第一条 裂纹时的 高度
扭转试验法
对于一定试样,所得总转数越高,塑性越好,
可将扭转数换作为剪切变形( γ ) 。
R n
30L0
式中:R——试样工作段的半径; L0——试样工作段的长度; n——试样破坏前的总转数。
性(静水压起作用, m (1 2 3 ) / 3)。
应力状态中的压应力个数多、数值大、静水压力也大,则塑性 好;反之,压应力个数少或数值小,或甚至存在拉应力,则静 水压力减少,塑性就差。
原因: 1 拉伸应力会促进晶间变形、加速晶界的破坏;而压缩应力则阻
止或减少晶间变形,因而提高了金属的塑性。 2 三向压缩应力有利于消除由于塑性变形而引起的各种破坏,而
➢ 工件形状比较复杂,变形时易发生应力集中,应根据
αK曲线来判定。从图中可知,在相变点270℃附近突然
降低,因此,锻造或冲压时的工作温度应在250℃以下 进行为佳。
§7-4 应力状态对塑性的影响
三向应力状态,四种 主应力图有九种二向应力状态,三种
单向的二种
主应力图中主应力的个数,正负以及主应力的数值都对金属的 塑性产生影响。提高三向压缩应力状态,能充分发挥材料的塑
的热脆性; 5. 合金元素能影响钢的铸造组织和影响钢材加热时晶粒
的长大倾向,从而影响钢的塑性。
二、组织的影响
1. 晶格类型 2. 单相组织(纯金属或固溶体)比多相组织塑性好。
第二相的性质、形状、尺寸和分布会极大的影响合金 的机械性能。 3. 细晶粒组织有利于提高金属的塑性。 4. 铸造组织由于具有粗大的柱状晶粒和偏析、夹杂、气 泡、疏松等缺陷,故使金属塑性降低。
拉应力则相反。 3 三向压缩作用能抑制材料内部缺陷,反之,在拉应力作用下,
促进金属的破坏。 4 三向压缩作用能抵消由于不均匀变形所引起的附加拉应力。
1、金属本身的晶格类型, 影响金属塑性的因素化2、学外成部分条和件金,相如组变织形等温。度、
变形速度和受力状况等。
§7-2 金属的化学成分和组织对塑性的影响
一、化学成分的影响
(一)碳钢中碳和杂质元素的影响
碳 塑性
磷 钢的强度 、硬度 、塑性及韧性 在低温时,更为严重,这种现象称为冷脆性。
硫 增加热脆性。
➢ T>530℃,为液相

➢ <270℃,为+两相组 织


➢ 270℃< T<530℃,为单
一的 相
根据塑性图进一步确定热变形温度范围
从塑性图上获取的信息
➢ 慢速加工,温度为350~400℃时,φ值和εm 都有最大
值,不论轧制或挤压,都可在此温度范围内以较慢的速 度加工。
➢ 锻锤下加工,在350℃左右有突变,变形温度应选择在 400~450℃。
§7-3 变形温度、变形速度对塑性的影响
一、变形温度的影响
1.发生了回复与再结晶 温度 塑性 32..临金界属剪的应组力织降结低构,发滑生移变系化增加
4.热塑性作用的加强 5.晶界滑动作用的加强
二、变形速度的影响
随着变形速度的增加,既有使金属的塑性降低的一面,又 有效果相反的一面。
变形速度对塑性的影响比较复杂。当变形速度不大时, 随变形速度的提高塑性是降低的;而当变形速度较大时,塑 性随变形速度的提高反而变好。
➢拉伸试验法 ➢压缩试验法 ➢扭转试验法
拉伸试验法
Lh L0 100%
L0
F0 Fh 100%
F0
式中:L0——拉伸试样原始标距长度; Lh——拉伸试样破断后标距间的长度; F0——拉伸试样原始断面积; Fh——拉伸试样破断处的断面积
压缩试验法
简单加载条件下,压缩试验法测定的塑 性指标用下式确定:
相关文档
最新文档