飞机操纵系统介绍
飞机系统与附件课程教学课件:5.3 典型飞机操纵系统之主操纵系统
![飞机系统与附件课程教学课件:5.3 典型飞机操纵系统之主操纵系统](https://img.taocdn.com/s3/m/8428dc003a3567ec102de2bd960590c69ec3d8ef.png)
推动 凸轮回转
使系统 回到中立位
配 平 操 纵 期间 副翼配平作动器使支架移动 弹簧保持滚轮在凸轮的 近 心 点 带动凸轮一起转动
主操纵系统
给副翼助力器输入信号 移动副翼
产生滚转力矩 维持飞机的气动力平衡
同 时 带动驾驶盘偏转到新中立位 操纵力为 零 驾驶员能够松杆飞行
驾驶盘顶部有 副翼配平指示器
副翼感觉 和 定中机构
✓ 驾驶员操纵副翼,感觉和定中机构提供感觉力 ✓ 没有输入,驾驶盘回位到 中 立 位置
副翼配平作动器 改 变 副翼和驾驶盘的中立位置,以实现 配 平
主操纵系统
驾驶盘转动
使弹簧拉伸
为驾驶员 提供模拟感觉力
凸轮随 扭力轴转动
推动滚轮 离开凸轮近心点
主操纵系统
驾驶员 松开驾驶盘
滚轮回到 凸轮近心点
主飞行操纵系统与辅助操纵系统的区别
主操纵系统: 指 驱 动 副 翼 、升 降 舵 和 方 向 舵 ,使飞 机产生围绕纵轴、横轴、立轴转动的系统
主操纵系统 辅助操纵系统
主飞行操纵系统与辅助操纵系统的区别
辅助操纵系统: 其他 驱 动 扰 流 板 、前 缘 装 置 、后 缘 襟 翼 和 水 平 安 定 面 配 平 等辅助操纵面的操纵系统
方向舵操纵系统
飞机协调转弯 飞机侧倾升力在垂直方向上的分量会 减 小 ,造成飞机高度下 降
抵消飞机 下降趋势
转弯时向后 轻拉驾驶盘
使飞机 迎角增加
方向舵操纵系统
②偏航阻尼器 飞机方向舵操纵系统中装有 偏 航 阻 尼 器 作 用 : 及时根据飞机姿态的变化操纵方向舵,防止产生荷兰滚
偏航阻尼器驱动方向舵的偏转角 小 于 脚蹬操纵的方向舵偏转角
主操纵系统
飞机系统知识点总结
![飞机系统知识点总结](https://img.taocdn.com/s3/m/e115c9a018e8b8f67c1cfad6195f312b3169eb8e.png)
飞机系统知识点总结飞机是由许多复杂的系统组成的,这些系统相互配合,确保飞机的安全和性能。
本文将对飞机系统的各个方面进行总结,包括飞行控制系统、动力系统、舱内系统和通信系统等。
通过本文的阅读,读者可以对飞机系统有一个全面的了解。
一、飞行控制系统飞行控制系统是飞机的关键系统之一,它包括飞行操纵系统、飞行辅助系统和自动驾驶系统。
1. 飞行操纵系统飞行操纵系统包括操纵杆、脚蹬、副翼、升降舵和方向舵等部件。
通过这些部件,飞行员可以控制飞机的姿态、航向和俯仰。
飞机的操纵系统通常由液压系统或者电动系统驱动,确保飞机操纵的精准和灵活。
2. 飞行辅助系统飞行辅助系统是为了提高飞机的操纵性能而设计的系统。
比如说,阻尼器系统可以减小飞机的振动,减少飞机受到外部环境的影响。
此外,气动弹性补偿系统可以改善飞机的飞行品质,使得飞行更为平稳。
3. 自动驾驶系统自动驾驶系统是现代飞机的一大特色,它可以帮助飞行员更轻松地控制飞机。
自动驾驶系统可以自动调整飞机的姿态、航向和速度,减轻飞行员的负担,提高飞行的安全性。
二、动力系统动力系统是飞机的心脏,负责提供飞机的动力和推进力。
飞机的动力系统通常由发动机和推进系统组成。
1. 发动机发动机是飞机的动力来源,它可以根据不同的原理分为涡轮喷气发动机和螺旋桨发动机。
涡轮喷气发动机是现代喷气式飞机最常用的发动机,它通过燃烧燃料产生高温高压的气流,驱动涡轮产生推进力。
螺旋桨发动机则是一种传统的发动机,通过旋转螺旋桨产生推进力。
2. 推进系统推进系统包括发动机的引擎控制系统、涡轮喷气发动机的涡轮增压系统和螺旋桨发动机的传动系统。
这些系统可以有效地将发动机产生的动力传递到飞机的推进装置上,保证飞机的动力输出。
三、舱内系统舱内系统是为了提供乘客舒适和飞行员工作环境而设计的系统,它包括气压控制系统、空调系统和供氧系统等。
1. 气压控制系统在飞行高度较高的情况下,大气压会急剧下降,可能导致乘客和机组人员出现高原反应。
飞机操纵系统的组成
![飞机操纵系统的组成](https://img.taocdn.com/s3/m/dcb0ad4091c69ec3d5bbfd0a79563c1ec5dad703.png)
飞机操纵系统的组成
飞机操纵系统由主操纵系统和辅助操纵系统组成。
主操纵系统主要用于控制飞机的升降舵、副翼和方向舵,而辅助操纵系统则包括调整片、襟翼、减速板、可调安定面和机翼变后掠角操纵机构等,用于控制飞机的运动状态。
主操纵系统通过驾驶杆和脚蹬来控制飞机的升降舵、副翼和方向舵的操纵机构,以控制飞机的飞行轨迹和姿态。
中央操纵机构由驾驶杆和脚蹬组成,通过传动装置直接偏转舵面,传递操纵信号。
辅助操纵系统则包括调整片、襟翼、减速板、可调安定面和机翼变后掠角操纵机构等。
这些机构仅靠驾驶员选择相应开关、手柄位置,通过电信号接通电动机或液压作动筒来完成操作。
此外,机械操纵系统还包括驾驶员通过机械传动装置直接偏转舵面的部分。
这种系统由两部分组成:位于驾驶舱内的中央操纵机构和构成中央操纵机构和舵面之间机械联系的传动装置。
飞机操纵系统的组成因飞机类型和设计而异,但上述部分是常见于现代飞机的操纵系统的重要组成部分。
随着技术的发展,一些新型的飞机还采用了电传操纵系统和主动控制技术等更先进的技术。
《飞行操纵系统》课件
![《飞行操纵系统》课件](https://img.taocdn.com/s3/m/29318cd5dbef5ef7ba0d4a7302768e9950e76e58.png)
THANKS
感谢观看
飞行员通过Байду номын сангаас纵杆、脚蹬等输入装置 ,将控制指令传递给飞行操纵系统, 以改变飞机的飞行姿态和轨迹。
它包括主操纵系统和辅助操纵系统, 主操纵系统包括升降舵、方向舵和副 翼,辅助操纵系统包括襟翼、缝翼和 起落架收放机构等。
飞行操纵系统的动力学基础
飞行操纵系统的动力学基础包 括空气动力学和飞行力学。
空气动力学是研究气体流动和 物体在气体中运动的科学,它 为飞行操纵系统的设计和性能 提供了理论基础。
分类
根据飞行器类型和设计需求的不同,飞行操纵系统有多种分类方式。例如,按照传力介质的不同,可以分为机械 式操纵系统、液压式操纵系统和电气式操纵系统等;按照控制方式的不同,可以分为助力操纵系统和主动控制系 统等。
发展历程与趋势
发展历程
飞行操纵系统的发展经历了多个阶段,从早期的机械操纵系统到现代的电传操纵系统和 主动控制系统。随着科技的不断进步,飞行操纵系统的性能和安全性得到了极大的提升
权限管理与安全认证
限制飞行员对系统的操作权限,防止误操作或 恶意干扰。
自适应容错控制
在系统发生故障时,自动调整控制策略,降低故障对飞行安全的影响。
05
飞行操纵系统的应用与案例分析
飞行操纵系统在无人机中的应用
1 2 3
无人机飞行操纵系统概述
无人机飞行操纵系统是无人机控制的重要组成部 分,负责无人机的起飞、巡航、降落等操作。
飞行操纵系统的传感器
01
02
03
04
角位移传感器
检测飞行员的操纵角度,转换 为电信号。
力矩传感器
检测飞行员施加在操纵杆上的 力矩,转换为电信号。
侧杆传感器
飞机操纵系统发展史
![飞机操纵系统发展史](https://img.taocdn.com/s3/m/c77cb05bdcccda38376baf1ffc4ffe473368fdca.png)
飞机操纵系统发展史
飞机操纵系统的发展史可以追溯到20世纪初期,随着飞机的发展和技术的进步,飞机操纵系统的设计和功能也逐渐改进。
下面是飞机操纵系统的主要发展历程:
1. 手动操纵系统:早期的飞机操纵系统完全依靠飞行员的手动操作。
飞行员通过操纵杆、脚蹬和操纵表来控制飞机的方向、高度和速度。
这种系统简单、直观,但需要飞行员具备较高的操纵技巧和反应能力。
2. 机械辅助操纵系统:随着飞机的增大和复杂性的增加,手动操纵变得困难。
为了减轻飞行员的操纵负担,出现了机械辅助操纵系统。
这种系统通过利用液压或机械装置来辅助飞行员操纵飞机,如辅助操纵面的控制和增加力量辅助。
3. 电子辅助操纵系统:20世纪中期,随着电子技术的进步,飞机操纵系统开始采用电子辅助技术。
这种系统利用感应器、计算机和电动执行器来完成飞行员的操纵指令。
电子辅助操纵系统可以提供更高的精度和灵活性,可以对飞机进行自动平衡和自动调整。
4. 全电子操纵系统:近年来,随着计算机技术的迅速发展,飞机操纵系统逐渐向全电子化发展。
全电子操纵系统通过将感应器、计算机和电动执行器直接连接起来,实现了飞机操纵的完全电子化。
全电子操纵系统具有更高的精度和可靠性,同时可以实现自动化和智能化的飞行控制。
总的来说,飞机操纵系统的发展经历了从手动操作到机械辅助、电子辅助,再到全电子化的过程。
随着技术的不断进步,飞机操纵系统的功能和性能也越来越先进,大大提高了飞行安全和操纵效率。
飞机操纵系统要点课件
![飞机操纵系统要点课件](https://img.taocdn.com/s3/m/4280b12259fafab069dc5022aaea998fcc2240bb.png)
气压式飞机操纵系统是一种利用气压传动原理的飞机操纵系统,它通过压缩空气传递压力和运动,实现飞机的飞 行控制。
详细描述
气压式飞机操纵系统具有结构简单、重量轻和可靠性高等优点,被广泛应用于小型飞机和无人机中。它通过飞行 员操作气动阀,控制压缩空气的流动,驱动操纵面运动,实现飞机的飞行控制。
04
飞机操纵系统的应用与案 例分析
飞机操纵系统在军事航空中的应用
高机动性
军事飞机需要具备高机动性以应对战斗环境,飞机操纵系统能够 快速响应飞行员的操作,实现各种高难度机动动作。
隐形性能
现代军事飞机通常具备隐形性能,飞机操纵系统的设计也需要考虑 隐形性能的需求,如减少雷达反射面和红外特征等。
作战效能
飞机操纵系统直接影响到军事飞机的作战效能,包括发射武器、实 施侦察、执行战术机动等任务。
成本问题 飞机操纵系统的制造成本较高,需要采取有效的成本控制 措施,以确保产品的经济可行性。
未来飞机操纵系统的市场前景与机遇
市场需求
随着航空运输业的不断发展,飞机操纵系统的市场需求将持续增 长,为相关企业提供了广阔的市场空间。
技术创新
技术创新是推动飞机操纵系统发展的关键因素,相关企业需要加 大研发投纵系统在民用航空中的应用
飞行安全
飞机操纵系统是确保飞行安全的 关键部分,通过精确控制飞机的 姿态和轨迹,保障乘客和机组人
员的安全。
高效运行
民用航空中的飞机操纵系统需要适 应各种气象条件和飞行任务需求, 以确保飞机的高效运行,降低油耗 和维护成本。
舒适性
飞机操纵系统需要提供平稳、舒适 的飞行体验,减少飞行中的颠簸和 不适感,提高乘客的满意度。
01
或液压信号。
02
飞行操纵系统
![飞行操纵系统](https://img.taocdn.com/s3/m/d6511eb6dd3383c4bb4cd249.png)
装有非线性传动机构的操纵系 统,杆行程与舵面偏角之间成 曲线关系。
4.电传操纵系统
(1)电传操纵系统的提出
机械操纵系统缺点:
存在摩擦、间隙和非线性因素导致无法实现精微操纵信 号传递; 机械操纵系统对飞机结构的变化非常敏感; 体积大,结构复杂,重量大!
电传操纵系统的可靠性问题
缺点:
单通道电传操纵系统的可靠性不够高 电传操纵系统的成本较高 系统易受雷击和电磁脉冲波干扰影响
2.2.3 舵面驱动装置
1. 简单机械式操纵系统 2. 助力液压操纵系统 3. 电力驱动系统
1.
简单机械式操纵系统
概念
只靠驾驶员的体力克服铰链力矩; 操纵信号和操纵力同时由机械传动机构直接传递到 舵面使其按要求偏转的操纵系统。 S杆
灵敏特性
稳定特性
②
载荷感觉器
1. 无回力的助力操纵系统中,使飞行员能从驾驶杆上感 受到力; 2. 有回力的助力操纵系统中,在舵面铰链力矩较小时, 使驾驶杆不致过“轻”。
所谓差动,就是当驾驶杆前后(或左右)偏转的同一
角度时,升降舵(或副翼)上下(或左右)偏转的角 度不同。
实现差动操纵最简单的机构是差动摇臂。
(3)导向滑轮
导向滑轮由三个或四个小滑轮及其支架组成;
功用: 支持传动杆,提高传动杆的受压时的杆轴临界应力; 增大传动杆的固有频率,防止传动杆发生共振。
机械操纵系统可靠性较高! 单通道电传系统可靠性较低: 可接受的安全指标: 1107 / 飞行小时 解决措施:余度技术——多套系统/通道系统的各个部分具有故障监控、信号表决的能 力。 一旦系统或系统中某部分出现故障后,必须具有故障 隔离的能力。换句话说,在发生故障时,系统应具有 第一次故障能工作,第二次故障还能工作的能力。 当系统中出现一个或数个故障时,它具有重新组织余 下的完好部分,使系统具有故障安全或双故障安全的 能力,即在性能指标稍有降低情况下,系统仍能继续 承担任务。
飞机操纵系统
![飞机操纵系统](https://img.taocdn.com/s3/m/4ce6f217a300a6c30c229f9f.png)
飞机飞行操纵系统简述飞机作为使用最广泛、最具有代表性的航空器,其主要组成部分有以下五部分:推进系统,操纵系统,机体,起落装置,机载设备。
有人形象的比喻,飞机的外观结构是人的皮囊,发动机是人的心脏,操纵系统就是人的血管,他遍布整个飞行过程。
操纵系统至关重要,掌握着飞机的命脉。
本文我们着重来看飞机飞行操纵系统。
1.飞行操纵系统飞行操纵系统是用于供飞行员操纵飞机的副翼、升降舵、方向舵和其它可动舵面,从而实现飞机的横向、纵向、航向运动。
是作为传递操纵指令、驱动舵面和其他机构以控制飞机飞行姿态的系统。
根据操纵指令的来源,可分为人工操纵系统和自动控制系统。
1.1人工操纵系统人工操纵系统通常包括主操纵系统和辅助操纵系统两部分。
主操纵系统用来操纵方向舵、副翼、升降舵,包括了手操纵机构和脚操纵机构,主操纵系统应使驾驶员有位移和力的变化感觉,这是它与辅助操纵系统的主要差别。
1)飞机的纵向操纵飞机的纵向操纵是通过操纵驾驶杆或驾驶盘前、后运动控制升降舵来实现的。
在飞行中向后拉杆,机头应向上仰;向前推杆,机头应下俯。
2)飞机的横向操纵飞机的横向操纵系统是通过操纵驾驶杆或驾驶盘左、右运动或转动控制副翼来实现的,在飞行中,向左压杆或逆时针方向旋转驾驶盘,飞机应向左横滚;向右压杆或顺时针方向旋转驾驶盘,飞机应向右横滚。
3)飞机的航向操纵飞机的航向操纵是通过脚蹬控制方向舵来实现的。
在飞行中蹬右脚蹬,机头应向右偏转,蹬左脚蹬,机头应向左偏转。
1.2辅助操纵系统辅助操纵系统包括调整片、襟翼、减速板、可调安定面和机翼变后掠角操纵机构等。
它们的操纵只是靠选择相应开关位置,通过电信号接通电动机或液压作动筒来完成。
2.自动控制系统自动控制系统的操纵指令来自系统的传感器,能对外界的扰动自动作出反应,以保持规定的飞行状态,改善飞机飞行品质。
常用的自动控制系统有自动驾驶仪、各种增稳系统、自动着陆系统和主动控制系统。
自动控制系统的工作与驾驶员的操纵是各自独立、互不妨碍的。
《飞机结构与系统》课件——5-飞行操纵系统—辅助操纵系统
![《飞机结构与系统》课件——5-飞行操纵系统—辅助操纵系统](https://img.taocdn.com/s3/m/2552084d6ad97f192279168884868762caaebbe3.png)
扰流板操纵
扰流板分类
➢ 飞行扰流板:飞机飞行和着陆时都可以使用,用来增大迎风面积,增 大气动阻力,机翼上用来迅速增大阻力的板状操纵面称为“减速板” 。一般安装在机翼上表面靠近副翼的部位。
➢ 地面扰流板:飞机着陆后,机翼上用来迅速减少升力的板状操纵面称 为“减升板”或“卸升板”,它是一种只限于在地面使用的扰流板。 减升板一般安装在机翼上表面靠近翼根部位。当飞机降落时,只要机 轮一接触地面(空地感应开关),减升板就迅速打开,机翼升力迅速减 小,防止飞机弹跳,缩短滑跑距离。
12
襟翼操纵系统--指示
襟翼位置指示
➢后缘襟翼位置指示器
➢前缘位置指示器——前 缘襟翼和缝翼位置灯;
➢襟翼有收起和伸出两 个位置;
➢缝翼有收起、伸出、
完全伸出三个位置;
13
襟翼操纵系统--指示
14
襟翼操纵系统--指示
缝翼和襟翼指示
当缝翼或襟翼没有全部收上 时,“FLAP”字样出现。
当到达选择的位置 时为白色。
地面扰流板
➢功用 ➢只能在地面使用起减速作用。
➢位置 ➢立起、放下
➢控制 ➢受减速板手柄和空/地电门控 制,只有飞机在地面时,操纵 减速板手才能使地面扰流板放 出。一般是液压作动,并使用 双向单杆式作动筒。
20
扰流板操纵--操纵
✓飞行扰流板有两个作用:一 是减速;二是配合副翼进行横 侧操纵,即当驾驶盘旋转角度 超过一定值时,副翼上偏一侧 的飞行扰流板打开,配合副翼 进行横侧操纵,而另一侧的飞 行扰流板不作相应的偏转。飞 行扰流板在应急时也可以单独 进行应急横侧操纵。
11
襟翼操纵系统--操纵
襟翼保护措施
✓襟 翼 不 同 步 保 护 : 保 证 后 缘 襟 翼 不 同 步 时 快 速 切断襟翼操纵系统; ✓襟 翼 载 荷 限 制 器 : 保 护 襟 翼 结 构 , 避 免 在 大 的 气动载荷下损伤襟翼结构; ✓自 动 缝 翼 : 在 飞 机 接 近 失 速 时 , 自 动 驱 动 前 缘 缝翼从“部分放出”到“完全放出”位置;
飞机结构与系统(飞行操纵系统)课件
![飞机结构与系统(飞行操纵系统)课件](https://img.taocdn.com/s3/m/1d52274dc4da50e2524de518964bcf84b9d52d06.png)
04
飞行操纵系统维护与检修
飞行操纵系统日常维护
01
02
03
每日检查
检查飞行操纵系统外观, 确保没明显损坏或异常情 况。
清洁润滑
飞行操纵系统进行清洁润 滑,保持其良好工作状态 。
校准
飞行操纵系统进行校准, 确保其准确性可靠性。
飞行操纵系统定期检修
定期检查
按照规定周期飞行操纵系 统进行检查,包括内部结 构元件。
飞行管理系统
飞行管理系统现代飞行操纵系统核心组 成部它集成导航、气象、通讯等多种功 能,能够飞行员提供全面飞行信息支持
。
飞行管理系统通过接收处理自各种传感 器数据,飞行员提供实时飞行计划、航 向、速度、高度等信息,帮助飞行员更
好掌握飞行状态决策。
飞行管理系统还可根据气象条件飞行计 划,飞行员提供最佳飞行轨迹发动机管
安全标准与规范
参考相关安全标准规范,如国际民航组织(ICAO)美国联邦航空局(FAA)等发布相关指南标准,飞行操纵系统进 行安全性评估。些标准规范评估提供指导参考框架。
安全改进措施
根据安全性评估结果,制定并实施相应安全改进措施,提高飞行操纵系统安全性可靠性。些措施可能包 括硬件升级、软件修复、操作程序改进等各方面。
飞行操纵系统历史与发展
历史
早期飞机采简单机械式操纵系统,通过钢索、连杆等机械部件实现飞行员翼面舵面直接控制。随着技术发展,液 压式操纵系统电传式操纵系统逐渐取代机械式操纵系统。电传式操纵系统目前最先进飞行操纵系统,具更高可靠 性灵活性。
发展
未飞行操纵系统将朝着更加智能化、自主化协同化方向发展。智能化能够提高系统自主决策能力容错能力;自主 化能够减轻飞行员工作负担提高飞行安全性;协同化则能够实现飞行员与无机之间效协作,提高整体作战效能。
飞机操纵系统介绍课件
![飞机操纵系统介绍课件](https://img.taocdn.com/s3/m/37bff4634a35eefdc8d376eeaeaad1f3469311e5.png)
检查舵面和舵机
检查舵面是否有损伤,舵机工 作是否正常。
清洁和润滑
定期对操纵系统进行清洁和润 滑,以减少磨损和卡滞。
飞机操纵系统的定期维护保养
01
02
03
04
详细检查
对操纵系统进行详细检查,包 括检查舵机和连杆的磨损情况
、润滑情况等。
更换磨损部件
对磨损严重的部件进行更换, 如轴承、密封圈等。
测试系统性能
滚转和偏航运动。
传动机构
包括钢索、滑轮、连杆 和传动杆等,将飞行员
的操作传递到舵面。
舵面
包括升降舵、方向舵和 副翼等,用于控制飞机
的飞行姿态。
辅助控制系统
包括调整片、襟翼和缝 翼等,用于辅助控制飞 机的飞行姿态和性能。
CHAPTER 02
飞机操纵系统的种类与特点
机械操纵系统
机械操纵系统是通过钢索、滑轮、连 杆等机械传动机构,将飞行员施加的 操作力传递到舵面,实现飞机姿态和 航向控制的系统。
然而,机械操纵系统也存在操作力大 、飞行员负担重、响应速度慢等缺点 。
机械操纵系统具有结构简单、可靠性 高、成本低等优点,因此在早期的飞 机上广泛应用。
助力操纵系统
助力操纵系统是在机械操纵系统的基础上,通 过引入液压、气压等助力装置,减轻飞行员的 操作力,实现更轻松、快速的操作。
助力操纵系统广泛应用于现代运输机和战斗机 上,能够提高飞行员的舒适性和操作效率。
飞机操纵系统的安全性与可靠性提升
冗余设计
通过增加备份和冗余系统,提高飞机操纵系统的可靠性和容错能力,确保飞行安 全。
健康监测与故障诊断
利用传感器和监测技术,实时监测飞机操纵系统的状态,及时发现和诊断故障, 采取相应的维护措施。
描述简单飞机操纵系统的工作过程 -回复
![描述简单飞机操纵系统的工作过程 -回复](https://img.taocdn.com/s3/m/838b46544531b90d6c85ec3a87c24028915f8586.png)
描述简单飞机操纵系统的工作过程-回复中括号内的主题为"描述简单飞机操纵系统的工作过程"。
下文将详细叙述飞机操纵系统的构成和工作原理,介绍飞机的操纵手柄、飞行控制面、系统感知与数据处理、执行机构四个方面,以及它们如何协同工作来实现飞机的操纵。
一、飞机操纵系统概述飞机操纵系统,简称FCS(Flight Control System),是用来操纵飞机姿态和飞行的重要装置。
它由操纵手柄、飞行控制面、系统感知与数据处理以及执行机构等组成。
飞机操纵系统能够将飞行员通过操纵手柄发出的指令转化为相应的机械动作,从而实现飞机姿态和飞行状态的调整。
二、操纵手柄操纵手柄是飞机操纵系统的人机交互界面,用于飞行员发出指令。
通常,飞机的操纵手柄分为副操纵杆和主操纵杆两种。
飞行员通过推拉、转动操纵杆来控制飞机的姿态和飞行状态。
副操纵杆通常由副驾驶员使用,用于备份和协助主驾驶员。
操纵杆通过传感器将飞行员的输入指令转化为电信号,发送给系统感知与数据处理模块进行处理。
三、飞行控制面飞行控制面是飞机操纵系统的重要组成部分,用于调整飞机的姿态和飞行状态。
典型的飞行控制面包括升降舵、方向舵和副翼等。
飞行员通过操纵手柄发出信号后,系统会控制相应的执行机构调整控制面的位置和角度,从而实现飞机的操纵。
这些控制面能够调整飞机的俯仰、横滚和偏航等运动状态。
传感器会感知控制面的位置和姿态,并将信息反馈给系统感知与数据处理模块,以便系统调整控制面的动作范围和力度。
四、系统感知与数据处理飞机操纵系统还包括系统感知与数据处理模块,其主要功能是接收飞行员的操纵指令和传感器反馈的信息,并将其进行处理。
这个模块通常由控制计算机和相关软件组成。
它会根据飞行员的指令以及飞机的位置、速度和加速度等信息,计算出飞机应当采取的姿态调整和飞行动作,然后产生相应的控制信号,发送给执行机构。
五、执行机构执行机构是飞机操纵系统的末端执行部分,通过机械装置将系统传递过来的控制信号转化为操纵面的动作。
第一章----飞机操纵系统1要点知识讲解
![第一章----飞机操纵系统1要点知识讲解](https://img.taocdn.com/s3/m/fe2f3a5a89eb172ded63b7a6.png)
助力器
X kz
舵回路
kg
增稳系统
飞机
G s
放大器
kv
放大器
kv
ny ,z
速率陀螺
k z
加速度计
kny
增稳飞行操纵系统方块图
为了克服由于增稳系统而使飞机的操纵灵 敏性变差的问题,发展了控制增稳系统。
1.0 M
2.在跨音速飞行时,机翼焦点后移,飞机 3. 会产生自动下俯现象而引起杆力或杆位 4. 移反向
舵偏角
H=6Km
1.0
M
3.飞机产生单位过载 所需的平尾偏度随 M数和高度的变化很大,造成杆力和杆 位移随M数和高度的 变化也相当大,使 驾驶员很难操纵。
ny
H=12Km H=5Km
M
(二)现代飞机飞行操纵系统 随着飞机飞行速度、高度的不断增加, 飞机的动不稳定问题变得突出,于是需 要在操纵系统中设置增稳系统。
控制增稳系统:是在增稳系统的基础上 迭加来自驾驶杆的电信号,使它既起到 了增稳的作用,有增加了操纵反应能力。 操纵权限可为全权限的30%。
助力器
X kz
舵回路
kg
增稳系统
杆力传感器 指令模型
kF
Ms
飞机
G s
放大器
kv
放大器
kv
ny ,z
速率陀螺
k z
加速度计
kny
控制增稳系统
随着电子技术和余度技术的发展,七十年 代初,出现了电传操纵系统(FBW),并 成为飞机的主操纵系统。
飞机操纵系统
![飞机操纵系统](https://img.taocdn.com/s3/m/eb24824ebe1e650e52ea9930.png)
第二节 简单机械操纵系统
➢ 简单机械操纵系统是一种人力操纵系 统,由于其构造简单,工作可靠,使 用了30余年,才出现助力操纵系统
➢ 简单机械操纵系统现在仍广泛应用于 低速飞机和一些运输机上
2-01
2.1 对飞行操纵系统的要求
➢ 一般要求
➢ 重量轻、制造简单、维护方便 ➢ 具有足够的强度和刚度
➢ 特殊要求
➢现代民航客机在操纵系统中设置了 专门的非线性传动机构,靠它来改 变整个操纵系统的传动系数,实现:
➢在舵面偏转角较小时,杆行程较 大,便于飞行员准确操纵飞机;
➢在舵面偏转角较大时,杆行程不 至于过大,即灵敏性增加。
第三节 舵面补偿装置
➢作用:减小铰链力矩和杆力 ➢形式:
➢轴式补偿 ➢角式补偿 ➢内封补偿 ➢调整片补偿
连杆及蜗轮螺杆机构
➢平衡调整片
第五节 主操纵系统
➢飞行操纵系统由三个部分组成:主操 纵系统、辅助操纵系统和警告系统。
➢主操纵系统包括 ➢副翼 ➢升降舵 ➢方向舵
5.1 副翼操纵系统
➢驾驶盘柔性互联机构
➢液压助力器
➢现代大中型飞机的重量较重,飞行速度较快, 舵面上的气动载荷较大,因此常采用液压助 力器进行助力操纵。
➢ 实现差动操纵最简单的机构是差动摇臂
2-17
➢弗利兹副翼--平衡两机翼诱导阻力差
3.导向滑轮
➢支持传动杆 ➢提高传动杆的受压时的杆轴临界应力 ➢增大传动杆的固有频率,防止传动杆发生
共振
三、主操纵系统的传动系数和传动比
➢传动系数
➢传动系数 驾驶杆(盘或脚蹬)移动一 个很小的行程ΔX时,舵面的偏转角相 应也会改变一定数值Δδ,操纵系统 的传动系数K就定义作Δδ与ΔX的比 值,即:
飞机结构--飞行操纵系统
![飞机结构--飞行操纵系统](https://img.taocdn.com/s3/m/f8322ad5240c844769eaee58.png)
缺点
刚度较小 弹性间隙 操纵灵敏度差 钢索在滑轮处容易磨损 构造复杂 重量加大 难于“ 难于“绕”过机内设备 易与发动机发生共振
混合 兼有硬式和软式的优点和缺点
钢索
只承受拉力, 只承受拉力,不能承受压力 用两根钢索构成回路, 用两根钢索构成回路,以保证舵面能在两 个相反的方向偏转
钢索构造和规格
规格型号 7×7
特点: 特点:操纵信号由驾驶员发出 组成: 组成:
飞机的俯仰、滚转和偏航操纵系统(主操纵系统) 飞机的俯仰、滚转和偏航操纵系统(主操纵系统) 增升、增阻操纵系统,人工配平系统等(辅助操纵系统) 增升、增阻操纵系统,人工配平系统等(辅助操纵系统)
自动飞行控制系统
特点: 特点:
操纵信号由系统本身产生,对飞机实施自动和半自动控制, 操纵信号由系统本身产生,对飞机实施自动和半自动控制,协 助驾驶员工作或自动控制飞机对扰动的响应
股数
7×19
钢丝数
钢索构造和规格
类型
碳钢、不锈钢
尺寸
1/16到3/8英寸 名义直径相同的钢索,股数越多,它的柔性越好; 名义直径相同,股数相同,钢丝数越多,柔性就 越好。
钢索预紧
∆T M铰
+∆T’
T0
M铰
T0 -∆T’
固有缺陷——弹性间隙 弹性间隙 固有缺陷
弹性间隙
钢索承受拉力时,容易伸长; 钢索承受拉力时,容易伸长;由于操纵系统的弹性变形而产生的 间隙” “间隙”称为弹性间隙 危害:弹性间隙太大, 危害:弹性间隙太大,会降低操纵的灵敏性 解决措施: 解决措施:钢索预紧 常见故障——断丝(滑轮、导向器部位) 断丝( 常见故障 断丝 滑轮、导向器部位)
助力操纵系统
液压助力 电助力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 飞机操纵系统
传动杆与导向滑轮之间的间隙应为0.05-0.3毫米,测量时应将驾驶杆 和脚蹬固定在中立位置。间隙不合规定,可拧动滑轮支架上的偏心螺杆 (螺帽为方形)来调整。
导向滑轮
❖4.5操纵系统的发展
4 飞机操纵系统
❖4.5平尾操纵系统
4 飞机操纵系统
液压助力器YZL-11
在平尾操纵系统中采用了YZL-11液压助力器,分别操纵左右平尾 偏转,它承受作用在平尾上的全部铰链力矩。YZL-11是一种平板旋转 阀式的双腔串联外反馈助力器。它由分油装置、执行机构和传动机构 三部分组成
❖4.1概述
4 飞机操纵系统
为了提高飞机的横滚能力,歼八B型飞机上还装有差动平尾控制系统。 当驾驶杆横向操纵时,其机械位移经安装在副翼操纵系统中的GE-9位移 传感器,转换成电信号。该信号经差动平尾放大器FKJ-9放大后,输送给 安装在垂尾前梁上的FDJ06差动平尾舵机。舵机的输出位移,经三复合机 构综合后,差动的操纵左、右平尾助力器,使左、右平尾产生差动偏转, 以提高飞机的横向滚转能力。
副翼载荷感觉器的构造及工作原理与平尾载荷感觉器相似,但其弹 簧刚度和活动杆的最大行程不同,它的预载力为(5.6×9.8)N。
❖4.5副翼操纵系统
4 飞机操纵系统
副翼载荷机构
❖4.5副翼操纵系统
4 飞机操纵系统
副翼调整片效应机构
为了配平驾驶杆上的横向操纵力和扩大自动驾驶仪舵机的工作权 限,在副翼操纵系统中装有DG-32调效机构,副翼调效机构构造和工作 原理与平尾调效操纵工作状态、驾驶仪控制工 作状态和复合工作状态。
❖4.5副翼操纵系统
4 飞机操纵系统
副翼载荷机构
副翼载荷感觉器用来模拟横向操纵时的杆力,并在松杆后使驾驶杆 回到中立位置,它安装在14框后的背鳍内,并联在副翼操纵系统中, 外筒通过摇臂与调效机构的活动杆相连;活动杆与系统的摇臂相连。
脚蹬中立机构的功用就是使方向舵和脚蹬能准确地回到中立位置, 防止飞行及着陆过程中可能造成的无意识侧滑;并能消除驾驶仪自动控 制时,方向舵复合舵机的反传力而引起的脚蹬脉动。
❖4.5方向舵操纵系统
4 飞机操纵系统
调效机构
方向舵调效机构用来消除或减小操纵方向舵的脚蹬力。由于方向舵 调效机构的工作行程有限,因此它只能消除脚蹬由中立位置移动 ±10mm行程范围内的脚蹬力,相应地方向舵偏转±27.5mm。
❖4.1概述
4 飞机操纵系统
飞机的操纵系统用来供飞行员操纵飞机,以改变或保持飞机的飞行状 态。
飞机的操纵系统由中心机构、传动机构和操纵面组成。
飞机的操纵系统包括方向舵操纵系统、副翼操纵系统和水平尾翼操纵 系统,歼8系列飞机还包括差动平尾控制系统组成 。
❖4.1概述
4 飞机操纵系统
平尾、副翼和方向舵操纵系统均是硬式的,它们通过拉杆、摇臂等进 行传动。
歼-8飞机为了克服FDJ04A纵向舵机的反传力,在平尾操纵系统中 采用了带预载力的载荷感觉器,即载荷感觉器中立位置时,大、小弹簧 都有一定的预压力。大弹簧的预压力为(41×9.8)N;两端小弹簧的预 压力均为(34.3×9.8)N。大小弹簧预压力的差值(6.7×9.8)N形成了 预载力。
❖4.5平尾操纵系统
❖4.1概述
4 飞机操纵系统
传动机构 中心机构
操纵面
❖4.2中心机构
4 飞机操纵系统
驾驶杆
固定座
脚蹬
❖4.2中心机构
4 飞机操纵系统
驾驶杆
驾驶杆由铝制手柄,套 筒和钢制摇臂组成。前后 推拉驾驶杆可以通过下端 的传动杆去操纵水平尾翼, 左右压驾驶杆可通过转轴 上的摇臂去操纵副翼。
❖4.2中心机构
❖4.1概述
4 飞机操纵系统
为了承受作用在三个舵面上的全部空气动力载荷,平尾操纵系统中, 左、右各装有一个不可逆式的YZL-11Z Y液压助力器;副翼操纵系统中, 左、右机翼上各装有一个YD-7副翼复合舵机;在方向舵操纵系统中,方 向舵转轴的下方,装有一个FFD05方向舵机。后两种舵机,在人工操纵时, 起助力器作用,在自动驾驶时,它们分别是横向和航向通道的执行部件。 在平尾操纵系统中,还装有一个FDJ04A纵向舵机,它是KJ-12自动驾驶仪 纵向通道的前级执行部件,通过它将自动驾驶仪放大器纵向通道输入的控 制电流信号变为机械位移,使平尾助力器工作,实现对飞机的俯仰自动控 制。
❖4.1概述
4 飞机操纵系统
为了防止在大位移人工操纵时,由于人工和自动操纵的复合位移,可 能超过三个舱面允许的偏转范围而出现的碰撞现象,在平尾、副翼和方向 舵操纵系统中,分别安装了平尾、副翼极限位置传感器和方向舵行程限制 开关,以便在舵面偏转到极限位置前切断相应的舵机输出,保护操纵系统 或结构不致损坏。
4 飞机操纵系统
力臂自动调节装置
力臂调节装置的功用是:自动调节平尾操纵系统的传动系数,以保 证飞行员在不同的飞行速度、高度条件下,操纵驾驶杆移动同样行程后, 飞机的机动动作大致相同;并且,还能根据飞行速度、高度的变化,调 节驾驶杆力。
❖4.5平尾操纵系统
4 飞机操纵系统
力臂自动调节装置
力臂值随飞行表速的调节规律
❖4.1概述
4 飞机操纵系统
为了满足飞机的配平要求,在平尾、副翼和方向舵操纵系统中,各装 有调整片效应机构,飞行员可根据需要,拨动驾驶杆手柄上的“平尾、副 翼调整片效应机构”四位开关和位于座舱左中开关盒上的方向舵调效机构 操纵开关,操纵各调整片效应机构,分别实现驾驶杆上纵向和横向操纵力 的配平及脚蹬力的配平。
❖4.5副翼操纵系统 副翼载荷机构
4 飞机操纵系统
非线性机构
副翼复合舵机 副翼极限位置传感器
副翼调整片效应机构
❖4.5副翼操纵系统
4 飞机操纵系统
副翼复合舵机
副翼复合舵机是副翼操纵系统和自动驾驶仪横向通道的执行机构。 在副翼控制系统中共有两个副翼复合舵机YD-7,分别安装在左、右机 翼第9翼肋上。
人有了知识,就会具备各种分析能力, 明辨是非的能力。
所以我们要勤恳读书,广泛阅读, 古人说“书中自有黄金屋。
”通过阅读科技书籍,我们能丰富知识, 培养逻辑思维能力;
通过阅读文学作品,我们能提高文学鉴赏水平, 培养文学情趣;
通过阅读报刊,我们能增长见识,扩大自己的知识面。 有许多书籍还能培养我们的道德情操, 给我们巨大的精神力量, 鼓舞我们前进。
❖4.5副翼操纵系统
4 飞机操纵系统
非线性机构
❖4.5方向舵操纵系统 液压载荷机构
4 飞机操纵系统
调效机构 方向舵复合舵机
极限位置传感器
脚蹬中立机构
❖4.5方向舵操纵系统
4 飞机操纵系统
方向舵复合舵机
方向舵复合舵机是方向舵操纵系统和自动驾驶仪航向通道的执行部 件,是一种由助力器和舵机组成的复合装置。它用来在飞行员进行助力 操纵或驾驶仪进行自动控制时,使方向舵偏转,并承受作用在方向舵上 的空气动力引起的全部铰接力矩。
❖4.5平尾操纵系统
4 飞机操纵系统
复合机构
为使平尾能同时实 现飞机的人工和自动驾 驶仪的俯仰操纵、差动 平尾系统的横向操纵, 并为进气道斜板系统提 供控制信号,在平尾操 纵系统中装有三功用机 械复合机构,简称复合 机构。
❖4.5平尾操纵系统
4 飞机操纵系统
纵向舵机
纵向舵机的功用是:将自动驾驶仪放大器纵向通道输入的控制电流信
❖4.1概述
4 飞机操纵系统
平尾助力器和副翼复合舵机都是双腔工作并由主液压系统和助力液压
系统同时供压的。方向舵机、纵向舵机和差动平尾舵机都是由助力液压系 统供压的。
由于纵向舵机FDJ04A和副翼复合舵机YD-7的权限较小,但又要实现 姿态稳定、改平和低高度拉起等功能,所以需要借助于平尾和副翼调整片 效应机构,使它们接受纵向舵机和副翼复合舵机的信号参与工作,起着自 动驾驶仪辅助舵机的作用,以弥补纵向舵机FDJ04A和副翼复合舵机YD-7 工作权限的不足。
❖4.5平尾操纵系统
4 飞机操纵系统
力臂自动调节装置
力臂值随飞行高度的调节规律
❖4.5平尾操纵系统 平尾调效机构
4 飞机操纵系统
❖4.5平尾操纵系统
4 飞机操纵系统
平尾调效机构
平尾调效机构用来根据飞行员的需要消除或减小杆力,以减轻疲劳, 此外,它还参与驾驶仪的自动控制工作,以扩大驾驶仪的自动控制范围。
❖4.5平尾操纵系统
4 飞机操纵系统
液压助力器YZL-11
平尾助力器由主系统 和助力系统分别向两个腔 供压,只有一个系统供压 时,仍可保证对平尾的操 纵,但其传动功率减小一 半。
❖4.5平尾操纵系统
4 飞机操纵系统
载荷感觉器
载荷感觉器使飞行员在操纵驾驶杆时能感受到适当的杆力,以便准 确地掌握操纵份量,控制飞行状态;松杆后能使驾驶杆自动地回到中立 位置。
❖4.1概述
4 飞机操纵系统
为了使飞机在整个飞行范围内都具有比较满意的操纵特性,在平尾操 纵系统中,装有力臂自动调节装置,用来自动调节平尾操纵系统的传动系 数,以保证飞行员在不同的飞行速度、高度条件下,操纵驾驶杆移动同样 行程后,飞机的机动动作大致相同,并且还能根据飞行速度、高度的变化, 调节驾驶杆力;在副翼操纵系统中,安装了非线性机构,用来使副翼操纵 系统的传动系数随所需驾驶杆移动行程而变化,驾驶杆在偏离中立位置不 大时,传动系数较小,以保证低空大表速飞行时横向操纵不致过灵。随着 驾驶杆偏离中立位置较远,传动系数增大,以保证高空飞行(副翼效率降 低)时,仍有良好的横向操纵性。
为了使飞行员获得操纵力的感觉,以便准确第掌握操纵份量,控制飞 行状态,在平尾和副翼操纵系统中,各装有带预载的弹簧载荷机构;在方 向舵操纵系统中,装有液压载荷机构,用来在操纵方向舵时,模拟方向舵 的气动载荷和在松开脚蹬后使脚蹬自动回到中立位置。为了改善液压载荷 机构在中立位置附近的回中特性,在方向舵操纵系统中,还并联了脚蹬中 立机构。