戴维南定理实验报告

合集下载

戴维南定理实验报告doc

戴维南定理实验报告doc

戴维南定理实验报告篇一:验证戴维南定理实验报告一、实验目的1. 验证戴维南定理和诺顿定理的正确性,加深对该定理的理解。

2. 掌握测量有源二端网络等效参数的一般方法。

二、原理说明1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。

戴维南定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。

诺顿定理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is等于这个有源二端网络的短路电流ISC,其等效内阻R0定义同戴维南定理。

Uoc(Us)和R0或者ISC(IS)和R0称为有源二端网络的等效参数。

2. 有源二端网络等效参数的测量方法 (1) 开路电压、短路电流法测R0在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc,然后再将其输出端短路,用电流表测其短路电流Isc,则等效内阻为如果二端网络的内阻很小,若将其输出端口短路则易损坏其内部元件,因此不宜用此法。

(2) 伏安法测R0用电压表、电流表测出有源二端网络的外特性曲线,如图3-1所示。

根据外特性曲线求出斜率tgφ,则内阻图3-1也可以先测量开路电压Uoc,再测量电流为额定值IN时的输出端电压值UN,则内阻为(3) 半电压法测R0 如图3-2所示,当负载电压为被测网络开路电压的一半时,负载电阻(由电阻箱的读数确定)即为被测有源二端网络的等效内阻值。

图3-2 (4) 零示法测UOC在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。

为了消除电压表内阻的影响,往往采用零示测量法,如图3-3所示。

零示法测量原理是用一低阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。

实验报告戴维南定理(3篇)

实验报告戴维南定理(3篇)

第1篇一、实验目的1. 深入理解并掌握戴维南定理的基本原理。

2. 通过实验验证戴维南定理的正确性。

3. 学习并掌握测量线性有源一端口网络等效电路参数的方法。

4. 提高使用Multisim软件进行电路仿真和分析的能力。

二、实验原理戴维南定理指出:任何一个线性有源一端口网络,对于外电路而言,都可以用一个理想电压源和电阻的串联形式来等效代替。

理想电压源的电压等于原一端口网络的开路电压Uoc,其电阻(又称等效内阻)等于网络中所有独立源置零时的入端等效电阻Req。

三、实验仪器与材料1. Multisim软件2. 电路仿真实验板3. 直流稳压电源4. 电压表5. 电流表6. 可调电阻7. 连接线四、实验步骤1. 搭建实验电路根据实验原理,搭建如图1所示的实验电路。

电路包括一个线性有源一端口网络、电压表、电流表和可调电阻。

图1 实验电路图2. 测量开路电压Uoc断开可调电阻,用电压表测量一端口网络的开路电压Uoc。

3. 测量等效内阻Req将可调电阻接入电路,调节其阻值,记录不同阻值下的电压和电流值。

根据公式Req = Uoc / I,计算等效内阻Req。

4. 搭建等效电路根据戴维南定理,搭建等效电路,如图2所示。

其中,理想电压源的电压等于Uoc,等效内阻为Req。

图2 等效电路图5. 测量等效电路的外特性在等效电路中,接入电压表和电流表,调节可调电阻的阻值,记录不同阻值下的电压和电流值。

6. 比较实验结果比较原电路和等效电路的实验结果,验证戴维南定理的正确性。

五、实验结果与分析1. 测量数据表1 实验数据| 阻值RΩ | 电压V | 电流A | ReqΩ || ------ | ----- | ----- | ---- || 10 | 2.5 | 0.25 | 10 || 20 | 1.25 | 0.125 | 10 || 30 | 0.833 | 0.083 | 10 |2. 分析从实验数据可以看出,随着负载电阻的增大,原电路和等效电路的电压和电流值逐渐接近。

戴维南实验报告分析

戴维南实验报告分析

一、实验目的本次实验旨在验证戴维南定理的正确性,通过实验测定线性有源一端口网络的外特性和戴维南等效电路的外特性,加深对戴维南定理的理解。

二、实验原理戴维南定理指出,任何一个线性有源一端口网络,对于外电路而言,总可以用一个理想电压源和电阻的串联形式来代替。

理想电压源的电压等于原一端口网络的开路电压Uoc,其电阻(又称等效内阻)等于网络中所有独立源置零时的入端等效电阻Req。

三、实验步骤1. 测量开路电压Uoc(1)直接测量法:当有源二端网络的等效内阻Req与电压表的内阻Rv相比可以忽略不计时,可以直接用电压表测量开路电压。

(2)补偿法:使用高精度的标准电压源E、标准分压电阻箱R和高灵敏度的检流计G,调节电阻箱的分压比,当Ucd=Uab时,流过检流计G的电流为零,从而求得开路电压Uab。

2. 测量等效内阻Req(1)将有源二端网络中的独立源都去掉,在ab端外加一已知电压U,测量一端口电流I。

(2)根据测得的电压U和电流I,使用欧姆定律计算等效内阻Req。

3. 测量戴维南等效电路的外特性(1)将戴维南等效电路接入负载RL,测量负载电流I0。

(2)改变负载RL,记录不同负载下的电流I0。

四、实验结果与分析1. 开路电压Uoc的测量结果通过直接测量法和补偿法,测得开路电压Uoc分别为2.613V和2.609V,两者误差较小,说明开路电压的测量方法可靠。

2. 等效内阻Req的测量结果通过实验测量,得到等效内阻Req为250.355Ω。

3. 戴维南等效电路的外特性通过实验测量,得到戴维南等效电路在不同负载下的电流I0,并绘制了电流I0与负载RL的关系曲线。

分析实验结果:(1)戴维南定理在本次实验中得到了验证,线性有源一端口网络可以用一个理想电压源和电阻的串联形式来代替。

(2)实验结果与理论计算基本一致,说明实验方法可靠,测量结果准确。

(3)实验过程中,由于电路元件和电表的消耗,以及仪器误差的影响,导致测量结果与理论值存在一定误差。

戴维南等效电路实验报告

戴维南等效电路实验报告

戴维南等效电路实验报告一、实验目的1、掌握戴维南定理的基本原理和应用。

2、学会使用实验方法测量有源二端网络的开路电压、短路电流和等效电阻。

3、验证戴维南等效电路与原电路对外电路的作用等效性。

二、实验原理1、戴维南定理任何一个线性有源二端网络,对外电路来说,可以用一个电压源和一个电阻的串联组合来等效替代,此电压源的电压等于有源二端网络的开路电压 Uoc,电阻等于有源二端网络除源后的等效电阻 Ro。

2、开路电压的测量在有源二端网络输出端开路时,用电压表直接测量其输出端的电压,即为开路电压 Uoc。

3、短路电流的测量将有源二端网络输出端短路,用电流表测量其短路电流 Isc。

4、等效电阻的测量(1)伏安法:将有源二端网络中的所有独立源置零(电压源短路,电流源开路),然后在端口处施加一电压 U,测量相应的电流 I,根据R = U / I 计算等效电阻 Ro。

(2)直接测量法:如果有源二端网络内部结构较为简单,可以直接测量网络中各电阻的值,然后通过串、并联关系计算出等效电阻Ro。

三、实验设备1、直流稳压电源(0 ~ 30V 可调)2、直流数字电压表3、直流数字电流表4、电阻箱5、实验电路板6、导线若干四、实验内容与步骤1、按图 1 所示连接电路,其中 US1 = 10V,US2 = 5V,R1 =100Ω,R2 =200Ω,R3 =300Ω。

!图 1 实验电路原理图(实验电路原理图jpg)2、测量有源二端网络的开路电压 Uoc将负载电阻 RL 开路,用直流数字电压表测量有源二端网络的开路电压 Uoc,记录测量值。

3、测量有源二端网络的短路电流 Isc将有源二端网络的输出端短路,用直流数字电流表测量短路电流Isc,记录测量值。

4、测量有源二端网络的等效电阻 Ro(1)伏安法将有源二端网络中的独立源置零,即 US1 和 US2 短路,然后在端口处施加一电压 U(例如 5V),用直流数字电压表和电流表分别测量电压 U 和电流 I,根据 R = U / I 计算等效电阻 Ro。

验证戴维南定理实验报告(总6页)

验证戴维南定理实验报告(总6页)

验证戴维南定理实验报告(总6页)
(一)戴维南定理
戴维南定理是拉普拉斯变换的其中一个重要的定理,是现代电学的重要理论基础。


指出:若一个函数在定义域內正则,负则在其反函数上正则,零则在其反函数上零,那么
在拉普拉斯变换上,这个函数一定有复数和零常数相乘的形式,这称为戴维南定理。

(二)实验背景
本实验主要目的是希望验证戴维南定理,在理论上给出一个公式,在实验室中实际动
手让人们更好地理解,更好地深入戴维南定理。

实验所使用仪器包括数字处理仪器、函数
发生器、示波器和电路板等。

(三)实验步骤
1. 将函数发生器通过示波器调节出三波形:方波、三角波、抛物线波,并调节出一
定的频率。

2. 使用数字处理仪器(比如MATLAB)将函数发生器中调节出来的三种波形信号,分
别进行傅立叶变换和拉普拉斯变换,计算出三个信号的傅立叶变换结果后的图形,得出拉
普拉斯变换结果后的图形。

3. 根据拉普拉斯变换结果,计算三种信号的谐波丰度,当三种信号的拉普拉斯变换
都出现零时,就会得出戴维南定理的结果。

(五)总结
戴维南定理实验验证了戴维南定理的正确性,在实验室中实际动手证明了其真实可信,使我们对定理有更加深刻的理解。

本次实验在设备和实验程序等方面都有所改进,给我们
和以后的学习者带来了更大的启发,也为我们在今后的学习工作中提供了更有力的理论支持。

戴维南_实验报告

戴维南_实验报告

一、实验目的1. 深入理解和掌握戴维南定理的基本概念和原理。

2. 熟练运用Multisim软件绘制电路原理图,并使用虚拟仪器进行测量。

3. 通过实验验证戴维南定理的正确性,并分析实验过程中可能出现的误差。

4. 提高电路分析能力,培养实验操作技能。

二、实验原理戴维南定理指出:任何一个线性有源一端口网络,对于外电路而言,都可以用一个等效电压源和电阻的串联形式来代替。

这个等效电压源的电压等于原一端口网络的开路电压Uoc,其等效电阻R0等于网络中所有独立源均置零时的等效电阻。

实验中,我们通过测量一端口网络的开路电压Uoc和等效电阻R0,来验证戴维南定理的正确性。

三、实验仪器与设备1. Multisim软件2. 电脑3. 直流电源4. 电阻5. 电压表6. 电流表四、实验步骤1. 绘制电路原理图:使用Multisim软件绘制实验电路,包括一端口网络、电压表、电流表等元件。

2. 测量开路电压Uoc:将一端口网络的开路端连接到电压表的正负极,打开电路,读取电压表显示的电压值,即为开路电压Uoc。

3. 测量等效电阻R0:将一端口网络的一端连接到电压表的正极,另一端连接到电流表的正极,打开电路,读取电流表的示数I0,并记录下电压表的示数U0。

根据欧姆定律,计算等效电阻R0 = U0/I0。

4. 绘制戴维南等效电路:根据戴维南定理,绘制等效电压源和电阻的串联电路。

5. 仿真验证:使用Multisim软件对实验电路和戴维南等效电路进行仿真,比较两种电路的外特性,验证戴维南定理的正确性。

五、实验结果与分析1. 开路电压Uoc:实验测得的开路电压Uoc为2.6V。

2. 等效电阻R0:实验测得的等效电阻R0为250Ω。

3. 仿真结果:仿真结果显示,实验电路和戴维南等效电路的外特性基本一致,验证了戴维南定理的正确性。

六、误差分析1. 测量误差:实验过程中,由于电压表和电流表的精度限制,以及电压表内阻的影响,导致开路电压Uoc和等效电阻R0的测量值存在一定的误差。

实验报告 戴维南定理

实验报告  戴维南定理

实验二戴维南定理一、实验目的验证戴维南定理,了解等效电路的概念二、实验器材1.1台型号为RTDG-3A或RTDG-4B 的电工技术实验台2.1个型号为RTDG-08的的实验电路板,含有可变电阻箱3.1块型号为RTDG-02的戴维南定理实验电路板4.1台型号为RTT01-2 直流电压/电流表5.1块型号为UT70A 的数字万用表6.1个1kΩ的电位器三、实验内容验证戴维南定理,即验证:任何一个有源二端网络,都可以用一个电压源和电阻的串联电路来等效替代,其中电压源的大小等于有源二端网络在端口处的开路电压U OC,串联电阻等于将有源二端网络转变为无源二端网络后在端口处的等效电阻R O。

四、实验原理图I10图2-1 被测有源二端网络L图2-2 戴维南等效电路五、实验过程(1)在实验台左侧面闭合实验台总电源开关。

(2)在实验台正面电源控制区按下启动按键。

(3)打开实验台上恒压源和恒流源的电源开关,按照实验电路要求设定合适的电源输出粗调档位,调节恒压源输出旋纽并用直流电压表监测,使输出电压数值为U s=12V;调节恒流源的输出旋纽,使输出电流数值为I s=10mA。

(4)在实验台上放好一台编号为RTDG—02的实验挂箱,戴维南定理实验电路在挂箱的中部。

(5)按照实验电路图2-1连线。

把网络端口处的开关向右接至A、B端口处。

按照图中的位置分别将电压源和电流源接入实验电路。

(6)用直流电压表和直流毫安表在含源二端网络的端口A、B处分别测量含源二端网络的开路电压U oc(开关接至右侧,不接负载电阻)和短路电流I sc(开关接至左侧短路处),将测量结果记入表2—1中。

(7)按照表2—1中的测量数据,计算二端网络的等效电阻R o,将计算结果记入表2—1中。

(8)在含源二端网络的端口A、B处接入可调电阻箱R L,按照表2—2设定R L的电阻值,用直流电压表和直流毫安表分别测量出与其相对应的电压U AB和电流I AB,将测量结果记入表2—2中。

电子戴维南实验报告

电子戴维南实验报告

一、实验目的1. 深入理解戴维南定理的基本原理和应用。

2. 通过实验验证戴维南定理的正确性。

3. 掌握用Multisim软件进行电路仿真和数据分析的方法。

4. 提高电路实验技能和数据处理能力。

二、实验原理戴维南定理(Thevenin's Theorem)指出,任何一个线性有源二端网络,对于外电路而言,可以用一个理想电压源与一个电阻的串联支路来等效代替。

理想电压源的电压等于该有源二端网络的开路电压Uoc,其等效内阻R0等于该网络中所有独立源都置零时的等效电阻。

三、实验仪器与设备1. Multisim软件2. 直流稳压电源3. 电阻箱4. 电压表5. 电流表6. 电路连接线四、实验步骤1. 利用Multisim软件绘制实验电路图,包括直流稳压电源、电阻、电压表和电流表等元件。

2. 在电路中添加一个线性有源二端网络,例如一个由电阻、电容和电压源组成的电路。

3. 测量有源二端网络的开路电压Uoc,即断开负载电阻Rl时,电压表V1的读数。

4. 将负载电阻Rl接入电路,并测量电路中的电流I和电压V2。

5. 利用戴维南定理计算等效电压源E和等效内阻R0。

6. 将等效电压源E与等效内阻R0串联,形成一个戴维南等效电路。

7. 在戴维南等效电路中接入负载电阻Rl,测量电路中的电流I'和电压V2'。

8. 比较实际电路和戴维南等效电路的电流和电压,验证戴维南定理的正确性。

五、实验数据与结果1. 有源二端网络的开路电压Uoc:2.5V2. 负载电阻Rl:1kΩ3. 实际电路中的电流I:1.2mA,电压V2:2.4V4. 戴维南等效电路中的电流I':1.1mA,电压V2':2.2V六、实验分析通过实验数据可以看出,实际电路和戴维南等效电路的电流和电压存在一定的误差。

这可能是由于以下原因:1. 电路元件的精度和温度系数的影响。

2. 电压表和电流表的测量误差。

3. Multisim软件仿真与实际电路的差异。

电路实验戴维南实验报告

电路实验戴维南实验报告

一、实验目的1. 验证戴维南定理的正确性,加深对该定理的理解。

2. 掌握测量线性有源一端口网络的等效电路参数的方法。

3. 培养实验操作技能和数据处理能力。

二、实验原理戴维南定理指出:任何一个线性有源一端口网络,对于外电路而言,总可以用一个电压源与一个电阻的串联来等效代替。

此电压源的电动势等于该有源一端口网络的开路电压Uoc,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。

实验步骤如下:1. 构建戴维南等效电路,包括电压源、电阻和待测网络。

2. 测量待测网络的开路电压Uoc。

3. 将待测网络中的独立源置零,测量等效内阻R0。

4. 将戴维南等效电路与待测网络进行连接,测量电路的输入电压和电流。

5. 比较实验数据与理论计算值,验证戴维南定理的正确性。

三、实验仪器与设备1. 电路实验箱2. 万用表3. 数字多用表4. 电阻箱5. 电流表6. 电压表7. 滑动变阻器8. 电源9. 待测网络四、实验步骤1. 构建戴维南等效电路,包括电压源、电阻和待测网络。

2. 测量待测网络的开路电压Uoc,使用电压表测量待测网络两端的开路电压,记录数据。

3. 将待测网络中的独立源置零,使用电阻箱将独立源替换为一个等效电阻,调节电阻箱的阻值,使电路达到稳态,测量电路的输入电压Uin,记录数据。

4. 计算等效内阻R0,R0 = Uin / Iin,其中Iin为通过待测网络的电流。

5. 将戴维南等效电路与待测网络进行连接,测量电路的输入电压和电流,使用万用表测量电路的输入电压和电流,记录数据。

6. 比较实验数据与理论计算值,验证戴维南定理的正确性。

五、实验数据与处理1. 待测网络的开路电压Uoc为:X(记录实验数据)2. 等效内阻R0为:Y(记录实验数据)3. 戴维南等效电路与待测网络连接后的输入电压Uin为:Z(记录实验数据)4. 通过待测网络的电流Iin为:W(记录实验数据)六、实验结果与分析1. 比较实验数据与理论计算值,分析戴维南定理的正确性。

电路实验报告戴维南定理

电路实验报告戴维南定理

电路实验报告戴维南定理(文章一):验证戴维南定理实验报告(一)、实验目的1. 验证戴维南定理和诺顿定理的正确性,加深对该定理的理解。

2. 掌握测量有源二端网络等效参数的一般方法。

(二)、原理说明1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。

戴维南定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。

诺顿定理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is等于这个有源二端网络的短路电流ISC,其等效内阻R0定义同戴维南定理。

Uoc(Us)和R0或者ISC(IS)和R0称为有源二端网络的等效参数。

2. 有源二端网络等效参数的测量方法(1) 开路电压、短路电流法测R0 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc,然后再将其输出端短路,用电流表测其短路电流Isc,则等效内阻为如果二端网络的内阻很小,若将其输出端口短路则易损坏其内部元件,因此不宜用此法。

(2) 伏安法测R0 用电压表、电流表测出有源二端网络的外特性曲线,如图3-1所示。

根据外特性曲线求出斜率tgφ,则内阻图3-1也可以先测量开路电压Uoc,再测量电流为额定值IN时的输出端电压值UN,则内阻为(3) 半电压法测R0 如图3-2所示,当负载电压为被测网络开路电压的一半时,负载电阻(由电阻箱的读数确定)即为被测有源二端网络的等效内阻值。

图3-2(4) 零示法测UOC 在测量具有高内阻有源二端网络的开路电压时,用电压表直接测量会造成较大的误差。

为了消除电压表内阻的影响,往往采用零示测量法,如图3-3所示。

零示法测量原理是用一低阻的稳压电源与被测有源二端网络进行比较,当稳压电源的输出电压与有源二端网络的开路电压相等时,电压表的读数将为“0”。

戴维南定理实验报告

戴维南定理实验报告

一、实验目的1. 深入理解和掌握戴维南定理的基本概念和原理。

2. 通过实验验证戴维南定理的正确性。

3. 学会使用Multisim软件进行电路仿真和分析。

4. 掌握电路参数的测量方法。

二、实验原理戴维南定理(Thevenin's Theorem)是电路理论中的一个重要定理,它表明任何一个线性有源二端网络都可以用一个等效的电压源和电阻串联组成的戴维南等效电路来代替。

其中,等效电压源的电压等于该二端网络的开路电压,等效电阻等于该二端网络中所有独立源置零时的等效电阻。

三、实验器材1. Multisim软件2. 直流稳压电源3. 万用表4. 电阻、电容、电感等电子元件5. 连接导线四、实验步骤1. 使用Multisim软件绘制实验电路图,包括电源、电阻、电容、电感等元件。

2. 根据实验电路图,设置电路参数,包括电源电压、电阻阻值等。

3. 在Multisim软件中运行仿真,观察电路输出结果。

4. 改变电路参数,观察电路输出结果的变化,验证戴维南定理的正确性。

5. 使用万用表测量实际电路的输出电压和电流,与仿真结果进行对比分析。

五、实验结果与分析1. 在Multisim软件中,设置电源电压为10V,电阻R1为2Ω,R2为3Ω,电容C 为1μF,电感L为1mH。

运行仿真,观察电路输出结果。

- 仿真结果显示,电路输出电压约为8.6V,电流约为2.8A。

- 通过计算,得到等效电压源的电压为8.6V,等效电阻为2Ω。

2. 改变电阻R1的阻值为4Ω,观察电路输出结果的变化。

- 仿真结果显示,电路输出电压约为6.9V,电流约为1.7A。

- 通过计算,得到等效电压源的电压为6.9V,等效电阻为2Ω。

3. 使用万用表测量实际电路的输出电压和电流,与仿真结果进行对比分析。

- 实际测量结果显示,电路输出电压约为8.5V,电流约为2.7A。

- 与仿真结果基本一致,验证了戴维南定理的正确性。

六、实验结论1. 通过实验验证了戴维南定理的正确性,表明线性有源二端网络可以用等效电压源和电阻串联组成的戴维南等效电路来代替。

戴维南定理的验证实验报告

戴维南定理的验证实验报告

竭诚为您提供优质文档/双击可除戴维南定理的验证实验报告篇一:戴维南定理实验报告戴维南定理实验报告一、实验目的1.深刻理解和掌握戴维南定理。

2.掌握和测量等效电路参数的方法。

3.初步掌握用multisim软件绘制电路原理图。

4.初步掌握multisim软件中的multmeter,Voltmeter,Ammeter等仪表的使用以及Dc operatingpoint,parameter等spIce仿真分析方法。

5.掌握电路板的焊接技术以及直流电源、万用表等仪器仪表的使用。

6.初步掌握origin绘图软件的使用。

二、实验原理一个含独立源,线性电阻和受控源的一端口网络,对外电路来说,可以用一个电压源和电阻的串联组合等效置换、其等效电压源的电压等于该一端口网络的开路电压,其等效电阻等于将该一端口网络中所有独立源都置为零后的的输入电阻,这一定理称为戴维南定理。

如图2.1.1三、实验方法1.比较测量法戴维南定理是一个等效定理,因此想办法验证等效前后对其他电路的影响是否一致,即等效前后的外特性是否一致。

整个实验过程首先测量原电路的外特性,再测量等效电路的外特性。

最后进行比较两者是否一致。

等效电路中等效参数的获取,可通过测量得到,并同根据电路结构所推导计算出的结果想比较。

实验中期间的参数应使用实际测量值,实际值和器件的标称值是有差别的。

所有的理论计算应基于器件的实际值。

2.等效参数的获取等效电压uoc:直接测量被测电路的开路电压,该电压就是等效电压。

等效电阻Ro:将电路中所有电压源短路,所有电流源开路,使用万用表电阻档测量。

本实验采用下图的实验电路。

3.电路的外特性测量方法在输出端口上接可变负载(如电位器),改变负载(调节电位器)测量端口的电压和电流。

4.测量点个数以及间距的选取测试过程中测量点个数以及间距的选取,与测量特性和形状有关。

对于直线特性,应使测量点间隔尽量平均,对于非线性特性应在变化陡峭处多测些点。

测量的目的是为了用有限的点描述曲线的整体形状和细节特征。

戴维南定理实验报告(通用3篇)

戴维南定理实验报告(通用3篇)

戴维南定理实验报告(通用3篇)个人实验报告篇一一、问题的提出:九年义务教育英语新教材的使用,打破了老一套的教学模式,变应试教育为素质教育,旨在通过听说读写的训练,使学生获得英语的基础知识和为交际初步运用英语的能力,初中英语开设活动课的实验报告。

要想实现这一目的,教师需在教学过程中,加大听说读写的力度,增加语言实践,尽可能多地为学生创造语言实践的机会和环境。

这些任务的完成,单单依靠课堂教学活动是远远不够的。

英语活动课作为课堂教学的一种形式,能够为教师更好地实现教育教学目的提供实践场所和环境,更有利于发挥学生特长,开阔学生的视野,拓宽学生的知识面,提高学生的智力和能力,促进学生的全面发展。

基于上述情况,在县教研室的指导下,我们从1994年秋季开始,在我校着手进行了开设英语活动课的研究。

二、实验的目的和原则:实验目的:创设语言环境,为实现交际而初步运用英语,英语论文《初中英语开设活动课的实验报告》。

以新教材、新大纲和新《课程计划》为指导,探索英语活动课的性质、内容和活动方式,全面提高教学质量,提高学生素质,激发学生学习热情,提高学生听说、阅读及书面表达能力。

实验原则:1.注重基础知识和能力培养相结合的原则。

活动课是对阶段教学活动效果的展示,它被作为常规教学的范畴,但又有别于普通课堂教学活动。

它主要以培养学生为交际运用英语的能力为目的,也必须为课堂教学服务。

2.注重知识的趣味性和实践性,注意发挥学生的特长。

开展活动课,是让学生在乐中学、乐中思、乐中用,让有才华的学生有展示自己的场所,让他们体验到学英语的乐趣,感受到所学知识的使用价值。

3.注重学生的认识水平和活动课编排体系相适应的原则。

初中学生的心理、生理发展既不同于少儿期,也不同于高中时期,对他们的要求不能过高,活动课程知识的选编一定要适应学生的认识规律、知识结构和英语语言的实际水平。

三、实验的主要做法:认真学习大纲教材,挖掘知识交叉点,确立活动课实施进度。

戴维南定理应用实验报告

戴维南定理应用实验报告

一、实验目的1. 理解戴维南定理的基本原理,掌握戴维南等效电路的概念。

2. 通过实验验证戴维南定理的正确性,加深对理论知识的理解。

3. 熟悉常用实验仪器,提高实验操作技能。

二、实验原理戴维南定理指出:任何一个线性有源一端口网络,对于外电路而言,总可以用一个理想电压源和电阻的串联形式来代替。

理想电压源的电压等于原一端口的开路电压Uoc,其电阻(等效内阻)等于网络中所有独立源置零时的入端等效电阻Req。

本实验主要验证戴维南定理的正确性,通过以下步骤进行:1. 测量原一端口网络的开路电压Uoc。

2. 测量原一端口网络的等效内阻Req。

3. 根据戴维南定理,计算等效电压源电压Ueq和等效内阻Req。

4. 构建戴维南等效电路,测量等效电路的输出电压Ueq。

5. 比较原一端口网络输出电压与戴维南等效电路输出电压,验证戴维南定理的正确性。

三、实验器材1. 电源:直流稳压电源2. 电阻:10Ω、100Ω、1kΩ3. 电容:0.1μF4. 电压表:量程0~15V5. 电流表:量程0~0.6A6. 电阻箱:量程0~999Ω7. 滑动变阻器:0~10Ω8. 连接线9. 电路板四、实验步骤1. 按照电路图连接电路,确保连接正确。

2. 使用电压表测量原一端口网络的开路电压Uoc。

3. 将电阻箱接入电路,调节电阻箱,使电路达到稳态。

4. 使用电流表测量电路中的电流I。

5. 计算等效内阻Req:Req = Uoc / I。

6. 根据戴维南定理,计算等效电压源电压Ueq:Ueq = Uoc。

7. 构建戴维南等效电路,将等效电压源和等效内阻接入电路。

8. 使用电压表测量戴维南等效电路的输出电压Ueq。

9. 比较原一端口网络输出电压与戴维南等效电路输出电压,验证戴维南定理的正确性。

五、实验数据与结果1. 原一端口网络开路电压Uoc:5V2. 电路中的电流I:0.5A3. 等效内阻Req:10Ω4. 等效电压源电压Ueq:5V5. 戴维南等效电路输出电压Ueq:5V六、实验分析与讨论1. 通过实验验证了戴维南定理的正确性,说明线性有源一端口网络可以用理想电压源和电阻的串联形式来等效代替。

电工学实验报告戴维南定理

电工学实验报告戴维南定理

电工学实验报告戴维南定理电工学实验报告——戴维南定理一、实验目的1、验证戴维南定理的正确性,加深对该定理的理解。

2、掌握测量有源二端网络等效参数的一般方法。

3、学习使用电路实验仪器进行电路参数的测量和分析。

二、实验原理戴维南定理指出:任何一个线性有源二端网络,对外电路来说,可以用一个电压源和电阻的串联组合来等效替代。

其中,电压源的电压等于有源二端网络的开路电压 Uoc,电阻等于有源二端网络除源(将所有独立电源置零)后的等效电阻 Ro。

三、实验设备与器材1、直流稳压电源2、直流电压表3、直流电流表4、电阻箱5、实验电路板6、连接导线若干四、实验内容与步骤1、按图 1 连接实验电路,其中 RL 为可变电阻,US1 和 US2 为直流稳压电源,R1、R2 为已知电阻。

!实验电路图 1(具体电路图此处省略)2、测量有源二端网络的开路电压 Uoc。

将 RL 开路,用电压表测量有源二端网络 A、B 两端的电压,即为开路电压 Uoc,记录测量值。

3、测量有源二端网络的短路电流 Isc。

将 A、B 两端短路,用电流表测量短路电流 Isc,记录测量值。

4、测量有源二端网络除源后的等效电阻 Ro。

将有源二端网络中的电源 US1 和 US2 置零(即将稳压电源的输出电压调为零),然后用电阻箱测量 A、B 两端间的电阻,即为等效电阻 Ro,记录测量值。

5、构建戴维南等效电路。

根据测量得到的 Uoc 和 Ro,用一个电压源 Uoc 和一个电阻 Ro 串联组成戴维南等效电路,如图 2 所示。

!实验电路图 2(具体电路图此处省略)6、测量等效电路的外特性。

改变负载电阻 RL 的值,测量对应的电流 I 和电压 U,记录数据并绘制 U I 曲线。

五、实验数据记录与处理1、测量有源二端网络的开路电压 Uoc|测量次数|1|2|3|平均值||||||||测量值(V)|_____|_____|_____|_____|2、测量有源二端网络的短路电流 Isc|测量次数|1|2|3|平均值||||||||测量值(A)|_____|_____|_____|_____|3、测量有源二端网络除源后的等效电阻 Ro|测量次数|1|2|3|平均值||||||||测量值(Ω)|_____|_____|_____|_____|4、测量等效电路的外特性|RL(Ω)|_____|_____|_____|_____|_____||I(A)|_____|_____|_____|_____|_____||U(V)|_____|_____|_____|_____|_____|根据测量数据,绘制等效电路的 U I 曲线。

戴维宁的实验报告(3篇)

戴维宁的实验报告(3篇)

第1篇一、实验目的1. 理解并掌握戴维宁定理的基本原理。

2. 通过实验验证戴维宁定理的正确性。

3. 掌握测量有源二端网络等效参数的一般方法。

二、实验原理戴维宁定理指出,任何一个线性含源二端网络,都可以用一个等效的电压源和电阻串联的电路来替代。

这个等效电压源的电压等于二端网络的开路电压,等效电阻等于二端网络在电源断开后的等效电阻。

三、实验器材1. 稳定电源:12V2. 电流表:0~200mV3. 万用表4. 可调电阻箱5. 电位器6. 戴维宁定理实验电路表四、实验步骤1. 搭建实验电路:根据实验电路表,搭建戴维宁定理实验电路,连接稳定电源、电流表、万用表、可调电阻箱、电位器等器材。

2. 测量开路电压:将电路中的电阻RL断开,闭合开关,调节电位器使电流表读数为零,记录此时万用表读数,即为开路电压UOC。

3. 测量短路电流:将电路中的电阻RL短路,闭合开关,调节电位器使电流表读数为零,记录此时万用表读数,即为短路电流ISC。

4. 计算等效电阻:根据戴维宁定理,等效电阻Req = UOC / ISC。

5. 验证戴维宁定理:将电路中的电阻RL接入,调节电位器使电流表读数为某一值,记录此时万用表读数,即为实际电路中的电压U。

根据等效电路,计算等效电路中的电压Ueq = UOC / Req。

6. 比较实验结果:将实际电路中的电压U与等效电路中的电压Ueq进行比较,验证戴维宁定理的正确性。

五、实验数据与结果1. 开路电压UOC:2.0V2. 短路电流ISC:0.1A3. 等效电阻Req:20Ω4. 实际电路中的电压U:1.8V5. 等效电路中的电压Ueq:1.9V通过比较实际电路中的电压U与等效电路中的电压Ueq,可以发现两者非常接近,验证了戴维宁定理的正确性。

六、实验分析1. 实验过程中,开路电压UOC和短路电流ISC的测量值与理论计算值基本一致,说明实验结果准确可靠。

2. 实验过程中,实际电路中的电压U与等效电路中的电压Ueq的误差主要来源于实验器材的精度和实验操作误差。

戴维南定理的实验验证报告

戴维南定理的实验验证报告

戴维南定理的实验验证报告第一篇:戴维南定理的实验验证报告戴维南定理学号:姓名:成绩:一实验原理及思路一个含独立源,线性电阻和受控源的二端网络,其对外作用可以用一个电压源串联电阻的等效电源代替,其等效电压源的电压等于该二端网络的开路电压,其等效内阻是将该二端网络中所有的独立源都置为零后从从外端口看进去的等效电阻。

这一定理称为戴维南定理。

本实验采用如下所示的实验电路图a50%等效后的电路图如下b所示50%测它们等效前后的外特性,然后验证等效前后对电路的影响。

二实验内容及结果⒈计算等效电压和电阻计算等效电压:ΘR1R3=R11R33,∴电桥平衡。

Uoc=R1R1+R3=2.6087V。

计算等效电阻:R=⎛R2+11+R1R3⎝⎫⎪⎪⎪⎪⎭+⎛R22+11+R11R33⎝⎫⎪⎪⎪⎪⎭=250.355⒉用Multisim软件测量等效电压和等效电阻测量等效电阻是将V1短路,开关断开如下图所示Ro=250.335测量等效电压是将滑动变阻器短路如下图50%Uo=2.609V⒊用Multisim仿真验证戴维南定理仿真数据原电路数据8765电流/mA43210-1电压/V通过OriginPro 软件进行绘图,两条线基本一致。

电流/mA电压/V由上面的数据及图线得知等效前后不影响电路的外特性,即验证了戴维南定理。

三结论及分析本实验,验证了戴维南定理即等效前后的电路的外特性不改变。

进行板上实验时,存在一定的误差,而使电路线性图不是非常吻合。

可能是仪器的误差,数据不能调的太准确,也可能是内接和外接都有误差。

本实验最大的收获是学会用一些仿真软件,去准确的评估实际操作中的误差。

改进的地方是进行测量时取值不能范围太窄,要多次反复测量以防实验发生错误。

第二篇:实验三戴维南定理的验证实验三戴维南定理的验证一、实验目的1.验证戴维南定理。

2.加深对等效电路概念的理解。

3.掌握测量有源二端网络等效电路参数的方法。

二、实验原理与说明由戴维南定理可知:任何一个线性含源二端网络Ns,对外电路来说,可以用一个电压源和电阻的串联组合来等效,此电压源的电压等于该网络Ns的开路电压uoc,而电阻等于该网络中所有的独立电源置零后的输入电阻Req。

戴维南定理实验报告

戴维南定理实验报告

戴维南定理实验报告实验四戴维南定理一、1、验证戴维南定理2、测定线性有源一端口网络的外特性和戴维南等效电路的外特性。

二、实验原理实验目的戴维南定理指出:任何一个线性有源一端口网络,对于外电路而言,总可以用一个理想电压源和电阻的串联形式来代替,理想电压源的电玉等于原一端口的开路电压Uoc,其电阻(又称等效内阻)等于网络中所有独立源置零时的入端等效电阻Req,见图4-1。

图4- 1 图4- 21、开路电压的测量方法方法一:直接测量法。

当有源二端网络的等效内阻Req与电压表的内阻Rv相比可以忽略不计时,可以直接用电压表测量开路电压。

方法二:补偿法。

其测量电路如图4-2所示,E为高精度的标准电压源,R为标准分压电阻箱,G为高灵敏度的检流计。

调节电阻箱的分压比,c、d两端的电压随之改变,当Ucd=Uab时,流过检流计G 的电流为零,因此Uab=Ucd =[R2/(R1+ R2)]E=KE式中 K= R2/(R1+ R2)为电阻箱的分压比。

根据标准电压E 和分压比Κ就可求得开路电压Uab,因为电路平衡时IG= 0,不消耗电能,所以此法测量精度较高。

2、等效电阻Req的测量方法对于已知的线性有源一端口网络,其入端等效电Req可以从原网络计算得出,也可以通过实验测出,下面介绍几种测量方法:方法一:将有源二端网络中的独立源都去掉,在ab端外加一已知电压U,测量一端口的总电流I总则等效电阻Req= U/I总实际的电压源和电流源具有一定的内阻,它并不能与电源本身分开,因此在去掉电源的同时,也把电源的内阻去掉了,无法将电源内阻保留下来,这将影响测量精度,因而这种方法只适用于电压源内阻较小和电流源内阻较大的情况。

方法二:测量ab端的开路电压Uoc及短路电流Isc则等效电阻Req= Uoc/Isc这种方法适用于ab端等效电阻Req较大,而短路电流不超过额定值的情形,否则有损坏电源的危险。

图4 – 3 图 4-4方法三:两次电压测量法测量电路如图4-3所示,第一次测量ab端的开路Uoc,第二次在ab端接一已知电阻RL(负载电阻),测量此时a、b端的负载电压U,则a、b端的等效电阻Req为:Req =[(Uoc/ U)-1]RL第三种方法克服了第一和第二种方法的缺点和局限性,在实际测量中常被采用。

戴维南定理验证实验报告

戴维南定理验证实验报告

戴维南定理验证实验报告1. 引言嘿,大家好!今天我们来聊聊戴维南定理,这个听上去挺高大上的名字,其实背后是一种非常实用的电路分析方法。

简单说,戴维南定理告诉我们,任何一个复杂的线性电路都能被简化为一个电压源和一个电阻串联的形式。

这就像把一大堆乱七八糟的零食整理成一个好看的小礼包,方便又省事!通过这个实验,我们不仅能验证戴维南定理的正确性,还能加深对电路的理解,真是一举多得嘛!2. 实验准备2.1 实验材料在开始之前,我们得准备一些“装备”。

首先,我们需要一个电源,别小看这个小家伙,它可是实验的“动力源泉”。

然后,一些电阻,最好是不同阻值的,这样能给我们带来更多的乐趣。

接着,万用表也是必不可少的,它就像我们的“侦探”,帮我们测量电压和电流。

最后,当然少不了连接线,没这些线,那就像要做菜没锅一样,根本没法下手。

2.2 实验步骤好啦,材料都准备齐全了,咱们就可以开始动手了。

首先,按照原电路的连接方式,把电源和电阻连接起来,形成一个复杂的电路。

接着,用万用表测量电路中的电压和电流。

这里可得仔细点,别让数字跑了!然后,接下来就是关键的部分了,我们要用戴维南定理进行简化。

理论上,这个电路应该能被等效为一个电压源和一个电阻的组合,咱们得来验证一下这小家伙到底有多厉害。

3. 实验过程3.1 测量与记录实验开始后,大家都紧张兮兮的,仿佛要参加什么重要的比赛。

第一个步骤,先把电压和电流记录下来。

经过一番“较量”,我们测得电压是5伏特,而电流是0.5安培。

哎呀,这个数据可真是像小猫扑向小鱼一样可爱,让人忍不住想继续探索下去!接着,我们算了一下电阻值,根据欧姆定律(V=IR),得到了电阻是10欧姆。

嘿,这下子,咱们的电路特性清晰可见,就像太阳升起照亮大地!3.2 戴维南定理验证然后我们就开始进行简化了。

按照戴维南定理,我们要找出等效电压和等效电阻。

为了找到等效电压,我们把电源断开,测量开路电压。

经过一番调整,发现这个开路电压还是5伏特,真是意料之中,没让我们失望!接下来,咱们来计算等效电阻。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四戴维南定理
一、实验目的
1、验证戴维南定理
2、测定线性有源一端口网络的外特性和戴维南等效电路的外特性。

二、实验原理
戴维南定理指出:任何一个线性有源一端口网络,对于外电路而言,总可以用一个理想电压源和电阻的串联形式来代替,理想电压源的电玉等于原一端口的开路电压Uoc,其电阻(又称等效内阻)等于网络中所有独立源置零时的入端等效电阻Req,见图4-1。

图4- 1 图4- 2
1、开路电压的测量方法
方法一:直接测量法。

当有源二端网络的等效内阻Req与电压表的内阻Rv相比可以忽略不计时,可以直接用电压表测量开路电压。

方法二:补偿法。

其测量电路如图4-2所示,E为高精度的标准电压源,R为标准分压电阻箱,G为高灵敏度的检流计。

调节电阻箱的分压比,c、d两端的电压随之改变,当Ucd=Uab 时,流过检流计G的电流为零,因此
Uab=Ucd =[R2/(R1+ R2)]E=KE
式中 K= R2/(R1+ R2)为电阻箱的分压比。

根据标准电压E 和分压比Κ就可求得开路电压Uab,因为电路平衡时I G= 0,不消耗电能,所以此法测量精度较高。

2、等效电阻Req的测量方法
对于已知的线性有源一端口网络,其入端等效电Req可以从原网络计算得出,也可以通过实验测出,下面介绍几种测量方法:
方法一:将有源二端网络中的独立源都去掉,在ab端外加一已知电压U,
测量一端口的总电流I总则等效电阻
Req= U/I总
实际的电压源和电流源具有一定的内阻,它并不能与电源本身分开,因此在去掉电源的同时,也把电源的内阻去掉了,无法将电源内阻保留下来,这将影响测量精度,因而这种方法只适用于电压源内阻较小和电流源内阻较大的情况。

方法二:测量ab端的开路电压Uoc及短路电流Isc则等效电阻
Req= Uoc/Isc
这种方法适用于ab端等效电阻Req较大,而短路电流不超过额定值的情形,否则有损坏电源的危险。

图4 – 3 图 4-4
方法三:两次电压测量法
测量电路如图4-3所示,第一次测量ab端的开路Uoc,第二次在ab端接一已知电阻RL (负载电阻),测量此时a、b端的负载电压U,则a、b端的等效电阻Req为:
Req =[(Uoc/ U)-1]RL
第三种方法克服了第一和第二种方法的缺点和局限性,在实际测量中常被采用。

3、戴维南等效电路法
如果用电压等于开路电压Uoc 的理想电压源与等效电阻RL相串联的电路(称为戴维南等效电路,参见图4-4)来代替原有源二端网络,则它的外特性U=f(I)应与有源二端网络的外特性完全相同。

实验原理电路见图4-5b。

图 4 - 5
三、预习内容
在图4-5(a)中设E1=10V,E2=6 V,R1=R2=1 KΩ,根据戴维南定理将AB以左的电路化简为戴维南等效电路。

即计算图示虚线部分的开路电压Uoc,等效内阻Req及A、B直接短路时的短路电流Isc之值,填入自拟的表格中。

四、仪器设备
1、电路分析实验箱一台
2、直流毫安表一只
3、数字万用表一台
五、实验内容与步骤
1、用戴维南定理求支路电流I3,
测定有源二端网络的开路电压Uoc等效电阻Req
按图4-5(a)接线,经检查无误后,采用直接测量法测定有源二端网络的开路电压Uoc。

电压表内阻应远大于二端网络的等效电阻Req 。

用两种方法测定有源二端网络的等效电阻Req
A、采用原理中介绍的方法二测量:
首先利用上面测得的开路电压Uoc和预习中计算出的Req估算网络的短路电流Isc大小,在Isc之值不超过直流稳压电源电流的额定值和毫安表的最大量限的条件下,可直接测出短路电流,并将此短路电流Isc数据记入表格4- 1中。

B、采用原理中介绍的方法三测量:
接通负载电阻RL,调节电位器R4使R L = 1 KΩ,使毫安表短接,测出此时的负载端电压U并记入表格4 - 1中。

表 4 – 1
v1.0 可编辑可修改取A、B两次测量的平均值作为Req (I3的计算在实验报告中完成)
2、测定有源二端网络的外特性
调节电位器R4即改变负载电阻RL之值,在不同负载的情况下,测量相应的负载端电压和流过负载的电流,共取五个点将数据记入自拟的表格中。

测量时注意,为了避免电表内阻的影响,测量电压U时,应将接在AC间的毫安表短路,测量电流I时,将电压表从A、B端拆除。

若采用万用表进行测量,要特别注意换档。

3、测定戴维南等效电路的外特性。

将另一路直流稳压电源的输出电压调节到等于实测的开路电压Uoc值,以此作为理想电压源,调节电位器R6,使R5十R6=Req,并保持不变。

以此作为等效内阻,将两者串联起来组成戴维南等效电路。

按图4-5(b)接线,经检查无误后,重复上述步骤测出负载电压和负载电流,并将数据记入自拟的表格中。

六、实验报告要求
1、应用戴维南定理,根据实验数据计算R3之路的电流I3,并与计算值进行比较。

2、在同一坐标纸上作出两种情况下的外特性曲线,并作适当分析。

判断戴维南定理的正确性。

相关文档
最新文档