第11讲 周期问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习奥数的优点
1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。
2、训练学生良好的数学思维习惯和思维品质。要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。
3、锻炼学生优良的意志品质。可以培养持之以恒的耐心和克服困难的信心,
以及战胜难题的勇气。可以养成坚韧不拔的毅力
4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。
第11讲周期问题
一、知识要点
周期问题是指事物在运动变化的发展过程中,某些特征循环往复出现,其连续两次出现所经过的时间叫做周期。在数学上,不仅有专门研究周期现象的分支,而且平时解题时也常常碰到与周期现象有关的问题。这些数学问题只要我们发展某种周期现象,并充分加以利用,把要求的问题和某一周期的等式相对应,就能找到解题关键。
二、精讲精练
【例题1】流水线上生产小木球涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后又依次5红、4黄、3绿、2黑、1白……如此涂下去,到2001个小球该涂什么颜色?
练习1:
1.跑道上的彩旗按“三面红、两面绿、一面黄”的规律插下去,第50面该插什么颜色?
2.有一串珠子,按4个红的,3个白的,2个黑的顺序重复排列,第160个是什么颜色?
3.1/7=0.142857142857……,小数点后面第100个数字是多少?
【例题2】有47盏灯,按二盏红灯、四盏蓝灯、三盏黄灯的顺序排列着。最后一盏灯是什么颜色的?三种颜色的灯各占总数的几分之几?
练习2:
1.有68面彩旗,按二面红的、一面绿的、三面黄的排列着,这些彩旗中,红旗占黄旗的几分之几?
2.黑珠和白珠共2000颗,按规律排列着:○●○○○●○○○●○○……,第2000颗珠子是什么颜色的?其中,黑珠共有多少颗?
3.在100米长的跑道两侧每隔2米站着一个同学。这些同学以一端开始,按先两个女生,再一个男生的规律站立着。这些同学中共有多少个女生?
【例题3】 2001年10月1日是星期一,那么,2002年1月1日是星期几?
练习3:
1.2002年1月1日是星期二,2002年的六月一日是星期几?
2.如果今天是星期五,再过80天是星期几?
3.以今天为标准,算一算今年自己的生日是星期几?
【例题4】将奇数如下图排列,各列分别用A、B、C、D、E为代表,问:2001
所在的列以哪个字母为代表?
A B C D E
1 3 5 7
15 13 11 9
17 19 21 23
31 29 27 25
…………
…………
练习4:
1.将偶数2、4、6、8、……按下图依次排列,2014出现在哪一列?
2.把自然数按下列规律排列,865排在哪一列?
3.
上表中,将每列上下两个字组成一组,如第一组为(小热),第二组为(学爱)。求第460组是什么?
【例题5】 888……8[100个8]÷7,当商是整数时,余数是几?
练习5:
1.444……4[100个4]÷3当商是整数时,余数是几?
2.444……4[100个4]÷6当商是整数时,余数是几?
3.111……1[1000个1]÷7当商是整数时,余数是几?