小学奥数学案-第11讲-周期工程问题(学)
五年级奥数讲义第11讲周期问题
第11讲周期问题一、知识要点周期问题是指事物在运动变化的发展过程中,某些特征循环往复出现,其连续两次出现所经过的时间叫做周期。
在数学上,不仅有专门研究周期现象的分支,而且平时解题时也常常碰到与周期现象有关的问题。
这些数学问题只要我们发展某种周期现象,并充分加以利用,把要求的问题和某一周期的等式相对应,就能找到解题关键。
二、精讲精练【例题1】流水线上生产小木球涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后又依次5红、4黄、3绿、2黑、1白……如此涂下去,到2001个小球该涂什么颜色?【思路导航】根据题意可知,小木球涂色的次序是5红、4黄、3绿、2黑、1白,即5+4+3+2+1=15个球为一个周期,不断循环。
因为2001÷15=133……6,也就是经过133个周期还余6个,每个周期中第6个是黄的,所以第2001个球涂黄色。
练习1:1.跑道上的彩旗按“三面红、两面绿、一面黄”的规律插下去,第50面该插什么颜色?2.有一串珠子,按4个红的,3个白的,2个黑的顺序重复排列,第160个是什么颜色?3.1/7=0.142857142857……,小数点后面第100个数字是多少?【例题2】有47盏灯,按二盏红灯、四盏蓝灯、三盏黄灯的顺序排列着。
最后一盏灯是什么颜色的?三种颜色的灯各占总数的几分之几?【思路导航】(1)我们把二盏红灯、四盏蓝灯、三盏黄灯这9盏灯看作一组,47÷9=5(组)……2(盏),余下的两盏是第6组的前两盏灯,是红灯,所以最后一盏灯是红灯;(2)由于47÷9=5(组)……2(盏),所以红灯共有2×5+2=12(盏),占总数的12/47;蓝灯共有4×5=20(盏),占总数的20/47;黄灯共有3×5=15(盏),占总数的15/47。
练习2:1.有68面彩旗,按二面红的、一面绿的、三面黄的排列着,这些彩旗中,红旗占黄旗的几分之几?2.黑珠和白珠共2000颗,按规律排列着:○●○○○●○○○●○○……,第2000颗珠子是什么颜色的?其中,黑珠共有多少颗?3.在100米长的跑道两侧每隔2米站着一个同学。
小学奥数--工程问题(含答案解析)
小学奥数--工程问题一.选择题(共8小题)1.三部同样的抽水机同时抽水,抽干一池水需用15小时,五部这样的抽水机抽干这一池水需用()小时.A.3 B.6 C.9 D.122.张师傅加工一批零件,原计划每天加工80个,5天加工完.实际张师傅只用4天就加工完了,实际每天比原计划多加工零件()个.A.20 B.16 C.8 D.43.完成一件工作,甲要小时,乙要小时,甲与乙的工作效率比是()A.2:6 B.5:3 C.3:5 D.6:24.水池有甲、乙两根出水管,单独打开甲进水管8小时可将满水池排空,单独打开乙出水管6小时可将满水池排空.如果按甲、乙、甲、…的顺序轮流打开1小时,将满水池排空需()小时.A.7 B.6C.4 D.35.一件工作,甲独做10小时完成,乙独做12小时完成,丙独做15小时完成.三人合做几小时可以完成这件工作的?()A.2 B.3 C.4 D.56.在A地植树1000棵,B地植树1250棵,甲、乙、丙每天分别能植树28、32、30棵,甲在A地,乙在B地,丙在A与B两,同时开始,同时结束,丙在A地植树()棵.A.150 B.300 C.450 D.6007.甲乙两人合作打一份材料.开始甲每分钟打100 个字,乙每分钟打200 个字.合作到完成总量的一半时,甲速度变为原来的3 倍,而乙休息了5 分钟后继续按原速度打字.最后当材料完成时,甲、乙打字数相等.那么,这份材料共()个字.A.3000 B.6000 C.12000 D.180008.甲、乙两工程队共同修建一项工程,已知两队合作正好6天完成,如果甲队单独完成这项工程需要18天,那么乙队单独完成这项工程需要()天.A.9 B.10 C.12 D.15二.解答题(共5小题)9.一件工程,甲单独做16天完成,乙单独做12天完成,若甲先做若干天后,由乙接着单独做余下的工程,完成全部的工程共用了14天,问甲先做了多少天?10.有一桶水,一只小鸭可以饮用25天.如果和一只小鸡同饮,那么可以饮用20天.如果一只小鸡单独饮用,可以饮用几天?11.学校插花组同学要赶制花篮70个,已经做了5天,共做花篮40个.余下的要赶在2天做完,这样每天比原来平均多做个花篮.12.一个化肥厂原计划12天生产一批化肥,由于每天多生产2.5吨,结果9天就完成了这批化肥的生产任务.实际每天生产化肥多少吨?13.水池装有一个水管和若干每小时注水量相同的注水管,注水管注水时,排水管同时排水.若用12个注水管注水,8小时可注满水池;若用9个注水管注水,24小时可注满水池.现在用8个注水管注水,那么需要多少小时注满水池?小学奥数--工程问题参考答案与试题解析一.选择题(共8小题)1.三部同样的抽水机同时抽水,抽干一池水需用15小时,五部这样的抽水机抽干这一池水需用()小时.A.3 B.6 C.9 D.12【分析】把抽干这一池水的工作量看作单位“1”,先求出每部抽水机的工作效率÷3=,再求出五部这样的抽水机抽干每小时的工作效率=;然后再除工作总量1即可.【解答】解:÷3==1=9(小时)答:五部这样的抽水机抽干这一池水需用9小时.故选:C.【点评】解答本题的关键是求出每部抽水机的工作效率,解答依据是工作时间,工作效率以及工作总量之间数量关系.2.张师傅加工一批零件,原计划每天加工80个,5天加工完.实际张师傅只用4天就加工完了,实际每天比原计划多加工零件()个.A.20 B.16 C.8 D.4【分析】原计划每天加工80个,需要5天完成,则需要加工零件的总数为80×5=400个,实际工作4天就加工完了,则平均每天加工80×5÷4个,再减去80就是实际每天多加工的零件数.【解答】解:80×5÷4﹣80=100﹣80=20(个)答:实际每天比原计划多加工零件20个.故选:A.【点评】首先根据计划工作时间及每天加工的个数,求出零件总数是完成本题的关键.3.完成一件工作,甲要小时,乙要小时,甲与乙的工作效率比是()A.2:6 B.5:3 C.3:5 D.6:2【分析】把工作总量看作“1”,根据工作总量÷工作时间=工作效率,分别求出甲、乙的工作效率,再写出对应的比,根据比的基本性质化成最简整数比.【解答】解:(1÷):(1÷)=5:3答:甲与乙的工作效率比是5:3.故选:B.【点评】掌握工作总量÷工作时间=工作效率是解决此题的关键.4.水池有甲、乙两根出水管,单独打开甲进水管8小时可将满水池排空,单独打开乙出水管6小时可将满水池排空.如果按甲、乙、甲、…的顺序轮流打开1小时,将满水池排空需()小时.A.7 B.6C.4 D.3【分析】把这项工作的量看作单位“1”,先依据工作时间=工作总量÷工作效率,求出两根排水管合做需要的时间(求得的时间是带分数),由于两根排水管是轮流工作1小时,那么两根排水管轮流工作的时间就是所得的带分数整数部分,然后依据工作总量=工作时间×工作效率,求出两根排水管轮流工作完成的工作量,再求出剩余的工作量,依据工作时间=工作总量÷工作效率,求出甲最后完成需要的时间,最后加两根排水管轮流工作的时间即可解答.【解答】解:甲的工作效率为,乙的工作效率为,所以甲乙各排水3小时后一共完成,还剩下1﹣=,甲排水管只需再需排水1小时可全部完成,所以一共需要2×3+1=7小时.故选:A.【点评】解答本题的关键是求出两根排水管轮流工作的时间,解答的依据是等量关系式:工作时间=工作总量÷工作效率.5.一件工作,甲独做10小时完成,乙独做12小时完成,丙独做15小时完成.三人合做几小时可以完成这件工作的?()A.2 B.3 C.4 D.5【分析】根据题意,甲每小时能完成这件工作的,乙每小时能完成这件工作的,丙每小时能完成这件工作的,要完成这件工作的,用除以他们每小时的效率之和即可.【解答】解:÷()=÷=4=3答:三人合做3小时可以完成这件工作的.故选:B.【点评】此题主要考查工作时间、工作效率、工作总量三者之间的数量关系,解答时把工作总量看做单位“1”,要完成工作的,再利用它们的数量关系解答即可.6.在A地植树1000棵,B地植树1250棵,甲、乙、丙每天分别能植树28、32、30棵,甲在A地,乙在B地,丙在A与B两,同时开始,同时结束,丙在A地植树()棵.A.150 B.300 C.450 D.600【分析】总棵数1000+1250=2250棵不变,由甲、乙、丙去植树,每天能植树28+32+30=90棵,用2250除以90求出共同工作的时间,再乘甲每天的工作效率,求出甲共植树的棵数,再用1000减去它就是丙在A地植树的棵数.【解答】解:(1000+1250)÷(28+32+30)=2250÷90=25(天)1000﹣28×25=1000﹣700=300(棵)答:丙在A地植树300棵.故选:B.【点评】此题解答思路:先求出A、B两地植树需要的时间,再求出甲在A地植树的棵数,进而求出丙在A地植树的棵数,进一步解决问题.7.甲乙两人合作打一份材料.开始甲每分钟打100 个字,乙每分钟打200 个字.合作到完成总量的一半时,甲速度变为原来的3 倍,而乙休息了5 分钟后继续按原速度打字.最后当材料完成时,甲、乙打字数相等.那么,这份材料共()个字.A.3000 B.6000 C.12000 D.18000【分析】前一半时乙的工作量是甲的2 倍,所以后一半甲应是乙的2倍.后来甲乙的工作效率比3:2,甲后来应为4 份,乙应为2 份,说明乙休息5分钟时甲打了1 份,把后一半工作量分为6 份,这一份的量是100×3×5=1500字,故总工作量是12份即可求解.【解答】解:前一半甲乙的工作效率比是100:200=1:2,完成一半的工作总量,甲乙两人的工作量比是工作效率比即1:2,甲完成工作总量的,乙完成工作总量的,在后一半的工作中需要甲的总量是乙的2倍,后来甲乙的效率比为3:2,说明乙休息是甲完成了一份量所以甲的总量是4份,乙的总量是2份,也就是甲在5分钟完成300×5=1500(个),后来甲4份乙2份,占一半,总共份数为12份,1500×12=18000.故选:D.【点评】找到两人的工作倍数关系是本题的关键,同时设份数法是常用方法,结合比例问题.8.甲、乙两工程队共同修建一项工程,已知两队合作正好6天完成,如果甲队单独完成这项工程需要18天,那么乙队单独完成这项工程需要()天.A.9 B.10 C.12 D.15【分析】把一项工程的工作量看作单位“1”,由两队合作正好6天完成,可以求出两队的工作效率和为,甲的工作效率为,由此求得乙的工作效率,再进一步利用工作总量÷工作效率=工作时间解决问题.【解答】解:1÷(﹣)=1÷=9(天);答:乙队单独完成这项工程需要9天.故选:A.【点评】此题主要利用工作总量、工作时间、工作效率三者之间的关系解决问题.二.解答题(共5小题)9.一件工程,甲单独做16天完成,乙单独做12天完成,若甲先做若干天后,由乙接着单独做余下的工程,完成全部的工程共用了14天,问甲先做了多少天?【分析】把全部工作量看作“1”,则甲的工作效率为,乙的工作效率为;设甲做了x天,则乙就做了14﹣x天,由工作效率×工作时间=工作量,可得方程:x+(14﹣x)=1.【解答】解:设甲做了x天,则乙就做了14﹣x天,可得方程:x+(14﹣x)=1+﹣=1,=,x=8;答:甲先做了8天.【点评】本题是据工作效率×工作时间=工作量这一基本关系式设未知数来解决的.10.有一桶水,一只小鸭可以饮用25天.如果和一只小鸡同饮,那么可以饮用20天.如果一只小鸡单独饮用,可以饮用几天?【分析】把一桶水饮用量看作单位“1”,一只小鸭每天可以饮用它的,小鸡和小鸭的一天的饮用量是这通水的,所以小鸡一天的饮用量是﹣,用单位“1”除以(﹣),就是小鸡饮用的天数.【解答】解:1÷(﹣)=1÷=100(天);答:可以饮用100天.【点评】本题运用运用工效问题的解答方法进行解答,把一桶水的饮用量看作单位“1”,再运用工作总量除以工作效率等于工作时间进行解答即可.11.学校插花组同学要赶制花篮70个,已经做了5天,共做花篮40个.余下的要赶在2天做完,这样每天比原来平均多做7个花篮.【分析】先求出原来每天做多少个;再求出剩下了总数量,然后用剩下的总数量除以后来工作的天数,就是后来每天做的个数;然后用后来每天做的个数减去原来每天做的个数就是平均每天需要多做的个数.【解答】解:40÷5=8(个);(70﹣40)÷2,=30÷2,=15(个);15﹣8=7(个);答:每天比原来平均多做7个花篮.故答案为;7.【点评】本题利用工作效率=工作量÷工作时间求出两部分的工作效率,再用后来的工作效率减去原来的工作效率即可.12.一个化肥厂原计划12天生产一批化肥,由于每天多生产2.5吨,结果9天就完成了这批化肥的生产任务.实际每天生产化肥多少吨?【分析】设计划每天生产化肥x吨,实际每天生产x+2.5吨,根据原计划每天生产化肥的吨数×原计划的天数=实际每天生产化肥的度数×实际生产的天数,列出方程解答即可列式为:12x=9×(x+2.5),解答即可.【解答】解:设计划每天生产化肥x吨,实际每天生产x+2.5吨,12x=9×(x+2.5)12x=9x+22.512x﹣9x=22.53x=22.5x=7.5答:实际每天生产化肥7.5吨.【点评】此题主要考查了一元一次方程的应用,关键是弄清题意,找出合适的等量关系,进而列出方程是解答此类问题的关键.13.水池装有一个水管和若干每小时注水量相同的注水管,注水管注水时,排水管同时排水.若用12个注水管注水,8小时可注满水池;若用9个注水管注水,24小时可注满水池.现在用8个注水管注水,那么需要多少小时注满水池?【分析】把水池的容积看作单位“1”,12个注水管注水,8小时注满,每小时注水,9个注水管注水,24小时注满,每小时注水,12个注水管比9个注水管,每小时多注水,由此求出8个注水管每小时的工作效率,然后根据工作量÷工作效率=工作时间,据此列式解答.【解答】解:12个注水管注水,8小时注满,每小时注水,9个注水管注水,24小时注满,每小时注水,12个注水管比9个注水管,每小时多注水,那么8个注水管每小时注水:=,所以1(小时);答:用8个注水管注水,需要72小时注满水池.【点评】把水池的容积看作单位“1”,关键是求出8个注水管每小时的工作效率,再根据工作量÷工作效率=工作时间进行解答.。
小学奥数学习内容
一、孩子为什么一定要学奥数?1、奥数学习培养孩子的逻辑思维能力对于小学的孩子来说,逻辑思维能力的培养正在当时。
奥数是一种思维方式的训练,它用一种特殊的思维方式和解决问题的方法,以激发孩子对数学学习的兴趣,从根本上促进学生的思维开发质量与速度。
对于学有余力的学生,奥数是开发学生逻辑与抽象思维最好的课程之一,奥数强调的思考问题与解决问题的能力是学生在低年级时期最需要培养的素质与习惯。
从三年级开始,孩子正进入一个思维方式改造期,这个时候开始训练他们的思维方式,解题思路,效果是最好的。
2、感受杯赛氛围,为小升初择校提前做好准备孩子学好奥数,取得优秀的杯赛成绩,对今后的小升初择校提供有利的保证,为以后初中甚至更长远的学习创造良好的开端。
重点中学为了保证每年得到优质的生源,小升初的竞争形势愈演愈烈,而奥数的杯赛成绩必定成为小升初的重要砝码。
而杯赛的准备要从专题的学习开始,从三年级开始的专题知识的学习就是孩子今后冲击杯赛关键的知识积累。
在三年级时冲击杯赛,感受杯赛氛围,把握杯赛方向,也能五六年级取得优秀的杯赛成绩取得先机。
3、小学是孩子学习习惯培养的关键时期根据我们的调查发现,那些在小升初中奥数学得好、进入一流重点中学的学生,他们都有一个共同的特点,就是有一个良好的学习习惯,而这个习惯都是从小就开始注重培养起来的。
因为小学三、四年级的孩子在习惯上还比较有可塑性,着重培养容易养成良好的学习习惯;若是一旦不注意养成了不好的习惯,以后等孩子大点了要想再改就比较困难了。
考试其实不仅考的是对知识的掌握程度,也考的是好的学习习惯。
好的学习习惯能让人受益一生。
二、奥数各年级学什么?三年级奥数鼎xx预科班教学计划第1讲数学真有趣第2讲从图形变化中找规律第3讲找规律填数第4讲火柴棍游戏——计算第5讲火柴棍游戏——图形第6讲最短路线问题第7讲加减数字谜第8讲巧求周长第9讲简单的有余数除法第10讲简单的周期问题第11讲配对求和第12讲考虑所有可能情况第13讲三阶幻方第14讲数数与记数(一)第15讲数数与记数(二)第16讲数数与记数(三)第17讲简单植树问题第18讲简单xx符号第19讲用加、减法性质定律简算第20讲连续数四年级奥数基础班教学计划第一讲等差数列第二讲重复问题第三讲乘除算式谜第四讲平均数问题第五讲复杂的平均数问题第六讲四则运算中的xx第七讲省时间的学问第八讲和差问题第九讲和倍问题第十讲差倍问题第十一讲用倒推法解决问题的策略第十二讲用假设法解决问题的策略第十三讲相遇问题的解决策略第十四讲追击问题的解决策略第十五讲归一问题的解决策略第十六讲xx问题的解决策略第十七讲年龄问题第十八讲复杂的年龄问题第十九讲抽屉问题(一)第二十讲抽屉问题(二)五年级“奥数”中级班教学计划第一讲较复杂的逻辑推理问题第二讲较复杂的容斥问题第三讲等量代换问题第四讲乘法原理第五讲加法原理第六讲最短路线第七讲最大公因数第八讲最小公倍数第九讲倍数问题(一)第十讲倍数问题(二)第十一讲数的整除特征第十二讲同余问题第十三讲较复杂的小数巧算第十四讲面积的计算第十五讲复杂的图形问题(一)第十六讲复杂的图形问题(二)第十七讲用消去法解决问题的策略第十八讲用方程解决问题的策略第十九讲解决复杂的方程问题第二十讲牛吃草问题六年级“奥数”高级班教学计划第一讲解决问题的思考方法(一)第二讲解决问题的思考方法(二)第三讲较复杂的行程问题第四讲多次相遇问题第五讲工程问题第六讲利润问题第七讲浓度问题(一)第八讲浓度问题(二)第九讲比和比例问题(一)第十讲比和比例问题(二)第十一讲分数运算的技巧(一)第十二讲分数运算的技巧(二)第十三讲分数运算的综合练习第十四讲较复杂的分数问题(一)第十五讲较复杂的分数问题(二)第十六讲三角形的面积(一)第十七讲三角形的面积(二)第十八讲较复杂的图形问题(一)第十九讲较复杂的图形问题(二)第二十讲较复杂的图形问题(三)【xx鼎xx教育独家提供】。
四年级上册奥数讲义-第11讲 工程问题(一) 全国通用(无答案)
第11讲工程问题(一)在实际生活中,我们经常遇到这样一类问题:“某一件工作,甲独做完成需要若干天,乙独做完成需要若干天,问甲、乙合做这项工作,需要多少天完成?”这一类问题,我们称之为”工程问题”。
工程问题是应用题中的一种类型.在工程问题中,一般要出现三个量:工作总量、工作时间(完成工作总量所需的时间)和工作效率(单位时间内完成的工作量)。
为叙述方便,我们把这三个量简称工总、工时和工效。
工程问题的特点是:无论什么工作,我们都将它看成一个整体,完成这件工作的工作量就是“1”,完成一半就是,如果已经完成,那么剩下的工作量就是。
工作效率是指单位时间所完成的工作量,例如某人15天可完成某一件工作,那么他的工作效率就是;如果某人5天完成工作的,那么他的工作效率应为:。
工作效率不仅可以单指一个人(或其它工作单位),有时还要用到两人、三人合做这项工作的工作效率。
这就要将他们各自的工作效率相加,就是他们合做的工作效率。
工作时间是指完成一定工作量所花费的时间。
它的单位要与工作效率中的时间单位一致。
工作时间有时要分阶段来考虑。
工作时间、工作效率和工作总量这三者之间有一重要关系:某一时间内完成的工作量,等于工作者(1人或几人)的工作效率与工作时间的乘积,即工作总量=工作效率×工作时间这一关系式是解决”工程问题”的最本质的关系式。
这三个量之间有下述一些关系式:工作总量÷工作时间=工作效率工作总量÷工作效率=工作时间例1 一件工作,甲单独工做9天可以完成,乙单独工做6天可以完成。
现在甲先单独做了3天,余下的工作由乙继续完成。
请问:乙需要单独做几天可以完成剩余的工作?分析与解答一:甲做了3天,完成的工作量是3/9=1/3,乙还需要完成的工作量是1-1/3=2/3。
乙每天能完成的工作量(工作效率)是,完成余下工作量所需时间是+=4(天)答:乙需要单独做4天可完成剩余工作.分析与解答二:9与6的最小公倍数是18。
六年级奥数第11讲-周期工程问题(学)
学科教师辅导讲义学员编号: 年 级:六年级 课 时 数:3 学员姓名:辅导科目:奥数学科教师:授课主题 第11讲-周期工程问题授课类型 T 同步课堂P 实战演练S 归纳总结教学目标① 了解工作量、工作时间及工作效率的意思; ② 能够从题目中找出工作量、工作时间及工作效率; ③ 理解三者之间的关系,并用三者关系解题。
授课日期及时段T (Textbook-Based )——同步课堂熟练掌握工程问题的基本数量关系与一般解法;(1) 工程问题中常出现单独做,几人合作或轮流做,分析时一定要学会分段处理; (2) 根据题目中的实际情况能够正确进行单位“1”的统一和转换;(3) 工程问题中的常见解题方法以及工程问题算术方法在其他类型题目中的应用.考点一:周期性工程问题例1、一件工程,甲单独做要6小时,乙单独做要10小时,如果接甲、乙、甲、乙...顺序交替工作,每次1小时,那么需要多长时间完成?例2、一项工程,乙单独做要17天完成.如果第一天甲做,第二天乙做,这样交替轮流做,那么恰好用整天数完成;如果第一天乙做,第二天甲做,这样交替轮流做,那么比上次轮流的做法多用半天完工.问:甲单独做知识梳理典例分析考点三:比例法及工资分配问题例1、有一项工程,有三个工程队来争夺施工权利,已知甲乙丙三个工程队都是工作时间长短来付费的,甲、乙两队合作,10天可以全部完工,共需要支付18000元,由乙、丙两队合作,20天可以完工,共需要支付12000元,由甲、丙两队合作,12天可以完成,共需要支付15000,如果该工程只需要一个工程队承建,如果只能一个队伍单独施工,那么最快的比最慢的会早完工____天.需要支付速度最快的队伍____元.例2、一项工程,甲15天做了14后,乙加入进来,甲、乙一起又做了14,这时丙也加入进甲、乙、丙一起做完.已知乙、丙的工作效率的比为3:5,整个过程中,乙、丙工作的天数之比为2:1,问题中情形下做完整个工程需多少天?P(Practice-Oriented)——实战演练➢课堂狙击1、一项工程,甲单独完成需l2小时,乙单独完成需15小时。
小学奥数思维训练-工程问题(通用,含答案)
保密★启用前小学奥数思维训练-工程问题学校:___________姓名:___________班级:___________考号:___________一、解答题1.一项工程,由甲队做30天完成,由乙队做20天完成。
(1)两队合做5天可以完成工程的几分之几?(2)两队合做10天,还剩下工程的几分之几?(3)两队合做几天完成?2.一项工程,由甲工程队修建,需要12天,由乙工程队修建,需要20天,两队共同修建需要多少天?3.一项工程单独做甲队要8天完成,乙队要10天完成,两队合作几天能完成这项工程的34?4.一项工程,甲、乙合做6天可以完成。
甲独做18天可以完成,乙独做多少天可以完成?5.加工一批零件,单独1人做,甲要10天完成,乙要15天完成,丙要12天完成。
如果先由甲、乙两人合做5天后,剩下的由丙1人做,还要几天完成?6.一件工程,甲、乙合作6天可以完成。
现在甲、乙合作2天后,余下的工程由乙独做又用8天正好做完。
这件工程如果由甲单独做,需要几天完成?7.有一项工作,小华做需3天,小芳做需4天,小梅做需5天,如果三人合作,需几天完成?8.有一项工程,甲队单独做需要10天,甲、乙两队合做需要4天,乙单独做需要几天?9.一项工程,甲队独做60天完成,乙队独做40天完成,现先由甲队独做10天后,乙队也参加工作。
还需几天完成?10.一批货物,用一辆卡车运18次运完,用一辆大车运30次运完。
现在用同样的3辆卡车和5辆大车一起运,几次可以运完?11.一袋米,甲、乙、丙三人一起吃,8天吃完,甲一人24天吃完,乙一人36天吃完,问丙一人几天吃完?12.修一条路,甲单独修需16天,乙单独修需24天,如果乙先修了9天,然后甲、乙二人合修,还要几天?13.一项工程,甲独做要10天,乙独做要15天,丙独做要20天。
三人合做期间,甲因病请假,工程6天完工,问甲请了几天病假?14.快车和一辆慢车同时从甲、乙两地相对开出,经过12小时相遇,相遇后,慢车又行了18小时达到甲地。
奥数专题:《工程问题》教案
-难点三:将实际问题抽象为数学模型时,学生可能无法抓住关键信息,容易在众多条件中迷失。教师需要指导学生筛选有用信息,忽略无关因素,如在实际工程问题中,关注工作效率、工作时间等核心信息,忽略其他次要因素。
实践活动环节,学生们分组讨论和实验操作的表现让我印象深刻。他们积极参与,热烈讨论,展示了自己的成果。但同时,我也注意到,部分小组在讨论过程中,成员之间的交流并不充分,有的学生并未完全参与到讨论中。因此,我打算在接下来的课程中,加强对小组讨论的引导,鼓励每个学生都发表自己的观点,提高他们的参与度。
在学生小组讨论环节,我发现有的学生对于工程问题在实际生活中的应用思考得非常深入,能够提出独到的见解。但也有一些学生在分析问题时,思路不够清晰,容易陷入混乱。为了帮助学生更好地分析和解决问题,我计划在今后的教学中,多设计一些开放性的问题,引导学生进行思考和讨论,提高他们的问题解决能力。
在教学过程中,针对重难点内容,教师应有针对性地进行讲解和强调,确保学生理解透彻。同时,通过举例、练习、小组讨论等多种教学方法,帮助学生突破难点,提高解决问题的能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《工程问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过多人合作完成一项任务的情况?”(如家庭大扫除、学校运动会准备等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索工程问题的奥秘。
本节课的核心素养目标主要包括以下三个方面:
高斯小学奥数五年级下册含答案第11讲_正反比例的概念与应用
第十一讲正反比例的概念与应用- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - -本讲我们来学习两种特殊的数量关系:正比例关系和反比例关系.看到题目你一定很好奇什么才是正比例关系?什么才是反比例关系呢?我们先来看一个具体的例子.某汽车行驶的时间和路程如下表:同学们可以考虑这样几个问题:表中有哪两个量?它们是不是有关联的?写出几组这两种量的比,并比较比值的大小.说一说这个比值表示什么?从表中我们可以看出,路程和时间都是变化的量,并且时间越大,路程也越大,它们的比值是一定的.像这样,两种相关联的量,一种量变化,另一种量也随之变化,如果两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系,或者简写为成正比.我们再来看另外一个例子:王老师买来一些巧克力,准备分给同学们.从表中我们可以看出,学生数和每个人分得的巧克力数都是变化的量,并且学生数越多,每人分得的巧克力数就越少,它们的乘积是一定的.像这样,两种相关联的量,一种量变化,另一种量也随之变化,如果两种量相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做成反比例关系,或者简写为成反比.在实际应用过程中,我们常常用到这样一些结论.如果两个量成正比,例如:=⨯总价单价数量,当单价一定的时候,总价比等于数量比,即1212::=总价总价数量数量.如果两个量成反比,例如:=⨯路程速度时间,当路程一定的时候,速度比等于时间比反过来,即1221::v v t t =.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -(1)阿呆和阿瓜,一起去超市买可乐,可乐的价钱相同.阿呆买了12瓶,阿瓜买了15瓶,问阿呆和阿瓜所花的钱数比为____________.(2)灰太狼和红太狼从狼堡去羊村,红太郎用了18分钟,灰太狼只用了12分钟,问红太狼和灰太郎的速度比为____________.(3)小高、墨莫和卡莉娅三人一起去爬灵山,从山脚出发,约好在山顶见面.小高从山脚爬到山顶用了40分钟,墨莫和卡莉娅分别用了1小时20分钟和120分钟,问小高、墨莫和卡莉娅的速度比为____________.分析:题目中的各个量之间是成正比例还是反比例关系?练习1.(1)喜羊羊和沸羊羊进行百米赛跑,喜羊羊跑完全程用了10.5秒,沸羊羊用了12秒,问喜羊羊和沸羊羊的速度比为____________.(2)甲、乙、丙三人各自独立做同一件工程,效率比为2:3:4,那么完成的时间比为____________.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -齿轮在机械装置中是很常见的一种零件,如图是钟表中的一些齿轮图.如果两个齿轮A、B相互咬合,那么齿轮A的齿数乘以齿轮A转过的圈数等于齿轮B的齿数乘以齿轮B转过的圈数.即两个相互咬合的齿轮它们的齿数比与圈数比成反比.钟表中的齿轮1 钟表中的齿轮2- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -如图,有A、B、C三个齿轮,其中A和B相互咬合,B和C相互咬合.如果A齿轮转动7圈时,B齿轮恰好转动5圈;B齿轮转动7圈时,C齿轮恰好转动10圈.请问:这三个齿轮的齿数之比是多少?(注:图片只是示意图,并不代表实际齿数)分析:观察图形,当两个齿轮相互咬合的时候,它们的齿数和转动圈数有什么关系?练习2.有A、B、C三个齿轮,其中A和B相互咬合,B和C相互咬合.这三个齿轮的齿数之比3:4:5.当A、C两个齿轮一共转动64圈时,B齿轮一共转动了多少圈?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 利用正反比,我们常常可以解决一些生活中的问题,下面我们来看看这样的题目.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题3.一天,卡莉娅拿着妈妈给她的钱去超市买苹果,平时每斤苹果5元钱,当她到超市的时候发现,由于打折促销,苹果变为每斤4元钱,于是卡莉娅多买了3斤苹果.问妈妈给了卡莉娅多少钱?分析:卡莉娅带的钱是固定的,那么苹果的价格和重量之间有什么关系?练习3.一个旅游团租车出游,平均每人应付车费40元.后来又增加了8人,这样每人应付的车费是35元.总租车费是多少元?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -在行程问题中,速度×时间=路程.当路程一定时,时间和速度成反比.与之类似的,在工程问题中,效率×时间=工作量.当工作量一定时,时间和效率成反比.正反比在行程、工程问题中有着广泛的应用.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - -小高从家去高思学校,可以骑车也可以步行,骑车比步行每分钟快150米,骑车所用的时间比步行时间少35,那么小高每分钟步行多少米?分析:当行驶路程固定的时候,如何把速度的变化与时间的变化联系起来呢?练习4.完成一件工程,甲的工作效率比乙的工作效率高27,单独做,甲比乙少用4天完成整件工程,问乙单独完成这件工程用多少天?例题5.墨莫最近在看文学名著《战争与和平》,计划20天看完.实际上,在看了500页之后,由于情节精彩,每天比原来多看了14,结果提前3天看完全书.问这本书共有多少页?分析:书的页数是固定的,那么每天看的页数和看书的天数之间有什么关系?例题6.某工程,可由若干台机器在规定的时间内完成.如果增加2台机器,则只需用规定时间的7 8就可做完;如果减少2台机器,那么就要推迟1小时做完.则由一台机器去完成这工程需要多长时间?分析:工作总量是固定的,那么如何把工作效率的变化与工作时间的变化联系起来呢?谚语的智慧——节选自《怎样解题》乔治·波利亚解题是人类的一项基本活动.有些人在达到目标和解答题目方面比较成功,另一些则没有那么成功.这些差异被注意到了,并进行了探讨和评论,某些谚语看来保留了这种评论的精华.1.我们解题时必须做的第一件事是理解题目:知敌方能应敌.我们必须清楚地看到我们所要达到的目的:想清目标再动手.这是老生常谈了,不幸的是,并非每个人都听从这样一条好的建议,人们常常在还没有真正理解他们所应该努力的目标之前,就开始推测、谈论,甚至鲁莽行事.愚者只看脚下,智者紧盯目标.然而光理解题目是不够的,我们还必须渴望求出它的解答.如果没有强烈的解题愿望,我们就不可能解出一道难题,只有具备这样的愿望,才有可能解出它.有志者事竟成.2.设计一个方案,构思一条适当行动的思路,是解题中的主要成就.一个好的思路是一个好运、一个灵感、一份神赐的礼物,我们必须受之无愧:勤勉是幸运之母.坚持就是胜利.一口吃不成胖子.出师不利,再三尝试.然而反复尝试是不够的,我们必须试着用不同的方法,变化我们的尝试.千方百计.条条大路通罗马.3.我们应该在适当的时候,即在我们的方案成熟的时候,才开始执行它,而不要提前.我们不能轻率行事.三思而后行.试验在先,相信在后.巧施援手,确保安全.另一方面,我们也不应犹豫太久.不入虎穴,焉得虎子.做最可能的事,抱最大的希望.全力以赴,天助人愿.4.回顾已经完成的解答是工作中的一个重要且有启发性的阶段.不爱再思索的人,必定不善思索.多思出上策.重新检验解答后,我们可能会对结果更加坚信.但必须向初学者指出,这种额外的验证是有价值的,两个证明要比一个好.抛两个锚停泊更安全.不要相信一切,只怀疑值得怀疑的.当你找到第一个蘑菇或作出第一个发现后,再四处看看;它们总是成群生长.谚语,体现了人们的智慧与高尚.作业1.小灰灰和喜羊羊同时从羊村出发去狼村,小灰灰的速度为16米/秒,喜羊羊的速度为12米/秒,问小灰灰和喜羊羊所用的时间比是多少?作业2.小小、红红、豆豆三人各自独立做同一件工作,分别用时10分钟、20分钟、30分钟,那么他们的效率比是多少?作业3.有A、B、C三个齿轮,其中A和B相互咬合,B和C相互咬合.如果A齿轮转动3圈,B齿轮恰好转动5圈;B齿轮转动6圈,C齿轮恰好转动4圈.请问:这三个齿轮的齿数之比是多少?作业4.一天,小高拿着爸爸给他的钱去超市买可乐,平时每瓶可乐3.5元钱,当他到超市的时候,正巧碰到优惠活动,可乐变为每瓶3元钱,于是小高多买了1瓶可乐.那么爸爸给了小高多少钱?作业5.小东每天步行上下学,去的时候每秒走2米,回来的时候每秒走1.2米,上下学共用时24分钟,那么小东家到学校的距离是多少米?第十一讲正反比例的概念与应用例题1.答案:(1)4:5.(2)2:3.(3)6:3:2.详解:小高、墨莫和卡莉娅三人所用时间比为40:80:1201:2:3=,所行路程相同,可设为“6”份,由此可得速度比为6:3:2.例题2.答案:50:70:49详解:相互咬合的齿轮,它们的齿数与圈数成反比.A、B两个齿轮它们的圈数比为7:5,齿数比为5:7,B、C两个齿轮它们的圈数比为7:10,齿数比为10:7,由此可得A、B、C三个齿轮的齿数比为50:70:49.例题3.答案:60元详解:卡莉娅所带的钱数一定,因此所购买苹果的单价与斤数成反比.打折前后的单价比为5:4,则斤数比为4:5,“1”份对应的是3斤,打折前可购买12斤,打折后可购买15斤,妈妈给了卡莉娅60元钱.例题4.答案:100米详解:设步行的时间为“5”份,骑车所用的时间比步行时间少35,则骑车所用的时间为“2”份.骑车与步行的时间比为2:5,则速度比为5:2.又知骑车比步行每分钟快150米,则“1”份为150(52)50÷-=米/分,步行速度为100米/分.例题5.答案:2000页详解:如下图,先比较看了500页之后的情况.实际效率比计划提高14,设计划效率为“4”份,则实际效率为“5”份.效率比为4:5,时间比为5:4,3天对应“1”份,计划用时15天.这15天是看完500页后的计划时间,而全书计划看20天,因此看500页计划用5天,每天看100页,全书共2000页.例题6.答案:84详解:首先可以明确每台机器的效率一样,机器越多则效率越高.从第一个条件可知,完成相同的工作量,增加机器前后的时间比为8:7,则效率比为7:8.机器的台数与效率成正比,因此台数比也为7:8,2台机器对应一份,实际上有14台机器.如果减少2台的话,还剩下12台机器.台数比为14:12,即7:6,那么效率比也为7:6,时间比为6:7,1小时对应“1”份,减少前用时6小时,即完成这件工程14台机器需工作6小时,则1台机器需工作84小时.练习1. 答案:(1)8:7;(2)6:4:3简答:(1)喜羊羊和沸羊羊用的时间比是10.5:12=7:8,那么速度比是8:7; (2)设这件工程的工作量为12份,那么三人完成工程所用的时间比为121212::6:4:3234=. 练习2.答案:30简答:三个齿轮的齿数之比为3:4:5,设转过的长度为“60”,由此可得圈数比为20:15:12.A 、C 两个齿轮一共转动64圈,由此可求出“1”份对应2圈,B 齿轮一共转动了30圈. 练习3.答案:2240简答:总租车费不变,每人应付车费和人数成反比.前后应付车费之比是40:35=8:7,那么人数之比为7:8.由此可知原来有56人,后来变成64人.总租车费为40562240⨯=元. 练习4.答案:18简答:甲乙的工作效率之比是9:7.完成同一件工程,两人所需的时间之比是7:9.那么乙单独完成需要()497918÷-⨯=天.作业1. 答案:3:4简答:路程一定,时间与速度成反比.作业2. 答案:6:3:2简答:工作量之比为1:1:1,时间比为1:2:3.效率比为6:3:2.作业3. 答案:10:6:9简答:互相咬合的齿轮转过的齿数是相同的,所以齿数与圈数成反比.A 与B 的齿数比为5:3,B 与C 的齿数比为2:3,那么三个齿轮齿数之比为10:6:9.作业4. 答案:21简答:总钱数不变,单价与瓶数成反比.单价比为7:6,可知瓶数比为6:7.那么本来可以买6瓶,小高带了21元.作业5. 答案:1080简答:去与回的路程相同,所用时间与速度成反比.去与回的时间比是3:5,那么去用了9分钟,距离为96021080⨯⨯=米.。
小学奥数-工程问题(全面完整版)
小学奥数-工程问题(全面完整版)(可以直接使用,可编辑全面完整版资料,欢迎下载)小学奥数-工程问题一。
基本知识点1. 我们往往把“一项工程”看成单位“1”基本公式:工作总量=工作效率×工作时间2. 工程问题常见的思想方法有假设法、转化法、代换法等。
学会运用工作效率之间的关系,往往能化难为易3. 工程问题的核心在于“工作效率”,抓住工作效率这一点,往往使得题目中的数量关系变得更加清晰1、甲、乙两人共同加工一批零件,8小时可以完成任务。
如果甲单独加工,需要12小时完成。
现在甲、乙两人共同生产了2 小时后,甲被调出做其他工作,由乙继续生产了420个零件才完成任务,问乙一共加工多少个?2、有一条公路,甲队独修需10天,乙队独修需12天,丙队独修需15天。
现在让3个队合修,但中途甲队撤出去到另外工地,结果用了6天才把这条公路修完。
当甲队撤出后,乙、丙两队又共同合修了多少天才完成?3、抄一份书稿,甲每天的工作效率等于乙、丙二人每天的工作效率的和;丙的工作效率相当甲、乙每天工作效率和的。
如果三人合抄,只需8天就完成了,那么乙一人单独抄,需要多少天才能完成?4、游泳池有甲、乙、丙三个注水管。
如果单开甲管需要20小时注满水池;甲、乙两管合开需要8小时注满水池;乙、丙两管合开需要6小时注满水池。
那么单开丙管需要多少小时注满水池?5、一个水箱,用甲、乙、丙三个水管往里注水,若只开甲、丙两管,甲管注入18吨水时,水箱已满;若只开乙、丙两管,乙管注入27吨水时,水箱才满。
又知,乙管每分钟注水量是甲管每分钟注水量的2倍。
则该水箱最多可容纳多少吨水?6、蓄水池有甲、丙两条进水管和乙、丁两条排水管。
要灌满一池水,单开甲管需要3小时,单开丙管需要5小时。
要排光一池水,单开乙管需要4小时,单开丁管需要6小时。
现在池内有池水,如果按甲、乙、丙、丁的顺序循环开各水管,每次每管开1小时,问经过多少时间后,水开始溢出水池?7、一项工作,甲、乙两人合作8天完成,乙、丙两人合作9天完成,丙、甲两人合作18天完成。
第11讲-周期工程问题(教)
学科教师辅导讲义学员编号: 年 级:六年级 课 时 数:3 学员姓名:辅导科目:奥数学科教师:授课主题 第11讲-周期工程问题授课类型 T 同步课堂P 实战演练S 归纳总结教学目标① 了解工作量、工作时间及工作效率的意思; ② 能够从题目中找出工作量、工作时间及工作效率; ③ 理解三者之间的关系,并用三者关系解题。
授课日期及时段T (Textbook-Based )——同步课堂熟练掌握工程问题的基本数量关系与一般解法;(1) 工程问题中常出现单独做,几人合作或轮流做,分析时一定要学会分段处理; (2) 根据题目中的实际情况能够正确进行单位“1”的统一和转换;(3) 工程问题中的常见解题方法以及工程问题算术方法在其他类型题目中的应用.考点一:周期性工程问题例1、一件工程,甲单独做要6小时,乙单独做要10小时,如果接甲、乙、甲、乙...顺序交替工作,每次1小时,那么需要多长时间完成? 【解析】甲1小时完成整个工程的16,乙1小时完成整个工程的110,交替干活时两个小时完成整个工程的11461015+=,甲、乙各干3小时后完成整个工程的443155⨯=,还剩下15,甲再干1小时完成整个工程的16,还剩下130,乙花13小时即20分钟即可完成.所以需要7小时20分钟来完成整个工程. 例2、一项工程,乙单独做要17天完成.如果第一天甲做,第二天乙做,这样交替轮流做,那么恰好用整天数完成;如果第一天乙做,第二天甲做,这样交替轮流做,那么比上次轮流的做法多用半天完工.问:甲单独做知识梳理典例分析,说明排水开了1010例2、一项工程,甲15天做了14后,乙加入进来,甲、乙一起又做了14,这时丙也加入进甲、乙、丙一起做完.已知乙、丙的工作效率的比为3:5,整个过程中,乙、丙工作的天数之比为2:1,问题中情形下做完整个工程需多少天?【解析】方法一:先把整个工程分为三个阶段:Ⅰ﹑Ⅱ﹑Ⅲ;且易知甲的工作效率为1.60又乙、丙工作的天数之比为(Ⅱ+Ⅲ):Ⅲ=2:1,所以有Ⅱ阶段和Ⅲ阶段所需的时间相等.即甲、乙合作完成的14的工程与甲、乙、丙合作完成1111442--=的工程所需的时间相等.所以对于工作效率有:(甲+乙)×2=(甲+乙+丙),甲+乙=丙,那么有丙-乙=1.60又有乙、丙的工作效率的比为3:5.易知乙的工作效率为3,120丙的工作效率为:5.120那么这种情形下完成整个工程所需的时间为:11311815()()156627460120260120+÷++÷+=++=天. 方法二:显然甲的工作效率为160,设乙的工作效率为3x ,那么丙的工作效率为5x .所以有乙工作的天数为1111(3)(8),460260x x ÷++÷+丙工作的天数为11(8).260x ÷+且有111111(3)(8)2(8).460260260x x x ÷++÷+=⨯÷+即1111(3)(8),460260x x ÷+=÷+解得1.120x =所以乙的工作效率为3,120丙的工作效率为高5.120那么这种情形下完成整个工程所需的时间为:11311815()()156627460120260120+÷++÷+=++=天.P (Practice-Oriented)——实战演练➢ 课堂狙击1.一项工程,甲单独完成需l2小时,乙单独完成需15小时。
小学六年级奥数--工程问题
工程问题学生姓名 授课日期 教师姓名授课时长知识定位工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。
工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。
在教学中,让学生建立正确概念是工程应用题的关键。
本节课从始至终都以工程问题的概念来贯穿,目的在于使学生理解并熟练掌握概念。
知识梳理1.工程问题在主要概念定义 : 工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间的相互关系的问题。
在工程问题中,一般要出现三个量:工作总量、工作时间(完成工作总量所需的时间)和工作效率(单位时间内完成的工作量)。
工程问题是小升初的常见考题,题型复杂多变,但是核心不变, 即:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间, 工作时间=工作总量÷工作效率;在分数应用题中,经常将工作总量抽象成单位“1”;例如:一项工程,甲5天完成,则甲每天完成全部的几分之几?分析:这道题中,我们将一项工程抽象成单位“1”,5为工作时间,所以每天完成整个工程的1÷5=51,即为所求,同时51也是甲完成这项工作的速度,所以51就是这道题中甲的工作效率。
在解决工程问题时,对于题中已知条件给出的每一个数字或字母表示的具体含义必须在读完题后,清晰明了,然后通过所求与已知的逻辑关系,再进一步求解。
常用方法:列表法,条件转换法,整体法;每一种方法的使用要在具体题目中用心体会。
2.解决工程问题的基本思路(1)工作量看作“1”,用完成工作总量所需的时间的倒数作为工作效率,用工作总量除以工作效率和,就可以求出完成这项工程所需的时间。
工程问题一般采用这种方法求解。
(2)先求出独做的队或个人的工作效率,然后用工作总量“1”除以一个队或个人的工作效率,就可以求出一个队或个人独做的工作时间。
(3)求剩余部分的工作量完成的时间。
小学奥数目录精编版
小学奥数目录一年级奥数目录(奥数举一反三)第1讲数数有多少第2讲比多比少第3讲几和第几第4讲相同与不同第5讲谁的眼力好第6讲数数线段第7讲不重复的路第8讲观察与思考第9讲简单的应用第10讲数数块数第11讲找规律画图第12讲猴子吃桃第13讲图形折剪拼第14讲妙拼七巧板第15讲数数图形第16讲填填数字第17讲找规律填数第18讲简单的推理第19讲火柴棒游戏第20讲变与不变第21讲排队问题第22讲移多补少第23讲单数和双数第24讲没有那么简单第25讲简单的判断第26讲算式猜谜第27讲小兔吃罗卜第28讲猫捉老鼠第29讲“+”、“-”和“()”第30讲趣摸彩球第31讲付钱的方法第32讲合理分组第33讲天平平衡第34讲巧算速算第35讲趣味问题第36讲有几种走法第37讲鸡兔同笼二年级奥数目录(奥数举一反三)第1讲比比眼力第2讲火眼金睛第3讲规律填数第4讲比比分分第5讲一笔画成第6讲趣味数学第7讲数数图形第8讲连连剪剪第9讲趣谈间隔第10讲移移变变第11讲移多补少第12讲数字游戏第13讲相等问题第14讲巧填数式第15讲余数妙用第16讲解决问题第17讲简单的推理第18讲年龄问题第19讲简便运算第20讲合理安排第21讲排队问题第22讲数的分解第23讲时钟问题第24讲数的读写第25讲鸡兔同笼三年级奥数(奥数教程-华东师大出版)第1讲找规律填图形第2讲加减法巧算(一)第3讲加减法巧算(二)第4讲找规律填数(一)第5讲等差数列第6讲找规律填数(二)第7讲平均数第8讲算式谜第9讲三阶幻方第10讲数阵图第11讲一笔画成第12讲数字游戏第13讲简单推理第14讲数线段第15讲图形的剪拼第16讲巧求周长第17讲还原问题第18讲植树问题第19讲和差问题第20讲倍数问题第21讲年龄问题第22讲相遇问题第23讲追及问题第24讲应用题(一)第25讲应用题(二)四年级奥数第1讲巧算加减法第2讲巧算乘除法第3讲横式数字谜第4讲竖式数字谜第5讲在变化中找规律第6讲利用等差规律计算第7讲有趣的数阵图第8讲假设法解(鸡兔同笼)第9讲用对应法解应用题第10讲用字母表示数第11讲一元一次方程第12讲列方程解应用题第13讲平均数应用题(一)第14讲平均数应用题(二)第15讲用枚举法解应用题第16讲行船问题第17讲过桥问题第18讲盈亏问题第19讲还原问题第20讲数码问题第21讲整除与有余数除法第22讲奇数和偶数第23讲图形的个数第24讲图形的周长第25讲图形的面积第26讲添运算符号和括号第27讲最大和最小第28讲统筹安排五年级奥数第1讲小数的巧算第2讲简单统计第3讲平均数的应用第4讲平面图形面积计算第5讲等积变形第6讲立体图形问题第7讲环形路上的行程问题第8讲牛吃草问题第9讲鸡兔同笼问题的应用第10讲逻辑推理(1)假设法第11讲逻辑推理(2)计算逻辑第12讲周期问题第13讲页码问题第14讲填数阵图第15讲整除第16讲余数问题第17讲质数与合数第18讲分解质因数第19讲最大公约数与最小公倍数第20讲完全平方数第21讲数字和第22讲连续自然数第23讲抽屉原理第24讲分类第25讲定义新运算第26讲十进制和二进制简介第27讲谜题问题介绍(1)第28讲谜题问题介绍(2)六年级奥数第1讲分数的计算第2讲分数的大小比较第3讲巧算分数的和第4讲繁分数第5讲分数应用题第6讲百分数应用题第7讲巧配浓度第8讲利润和利息第9讲工程问题第10讲行程问题第11讲比和比例关系第12讲圆的周长和面积第13讲扇形第14讲圆柱和圆锥第15讲加法原理和乘法原理第16讲递推的方法第17讲重叠问题第18讲钟面上的数学问题第19讲上楼梯问题第20讲同余问题第21讲抽屉原理第22讲趣谈不定方程第23讲最大与最小第24讲从整体看问题第25讲反过来考虑第26讲不变量第27讲染色问题第28讲对策问题第29讲规划与统筹。
六年级下册数学试题-奥数专题讲义:第11讲-周期工程问题(学)
学科教师辅导讲义熟练掌握工程问题的基本数量关系与一般解法;周期性工程问题例2、一项工程,乙单独做要17天完成.如果第一天甲做,第二天乙做,这样交替轮流做,那么恰好用整天数完成;如果第一天乙做,第二天甲做,这样交替轮流做,那么比上次轮流的做法多用半天完工.问:甲单独做需要几天?例3、蓄水池有一条进水管和一条排水管.要灌满一池水,单开进水管需5小时;排光一池水,单开排水管需3小时.现在池内有半池水,如果按进水,排水,进水,排水……的顺序轮流各开1小时.问:多长时间后水池的水刚好排完?(精确到分钟)考点二:水管问题例1、一池水,甲、乙两管同时开,5小时灌满;乙、丙两管同时开,4小时灌满.现在先开乙管6小时,还需甲、丙两管同时开2小时才能灌满.乙单独开几小时可以灌满?例2、一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打开8个水龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空?考点三:比例法及工资分配问题例1、有一项工程,有三个工程队来争夺施工权利,已知甲乙丙三个工程队都是工作时间长短来付费的,甲、乙两队合作,10天可以全部完工,共需要支付18000元,由乙、丙两队合作,20天可以完工,共需要支付12000元,由甲、丙两队合作,12天可以完成,共需要支付15000,如果该工程只需要一个工程队承建,如果只能一个队伍单独施工,那么最快的比最慢的会早完工____天.需要支付速度最快的队伍____元.例2、一项工程,甲15天做了14后,乙加入进来,甲、乙一起又做了14,这时丙也加入进甲、乙、丙一起做完.已知乙、丙的工作效率的比为3:5,整个过程中,乙、丙工作的天数之比为2:1,问题中情形下做完整个工程需多少天?4、某水池可以用甲、乙两个水管注水,单开甲管需12小时注满,单开乙管需24小时注满,若要求10小时注满水池,且甲、乙两管同时打开的时间尽量少,那么甲、乙最少要同时开放小时.4、.一个水箱,用甲、乙、丙三个水管往里注水.若只开甲、丙两管,甲管注入18吨水时,水箱已满;若只开乙、丙两管,乙管注入27吨水时,水箱才满.又知,乙管每分钟注水量是甲管每分钟注水量的2倍.则该水箱最多可容纳多少吨水6、甲、乙两个工程队修路,最终按工作量分配8400元工资.按两队原计划的工作效率,乙队应获5040元.实际上从第5天开始,甲队的工作效率提高了1倍,这样甲队最终可比原计划多获得960元.那么两队原计划完成修路任务要多少天?7、某工地用3种型号的卡车运送土方.已知甲、乙、丙三种卡车载重量之比为10:7:6,速度比为6:8:9,运送土方的路程之比为15:14:14,三种车的辆数之比为10:5:7.工程开始时,乙、丙两种车全部投入运输,但甲种车只有一半投入,直到10天后,另一半甲种车才投入工作,一共干了25天完成任务.那么,甲种车完成的工作量与总工作量之比是多少?8、一项工程,甲、乙两队合干需225天,需支付工程款2208元;乙、丙两队合干需334天,需支付工程款2400元;甲、丙两队合干需627天,需支付工程款2400元.如果要求总工程款尽量少,应选择哪个工程队?课后反击1、一项工程,甲单独做要12小时完成,乙单独做要18小时完成.若甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时,……,两人如此交替工作,请问:完成任务时,共用了多少小时?2、一项工程,甲、乙合作3125小时可以完成,若第1小时甲做,第2小时乙做,这样交替轮流做,恰好整数小时做完;若第1小时乙做,第2小时甲做,这样交替轮流做,比上次轮流做要多13小时,那么这项工作由甲单独做,要用多少小时才能完成?3、一项工程,甲队单独完成需40天。
六年奥数综合练习题十一答案(工程问题)
六年奥数综合练习题十一答案(工程问题)在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是工作量=工作效率×时间.在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”.举一个简单例子.一件工作,甲做10天可完成,乙做15天可完成.问两人合作几天可以完成?一件工作看成1个整体,因此可以把工作量算作1.所谓工作效率,就是单位时间内完成的工作量,我们用的时间单位是“天”,1天就是一个单位,再根据基本数量关系式,得到所需时间=工作量÷工作效率=6(天)·两人合作需要6天.这是工程问题中最基本的问题,这一讲介绍的许多例子都是从这一问题发展产生的.为了计算整数化(尽可能用整数进行计算),如第三讲例3和例8所用方法,把工作量多设份额.还是上题,10与15的最小公倍数是30.设全部工作量为30份.那么甲每天完成3份,乙每天完成2份.两人合作所需天数是30÷(3+ 2)= 6(天)数计算,就方便些.∶2.或者说“工作量固定,工作效率与时间成反比例”.甲、乙工作效率的比是15∶10=3∶2.当知道了两者工作效率之比,从比例角度考虑问题,也需时间是因此,在下面例题的讲述中,不完全采用通常教科书中“把工作量设为整体1”的做法,而偏重于“整数化”或“从比例角度出发”,也许会使我们的解题思路更灵活一些.一、两个人的问题标题上说的“两个人”,也可以是两个组、两个队等等的两个集体.例1 一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?答:乙需要做4天可完成全部工作.解二:9与6的最小公倍数是18.设全部工作量是18份.甲每天完成2份,乙每天完成3份.乙完成余下工作所需时间是(18- 2 ×3)÷3= 4(天).解三:甲与乙的工作效率之比是6∶9= 2∶ 3.甲做了3天,相当于乙做了2天.乙完成余下工作所需时间是6-2=4(天).例2 一件工作,甲、乙两人合作30天可以完成,共同做了6天后,甲离开了,由乙继续做了40天才完成.如果这件工作由甲或乙单独完成各需要多少天?解:共做了6天后,原来,甲做24天,乙做24天,现在,甲做0天,乙做40=(24+16)天.这说明原来甲24天做的工作,可由乙做16天来代替.因此甲的工作效率如果乙独做,所需时间是如果甲独做,所需时间是答:甲或乙独做所需时间分别是75天和50天.例3 某工程先由甲独做63天,再由乙单独做28天即可完成;如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么乙还需要做多少天?解:先对比如下:甲做63天,乙做28天;甲做48天,乙做48天.就知道甲少做63-48=15(天),乙要多做48-28=20(天),由此得出甲的甲先单独做42天,比63天少做了63-42=21(天),相当于乙要做因此,乙还要做28+28= 56 (天).答:乙还需要做56天.例4 一件工程,甲队单独做10天完成,乙队单独做30天完成.现在两队合作,其间甲队休息了2天,乙队休息了8天(不存在两队同一天休息).问开始到完工共用了多少天时间?解一:甲队单独做8天,乙队单独做2天,共完成工作量余下的工作量是两队共同合作的,需要的天数是2+8+ 1= 11(天).答:从开始到完工共用了11天.解二:设全部工作量为30份.甲每天完成3份,乙每天完成1份.在甲队单独做8天,乙队单独做2天之后,还需两队合作(30- 3 ×8- 1×2)÷(3+1)= 1(天).解三:甲队做1天相当于乙队做3天.在甲队单独做8天后,还余下(甲队)10-8= 2(天)工作量.相当于乙队要做2×3=6(天).乙队单独做2天后,还余下(乙队)6-2=4(天)工作量.4=3+1,其中3天可由甲队1天完成,因此两队只需再合作1天.例5一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天.从开始到完成共用了16天.问乙队休息了多少天?解一:如果16天两队都不休息,可以完成的工作量是由于两队休息期间未做的工作量是乙队休息期间未做的工作量是乙队休息的天数是答:乙队休息了5天半.解二:设全部工作量为60份.甲每天完成3份,乙每天完成2份.两队休息期间未做的工作量是(3+2)×16- 60= 20(份).因此乙休息天数是(20- 3 ×3)÷2= 5.5(天).解三:甲队做2天,相当于乙队做3天.甲队休息3天,相当于乙队休息4.5天.如果甲队16天都不休息,只余下甲队4天工作量,相当于乙队6天工作量,乙休息天数是16-6-4.5=5.5(天).例6 有甲、乙两项工作,张单独完成甲工作要10天,单独完成乙工作要15天;李单独完成甲工作要8天,单独完成乙工作要20天.如果每项工作都可以由两人合作,那么这两项工作都完成最少需要多少天?解:很明显,李做甲工作的工作效率高,张做乙工作的工作效率高.因此让李先做甲,张先做乙.设乙的工作量为60份(15与20的最小公倍数),张每天完成4份,李每天完成3份.8天,李就能完成甲工作.此时张还余下乙工作(60-4×8)份.由张、李合作需要(60-4×8)÷(4+3)=4(天).8+4=12(天).答:这两项工作都完成最少需要12天.例7 一项工程,甲独做需10天,乙独做需15天,如果两人合作,他要8天完成这项工程,两人合作天数尽可能少,那么两人要合作多少天?解:设这项工程的工作量为30份,甲每天完成3份,乙每天完成2份.两人合作,共完成3×0.8 + 2 ×0.9= 4.2(份).因为两人合作天数要尽可能少,独做的应是工作效率较高的甲.因为要在8天内完成,所以两人合作的天数是(30-3×8)÷(4.2-3)=5(天).很明显,最后转化成“鸡兔同笼”型问题.例8 甲、乙合作一件工作,由于配合得好,甲的工作效率比单独做时如果这件工作始终由甲一人单独来做,需要多少小时?解:乙6小时单独工作完成的工作量是乙每小时完成的工作量是两人合作6小时,甲完成的工作量是甲单独做时每小时完成的工作量甲单独做这件工作需要的时间是答:甲单独完成这件工作需要33小时.这一节的多数例题都进行了“整数化”的处理.但是,“整数化”并不能使所有工程问题的计算简便.例8就是如此.例8也可以整数化,当求出乙每有一点方便,但好处不大.不必多此一举.二、多人的工程问题我们说的多人,至少有3个人,当然多人问题要比2人问题复杂一些,但是解题的基本思路还是差不多.例9 一件工作,甲、乙两人合作36天完成,乙、丙两人合作45天完成,甲、丙两人合作要60天完成.问甲一人独做需要多少天完成?解:设这件工作的工作量是1.甲、乙、丙三人合作每天完成减去乙、丙两人每天完成的工作量,甲每天完成答:甲一人独做需要90天完成.例9也可以整数化,设全部工作量为180份,甲、乙合作每天完成5份,乙、丙合作每天完成4份,甲、丙合作每天完成3份.请试一试,计算是否会方便些?例10 一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天?解:甲做1天,乙就做3天,丙就做3×2=6(天).说明甲做了2天,乙做了2×3=6(天),丙做2×6=12(天),三人一共做了2+6+12=20(天).答:完成这项工作用了20天.本题整数化会带来计算上的方便.12,18,24这三数有一个易求出的最小公倍数72.可设全部工作量为72.甲每天完成6,乙每天完成4,丙每天完成3.总共用了例11一项工程,甲、乙、丙三人合作需要13天完成.如果丙休息2天,乙就要多做4天,或者由甲、乙两人合作1天.问这项工程由甲独做需要多少天?解:丙2天的工作量,相当乙4天的工作量.丙的工作效率是乙的工作效率的4÷2=2(倍),甲、乙合作1天,与乙做4天一样.也就是甲做1天,相当于乙做3天,甲的工作效率是乙的工作效率的3倍.他们共同做13天的工作量,由甲单独完成,甲需要答:甲独做需要26天.事实上,当我们算出甲、乙、丙三人工作效率之比是3∶2∶1,就知甲做1天,相当于乙、丙合作1天.三人合作需13天,其中乙、丙两人完成的工作量,可转化为甲再做13天来完成.例12 某项工作,甲组3人8天能完成工作,乙组4人7天也能完成工作.问甲组2人和乙组7人合作多少时间能完成这项工作?解一:设这项工作的工作量是1.甲组每人每天能完成乙组每人每天能完成甲组2人和乙组7人每天能完成答:合作3天能完成这项工作.解二:甲组3人8天能完成,因此2人12天能完成;乙组4人7天能完成,因此7人4天能完成.现在已不需顾及人数,问题转化为:甲组独做12天,乙组独做4天,问合作几天完成?小学算术要充分利用给出数据的特殊性.解二是比例灵活运用的典型,如果你心算较好,很快就能得出答数.例13 制作一批零件,甲车间要10天完成,如果甲车间与乙车间一起做只要6天就能完成.乙车间与丙车间一起做,需要8天才能完成.现在三个车间一起做,完成后发现甲车间比乙车间多制作零件2400个.问丙车间制作了多少个零件?解一:仍设总工作量为1.甲每天比乙多完成因此这批零件的总数是丙车间制作的零件数目是答:丙车间制作了4200个零件.解二:10与6最小公倍数是30.设制作零件全部工作量为30份.甲每天完成3份,甲、乙一起每天完成5份,由此得出乙每天完成2份.乙、丙一起,8天完成.乙完成8×2=16(份),丙完成30-16=14(份),就知乙、丙工作效率之比是16∶14=8∶7.已知甲、乙工作效率之比是3∶2= 12∶8.综合一起,甲、乙、丙三人工作效率之比是12∶8∶7.当三个车间一起做时,丙制作的零件个数是2400÷(12- 8)×7= 4200(个).例14搬运一个仓库的货物,甲需要10小时,乙需要12小时,丙需要15小时.有同样的仓库A和B,甲在A仓库、乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙搬运.最后两个仓库货物同时搬完.问丙帮助甲、乙各多少时间?解:设搬运一个仓库的货物的工作量是1.现在相当于三人共同完成工作量2,所需时间是答:丙帮助甲搬运3小时,帮助乙搬运5小时.解本题的关键,是先算出三人共同搬运两个仓库的时间.本题计算当然也可以整数化,设搬运一个仓库全部工作量为60.甲每小时搬运6,乙每小时搬运5,丙每小时搬运4.三人共同搬完,需要60 ×2÷(6+ 5+ 4)= 8(小时).甲需丙帮助搬运(60- 6×8)÷4= 3(小时).乙需丙帮助搬运(60- 5×8)÷4= 5(小时).三、水管问题从数学的内容来看,水管问题与工程问题是一样的.水池的注水或排水相当于一项工程,注水量或排水量就是工作量.单位时间里的注水量或排水量就是工作效率.至于又有注入又有排出的问题,不过是工作量有加有减罢了.因此,水管问题与工程问题的解题思路基本相同.例15 甲、乙两管同时打开,9分钟能注满水池.现在,先打开甲管,10分钟后打开乙管,经过3分钟就注满了水池.已知甲管比乙管每分钟多注入0.6立方米水,这个水池的容积是多少立方米?甲每分钟注入水量是乙每分钟注入水量是因此水池容积是答:水池容积是27立方米.例16有一些水管,它们每分钟注水量都相等.现在按预定时间注满水池,如果开始时就打开10根水管,中途不增开水管,也能按预定时间注满水池.问开始时打开了几根水管?答:开始时打开6根水管.例17 蓄水池有甲、丙两条进水管,和乙、丁两条排水管.要灌满一池水,单开甲管需3小时,单开丙管需要5小时.要排光一池水,单开乙管需要、乙、……的顺序轮流打开1小时,问多少时间后水开始溢出水池?,否则开甲管的过程中水池里的水就会溢出.以后(20小时),池中的水已有此题与广为流传的“青蛙爬井”是相仿的:一只掉进了枯井的青蛙,它要往上爬30尺才能到达井口,每小时它总是爬3尺,又滑下2尺.问这只青蛙需要多少小时才能爬到井口?看起来它每小时只往上爬3- 2= 1(尺),但爬了27小时后,它再爬1小时,往上爬了3尺已到达井口.因此,答案是28小时,而不是30小时.例18 一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打开8个水龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空?解:先计算1个水龙头每分钟放出水量.2小时半比1小时半多60分钟,多流入水4 ×60= 240(立方米).时间都用分钟作单位,1个水龙头每分钟放水量是240 ÷(5×150- 8 ×90)= 8(立方米),8个水龙头1个半小时放出的水量是8 ×8 ×90,其中90分钟内流入水量是4 ×90,因此原来水池中存有水8 ×8 ×90-4 ×90= 5400(立方米).打开13个水龙头每分钟可以放出水8×13,除去每分钟流入4,其余将放出原存的水,放空原存的5400,需要5400 ÷(8 ×13- 4)=54(分钟).答:打开13个龙头,放空水池要54分钟.水池中的水,有两部分,原存有水与新流入的水,就需要分开考虑,解本题的关键是先求出池中原存有的水.这在题目中却是隐含着的.例19一个水池,地下水从四壁渗入池中,每小时渗入水量是固定的.打开A管,8小时可将满池水排空,打开C管,12小时可将满池水排空.如果打开A,B两管,4小时可将水排空.问打开B,C两管,要几小时才能将满池水排空?解:设满水池的水量为1.A管每小时排出A管4小时排出因此,B,C两管齐开,每小时排水量是B,C两管齐开,排光满水池的水,所需时间是答:B,C两管齐开要4 小时48分才将满池水排完.本题也要分开考虑,水池原有水(满池)和渗入水量.由于不知具体数量,像工程问题不知工作量的具体数量一样.这里把两种水量分别设成“1”.但这两种量要避免混淆.事实上,也可以整数化,把原有水设为8与12的最小公倍数24.17世纪英国伟大的科学家牛顿写过一本《普遍算术》一书,书中提出了一个“牛吃草”问题,这是一道饶有趣味的算术题.从本质上讲,与例18和例19是类同的.题目涉及三种数量:原有草、新长出的草、牛吃掉的草.这与原有水量、渗入水量、水管排出的水量,是完全类同的.例20有三片牧场,场上草长得一样密,而且长得一草;21头牛9星期吃完第二片牧场的草.问多少头牛18星期才能吃完第三片牧场的草?解:吃草总量=一头牛每星期吃草量×牛头数×星期数.根据这一计算公式,可以设定“一头牛每星期吃草量”作为草的计量单位.原有草+4星期新长的草=12×4.原有草+9星期新长的草=7×9.由此可得出,每星期新长的草是(7×9-12×4)÷(9-4)=3.那么原有草是7×9-3×9=36(或者12×4-3×4).对第三片牧场来说,原有草和18星期新长出草的总量是这些草能让90×7.2÷18=36(头)牛吃18个星期.答:36头牛18个星期能吃完第三片牧场的草.例20与例19的解法稍有一点不一样.例20把“新长的”具体地求出来,把“原有的”与“新长的”两种量统一起来计算.事实上,如果例19再有一个条件,例如:“打开B管,10小时可以将满池水排空.”也就可以求出“新长的”与“原有的”之间数量关系.但仅仅是例19所求,是不需要加这一条件.好好想一想,你能明白其中的道理吗?“牛吃草”这一类型问题可以以各种各样的面目出现.限于篇幅,我们只再举一个例子.例21画展9点开门,但早有人排队等候入场.从第一个观众来到时起,每分钟来的观众人数一样多.如果开3个入场口,9点9分就不再有人排队,如果开5个入场口,9点5分就没有人排队.问第一个观众到达时间是8点几分?解:设一个入场口每分钟能进入的观众为1个计算单位.从9点至9点9分进入观众是3×9,从9点至9点5分进入观众是5×5.因为观众多来了9-5=4(分钟),所以每分钟来的观众是(3×9-5×5)÷(9-5)=0.5.9点前来的观众是5×5-0.5×5=22.5.这些观众来到需要22.5÷0.5=45(分钟).答:第一个观众到达时间是8点15分.从例20和例21中,我们也注意到,设置计算单位的重要性.选择适当的量作为计算单位,往往使问题变得简单且易于表达.本书中多次提到设单位问题,请同学们注意学习.。
六年级奥数专题 工程问题(学生版)
工程问题 学生姓名 授课日期 教师姓名授课时长知识定位工程问题是小学数学应用题教学中的重点,是分数应用题的引申与补充,是培养学生抽象逻辑思维能力的重要工具。
工程问题是把工作总量看成单位“1”的应用题,它具有抽象性,学生认知起来比较困难。
在教学中,让学生建立正确概念是工程应用题的关键。
本节课从始至终都以工程问题的概念来贯穿,目的在于使学生理解并熟练掌握概念。
知识梳理1.工程问题在主要概念定义 : 工程问题是指用分数来解答有关工作总量、工作时间和工作效率之间的相互关系的问题。
在工程问题中,一般要出现三个量:工作总量、工作时间(完成工作总量所需的时间)和工作效率(单位时间内完成的工作量)。
工程问题是小升初的常见考题,题型复杂多变,但是核心不变,即:工作总量=工作效率×工作时间,工作效率=工作总量÷工作时间,工作时间=工作总量÷工作效率;在分数应用题中,经常将工作总量抽象成单位“1”;例如:一项工程,甲5天完成,则甲每天完成全部的几分之几?分析:这道题中,我们将一项工程抽象成单位“1”,5为工作时间,所以每天完成整个工程的1÷5=51,即为所求,同时51也是甲完成这项工作的速度,所以51就是这道题中甲的工作效率。
在解决工程问题时,对于题中已知条件给出的每一个数字或字母表示的具体含义必须在读完题后,清晰明了,然后通过所求与已知的逻辑关系,再进一步求解。
常用方法:列表法,条件转换法,整体法;每一种方法的使用要在具体题目中用心体会。
2.解决工程问题的基本思路(1)工作量看作“1”,用完成工作总量所需的时间的倒数作为工作效率,用工作总量除以工作效率和,就可以求出完成这项工程所需的时间。
工程问题一般采用这种方法求解。
(2)先求出独做的队或个人的工作效率 ,然后用工作总量“1”除以一个队或个人的工作效率,就可以求出一个队或个人独做的工作时间。
(3)求剩余部分的工作量完成的时间。
小学数学奥数基础教程(六年级)目30讲全
小学数学奥数基础教程(六年级)目30讲全小学奥数基础教程(六年级) - 1 - 小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一) 第6讲工程问题(二) 第7讲巧用单位“1” 第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一) 第14讲立体图形(二) 第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
小学奥数基础教程(六年级) - 2 - 如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
六年级奥数 工程问题(周期型)
工程问题(周期型)月日姓名:【典型例题】例1 一部书稿,阿华田单独打完要14小时完成,小不点单独打完要20小时完成。
如果阿华田先打,两人轮流打1小时。
那么,打完这部书稿时,阿华田、小不点二人共用了多少小时?例2 一部书稿,卢建单独打完要20小时完成,文华单独打完要15小时完成。
如果先由卢建打1小时,然后由文华接替打1小时,再由卢建接替文华打1小时,……,两人如此交替工作。
那么,打完这部书稿时,卢建、文华二人共用了多少小时?如果文华先打,结果一样吗?例3 完成一项工程,甲单独工作需要18小时,乙需要24小时,丙需要30 小时,现甲、乙、丙按照如下的顺序工作:甲、乙、丙、乙、丙、甲、丙、甲、乙……每人工作一小时换班,直到工程完成,问:当工程完成时,甲、乙、丙个干了多少个小时?例4 甲工程队每工作6天休息1天,乙工程队每工作5天休息2天,一件工程,甲队单独做需要97天,乙队单独做需要75天,如果两队合做,自2007年10月1日开工,到几月几日可完工?例5 蓄水池有甲、丙两条进水管和乙、丁两条出水管。
要灌满一池水,单 开甲管需要3小时,单开丙管需要5小时;要排光一池水,单开乙管需要4小时,单开丁管需要6小时。
现在池内有61池水,如果按甲、乙、丙、丁的顺序循环开各水管,每次每管开1小时,问多少小时开始溢水?例☆ 甲、乙、丙三人做一件工作,原计划按甲乙丙的顺序每人一天轮流去做,恰好整数天完成。
若按乙、丙、甲的顺序每人一天轮流去做,则比原计 划多用21天;若按丙、甲、乙的顺序每人一天轮流去做,则比原计划多用31天。
已知甲单独完成这件工作需要13天,试问,甲乙丙三人一起做这件工作, 要用多少天才能完成?课堂小测姓名:成绩:1、一项工作,甲单独做需10小时完成,乙单独做需15小时完成,如果由甲先做,两人轮流工作1小时,那么完成任务时共用多少小时?2、一部书稿,阿华田单独打完要12小时完成,拓拓单独打完要18小时完成。
小学六年级奥数 第十一章 工程问题
第十一章工程问题知识要点工程问题是研究工作效率、工作时间和工作总量之间相互关系的一类分数应用题。
这种类型的应用题,工作总量不再是具体的数量,经常用单位“1”来表示,工作效率用分率来表示。
解答此类问题,主要利用三个量之间的关系解题。
工作总量=工作效率×工作时间工作时间=工作总量÷工作效率工作效率=工作总量÷工作时间典例巧解例1 一项工程,甲单独做需12天完成,乙单独做需9天完成。
如果甲先单独做若干天后,乙接着单独做,共用10天完成。
甲做了几天?点拨这类工程应用题,我们可以根据题中的已知条件和数量间的关系列方程解答。
除了方程方法外,还可以用假设法解答此题。
解法一设甲做了x天,那么乙做了(10-x)天。
1 12x+19×(10—x)=1 112x+109-19x=1136x=19x=4答:甲做了4天。
解法二假设这10天全部是乙做的,由于乙比甲做得快,则应超过工作总量“1”。
超过的工作量是怎样造成的呢?这是因为把这10天全都看成是乙做的。
乙每天的工作效率比甲每天的工作效率多19-112=136,多少天才做了超过的工作量呢?列式为:(19×10-1)÷(19=112)=19÷136=4(天)答:甲做了4天。
例2 加工一批零件,甲、乙合作24天可以完成。
现在由甲先做16天,然后乙再做12天,还剩下这批零件的40%没有完成。
已知甲每天比乙多加工4个零件,求这批零件共多少个。
点拨甲、乙合作的效率和为124,甲先做16天,然后乙再做12天,可理解为甲、乙合作12天后,甲再单独做16-12=4(天),这样甲4天完成的工作量为1-40%-124×12=110,于是,可以求出甲的工作效率为110÷4=140,乙的工作效率为124-140=160,从而求出4个零件占这批零件总数的140-160=1120。
问题易解。
解甲的工作效率:(1-40%-124×12)÷(16-12)=110÷4=1 40这批零件总数:4÷[140-(124-140)]=4÷1 120=480(个)答:这批零件共有480个。
小学数学奥数基础教程(六年级)目30讲全
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
小学奥数工程问题
工程问题基本公式工作效率×工作时间=工作总量工作效率=工作总量÷工作时间工作时间=工作总量÷工作效率基本特点设工作总量为“1”,工作效率=1÷工作时间基本思想分做合想、合做分想。
基本类型(1)休息请假类型(2)分工合作型(3)工资分配型(4)交替周期型(5)工效变化型(6)最优配置型基本类型与方法的见解一:分做合想:1.合想,2.假设法,3.巧抓变化(比例),4.假设法。
二:等量代换:方程组的解法→代入法,加减法。
三:按劳分配思路:每人每天工效→每人工作量→按比例分配四:休息请假:方法:1.分想:划分工作量。
2.假设法:假设不休息。
五:休息与周期:1.已知条件的顺序:①先工效,再周期,②先周期,再天数。
2.天数:①近似天数,②准确天数。
3.列表确定工作天数。
六:交替与周期:估算周期,注意顺序!七:注水与周期:1.顺序,2.池中原来是否有水,3.注满或溢出。
八:工效变化。
九:比例:1.分比与连比,2.归一思想,3.正反比例的运用,4.假设法思想(周期)。
十:牛吃草问题:1.新生草量,2.原有草量,3.解决问题。
一休息请假型1、一项工程,甲单独做需30天完成,乙单独做需45天完成,丙单独完成要90天。
现在由甲、乙、丙三人合作完成此工程。
在完成这项工程的过程中,甲休息了2天,乙休息了3天,丙没有休息。
问完成这项工程前后一共用了多少天?2、一项工程,甲队单独做24天可以完成,甲队做6天后,乙队做4天后,乙队做4天切好可以完成一半。
现在甲、乙两队合作若干天后,由乙队单独完成,做完后发现两队所用的时间相等,完成这项工程共用了多少天?3、单独完成一件工作,甲按规定时间可提前2天完成,乙则要超过规定时间3天才能完成。
如果甲、乙合作2天后,剩下的继续由乙单独做,那么刚好在规定时间完成。
问:甲乙二人合作需多少天可以完成?4、一个水池子,甲、乙两罐同时开,5小时灌满,乙、丙两管同时开,4小时灌满,如果乙管先开6小时,还需要甲、丙两管同时开2小时才能灌满(这时乙管关闭)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工作量=工作效率×工作时间
工作时间=工作量÷工作效率
工作效率=工作量÷工作时间
本节课我学到了
我需要努力的地方是
例2、一项工程,甲15天做了 后,乙加入进来,甲、乙一起又做了 ,这时丙也加入进甲、乙、丙一起做完.已知乙、丙的工作效率的比为3:5,整个过程中,乙、丙工作的天数之比为2:1,问题中情形下做完整个工程需多少天?
P(Practice-Oriented)——实战演练
课堂狙击
1、一项工程,甲单独完成需l2小时,乙单独完成需15小时。甲乙合做1小时后,由甲单独做1小时,再由乙单独做1小时,……,甲、乙如此交替下去,则完成该工程共用________小时。
2、一项工程,甲、乙合作 小时可以完成,若第 小时甲做,第 小时乙做,这样交替轮流做,恰好整数小时做完;若第 小时乙做,第 小时甲做,这样交替轮流做,比上次轮流做要多 小时,那么这项工作由甲单独做,要用多少小时才能完成?
3、一项工程,甲队单独完成需40天。若乙队先做10天,余下的工程由甲、乙两队合作,又需20天可完成。如果乙队单独完成此工程,则需______天。
考点二:水管问题
例1、一池水,甲、乙两管同时开,5小时灌满;乙、丙两管同时开,4小时灌满.现在先开乙管6小时,还需甲、丙两管同时开2小时才能灌满.乙单独开几小时可以灌满?
例2、一个蓄水池,每分钟流入4立方米水.如果打开5个水龙头,2小时半就把水池水放空,如果打开8个水龙头,1小时半就把水池水放空.现在打开13个水龙头,问要多少时间才能把水放空?
4、某水池可以用甲、乙两个水管注水,单开甲管需12小时注满,单开乙管需24小时注满,若要求10小时注满水池,且甲、乙两管同时打开的时间尽量少,那么甲、乙最少要同时开放小时.
4、.一个水箱,用甲、乙、丙三个水管往里注水.若只开甲、丙两管,甲管注入18吨水时,水箱已满;若只开乙、丙两管,乙管注入27吨水时,水箱才满.又知,乙管每分钟注水量是甲管每分钟注水量的2倍.则该水箱最多可容纳多少吨水
教师辅导讲义
学员编:
年级:六年级
课时数:3
学员姓名:
辅导科目:奥数
教师:
授课主题
第11讲-周期工程问题
授课类型
T同步课堂
P实战演练
S归纳总结
教学目标
1了解工作量、工作时间及工作效率的意思;
2能够从题目中找出工作量、工作时间及工作效率;
3理解三者之间的关系,并用三者关系解题。
授课日期及时段
T(Textbook-Based)——同步课堂
例2、一项工程,乙单独做要 天完成.如果第一天甲做,第二天乙做,这样交替轮流做,那么恰好用整天数完成;如果第一天乙做,第二天甲做,这样交替轮流做,那么比上次轮流的做法多用半天完工.问:甲单独做需要几天?
例3、蓄水池有一条进水管和一条排水管.要灌满一池水,单开进水管需 小时;排光一池水,单开排水管需 小时.现在池内有半池水,如果按进水,排水,进水,排水……的顺序轮流各开 小时.问:多长时间后水池的水刚好排完?(精确到分钟)
6、甲、乙两个工程队修路,最终按工作量分配8400元工资.按两队原计划的工作效率,乙队应获5040元.实际上从第5天开始,甲队的工作效率提高了1倍,这样甲队最终可比原计划多获得960元.那么两队原计划完成修路任务要多少天?
7、某工地用 种型的卡车运送土方.已知甲、乙、丙三种卡车载重量之比为 ,速度比为 ,运送土方的路程之比为 ,三种车的辆数之比为 .工程开始时,乙、丙两种车全部投入运输,但甲种车只有一半投入,直到 天后,另一半甲种车才投入工作,一共干了 天完成任务.那么,甲种车完成的工作量与总工作量之比是多少?
⑴请问甲、乙两工程队合作需几个月完成?耗资多少万元?
⑵现要求最迟 个月完成此项工程即可,请你设计一种方案,既保证按时完成任务,又最大限度节省资金.
S(Summary-Embedded)——归纳总结
解题过程中,我们会发现,解答工程问题,常常是围绕找工作效率进行中,有些工作效率可以通过工作时间得到,而有些则要根据“工程”进程变化规律得到。在解题时,我们要弄清原来的、现在的之间的关系,以两者关系为突破口解答问题。
6、某市有一项工程举行公开招标,有甲、乙、丙三家公司参加竞标.三家公司的竞标条件如下:
公司名称
单独完成工程所需天数
每天工资/万元
甲
10
乙
15
丙
30
1如果想尽快完工,应该选择哪两家公司合作?需要多少天完成?
2如多少元?
7、一项工程,若请甲工程队单独做需 个月完成,每月要耗资 万元;若请乙工程队单独做此项工程需 个月完成,每月耗资 万元.
4、有一项工程,甲单独做需要36天完成,乙单独做需要30天完成,丙单独做需要48天完成.现在由甲、乙、丙三人同时做,在工作期间,丙休息了整数天,而甲和乙一直工作至完成,最后完成这项工程也用了整数天.那么丙休息了天.
5、一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管。开始进水管以均匀的速度不停地向这个蓄水池蓄水。池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光。如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时。问如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?
考点三:比例法及工资分配问题
例1、有一项工程,有三个工程队来争夺施工权利,已知甲乙丙三个工程队都是工作时间长短来付费的,甲、乙两队合作, 天可以全部完工,共需要支付 元,由乙、丙两队合作, 天可以完工,共需要支付 元,由甲、丙两队合作, 天可以完成,共需要支付 ,如果该工程只需要一个工程队承建,如果只能一个队伍单独施工,那么最快的比最慢的会早完工____天.需要支付速度最快的队伍____元.
2、规定两人轮流做一个工程,要求第一个人先做1个小时,第二个人接着做一个小时,然后再由第一个人做1个小时,然后又由第二个人做1个小时,如此反复,做完为止.如果甲、乙轮流做一个工程需要 小时,而乙、甲轮流做同样的工程只需要 小时,那乙单独做这个工程需要多少小时?
3、蓄水池有甲、丙两条进水管和乙、丁两条排水管,要灌满一池水,单开甲管需 小时,单开丙管需要 小时,要排光一池水,单开乙管需要 小时,单开丁管需要 小时,现在池内有 的水,若按甲、乙、丙、丁、甲、乙、丙、丁……的顺序轮流打开 小时,问多少时间后水开始溢出水池?
8、一项工程,甲、乙两队合干需 天,需支付工程款 元;乙、丙两队合干需 天,需支付工程款 元;甲、丙两队合干需 天,需支付工程款 元.如果要求总工程款尽量少,应选择哪个工程队?
课后反击
1、一项工程,甲单独做要12小时完成,乙单独做要18小时完成.若甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时,……,两人如此交替工作,请问:完成任务时,共用了多少小时?
熟练掌握工程问题的基本数量关系与一般解法;
(1)工程问题中常出现单独做,几人合作或轮流做,分析时一定要学会分段处理;
(2)根据题目中的实际情况能够正确进行单位“1”的统一和转换;
(3)工程问题中的常见解题方法以及工程问题算术方法在其他类型题目中的应用.
考点一:周期性工程问题
例1、一件工程,甲单独做要 小时,乙单独做要 小时,如果接甲、乙、甲、乙...顺序交替工作,每次 小时,那么需要多长时间完成?