2019-2020学年四川省广安市友谊中学东方街校区高一数学理测试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年四川省广安市友谊中学东方街校区高一
数学理测试题
一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的
1. 在区间上是减函数的是()
A. B. C. D.
参考答案:
C
【分析】
根据一次函数、二次函数和反比例函数性质即可得到结果.
【详解】在上单调递增,错误;在上单调递增,错误
在上单调递减,正确;在上单调递增,错误
本题正确选项:
【点睛】本题考查常见函数单调性的判断,属于基础题.
2. 设集合,,则()
A. B. C. D.
参考答案:
B
3. 若0<a<1,则不等式(x-a)(x-)>0的解集为
A. (a,) B.(-∞,)∪(a,+∞)
C.(,a) D.(-∞,a)∪(,+∞)
参考答案:
D
4.
参考答案:
A
5. 已知等差数列{a n}的公差d≠0,若a5、a9、a15成等比数列,那么公比为 ( )
A. B.C.
D.
参考答案:
C
6. 若则().
A. B.
C. D.
参考答案:
.D
7. 要得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象()
A.向左平移个单位B.向左平移个单位
C.向右平移个单位D.向右平移个单位
参考答案:
B
【考点】函数y=Asin(ωx+φ)的图象变换.
【专题】三角函数的图像与性质.
【分析】由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.
【解答】解:由于函数y=sin(2x+)=sin2(x+),
∴将函数y=sin2x的图象向左平移个单位长度,可得函数y=sin(2x+)的图象,故选:B
【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
8. 将分针拨慢5分钟,则分钟转过的弧度数
是:
A. B.- C. D.-
参考答案:
A
略
9. 函数的值域为()
A.[0,3]
B.[-1,0]
C.[-1,3]
D.[0,2]
参考答案:
C
10. 给出下面四个命题:①;
②;③;④.其中正确的个数为
A. 1个
B. 2个
C. 3个
D. 4个
参考答案:
B
①;②;③;
④,所以正确的为①②,选B.
二、填空题:本大题共7小题,每小题4分,共28分
11. 某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为和s2,以下茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分
别为.
参考答案:
5,8.
【考点】BA:茎叶图.
【分析】根据已知中甲组数据的中位数为15,乙组数据的平均数为16.8,构造方程,可得x,y的值.
【解答】解:由甲组数据的中位数为15,
可得未知数据应为15,即x=5;
乙组数据的平均数为16.8,
即(9+15+10+y+18+24)=16.8,
解得:y=8,
故答案为:5,8
【点评】本题考查的知识点是茎叶图,平均数与中位数,难度不大,属于基础题.
12. 已知,,=3,则与的夹角
是 .
参考答案:
略
13. 若扇形的周长为16cm,圆心角为2rad,则该扇形的面积为cm2.
参考答案:
16
【考点】扇形面积公式.
【分析】设扇形的半径为r,弧长为l,根据扇形周长和弧长公式列式,解之得r=4,
l=8,再由扇形面积公式可得扇形的面积S.
【解答】解设扇形的半径为r,弧长为l,则有,得r=4,l=8,
故扇形的面积为S==16.
故答案为:16.
14. 已知数列中,对所有的都有,则数
列的通项公式为▲.
参考答案:
略
15. 已知是定义在上的增函数,且,则的取值范围为。
参考答案:
16. 已知幂函数的图象过点,则______.
参考答案:
3
【分析】
先利用待定系数法代入点的坐标,求出幂函数的解析式,再求的值.
【详解】设,由于图象过点,
得,
,
,故答案为3.
【点睛】本题考査幂函数的解析式,以及根据解析式求函数值,意在考查对基础知识的掌握与应用,属于基础题.
17. 在中,内角的对边分别为,若的面积
,则.
参考答案:
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤
18. (13分)某工厂受政府财政资助生产一种特殊产品,生产这种产品每年需要固定投资80万元,此外每生产1件该产品还需要增加投资2万元,若年产量为x(x∈N*)件,当x≤18时,政府全年合计给予财政拨款为(30x﹣x2)万元;当x>18时,政府全年合计给予财政拨款为(225+0.5x)万元,记该工厂生产这种产品全年净收入为y万元.
(Ⅰ)求y(万元)与x(件)的函数关系式;
(Ⅱ)该工厂的年产量为多少件时,全年净收入达到最大,并求最大值.
(注:年净收入=政府年财政拨款额﹣年生产总投资)
参考答案:
【考点】函数模型的选择与应用.
【专题】应用题;分类讨论;函数的性质及应用.
【分析】(Ⅰ)利用分段函数化简可得y=(x∈N*),(Ⅱ)分段求各段的最大值,从而确定函数的最大值,从而求得.
【解答】解:(Ⅰ)当0<x≤18时,y=(30x﹣x2)﹣2x﹣80=﹣x2+28x﹣80,
当x>18时,y=225+0.5x﹣2x﹣80=145﹣1.5x,
故y=(x∈N*),
(Ⅱ)当0<x≤18时,y=﹣x2+28x﹣80=﹣(x﹣14)2+116,
故当x=14时,y取得最大值116;
当x>18时,y=145﹣1.5x,
故x=19时,y有最大值为116.5;
故当x=19时,y有最大值为116.5.
【点评】本题考查了分段函数在实际问题中的应用,同时考查了分类讨论的思想应用.19. 某种产品特约经销商根据以往当地的需求情况,得出如下该种产品日需求量的频率分布直方图.