动态规划算法设计
算法设计与分析中的动态规划问题研究
算法设计与分析中的动态规划问题研究动态规划是一种常用的算法设计与分析方法,它在解决许多问题时具有较高的效率和准确度。
本文将结合实例,深入研究动态规划在算法设计与分析中的应用。
动态规划是一种通过分解问题,将大问题转换为小问题并求解小问题的方法。
它与分治法类似,但动态规划所分解的小问题可能重叠,因此可以将解决过的小问题保存起来,避免重复计算,提高效率。
动态规划常用于求解最优化问题,如寻找最大值或最小值。
一个经典的动态规划问题是背包问题。
背包问题是指给定一个背包以及一系列物品,每个物品都有自己的价值和重量。
背包的容量是有限的,我们的目标是在保持背包总重量不超过容量的情况下,选择一些物品放入背包,使得背包中物品的总价值最大。
假设我们有n个物品,背包的容量为W,我们可以使用一个二维数组dp[i][j]来表示前i个物品恰好放入容量为j的背包的最大价值。
dp[i][j]的值可以通过以下的状态转移方程得到:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])其中,w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。
根据状态转移方程,我们可以通过填表的方式,自底向上地计算dp[n][W],即前n个物品放入容量为W的背包的最大价值。
除了背包问题,动态规划还可以用于求解其他类型的优化问题。
比如,在图论中,最短路径和最小生成树问题也可以使用动态规划来求解。
例如,最短路径问题可以通过定义一个二维数组dp[i][j]来表示从顶点i到顶点j的最短路径的长度。
通过状态转移方程dp[i][j] =min(dp[i][j], dp[i][k] + dp[k][j]),我们可以逐步更新dp数组,最终得到从起点到终点的最短路径长度。
对于最小生成树问题,可以先计算任意两个顶点之间的最短路径,然后通过Prim算法或Kruskal算法来生成最小生成树。
除了上述问题,动态规划还可以用于解决其他一些经典问题,如编辑距离、最长公共子序列等。
动态规划算法
2级
n=4时:有3大类归并法。前1堆后3堆、前2堆后2堆、前3堆后1堆。
因3堆有2种归并法,所以一共5小类归并法。前1堆第1种情况:
4级 3级 2级 1级 13 序号 1
44 31 15 7
2
f(1, 4) = 15 + 31 + 44 = 90 = f(2, 4) + g(1, 4) w不变 = f(2, 3) + g(2, 4) + g(1, 4)
若f(2,4)越小,则f(1,4)就越小。 8
3
16
4
n=4 时:前1堆的第2种情况。
4级 44 31 24 7 2 8 3 f(1, 4) = 24 + 31 + 44 = 99 = f(2, 4) + g(1, 4) w不变 = f(3, 4) + g(2, 4) + g(1, 4) 若f(2,4)越小,则f(1,4)就越小。 16 4 f(1, 4) = 20 + 24 + 44 = 88
的一种通用方法,对最优化问题提出最优性原则,从而创建最优化问题
的一种新算法设计技术——动态规划,它是一种重要的应用数学工具。 至少在计算机科学圈子里,人们不仅用它解决特定类型的最优化问题, 而最终把它作为一种通用的算法设计技术,即包括某些非最优化问题。 多阶段决策过程最优化: 现实世界里有许多问题属于这种情况:它有很多解,应用要求最优解。 穷举法通过找出全部解,再从中选出最优解。这种方法对于那些计算
《算法设计与分析》第3章 动态规划法
最优解的递推关系 定义m[i:j],表示矩阵连乘A[i:j]所需的最少计算 量 则有: i j 0 m[i ][ j ] i j minj{m[i ][ k ] m[k 1][ j ] pi 1 pk p j } i k
假设:N个矩阵的维数依序放在一维数组p中, 其中Ai的维数记为Pi-1×Pi
A=A1×A2×A3×…×An
A=(A1×A2×…×Ak) × (Ak+1×Ak+2×…×An)
B
C
1.2 穷举法
穷举法:列举出所有可能的计算次序,并计算出 每一种计算次序相应需要的数乘次数,从中找出 一种数乘次数最少的计算次序。
穷举法复杂度分析: 对于n个矩阵的连乘积,设其不同的计算次序有P(n)种。 由于每种加括号方式都可以分解为两个子连乘的加括号问题: (A1...Ak)(Ak+1…An)可以得到关于P(n)的递推式如下:
【程序】矩阵连乘的 穷举法实现 int MatrixChain::LookupChain(int i, int j) { if(i==j) return 0; int u=LookupChain(i+1,j)+p[i-1]*p[i]*p[j]; //k=i s[i][j]=i; //记录最优分解位置 for ( int k=i+1;k<j; k++ ) { //遍历k int t=LookupChain(i,k)+LookupChain(k+1,j) +p[i]*p[k+1]*p[j+1]; if (t<u) { u=t; s[i][j]=k; //记录最优分解位置 } } int MatrixChain::LookupChain() return u; { } return LookupChain(1,n);
基于动态规划算法的路径规划与导航系统设计
基于动态规划算法的路径规划与导航系统设计路径规划是指如何找到从起点到终点的最佳路径,并在导航系统中向用户提供准确的导航指引。
在实际应用中,基于动态规划算法的路径规划与导航系统设计具有广泛的应用价值。
本文将详细介绍基于动态规划算法的路径规划与导航系统的设计原理和实现方法。
首先,介绍一下动态规划算法。
动态规划是一种通过将待求解问题分解成若干个子问题,并且分别求解这些子问题的最优解来得到原问题的解的方法。
在路径规划和导航系统中,动态规划算法可以通过计算每个节点的最优路径来确定整个路径的最佳选择。
路径规划与导航系统的设计可以分为以下几个关键步骤:第一步是地图数据的准备。
在路径规划与导航系统设计中,需要准备好地图数据,包括各个节点之间的距离、道路的通行情况等信息。
这些数据可以通过现有的地图数据源获取,也可以通过实地调查和收集整理而得。
第二步是节点定义和距离矩阵计算。
在路径规划与导航系统设计中,将地图中的每个位置点看作一个节点,通过节点之间的距离和通行情况来构建距离矩阵。
距离矩阵是一个二维数组,其中的元素表示两个节点之间的距离。
第三步是动态规划算法的实现。
在路径规划与导航系统中,根据距离矩阵和节点间的通行情况,可以利用动态规划算法计算每个节点的最短路径和最佳选择。
动态规划算法将整个路径规划问题划分为若干个子问题,并通过递归的方式求解每个子问题的最优解,最终得到整个路径的最佳选择。
第四步是路径选择和导航指引的生成。
在路径规划与导航系统中,根据动态规划算法计算出的最佳选择,可以生成路径选择和导航指引。
路径选择是指在给定起点和终点的情况下,选择一条最佳路径。
导航指引是指根据路径选择和地理位置信息,向用户提供准确的导航指引,包括路线、转弯方向、里程等信息。
最后是系统性能优化和用户体验改进。
在路径规划与导航系统设计中,需要对系统进行性能优化和用户体验改进。
性能优化包括算法优化、数据结构优化、并行计算等技术手段,以提高系统的计算速度和响应能力。
动态规划算法教学PPT
03
动态规划算法的实现步骤
明确问题,建立数学模型
1
确定问题的目标和约束条件,将其转化为数学模 型。
2
理解问题的阶段划分,将问题分解为若干个子问 题。
3
确定状态变量和决策变量,以便描述子问题的状 态和决策。
划分阶段,确定状态变量和决策变量
01
根据问题的阶段划分,将问题分解为若干个子问题。
02
确定状态变量和决策变量,以便描述子问题的状态 和决策。
02
将子问题的最优解组合起来,得到原问题的最优解。
对最优解进行验证和性能评估,确保其满足问题的要求。
03
04
动态规划算法的优化技巧
分支定界法
分支定界法是一种求解优化问题的算 法,它通过不断生成问题的分支并确 定每个分支的界限,来寻找最优解。 在动态规划中,分支定界法可以用来 优化状态转移方程,减少计算量。
详细描述
多目标规划问题在实际生活中应用广泛,如资源分配、项目计划、城市规划等领 域都有涉及。常用的求解多目标规划的方法包括权重和法、帕累托最优解等。
多阶段决策问题
总结词
多阶段决策问题是动态规划中的一类,解决的问题需要在多个阶段做出决策,每个阶段的决策都会影响到后续阶 段的决策。
详细描述
多阶段决策问题在实际生活中应用广泛,如生产计划、库存管理、路径规划等领域都有涉及。常用的求解多阶段 决策问题的方法包括递归法、动态规划等。
特点
动态规划算法具有最优子结构、重叠 子问题和最优解性质等特征。
动态规划算法的应用领域
计算机科学
在计算机科学中,动态规划算法广泛应用于字符 串处理、排序、数据压缩和机器学习等领域。
电子工程
在电子工程中,动态规划算法用于信号处理、通 信和控制系统等领域。
算法设计动态规划(编辑距离).doc
《算法设计与分析》课程报告课题名称:动态规划——编辑距离问题课题负责人名(学号):同组成员名单(角色):无指导教师:左劼评阅成绩:评阅意见:提交报告时间:2010年 6 月 23 日动态规划——编辑距离问题计算机科学与技术专业学生指导老师左劼[摘要]动态规划的基本思想与分治法类似,也是将待求解的问题分解成若干份的子问题,先分别解决好子问题,然后从子问题中得到最终解。
但动态规划中的子问题往往不是相互独立的,而是彼此之间有影响,因为有些子问题可能要重复计算多次,所以利用动态规划使这些子问题只计算一次。
将字符串A变换为字符串所用的最少字符操作数称为字符串A到B的编辑距离。
关键词:动态规划矩阵字符串操作数编辑距离一、问题描述1、基本概念:设A和B是2个字符串。
要用最少的字符操作将字符串A转换为字符串B。
字符串操作包括:(1) 删除一个字符;(2) 插入一个字符;(3) 将一个字符改为另一个字符。
将字符串A变换为字符串B所用的最少字符操作数称为字符串A 到B的编辑距离,记为d(A,B)。
2、算法设计:设计一个有效算法,对于给定的任意两个字符串A 和B,计算其编辑距离d(A,B)。
3、数据输入:输入数据由文件名为input.txt的文本文件提供。
文件的第1行为字符串A,第二行为字符串B。
4、结果输出:将编辑距离d(A,B)输出到文件ouput.txt的第一行。
输入文件示例输出文件示例input.txt output.txtfxpimu 5xwrs二、分析对于本问题,大体思路为:把求解编辑距离分为字符串A从0个字符逐渐增加到全部字符分别想要变为字符串B该如何变化以及变化的最短距离。
具体来说,首先选用数组a1存储字符串A(设长度为n),a2存储字符串B(设长度为m),d矩阵来进行具体的运算;这里有两个特殊情况比较简单可以单独考虑,即A的长度为0而B不为0还有A不为0B为0,这两种情况最后的编辑距离分别为m和n;讨论一般情况,d矩阵为d[n][m],假定我们从d[0][0]开始一直进行以下操作到了d[i][j]的位置,其中删除操作肯定是A比B长,同理,插入字符操作一定是A比B短,更改字符操作说明一样长,我们所要做的是对d[i][j-1]d[i-1][j] d[i-1][j-1]所存数进行比较,其中最小的即为当前长度和样式的字符串A变为B的编辑距离,依次这样计算到最后的d[n][m]中所存的数即为最终的编辑距离。
算法设计中的动态规划算法
算法设计中的动态规划算法动态规划算法是一种将复杂问题分解成简单子问题的算法,并将简单子问题的结果进行存储和利用。
这种算法在计算机科学、数学以及经济学等领域都得到了广泛的应用,并且在解决一些复杂问题时,它往往比其他算法更加高效。
动态规划算法背后的思想是将原问题分解成多个子问题,并且在解决每个子问题时,利用前面已经解决过的子问题的结果来加快求解过程。
这种算法不仅适用于求解最优化问题,也适用于解决一些其他类型的问题。
动态规划算法的基本思路是:将原问题分解成多个子问题,解决子问题,并将子问题的结果保存下来,最后通过利用子问题的结果来求解原问题。
动态规划算法适用于求解那些具有重复性子问题的问题。
当计算两个或多个子问题时,它们之间往往有许多相同的元素或关系。
在这种情况下,动态规划算法通过保存已经解决子问题的结果来避免重复计算,从而提高了执行效率,减少了计算量。
动态规划算法常常被用于求解一些具有多个重叠子问题的最优化问题。
例如,最短路径问题、背包问题、序列比对问题等都是典型的动态规划算法的应用。
一般来说,动态规划算法可以分为以下几个步骤:1. 定义子问题首先要明确原问题可以被分解成哪些子问题,以及这些子问题之间的关系是什么。
2. 描述最优子结构假设存在最优解,并且这个最优解包含一个局部最优解。
当我们把找到每一个局部最优解时,一个原问题的最优解就出现了。
3. 列出递推关系式在这个步骤中,我们将确定一个递推变量,以便找出阶段之间的关系,并将阶段之间的关系表示为一个递推公式。
4. 计算最优解的值我们可以使用递推公式来计算每个子问题的答案,这样就可以计算出原问题的最优解。
5. 构造最优解最后,我们需要从已经计算出的子问题的答案中构造出整个问题的最优解。
这一步骤取决于问题的性质。
总之,动态规划算法是一种非常强大的算法,可以解决各种不同类型的问题。
虽然它有时可能非常复杂,但是一旦我们了解了它的基本思路和方法,就能够开始使用它来解决一些初始看上去非常棘手的问题。
动 态 规 划 算 法
动态规划算法动态规划将复杂的多阶段决策问题分解为一系列简单的、离散的单阶段决策问题,采用顺序求解方法,通过解一系列小问题达到求解整个问题目的;动态规划的各个决策阶段不但要考虑本阶段的决策目标,还要兼顾整个决策过程的整体目标,从而实现整体最优决策。
需指出:动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是一种算法。
必须对具体问题进行具体分析,运用动态规划的原理和方法,建立相应的模型,然后再用动态规划方法去求解。
一、动态规划基本思想(一)基本概念描述阶段的变量称为阶段变量k。
阶段的划分,一般是根据时间和空间的自然特征来进行的,但要便于问题转化为多阶段决策。
表示每个阶段开始所处的自然状况或客观条件。
通常一个阶段有若干个状态,描述过程状态的变量称为状态变量Sk。
某一阶段的某个状态时,可以作出不同的决定,从而确定下一阶段的状态,这种决定称为决策,描述决策的变量成为决策变量Uk。
在实际问题中决策变量取值一般在一个范围,称之为允许决策集合(策略)。
状态转移方程:Sk+1 = Tk(Sk,?Uk)4、指标函数和最优值函数用来衡量所实现过程优劣的一种数量指标,为指标函数。
指标函数常见的形式:(1)各段指标的和的形式(2)各段指标的积的形式其中表示第j阶段的阶段指标(二)基本思想动态规划方法的关键:正确地写出基本的递推关系式和恰当的边界条件(简称基本方程)。
要做到这一点,就必须将问题的过程分成几个相互联系的阶段,恰当的选取状态变量和决策变量及定义最优值函数,从而把一个大问题转化成一组同类型的子问题,然后逐个求解。
即从边界条件开始,逐段递推寻优,在每一个子问题的求解中,均利用了它前面的子问题的最优化结果,依次进行,最后一个子问题所得的最优解,就是整个问题的最优解。
二、建立动态规划模型的步骤划分阶段:按时间或空间先后顺序,将过程划分为若干相互联系的阶段。
对于静态问题要人为地赋予“时间”概念,以便划分阶段。
正确选择状态变量:选择变量既要能确切描述过程演变又要满足无后效性,而且各阶段状态变量的取值能够确定。
算法设计与分析——流水作业调度(动态规划)
算法设计与分析——流⽔作业调度(动态规划)⼀、问题描述N个作业{1,2,………,n}要在由两台机器M1和M2组成的流⽔线上完成加⼯。
每个作业加⼯的顺序都是先在M1上加⼯,然后在M2上加⼯。
M1和M2加⼯作业i所需的时间分别为ai和bi,1≤i≤n。
流⽔作业⾼度问题要求确定这n个作业的最优加⼯顺序,使得从第⼀个作业在机器M1上开始加⼯,到最后⼀个作业在机器M2上加⼯完成所需的时间最少。
⼆、算法思路直观上,⼀个最优调度应使机器M1没有空闲时间,且机器M2的空闲时间最少。
在⼀般情况下,机器M2上会有机器空闲和作业积压2种情况。
最优调度应该是:1. 使M1上的加⼯是⽆间断的。
即M1上的加⼯时间是所有ai之和,但M2上不⼀定是bi之和。
2. 使作业在两台机器上的加⼯次序是完全相同的。
则得结论:仅需考虑在两台机上加⼯次序完全相同的调度。
设全部作业的集合为N={1,2,…,n}。
S是N的作业⼦集。
在⼀般情况下,机器M1开始加⼯S中作业时,机器M2还在加⼯其他作业,要等时间t后才可利⽤。
将这种情况下完成S中作业所需的最短时间记为T(S,t)。
流⽔作业调度问题的最优值为T(N,0)。
这个T(S,t)该如何理解?举个例⼦就好搞了(⽤ipad pencil写的...没贴类纸膜,太滑,凑合看吧)1、最优⼦结构T(N,0)=min{ai + T(N-{i}, bi)}, i∈N。
ai:选⼀个作业i先加⼯,在M1的加⼯时间。
T(N-{i},bi}:剩下的作业要等bi时间后才能在M2上加⼯。
注意这⾥函数的定义,因为⼀开始⼯作i是随机取的,M1加⼯完了ai之后,要开始加⼯bi了,这⾥M1是空闲的可以开始加⼯剩下的N-i个作业了,但此时M2开始加⼯bi,所以要等bi时间之后才能重新利⽤,对应到上⾯函数T(s,t)的定义的话,这⾥就应该表⽰成T(N-{i},bi), 所以最优解可表⽰为T(N,0)=min{ai + T(N-{i}, bi)}, i∈N,即我们要枚举所有的⼯作i,使这个式⼦取到最⼩值。
动态规划算法详解及经典例题
动态规划算法详解及经典例题⼀、基本概念(1)⼀种使⽤多阶段决策过程最优的通⽤⽅法。
(2)动态规划过程是:每次决策依赖于当前状态,⼜随即引起状态的转移。
⼀个决策序列就是在变化的状态中产⽣出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。
假设问题是由交叠的⼦问题所构成,我们就能够⽤动态规划技术来解决它。
⼀般来说,这种⼦问题出⾃对给定问题求解的递推关系中,这个递推关系包括了同样问题的更⼩⼦问题的解。
动态规划法建议,与其对交叠⼦问题⼀次重新的求解,不如把每⼀个较⼩⼦问题仅仅求解⼀次并把结果记录在表中(动态规划也是空间换时间的)。
这样就能够从表中得到原始问题的解。
(3)动态规划经常常使⽤于解决最优化问题,这些问题多表现为多阶段决策。
关于多阶段决策:在实际中,⼈们经常遇到这样⼀类决策问题,即因为过程的特殊性,能够将决策的全过程根据时间或空间划分若⼲个联系的阶段。
⽽在各阶段中。
⼈们都须要作出⽅案的选择。
我们称之为决策。
⽽且当⼀个阶段的决策之后,经常影响到下⼀个阶段的决策,从⽽影响整个过程的活动。
这样,各个阶段所确定的决策就构成⼀个决策序列,常称之为策略。
因为各个阶段可供选择的决策往往不⽌⼀个。
因⽽就可能有很多决策以供选择,这些可供选择的策略构成⼀个集合,我们称之为同意策略集合(简称策略集合)。
每⼀个策略都对应地确定⼀种活动的效果。
我们假定这个效果能够⽤数量来衡量。
因为不同的策略经常导致不同的效果,因此,怎样在同意策略集合中选择⼀个策略,使其在预定的标准下达到最好的效果。
经常是⼈们所关⼼的问题。
我们称这种策略为最优策略,这类问题就称为多阶段决策问题。
(4)多阶段决策问题举例:机器负荷分配问题某种机器能够在⾼低两种不同的负荷下进⾏⽣产。
在⾼负荷下⽣产时。
产品的年产量g和投⼊⽣产的机器数量x的关系为g=g(x),这时的年完善率为a,即假设年初完善机器数为x,到年终时完善的机器数为a*x(0<a<1);在低负荷下⽣产时,产品的年产量h和投⼊⽣产的机器数量y的关系为h=h(y)。
动态规划算法
21(2+19),28(18+10),19(9+10),21(5+16)。
用同样的方法还可以将4阶数塔问题,变为3阶数塔问题。 …… 最后得到的1阶数塔问题,就是整个问题的最优解。
2.存储、求解: 1) 原始信息存储 原始信息有层数和数塔中的数据,层数用一个整型 变量n存储,数塔中的数据用二维数组data,存储成如
29 19 10
21 4
16
数塔及动态规划过程数据
总结
动态规划=贪婪策略+递推(降阶)+存储递推结果 贪婪策略、递推算法都是在“线性”地解决问题,而动态 规划则是全面分阶段地解决问题。可以通俗地说动态规划是 “带决策的多阶段、多方位的递推算法”。
2、算法框架
1.适合动态规划的问题征
动态规划算法的问题及决策应该具有三个性质:最优 化原理、无后向性、子问题重叠性质。 1) 最优化原理(或称为最佳原则、最优子结构)。 2) 无后向性(无后效性)。 3) 有重叠子问题。
2. 动态规划的基本思想
动态规划方法的基本思想是,把求解的问题分成许多阶 段或多个子问题,然后按顺序求解各子问题。最后一个子问 题就是初始问题的解。
由于动态规划的问题有重叠子问题的特点,为了减少重 复计算,对每一个子问题只解一次,将其不同阶段的不同状 态保存在一个二维数组中。
3. 设计动态规划算法的基本步骤
3、动态规划应用
【例1】 背包问题 给定 n种物品和一个容量为 C的背包,物品 i的重 量是 wi ,其价值为 vi ,背包问题是如何选择装入背包 的物品,使得装入背包中物品的总价值最大?
算法分析
前 i 个物品(1≤i≤n)定义的实例: 物品的重量分别为w1,…,wi, 价值分别为v1,…,vi, 背包的承重量为j(1≤j≤W)。 设V[i,j]为该实例的最优解的物品总价值,也就 是说,是能够放进承重量为j的背包中的前i个物品中 最有价值子集的总价值。 可以把前i个物品中能够放进承重量为j的背包中的 子集分成两个类别: 1、包括第i个物品的子集 2、不包括第i个物品的子集
动态规划的应用场景与算法
动态规划的应用场景与算法动态规划是一种常见的算法,在计算机科学和数学上都广泛应用。
它的基本思想是将问题划分为更小的子问题,然后通过求解子问题得到原问题的解。
由于动态规划具有优秀的时间复杂度和空间复杂度,所以被广泛应用在很多领域中。
本文将介绍动态规划算法的应用场景和算法。
一、动态规划的应用场景1.数学中的动态规划在数学中,动态规划被广泛用于求解最优化问题。
例如,旅行推销员问题,求解最短路径问题,背包问题等。
旅行推销员问题是一类最优化问题,对于给定的一组城市和城市之间的距离,求解经过每个城市一次的最短回路。
这个问题可以使用动态规划算法来解决,通过构建一个状态转移矩阵和一个状态转移方程得到答案。
最短路径问题可以用动态规划解决。
当我们需要找到两个点之间的最短路径时,我们可以使用动态规划来找到最短路径。
通过构建一个状态转移矩阵和一个状态转移方程来找到最短路径。
在背包问题中,有一个容量为C的背包,一些物品有自己的重量和价值。
我们需要决定哪些物品放入背包,以便最大化总价值。
动态规划算法可以用来解决这个问题。
通过构建一个状态转移矩阵和一个状态转移方程来找到最优的解决方案。
2.计算机科学中的动态规划在计算机科学中,动态规划被广泛应用于字符串匹配,图像识别,自然语言处理等领域。
在字符串匹配中,动态规划算法可以用来解决字符串匹配问题。
例如,当我们需要了解一个字符串是否匹配另一个字符串时,可以使用动态规划来检查字符串的相似性。
图像识别中,动态规划能够识别物品的位置和大小。
在自然语言处理领域,动态规划是一种训练语言模型的方法。
通过建立状态转移矩阵,然后用一个状态转移方程来更新每个状态,我们可以有效地构建出一个具有良好预测性能的语言模型。
二、动态规划的算法动态规划算法的核心思想是将问题划分为更小的子问题。
为此,我们需要执行以下操作来设计一个动态规划算法:(1)定义子问题(2)定义状态(3)定义状态转移方程(4)定义基本情况和边界情况例如,解决背包问题的动态规划算法可以如下所示:(1)定义子问题:假设我们有一个背包可以容纳C个物品,我们需要决定哪些物品放入背包,以便最大化总价值。
动态规划算法详解及应用实例
动态规划算法详解及应用实例动态规划算法是一种常见的解决各种最优化问题的算法。
它适用于很多复杂的问题,如图形分析、路线规划、搜索引擎等等。
本文将详细讲解动态规划算法的基本原理、特点和应用实例,供大家学习和借鉴。
一、动态规划算法基本原理动态规划,简称DP,是一种递推式算法,通过将问题分解成一系列子问题,并按照一定的顺序对子问题进行求解,最终得到问题的最优解。
其主要思想是:当我们在解题时遇到一个问题时,如果能将这个问题划分成若干个与原问题相似但规模更小的子问题,而这些子问题又可以逐一求解,最终将所有子问题的结果汇总起来得到原问题的解,那么这个问题就可以使用动态规划算法解决。
由于动态规划算法中有“最优解”的要求,所以在求解过程中需要涉及到状态转移方程的设计。
状态转移方程是一个数学公式,它描述了一个状态如何从前一个状态转移而来,以及在当前状态下所做的某些决策对下一个状态的影响。
通过不断迭代求解状态转移方程,我们可以得到最优解。
二、动态规划算法的特点1、动态规划是一种自底向上的策略,通常需要维护一个状态表格,记录下每个阶段的最优解,最后汇总起来得到问题的最终解。
2、动态规划通常具有“无后效性”的特点,即求解某个决策问题时,当前状态之后的决策不会影响之前的决策。
因此,在涉及到状态转移时,只需考虑当前状态和以前的状态即可。
3、动态规划通常包含两个要素:最优子结构和重叠子问题。
最优子结构是指一个问题的最优解由其子问题的最优解递推而来,而重叠子问题则是指在递归求解的过程中,同一问题会被反复求解多次,因此需要使用记忆化搜索等技巧,避免重复计算。
4、动态规划算法的时间复杂度通常是O(n^2)或O(n^3),空间复杂度通常也会比较高。
三、应用实例:0-1背包问题0-1背包问题是指在背包容量固定的情况下,如何选择物品才能使得背包装载的价值最大,其中每个物品只能选择一次。
对于此类问题,可以采用动态规划算法进行求解。
首先需要确定问题的状态转移方程,具体如下:设f(i,j)表示在前i个物品中,当背包的容量为j时,能够装载的最大价值,那么状态转移方程为:f(i,j)=max{f(i-1,j), f(i-1,j-wi)+vi}其中,wi表示第i个物品的重量,vi表示第i个物品的价值。
《计算机算法设计与分析》第三章动态规划法
发展历程及现状
发展历程
动态规划的思想起源于20世纪50年代,由美国数学家Richard Bellman提出。随着计 算机科学的发展,动态规划在算法设计和分析领域得到了广泛应用和深入研究。
第六章
总结与展望
动态规划法在计算机科学中重要性
高效求解最优化问题
动态规划法通过把原问题分解为相对简单的子问题,并保存子问题的解,避免了大量重复计算,从而高效地求解最优化问题。
广泛应用
动态规划法在计算机科学、经济学、生物信息学等领域都有广泛应用,如背包问题、最短路径问题、序列比对问题等。
提供算法设计框架 动态规划法不仅为解决特定问题提供了有效方法,而且为算法设计提供了一个通用框架,有助于理解和设 计更复杂的算法。
现状
目前,动态规划已经成为计算机算法设计和分析领域的重要工具之一。在实际应用 中,许多复杂的问题都可以通过动态规划的方法得到有效的解决。同时,随着计算 机技术的不断发展,动态规划的应用领域也在不断扩展。
第二章
动态规划法基本原理
最优子结构性质
在动态规划法中, 子问题之间是相互 独立的,即一个子 问题的求解不会影 响到其他子问题的 求解。这使得动态 规划法能够避免重 复计算,提高算法 效率。
学习相关算法和技术
学习与动态规划法相关的其他算法 和技术,如贪心算法、分治法等, 以便在实际问题中灵活应用。
关注最新研究进展
关注计算机科学和算法设计领域的 最新研究进展,了解动态规划法的 新发展和应用,保持对新技术的敏 感性和好奇心。
THANKS
感谢观看
基本思想
《动态规划算法》课件
多阶段决策优化
详细描述
背包问题是一个经典的动态规划问题,通过将问题分解 为多个阶段,并为每个阶段定义状态和状态转移方程, 我们可以找到最优解。在背包问题中,我们使用一个二 维数组来存储每个状态的最优解,并逐步更新状态以找 到最终的最优解。
最长公共子序列求解
总结词
字符串匹配优化
详细描述
最长公共子序列问题是一个经典的动态规划问题,用 于找到两个序列的最长公共子序列。通过动态规划, 我们可以避免在寻找公共子序列时进行冗余比较,从 而提高算法效率。在动态规划中,我们使用一个二维 数组来存储子问题的最优解,并逐步构建最终的最长 公共子序列。
动态规划的基本思想
01
将问题分解为子问 题
将原始问题分解为若干个子问题 ,子问题的解可以构成原问题的 解。
02
保存已解决的子问 题
将已解决的子问题的解保存起来 ,以便在求解其他子问题时重复 使用。
03
递推求解
从子问题的解逐步推导出原问题 的解,通常采用自底向上的方式 求解。
02
动态规划算法的步骤
可并行化
动态规划算法可以并行化执行,以提高计算效率,这对于 大规模问题的求解非常有利。
缺点
• 空间复杂度高:动态规划算法需要存储大量的中间状态,因此其空间复杂度通常较高,有时甚至会超过问题规 模的一个指数倍。
• 问题规模限制:由于动态规划算法的空间复杂度较高,因此对于大规模问题的求解可能会遇到困难。 • 可能产生大量重复计算:在动态规划算法中,对于每个子问题,可能会被多次计算和存储,这会导致大量的重复计算和存储空间浪费。 • 不易发现:动态规划算法的应用范围有限,对于一些非最优子结构问题或没有重叠子问题的优化问题,动态规划算法可能不适用。因此,在解决问题时需要仔细分析问题特性,判断是
动态规划算法分析与设计实验报告(矩阵连乘)
算法分析与设计实验报告实验题目:动态规划算法的设计与实现1、实验目的通过本实验,掌握动态规划算法的设计的基本思想,进一步提高学生的编程能力。
2、实验内容:给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2…,n-1。
如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。
3、源程序if (t<u) //返回t,k中较小的值,并记录断点处k{ u=t; s[i][j]=k;} }return u; }int Look(int i,int j) //备忘录计算最优值{ if (m[i][j]>0){ return m[i][j]; }if (i == j) return 0;int u=Look(i, i)+Look(i+1,j)+p[i-1]*p[i]*p[j]; s[i][j]=i;for (int k=i+1; k<j;k++){ int t=Look(i,k)+Look(k+1,j)+p[i-1]*p[k]*p[j]; //递归if (t<u){ u=t; //从k处断开,分别求得每次的数乘次数s[i][j]=k; //返回t,k中较小的值,并记录断点处k} } m[i][j]=u;return u; }void Traceback(int i,int j) { //输出矩阵结合方式,加括号输出if(i == j) //只有一个矩阵,直接输出{ cout<<"A"<<i; }else if(i+1 == j) //两个矩阵,加括号输出{ cout<<"(A"<<i<<"A"<<j<<")"; }else{ cout<<"("; Traceback(i,s[i][j]); //递归,从最得到最优解的地方s[i][j]处断开Traceback(s[i][j]+1,j);cout<<")"; } }void main(){ cout<<"输入矩阵个数:n=";cin>>n; cout<<"输入第一个矩阵行数和第一个到第n个矩阵的列数:"; for(int i=0;i<=n;i++){ cin>>p[i]; } cout<<endl; cout<<"请选择解决矩阵连乘问题的方法:"<<endl; cout<<"1.动态规划算法"<<endl; cout<<"2.直接递归算法"<<endl; cout<<"3.备忘录算法"<<endl;cout<<"0.退出..."<<endl;cout<<endl;cout<<"请选择算法:";cin>>q; cout<<endl;while(q!=0){ switch(q){case 1: matrixChain(); cout<<"动态规划算法解决矩阵连乘问题:"<<endl; cout<<"最优计算次序为:";Traceback(1,n); cout<<endl; cout<<"矩阵连乘的最优数乘次数为:"<<m[1][n]<<endl; //最终解值为m[1][n]break;case 2: Recur(0,n); cout<<"直接递归算法解决矩阵连乘问题:"<<endl;5、结论动态规划算法设计通常有四个步骤:1.找出最优解的性质,并刻画其结构特征。
12个动态规划算法举例
动态规划是一种用于解决最优化问题的算法。
它通常用于找到最小或最大值。
这里列举了12 个常见的动态规划算法,并给出了每个算法的举例:
1 最长公共子序列(LCS)算法:用于比较两个序列,找出它们之
间的最长公共子序列。
2 最小编辑距离算法:用于比较两个字符串,找出将一个字符串变
为另一个字符串所需的最少编辑操作次数。
3 背包问题算法:用于在限制给定的总体积的情况下选择最优的物
品组合。
4 最短路径算法:用于求解有向图或路径的最短路径。
5 最小生成树算法:用于求解图的最小生成树。
6 线性规划算法:用于求解线性规划问题。
7 矩阵链乘法算法:用于计算矩阵链乘法的最优计算次序。
8 单源最短路径算法:用于求解有向图的单源最短路径问题。
9 拓扑排序算法:用于对有向无环图(DAG)进行拓扑排序。
10图形相似性算法:用两个图形进行对齐,并通过比较它们之间的差异来评估它们的相似程度。
11 11 区间动态规划算法:用于解决区间动态规划问题,例如
最小编辑代价问题。
12 分数背包问题算法:用于在限制给定的总价值的情况下选择
最优的物品组合。
13这些算法的具体细节及实现方式可以通过搜索或者学习相
关的资料来了解。
算法设计与分析_第3章_动态规划1
引言
分治技术的问题
子问题是相互独立的
Why?
问题:
如果子问题不是相互独立的,分治方法将重复 计算公共子问题,效率很低,甚至在多项式量 级的子问题数目时也可能耗费指数时间
解决方案:动态规划
用表来保存所有已解决子问题的答案 不同算法的填表格式是相同的
9
引言
最优化问题
Why?
可能有多个可行解,每个解对应一个 值,需要找出最优值的解。
MATRIX-MULTIPLY(A, B) 1 if columns[A] ≠ rows[B] 2 then return “error: incompatible dimensions” 3 else for i ← 1 to rows[A] 4 for j ← 1 to columns[B] 5 C[i, j] ← 0 6 for k ← 1 to columns[A] 7 C[i, j]←C[i, j]+A[i, k]·B[k, j] 8 return C
(A1 (A2 (A3 A4))) , (A1 ((A2 A3) A4)) , ((A1 A2) (A3 A4)) , ((A1 (A2 A3)) A4) , (((A1 A2) A3) A4).
15
矩阵连乘问题
采用不同的加括号方式,可导致不同的、 甚至及其富有戏剧性差别的乘法开销
设有四个矩阵A,B,C,D,它们的维数分别 是: A=50×10 B=10×40 C=40×30 D=30×5 总共有五种完全加括号的方式: (A((BC)D)) ——16000 (A(B(CD))) ——10500 ((AB)(CD)) ——36000 (((AB)C)D) ——87500 ((A(BC))D) ——34500
(二) 动态规划算法
(二) 动态规划算法目录- 几个动态规划问题中的术语- 阶段- 状态- 无后效性- 决策- 多阶段决策问题- 策略- 状态转移方程- 最优化原理/最优子结构性质- 动态规划引出- 基本思想- 适用情况- 基本步骤- 书面版- 细讲- 个人理解- 备忘录算法- 程序设计- 思维过程- 一般的算法设计模式- 经典运用# 先来说几个动态规划问题中的术语:动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。
20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。
多阶段决策问题的图示## 阶段把所给求解问题的过程恰当地分成若干个相互联系的阶段,以便于求解,过程不同,阶段数就可能不同.描述阶段的变量称为阶段变量。
在多数情况下,阶段变量是离散的,用k表示。
此外,也有阶段变量是连续的情形。
如果过程可以在任何时刻作出决策,且在任意两个不同的时刻之间允许有无穷多个决策时,阶段变量就是连续的。
在前面的图中,第一个阶段就是点A,而第二个阶段就是点A 到点B,第三个阶段是点B到点C,而第四个阶段是点C到点D。
## 状态状态表示每个阶段开始面临的不以人的主观意志为转移的自然或客观条件,也叫不可控因素。
在上面的例子中,状态是某个阶段的开始位置,它不仅是该阶段一条道路的起点,也是前一阶段一条分支的终点。
前面的例子(图)中,第一个阶段有一个状态即A,而第二个阶段有两个状态B1和B2,第三个阶段是三个状态C1,C2和C3,而第四个阶段又是一个状态D。
过程的状态通常可以用一个或一组数来描述,称为状态变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
算法设计与分析实验报
告
决实际问题。
1、天平平衡问题:已知一个天平左右两端共有n个挂钩,且
有m个不同质量的钩码,求将钩码全部挂到钩子上使天平平衡
的方法的总数。
试设计求解该问题的动态规划算法。
2、数塔问题:对于诸如下图的数塔,若从顶层走到底层,每
一步只能走到相邻的结点,求经过的结点的数字之和最大的路
径。
试设计求解该问题的动态规划算法。
1.天平平衡问题的解题思路或算法思想:
1. 天平平衡问题的程序:
package com.t7;
public class Tianping{
public static void main(String[] args) {
int m = 27; //全部钩码的重量之和的二分之一,问题中的n
int n = 9; //钩码的数量,即题目中的m(个钩码)
int a[] = {10,9,8,7,6,5,4,3,2};
int h[] =new int[1001];
h[0]=1;
for (int i = 1; i <=n; i++) {
for (int j = m; j >=1; j--) {
if(j>=a[i-1]){
h[j]=h[j]+h[j-a[i-1]];
}
}
}
for (int j = 0; j <=m; j++)
System.out.print(h[j]+" ");
}
}
实例:
2. 数塔问题的程序:
package com.t4;
import java.util.Scanner;
public class Main
{
public static void main(String [] args){
System.out.print("输入数组的层数: ");
Scanner scan=new Scanner(System.in);
int n=scan.nextInt();//定义数塔层数n;
int d[][]=new int[n][n];
System.out.print("输入数组元素:");
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
{
if(i>=j)
d[i][j]=scan.nextInt();
}
}
int result = dataTower(d);
2)
实验心得体会:
实验成绩:指导教师:年月日。