动态规划算法

合集下载

动态规划算法难点详解及应用技巧介绍

动态规划算法难点详解及应用技巧介绍

动态规划算法难点详解及应用技巧介绍动态规划算法(Dynamic Programming)是一种常用的算法思想,主要用于解决具有重叠子问题和最优子结构性质的问题。

在解决一些复杂的问题时,动态规划算法可以将问题分解成若干个子问题,并通过求解子问题的最优解来求解原始问题的最优解。

本文将详细介绍动态规划算法的难点以及应用技巧。

一、动态规划算法的难点1. 难点一:状态的定义在动态规划算法中,首先需要明确问题的状态。

状态是指问题在某一阶段的具体表现形式。

在进行状态定义时,需要考虑到问题的最优子结构性质。

状态的定义直接影响到问题的子问题划分和状态转移方程的建立。

2. 难点二:状态转移方程的建立动态规划算法是基于状态转移的思想,即通过求解子问题的最优解来求解原始问题的最优解。

因此,建立合理的状态转移方程是动态规划算法的关键。

在进行状态转移方程的建立时,需要考虑问题的最优子结构性质和状态之间的关系。

3. 难点三:边界条件的处理在动态规划算法中,边界条件是指问题的最简单情况,用于终止递归过程并给出递归基。

边界条件的处理需要考虑问题的具体要求和实际情况,确保问题能够得到正确的解。

二、动态规划算法的应用技巧1. 应用技巧一:最长递增子序列最长递增子序列是一类经典的动态规划问题。

其求解思路是通过定义状态和建立状态转移方程,找到问题的最优解。

在应用最长递增子序列问题时,可以使用一维数组来存储状态和记录中间结果,通过迭代计算来求解最优解。

2. 应用技巧二:背包问题背包问题是另一类常见的动态规划问题。

其求解思路是通过定义状态和建立状态转移方程,将问题转化为子问题的最优解。

在应用背包问题时,可以使用二维数组来存储状态和记录中间结果,通过迭代计算来求解最优解。

3. 应用技巧三:最短路径问题最短路径问题是动态规划算法的经典应用之一。

其求解思路是通过定义状态和建立状态转移方程,利用动态规划的思想来求解最优解。

在应用最短路径问题时,可以使用二维数组来存储状态和记录中间结果,通过迭代计算来求解最优解。

动态规划算法

动态规划算法
3级 28 20 7 2 8 3 f(i, j) —— 从第 i 堆到第 j 堆的代价和。 g(i, j) —— 从第 i 堆到第 j 堆的重量和。 f(1, 3) = 20 + 28 = 48 1级 13 序号 1 = f(1, 2) + g(1, 3)
2级
n=4时:有3大类归并法。前1堆后3堆、前2堆后2堆、前3堆后1堆。
因3堆有2种归并法,所以一共5小类归并法。前1堆第1种情况:
4级 3级 2级 1级 13 序号 1
44 31 15 7
2
f(1, 4) = 15 + 31 + 44 = 90 = f(2, 4) + g(1, 4) w不变 = f(2, 3) + g(2, 4) + g(1, 4)
若f(2,4)越小,则f(1,4)就越小。 8
3
16
4
n=4 时:前1堆的第2种情况。
4级 44 31 24 7 2 8 3 f(1, 4) = 24 + 31 + 44 = 99 = f(2, 4) + g(1, 4) w不变 = f(3, 4) + g(2, 4) + g(1, 4) 若f(2,4)越小,则f(1,4)就越小。 16 4 f(1, 4) = 20 + 24 + 44 = 88
的一种通用方法,对最优化问题提出最优性原则,从而创建最优化问题
的一种新算法设计技术——动态规划,它是一种重要的应用数学工具。 至少在计算机科学圈子里,人们不仅用它解决特定类型的最优化问题, 而最终把它作为一种通用的算法设计技术,即包括某些非最优化问题。 多阶段决策过程最优化: 现实世界里有许多问题属于这种情况:它有很多解,应用要求最优解。 穷举法通过找出全部解,再从中选出最优解。这种方法对于那些计算

《算法设计与分析》第3章 动态规划法

《算法设计与分析》第3章 动态规划法

最优解的递推关系 定义m[i:j],表示矩阵连乘A[i:j]所需的最少计算 量 则有: i j 0 m[i ][ j ] i j minj{m[i ][ k ] m[k 1][ j ] pi 1 pk p j } i k
假设:N个矩阵的维数依序放在一维数组p中, 其中Ai的维数记为Pi-1×Pi
A=A1×A2×A3×…×An
A=(A1×A2×…×Ak) × (Ak+1×Ak+2×…×An)
B
C
1.2 穷举法
穷举法:列举出所有可能的计算次序,并计算出 每一种计算次序相应需要的数乘次数,从中找出 一种数乘次数最少的计算次序。
穷举法复杂度分析: 对于n个矩阵的连乘积,设其不同的计算次序有P(n)种。 由于每种加括号方式都可以分解为两个子连乘的加括号问题: (A1...Ak)(Ak+1…An)可以得到关于P(n)的递推式如下:
【程序】矩阵连乘的 穷举法实现 int MatrixChain::LookupChain(int i, int j) { if(i==j) return 0; int u=LookupChain(i+1,j)+p[i-1]*p[i]*p[j]; //k=i s[i][j]=i; //记录最优分解位置 for ( int k=i+1;k<j; k++ ) { //遍历k int t=LookupChain(i,k)+LookupChain(k+1,j) +p[i]*p[k+1]*p[j+1]; if (t<u) { u=t; s[i][j]=k; //记录最优分解位置 } } int MatrixChain::LookupChain() return u; { } return LookupChain(1,n);

动态规划算法的详细原理及使用案例

动态规划算法的详细原理及使用案例

动态规划算法的详细原理及使用案例一、引言动态规划是一种求解最优化问题的算法,它具有广泛的应用领域,如机器学习、图像处理、自然语言处理等。

本文将详细介绍动态规划算法的原理,并提供一些使用案例,以帮助读者理解和应用这一算法的具体过程。

二、动态规划的基本原理动态规划算法通过将问题分解为多个子问题,并利用已解决子问题的解来求解更大规模的问题。

其核心思想是利用存储技术来避免重复计算,从而大大提高计算效率。

具体来说,动态规划算法通常包含以下步骤:1. 定义子问题:将原问题分解为若干个子问题,这些子问题具有相同的结构,但规模更小。

这种分解可以通过递归的方式进行。

2. 定义状态:确定每个子问题的独立变量,即问题的状态。

状态具有明确的定义和可计算的表达式。

3. 确定状态转移方程:根据子问题之间的关系,建立状态之间的转移方程。

这个方程可以是简单的递推关系式、递归方程或其他形式的方程。

4. 解决问题:使用递推或其他方法,根据状态转移方程求解每个子问题,直到获得最终解。

三、动态规划的使用案例1. 背包问题背包问题是动态规划算法的经典案例之一。

假设有一个背包,它能容纳一定重量的物品,每个物品有对应的价值。

目的是在不超过背包总重量的前提下,选取最有价值的物品装入背包。

这个问题可以通过动态规划算法来求解。

具体步骤如下:(1)定义问题:在不超过背包容量的限制下,选取物品使得总价值最大化。

(2)定义状态:令dp[i][j]表示将前i个物品放入容量为j的背包中所能获得的最大价值。

(3)状态转移方程:dp[i][j] = max(dp[i-1][j-w[i]]+v[i], dp[i-1][j]),其中w[i]为第i个物品的重量,v[i]为第i个物品的价值。

(4)解决问题:根据状态转移方程依次计算每个子问题的解,并记录最优解,直到获得最终答案。

2. 最长公共子序列最长公共子序列(Longest Common Subsequence,简称LCS)是一种经典的动态规划问题,它用于确定两个字符串中最长的共同子序列。

动态规划法

动态规划法

动态规划法动态规划法(Dynamic Programming)是一种常用的算法思想,主要用于解决具有重叠子问题性质和最优子结构性质的问题。

动态规划法通过把问题分解为更小的子问题,并将子问题的解存储起来,以避免重复计算,从而提高了算法的效率。

动态规划法有两个核心概念:状态和状态转移方程。

在动态规划过程中,我们需要定义状态,即问题的子问题解,以及状态之间的关系,即状态转移方程。

动态规划法的一般步骤如下:1. 定义问题的子问题:将问题划分为更小的子问题,并明确子问题的解是什么。

2. 定义状态:将问题的子问题解抽象为状态,即用一个变量或者数组表示子问题的解。

3. 定义状态转移方程:根据子问题的关系,定义状态之间的转移方程,即如何根据已知的子问题解计算出更大的问题的解。

4. 缓存子问题解:为了避免重复计算,我们需要将已经计算过的子问题解存储起来,以便后续使用。

5. 递推计算:通过状态转移方程和缓存的子问题解,逐步计算出更大的问题的解,直到计算出最终的问题解。

动态规划法的关键在于找到正确的状态转移方程和合理的存储子问题解的方式。

有些问题的状态转移方程比较容易找到,比如斐波那契数列,每个数都是前两个数的和;而有些问题的状态转移方程可能比较复杂,需要通过观察问题的特点和具体分析来确定。

动态规划法的时间复杂度通常为O(n),其中n 表示问题规模。

由于利用了子问题的解,避免了重复计算,因此动态规划法相对于暴力求解法能够大大提高算法的效率。

但是,动态规划法的空间复杂度通常较高,需要存储大量的子问题解,因此在实际应用中需要权衡时间和空间的消耗。

总的来说,动态规划法是一种非常灵活且强大的算法思想,能够解决许多复杂的问题,特别适用于具有重叠子问题性质和最优子结构性质的问题。

通过正确定义状态和状态转移方程,并结合缓存子问题解和递推计算,我们可以高效地求解这类问题,提高算法的效率。

动态规划算法原理与的应用

动态规划算法原理与的应用

动态规划算法原理与的应用动态规划算法是一种用于求解最优化问题的常用算法。

它通过将原问题划分为子问题,并将每个子问题的解保存起来,以避免重复计算,从而降低了问题的时间复杂度。

动态规划算法的核心思想是自底向上地构建解,以达到求解整个问题的目的。

下面将介绍动态规划算法的原理以及一些常见的应用。

1.动态规划算法的原理1)将原问题划分为多个子问题。

2)确定状态转移方程,即找到子问题之间的关系,以便求解子问题。

3)解决子问题,并将每个子问题的解保存起来。

4)根据子问题的解,构建整个问题的解。

2.动态规划算法的应用2.1最长公共子序列1) 定义状态:假设dp[i][j]表示序列A的前i个字符和序列B的前j个字符的最长公共子序列的长度。

2) 确定状态转移方程:若A[i] == B[j],则dp[i][j] = dp[i-1][j-1] + 1;若A[i] != B[j],则dp[i][j] = max(dp[i-1][j],dp[i][j-1])。

3) 解决子问题:从前往后计算dp数组中每个元素的值。

4) 构建整个问题的解:dp[m][n]即为最终的最长公共子序列的长度,其中m和n分别为序列A和序列B的长度。

2.2背包问题背包问题是指给定一个背包的容量和一些物品的重量和价值,要求在不超过背包容量的情况下,选择若干物品放入背包中,使得背包中物品的总价值最大。

该问题可通过动态规划算法求解,具体步骤如下:1) 定义状态:假设dp[i][j]表示在前i个物品中选择若干物品放入容量为j的背包中,能够获得的最大价值。

2) 确定状态转移方程:考虑第i个物品,若将其放入背包,则dp[i][j] = dp[i-1][j-wi] + vi;若不将其放入背包,则dp[i][j] = dp[i-1][j]。

3) 解决子问题:从前往后计算dp数组中每个元素的值。

4) 构建整个问题的解:dp[n][C]即为最终的背包能够获得的最大价值,其中n为物品的个数,C为背包的容量。

动态规划算法教学PPT

动态规划算法教学PPT

03
动态规划算法的实现步骤
明确问题,建立数学模型
1
确定问题的目标和约束条件,将其转化为数学模 型。
2
理解问题的阶段划分,将问题分解为若干个子问 题。
3
确定状态变量和决策变量,以便描述子问题的状 态和决策。
划分阶段,确定状态变量和决策变量
01
根据问题的阶段划分,将问题分解为若干个子问题。
02
确定状态变量和决策变量,以便描述子问题的状态 和决策。
02
将子问题的最优解组合起来,得到原问题的最优解。
对最优解进行验证和性能评估,确保其满足问题的要求。
03
04
动态规划算法的优化技巧
分支定界法
分支定界法是一种求解优化问题的算 法,它通过不断生成问题的分支并确 定每个分支的界限,来寻找最优解。 在动态规划中,分支定界法可以用来 优化状态转移方程,减少计算量。
详细描述
多目标规划问题在实际生活中应用广泛,如资源分配、项目计划、城市规划等领 域都有涉及。常用的求解多目标规划的方法包括权重和法、帕累托最优解等。
多阶段决策问题
总结词
多阶段决策问题是动态规划中的一类,解决的问题需要在多个阶段做出决策,每个阶段的决策都会影响到后续阶 段的决策。
详细描述
多阶段决策问题在实际生活中应用广泛,如生产计划、库存管理、路径规划等领域都有涉及。常用的求解多阶段 决策问题的方法包括递归法、动态规划等。
特点
动态规划算法具有最优子结构、重叠 子问题和最优解性质等特征。
动态规划算法的应用领域
计算机科学
在计算机科学中,动态规划算法广泛应用于字符 串处理、排序、数据压缩和机器学习等领域。
电子工程
在电子工程中,动态规划算法用于信号处理、通 信和控制系统等领域。

第3章-动态规划算法

第3章-动态规划算法

算法复杂度分析:
算法matrixChain的主要计算量取决于算法中对r, i和k的3重循环。循环体内的计算量为O(1),而3重 循环的总次数为O(n3)。因此算法的计算时间上界 为O(n3)。算法所占用的空间显然为O(n2)。
22
3.1.4 构造最优解 若将对应m[i][j]的断开位置k记为s[i][j],在计算出最 优值m[i][j]后,可递归地由s[i][j]构造出相应的最优 解。 s[i][j]中的数表明,计算矩阵链A[i:j]的最佳方式应在 矩阵Ak和Ak+1之间断开,即最优的加括号方式应为 (A[i:k])(A[k+1:j)。
21
m[2][5]
min
m[2][2] m[3][5] m[2][3] m[4][5]
p1 p2 p5 p1 p3 p5
0 2500 35 2625 1000
15 35 5
20 20
13000 7125
m[2][4] m[5][5] p1 p4 p5 4375 0 3510 20 11375
}
}
T(Apxq*Bqxr)=O(p*q*r)
10
A, B, C, D
A 5010 B 1040 C 4030 D 305
(A((BC)D)) (A(B(CD))) ((AB)(CD)) (((AB)C)D) ((A(BC))D)
计算量分别为:16000, 10500, 36000, 87500, 34500
矩阵的连乘积可以有许多不同的计算次序。这种 计算次序可以用加括号的方式来确定。若一个矩 阵连乘积的计算次序完全确定,也就是说该连乘 积已完全加括号,则可以依此次序反复调用2个 矩阵相乘的标准算法计算出矩阵连乘积。

动态规划算法

动态规划算法

动态规划算法
动态规划算法(Dynamic Programming)是一种解决多阶段最优化决策问题的算法。

它将问题分为若干个阶段,并按照顺序从第一阶段开始逐步求解,通过每一阶段的最优解得到下一阶段的最优解,直到求解出整个问题的最优解。

动态规划算法的核心思想是将问题划分为子问题,并保存已经解决过的子问题的解,以便在求解其他子问题时不需要重新计算,而是直接使用已有的计算结果。

即动态规划算法采用自底向上的递推方式进行求解,通过计算并保存子问题的最优解,最终得到整个问题的最优解。

动态规划算法的主要步骤如下:
1. 划分子问题:将原问题划分为若干个子问题,并找到问题之间的递推关系。

2. 初始化:根据问题的特点和递推关系,初始化子问题的初始解。

3. 递推求解:按照子问题的递推关系,从初始解逐步求解子问题的最优解,直到求解出整个问题的最优解。

4. 得到最优解:根据子问题的最优解,逐步推导出整个问题的最优解。

5. 保存中间结果:为了避免重复计算,动态规划算法通常会使
用一个数组或表格来保存已经求解过的子问题的解。

动态规划算法常用于解决最优化问题,例如背包问题、最长公共子序列问题、最短路径问题等。

它能够通过将问题划分为若干个子问题,并通过保存已经解决过的子问题的解,从而大大减少计算量,提高算法的效率。

总之,动态规划算法是一种解决多阶段最优化决策问题的算法,它通过将问题划分为子问题,并保存已经解决过的子问题的解,以便在求解其他子问题时不需要重新计算,从而得到整个问题的最优解。

动态规划算法能够提高算法的效率,是解决最优化问题的重要方法。

动态规划算法的常见实例

动态规划算法的常见实例

动态规划算法的常见实例动态规划算法是一种将复杂问题分解为简单子问题来解决的算法,它可被应用于多个领域中,如经济学、生物学、计算机科学等。

在本文中,我们将详细讨论动态规划算法的常见实例。

一、最长公共子序列问题最长公共子序列(LCS)问题是一个经典的计算机科学问题,它要求在两个字符串中找到最长的相同连续子序列。

例如,对于字符串“ABCD”和“ACDF”,最长公共子序列为“ACD”。

使用动态规划方法来解决LCS问题。

首先定义一个m行n列的二维矩阵,其中m和n分别表示两个字符串的长度。

然后,使用以下递推关系:1. 如果一个字符串的长度为0,LCS为0。

2. 如果两个字符不相同,则LCS为它们的前一个字符集合和它们的后一个字符集合的最大值。

3. 如果两个字符相同,则LCS为它们的前一个字符集合和它们的后一个字符集合所组成的子序列中的最大值加1。

最后,矩阵右下角的值就是LCS的长度。

二、背包问题背包问题(Knapsack problem)是一个经典的组合优化问题,被广泛应用于计算机科学和其他领域。

在一个决策者必须决定是否将某些物品放入背包中的场景中,背包问题就发挥了作用。

具体来说,我们要解决的问题是:对于一个固定容量的背包,有一些物品,它们的重量和价值都不同,如何在不超过背包容量的前提下,使所装载物品的总价值最大化。

一种解决方案是使用动态规划方法。

定义一个二维数组,其行表示物品,列表示背包大小。

然后,使用以下递推关系:1. 如果所考虑的物品重量大于背包容量,则不选此物品。

2. 否则,在选取该物品和不选该物品两种情况中选择最优解作为最终结果。

最后,矩阵中右下角的值就是最大的总价值。

三、矩阵链乘法矩阵链乘法是一种计算矩阵乘积的优化算法。

它使用动态规划算法来确定矩阵乘积的最小值。

对于一个长度为n的矩阵链,我们可以定义一个n×n 的矩阵M,其中第i行第j列的元素Mi,j表示第i个矩阵与第j个矩阵相乘的最小次数。

最优控制问题的动态规划算法

最优控制问题的动态规划算法

最优控制问题的动态规划算法动态规划(Dynamic Programming)是一种解决多阶段决策问题的优化方法,对于最优控制问题而言,动态规划算法是一种有效的求解方法。

本文将介绍最优控制问题以及如何使用动态规划算法解决该类问题。

一、最优控制问题简介最优控制问题是在给定系统的一些约束条件下,通过对系统进行控制使得某个性能指标达到最优的问题。

该问题可以形式化地表示为数学模型,通常由状态方程、性能指标和约束条件组成。

二、动态规划算法原理动态规划算法采用自底向上的方法,通过建立递推关系,将原问题分解为若干个子问题,并以自底向上的顺序求解子问题的最优解,最终得到原问题的最优解。

三、最优控制问题的动态规划算法步骤1. 确定阶段数和状态变量:将最优控制问题划分为多个阶段,并定义每个阶段的状态变量。

状态变量可以是系统的状态、控制量或其他相关变量。

2. 建立状态转移方程:根据最优控制问题的约束条件和性能指标,建立各个阶段之间的状态转移方程。

状态转移方程表示了系统在不同阶段之间的演化过程。

3. 定义性能指标:根据最优控制问题的要求,定义系统的性能指标。

性能指标可以是系统的能量消耗、最大收益或其他相关指标。

4. 确定边界条件:确定最优控制问题的边界条件,即初始状态和终止状态。

5. 递推求解最优解:采用动态规划算法的核心步骤,即按照递推关系将问题分解为若干个子问题,并求解子问题的最优解。

6. 反推最优解:根据子问题的最优解,反向推导出原问题的最优解。

四、最优控制问题的应用举例以经典的倒立摆问题为例,倒立摆的目标是通过对摆的控制使其保持垂直。

假设倒立摆由质量为m的杆和质量为M的滑块组成。

其动态方程可以表示为:(这里给出具体的动态方程式,包含各个参数和变量)通过建立状态方程和性能指标,我们可以将倒立摆问题转化为最优控制问题。

然后利用动态规划算法求解。

五、总结最优控制问题是一类常见的优化问题,在实际应用中具有广泛的应用价值。

动态规划算法详解及经典例题

动态规划算法详解及经典例题

动态规划算法详解及经典例题⼀、基本概念(1)⼀种使⽤多阶段决策过程最优的通⽤⽅法。

(2)动态规划过程是:每次决策依赖于当前状态,⼜随即引起状态的转移。

⼀个决策序列就是在变化的状态中产⽣出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。

假设问题是由交叠的⼦问题所构成,我们就能够⽤动态规划技术来解决它。

⼀般来说,这种⼦问题出⾃对给定问题求解的递推关系中,这个递推关系包括了同样问题的更⼩⼦问题的解。

动态规划法建议,与其对交叠⼦问题⼀次重新的求解,不如把每⼀个较⼩⼦问题仅仅求解⼀次并把结果记录在表中(动态规划也是空间换时间的)。

这样就能够从表中得到原始问题的解。

(3)动态规划经常常使⽤于解决最优化问题,这些问题多表现为多阶段决策。

关于多阶段决策:在实际中,⼈们经常遇到这样⼀类决策问题,即因为过程的特殊性,能够将决策的全过程根据时间或空间划分若⼲个联系的阶段。

⽽在各阶段中。

⼈们都须要作出⽅案的选择。

我们称之为决策。

⽽且当⼀个阶段的决策之后,经常影响到下⼀个阶段的决策,从⽽影响整个过程的活动。

这样,各个阶段所确定的决策就构成⼀个决策序列,常称之为策略。

因为各个阶段可供选择的决策往往不⽌⼀个。

因⽽就可能有很多决策以供选择,这些可供选择的策略构成⼀个集合,我们称之为同意策略集合(简称策略集合)。

每⼀个策略都对应地确定⼀种活动的效果。

我们假定这个效果能够⽤数量来衡量。

因为不同的策略经常导致不同的效果,因此,怎样在同意策略集合中选择⼀个策略,使其在预定的标准下达到最好的效果。

经常是⼈们所关⼼的问题。

我们称这种策略为最优策略,这类问题就称为多阶段决策问题。

(4)多阶段决策问题举例:机器负荷分配问题某种机器能够在⾼低两种不同的负荷下进⾏⽣产。

在⾼负荷下⽣产时。

产品的年产量g和投⼊⽣产的机器数量x的关系为g=g(x),这时的年完善率为a,即假设年初完善机器数为x,到年终时完善的机器数为a*x(0<a<1);在低负荷下⽣产时,产品的年产量h和投⼊⽣产的机器数量y的关系为h=h(y)。

动态规划算法详解及应用实例

动态规划算法详解及应用实例

动态规划算法详解及应用实例动态规划算法是一种常见的解决各种最优化问题的算法。

它适用于很多复杂的问题,如图形分析、路线规划、搜索引擎等等。

本文将详细讲解动态规划算法的基本原理、特点和应用实例,供大家学习和借鉴。

一、动态规划算法基本原理动态规划,简称DP,是一种递推式算法,通过将问题分解成一系列子问题,并按照一定的顺序对子问题进行求解,最终得到问题的最优解。

其主要思想是:当我们在解题时遇到一个问题时,如果能将这个问题划分成若干个与原问题相似但规模更小的子问题,而这些子问题又可以逐一求解,最终将所有子问题的结果汇总起来得到原问题的解,那么这个问题就可以使用动态规划算法解决。

由于动态规划算法中有“最优解”的要求,所以在求解过程中需要涉及到状态转移方程的设计。

状态转移方程是一个数学公式,它描述了一个状态如何从前一个状态转移而来,以及在当前状态下所做的某些决策对下一个状态的影响。

通过不断迭代求解状态转移方程,我们可以得到最优解。

二、动态规划算法的特点1、动态规划是一种自底向上的策略,通常需要维护一个状态表格,记录下每个阶段的最优解,最后汇总起来得到问题的最终解。

2、动态规划通常具有“无后效性”的特点,即求解某个决策问题时,当前状态之后的决策不会影响之前的决策。

因此,在涉及到状态转移时,只需考虑当前状态和以前的状态即可。

3、动态规划通常包含两个要素:最优子结构和重叠子问题。

最优子结构是指一个问题的最优解由其子问题的最优解递推而来,而重叠子问题则是指在递归求解的过程中,同一问题会被反复求解多次,因此需要使用记忆化搜索等技巧,避免重复计算。

4、动态规划算法的时间复杂度通常是O(n^2)或O(n^3),空间复杂度通常也会比较高。

三、应用实例:0-1背包问题0-1背包问题是指在背包容量固定的情况下,如何选择物品才能使得背包装载的价值最大,其中每个物品只能选择一次。

对于此类问题,可以采用动态规划算法进行求解。

首先需要确定问题的状态转移方程,具体如下:设f(i,j)表示在前i个物品中,当背包的容量为j时,能够装载的最大价值,那么状态转移方程为:f(i,j)=max{f(i-1,j), f(i-1,j-wi)+vi}其中,wi表示第i个物品的重量,vi表示第i个物品的价值。

《计算机算法设计与分析》第三章动态规划法

《计算机算法设计与分析》第三章动态规划法
解决复杂问题 动态规划可以将复杂问题分解为简单的子问题, 通过逐步求解子问题来得到原问题的解,使得复 杂问题得以解决。
发展历程及现状
发展历程
动态规划的思想起源于20世纪50年代,由美国数学家Richard Bellman提出。随着计 算机科学的发展,动态规划在算法设计和分析领域得到了广泛应用和深入研究。
第六章
总结与展望
动态规划法在计算机科学中重要性
高效求解最优化问题
动态规划法通过把原问题分解为相对简单的子问题,并保存子问题的解,避免了大量重复计算,从而高效地求解最优化问题。
广泛应用
动态规划法在计算机科学、经济学、生物信息学等领域都有广泛应用,如背包问题、最短路径问题、序列比对问题等。
提供算法设计框架 动态规划法不仅为解决特定问题提供了有效方法,而且为算法设计提供了一个通用框架,有助于理解和设 计更复杂的算法。
现状
目前,动态规划已经成为计算机算法设计和分析领域的重要工具之一。在实际应用 中,许多复杂的问题都可以通过动态规划的方法得到有效的解决。同时,随着计算 机技术的不断发展,动态规划的应用领域也在不断扩展。
第二章
动态规划法基本原理
最优子结构性质
在动态规划法中, 子问题之间是相互 独立的,即一个子 问题的求解不会影 响到其他子问题的 求解。这使得动态 规划法能够避免重 复计算,提高算法 效率。
学习相关算法和技术
学习与动态规划法相关的其他算法 和技术,如贪心算法、分治法等, 以便在实际问题中灵活应用。
关注最新研究进展
关注计算机科学和算法设计领域的 最新研究进展,了解动态规划法的 新发展和应用,保持对新技术的敏 感性和好奇心。
THANKS
感谢观看
基本思想

计算机基础知识了解计算机算法的动态规划和贪心算法

计算机基础知识了解计算机算法的动态规划和贪心算法

计算机基础知识了解计算机算法的动态规划和贪心算法计算机基础知识:了解计算机算法的动态规划和贪心算法计算机算法是指在计算机科学中为解决问题而设计的一系列计算步骤。

它是实现特定功能的工具,在计算机科学和软件工程中扮演着重要的角色。

动态规划和贪心算法是计算机算法中常见的两种策略。

本文将详细介绍这两种算法的原理和应用。

一、动态规划算法动态规划算法(Dynamic Programming),又称动态优化算法,是一种将复杂问题分解为更简单子问题的方法,并使用子问题的解来构建原问题的解。

它通常适用于具有重叠子问题和最优子结构性质的问题。

动态规划算法的基本步骤如下:1. 定义问题的状态:将原问题划分为若干个子问题,找出子问题与原问题之间的关系;2. 构造状态转移方程:通过递推或迭代的方式,计算出子问题的解;3. 解决问题:根据状态转移方程,从子问题的解中推导出原问题的最优解;4. 构建解的过程:根据所得的最优解,记录下每一步的决策,以便后续的重建。

动态规划算法的经典应用之一是背包问题。

背包问题是在限定容量的背包中选择合适的物品,使得物品的总价值最大。

通过动态规划算法,我们可以通过计算子问题的解来得到背包问题的最优解。

二、贪心算法贪心算法(Greedy Algorithm)是一种基于贪心策略的算法。

它通过每一步的局部最优选择来达到整体最优解。

贪心算法在每一步的选择中都做出当前最好的选择,而不考虑对后续步骤的影响。

贪心算法的基本思想是:1. 定义问题的解空间和评价标准:确定问题的解空间以及如何评价每个解的好坏;2. 构建解的过程:逐步构建解,每一步都选择当前最优的子解,直到得到最终的解;3. 检查解的有效性:验证得到的解是否符合问题的要求。

贪心算法的经典应用之一是最小生成树问题。

最小生成树问题是在一张无向连通图中选择一棵权值最小的生成树。

贪心算法可以通过每次选择权值最小的边来构建最小生成树。

三、动态规划与贪心算法的比较动态规划算法和贪心算法有相似之处,但也存在一些明显的差异。

动态规划问题常见解法

动态规划问题常见解法

动态规划问题常见解法动态规划(Dynamic Programming)是一种常用的算法思想,用于解决一类具有重叠子问题性质和最优子结构性质的问题。

动态规划通常通过将问题划分为若干个子问题,并分别求解子问题的最优解,从而得到原问题的最优解。

以下是动态规划问题常见的解法:1. 斐波那契数列斐波那契数列是动态规划问题中的经典案例。

它的递推关系式为 F(n) = F(n-1) + F(n-2),其中 F(0) = 0,F(1) = 1。

可以使用动态规划的思想来解决斐波那契数列问题,通过保存已经计算过的子问题的结果,避免重复计算。

2. 背包问题背包问题是一个经典的优化问题,可以使用动态规划的方法进行求解。

背包问题包括 0/1 背包问题和完全背包问题。

0/1 背包问题中每个物品要么被选中放入背包,要么不选。

完全背包问题中每个物品可以被选中多次放入背包。

通过定义状态转移方程和使用动态规划的思想,可以高效地求解背包问题。

3. 最长递增子序列最长递增子序列是一个常见的子序列问题,可以使用动态规划的方法进行求解。

最长递增子序列指的是在一个序列中,找到一个最长的子序列,使得子序列中的元素按照顺序递增。

通过定义状态转移方程和使用动态规划的思想,可以有效地求解最长递增子序列问题。

4. 最长公共子序列最长公共子序列是一个经典的字符串问题,可以使用动态规划的方法进行求解。

给定两个字符串,找到它们之间最长的公共子序列。

通过定义状态转移方程和使用动态规划的思想,可以高效地求解最长公共子序列问题。

5. 矩阵链乘法矩阵链乘法是一个求解最优括号化问题的经典案例,可以使用动态规划的方法进行求解。

给定多个矩阵的大小,需要找到一个最优的计算顺序,使得计算乘积的次数最少。

通过定义状态转移方程和使用动态规划的思想,可以高效地求解矩阵链乘法问题。

以上是动态规划问题的常见解法,通过使用动态规划的思想和方法,可以解决这些问题,并求得最优解。

《动态规划算法》课件

《动态规划算法》课件
总结词
多阶段决策优化
详细描述
背包问题是一个经典的动态规划问题,通过将问题分解 为多个阶段,并为每个阶段定义状态和状态转移方程, 我们可以找到最优解。在背包问题中,我们使用一个二 维数组来存储每个状态的最优解,并逐步更新状态以找 到最终的最优解。
最长公共子序列求解
总结词
字符串匹配优化
详细描述
最长公共子序列问题是一个经典的动态规划问题,用 于找到两个序列的最长公共子序列。通过动态规划, 我们可以避免在寻找公共子序列时进行冗余比较,从 而提高算法效率。在动态规划中,我们使用一个二维 数组来存储子问题的最优解,并逐步构建最终的最长 公共子序列。
动态规划的基本思想
01
将问题分解为子问 题
将原始问题分解为若干个子问题 ,子问题的解可以构成原问题的 解。
02
保存已解决的子问 题
将已解决的子问题的解保存起来 ,以便在求解其他子问题时重复 使用。
03
递推求解
从子问题的解逐步推导出原问题 的解,通常采用自底向上的方式 求解。
02
动态规划算法的步骤
可并行化
动态规划算法可以并行化执行,以提高计算效率,这对于 大规模问题的求解非常有利。
缺点
• 空间复杂度高:动态规划算法需要存储大量的中间状态,因此其空间复杂度通常较高,有时甚至会超过问题规 模的一个指数倍。
• 问题规模限制:由于动态规划算法的空间复杂度较高,因此对于大规模问题的求解可能会遇到困难。 • 可能产生大量重复计算:在动态规划算法中,对于每个子问题,可能会被多次计算和存储,这会导致大量的重复计算和存储空间浪费。 • 不易发现:动态规划算法的应用范围有限,对于一些非最优子结构问题或没有重叠子问题的优化问题,动态规划算法可能不适用。因此,在解决问题时需要仔细分析问题特性,判断是

动态规划法

动态规划法

ch7.19
程序7-1:多段图的向前递推动态规划算法 FMultiGraph(int k,int*p) //共k个阶段,n个结点
{ //带权有向图G (多段图)采用邻接表存储(见程序6-8) float *cost=new float[n]; int *d=new int[n];
前提:结点已按拓扑顺序排序。 //一维数组 cost[j]保存结点j到汇点t的最短路径
根据前面例7-1求最优解值cost(1,0)的过程中,产生的中间结果:
cost(5,11)=0, cost(4,10)=5, cost(4,9)=2, cost(4,8)=4,
多段图显然具有 重叠子问题性质。
cost(3,7)=min{6+cost(4,10),5+cost(4,9)}=7, cost(3,6)=...=5, cost(3,5)=...=7, cost(2,4)=min{8+cost(3,7),11+cost(3,6)}=15, cost(2,3)=18, cost(2,2)=...=9, cost(2,1)=...=7, cost(1,0)=min{9+cost(2,1),7+cost(2,2),3+cost(2,3),2+cost(2,4)}=16
T(n)
n/2
=
n/2
n
n/2 n/2
ch7.6
T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4) T(n/4)T(n/4)T(n/4)T(n/4
动态规划算法总体思想

如果能够保存已解决的子问题的答案,而在需要时再 找出已求得的答案,就可以避免大量重复计算,从而 得到多项式时间算法。

12个动态规划算法举例

12个动态规划算法举例

动态规划是一种用于解决最优化问题的算法。

它通常用于找到最小或最大值。

这里列举了12 个常见的动态规划算法,并给出了每个算法的举例:
1 最长公共子序列(LCS)算法:用于比较两个序列,找出它们之
间的最长公共子序列。

2 最小编辑距离算法:用于比较两个字符串,找出将一个字符串变
为另一个字符串所需的最少编辑操作次数。

3 背包问题算法:用于在限制给定的总体积的情况下选择最优的物
品组合。

4 最短路径算法:用于求解有向图或路径的最短路径。

5 最小生成树算法:用于求解图的最小生成树。

6 线性规划算法:用于求解线性规划问题。

7 矩阵链乘法算法:用于计算矩阵链乘法的最优计算次序。

8 单源最短路径算法:用于求解有向图的单源最短路径问题。

9 拓扑排序算法:用于对有向无环图(DAG)进行拓扑排序。

10图形相似性算法:用两个图形进行对齐,并通过比较它们之间的差异来评估它们的相似程度。

11 11 区间动态规划算法:用于解决区间动态规划问题,例如
最小编辑代价问题。

12 分数背包问题算法:用于在限制给定的总价值的情况下选择
最优的物品组合。

13这些算法的具体细节及实现方式可以通过搜索或者学习相
关的资料来了解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动态规划算法:
引言:
动态规划算法是求解最有问题的一种高效率的算法。

其使用的原则是优化原则,即整体的最优解可以通过局部的最优解获得。

问题求解的过程可以概括成两句话:自顶向下的分析,自下向上的计算。

典型例题
例1、数塔问题:设有一个三角形数塔,顶点节点称为根结点,每个节点有一个数值。

从顶点出发,可以想左走也可以向右走。

搜索从顶点出发向下走至塔底的所有路径中节点和最大的路径及最大和值。

问题分析:
1 选择最佳算法:
贪心算法----不能求最优解;
穷举算法----当塔层数很大时,计算量过大。

其它算法?
2 选择最佳数据结构表示数据:
g[I,j,1]:表示为置[I,j]结点本身数值;
g[I,j,2]:能取得的最大值;
g[I,j,3]:前进方向,0---向下;1—向右下。

源程序:
program d1;
const n=5;
var i,j:integer;
g:array[1..n,1..n,1..3] of integer;
begin
for i:=1 to n do
begin
for j:=1 to i do
begin
read(g[i,j,1]);
g[i,j,2]:=g[i,j,1];g[i,j,3]:=0;
end;
readln;
end;
for i:=n-1 downto 1 do
for j:=1 to i do
if g[i+1,j,2]>g[i+1,j+1,2] then
g[i,j,2]:=g[i,j,2]+g[i+1,j,2]
else begin g[i,j,2]:=g[i,j,2]+g[i+1,j+1,2];
g[i,j,3]:=1
end;
writeln('max:=',g[1,1,2]);
write(g[1,1,1]);
j:=1;
for i:=1 to n-1 do
begin
j:=j+g[i,j,3];
write('-',g[i+1,j,1]:4);
end;
writeln;
end.
例2、求城市间最短通路问题:设有n个城市分布在一条干道上,相邻城市间由若干通路,每条通路上有一个数字表示通路的距离,如下图所示。

求出A到E的最短距离。

A B C D E
例3、马的路径问题。

在一个N*M的棋盘上的P点有一个中国象棋的马,而在棋盘的另一端有一个位置Q,约定P在Q的左端,试编程找出P至Q的所有路径条数。

参考输入:
棋盘:6*6 P的位置(4,1)Q位置(3,6)
参考输出:8
参考程序:
program horse;
var a:array[-1..10,-1..10] of integer;
i,j:integer;m,n:1..6;
begin
read(m);read(n);
fillchar(a,sizeof(a),0);
a[6,n]:=1;
for i:= 5 downto 1 do
for j:=1 to 6 do
a[i,j]:=a[i+2,j-1]+a[i+2,j+1]+a[i+1,j-2]+a[i+1,j+2];
writeln(a[1,m]:3);
end.
例4、求最长不下降数字序列。

设有一个正整数序列b1,b2,b3,…..bn,对于下标i1<i2<i3<…<il,若有bi1<=bi2<=…<=bil,则称存在一个长度为l的不下降序列。

编程求出一个给定正整数序列的最长不下降序列。

数据结构:
b[I,1]:表示第I项数值本身;
b[I,2]: 表是从第I项到最后一项最长不下降序列的长度;
b[I,3]:链接字,表示最长不下降序列经过此项之后,后面继续的项。

当b[I,3]=0时表示链接结束。

源程序:
program d4;
const n=10;
var i,j,k,l:integer;
b:array[1..n,1..3] of integer;
begin
for i:=1 to n do
begin
readln( b[i,1]);
b[i,2]:=1;
b[i,3]:=0
end;
for i:=n-1 downto 1 do
begin
l:=0;k:=0;
for j:=i+1 to n do
if (b[j,1]>b[i,1]) and (b[j,2]>l) then
begin l:=b[j,2];k:=j end;
if l>0 then begin b[i,2]:=l+1;b[i,3]:=k end;
end;
l:=1;
for j:=2 to n do
if b[j,2]>b[l,2] then l:=j;
writeln('max:=',b[l,2]);
while l<>0 do
begin
write(b[l,1]:4);
l:=b[l,3];
end;
writeln;
end.
例5、挖地雷:在一条河提上有若干个地雷坑,每个地雷坑中埋有一定数量的地雷,地雷坑编号为1,2,3。

n。

如下图所示;
同时在每个地雷坑中都有一张说明书(最后一个地雷坑除外),说明书指出,在挖完该地雷。

相关文档
最新文档