动态规划算法原理与的应用
动态规划算法难点详解及应用技巧介绍
动态规划算法难点详解及应用技巧介绍动态规划算法(Dynamic Programming)是一种常用的算法思想,主要用于解决具有重叠子问题和最优子结构性质的问题。
在解决一些复杂的问题时,动态规划算法可以将问题分解成若干个子问题,并通过求解子问题的最优解来求解原始问题的最优解。
本文将详细介绍动态规划算法的难点以及应用技巧。
一、动态规划算法的难点1. 难点一:状态的定义在动态规划算法中,首先需要明确问题的状态。
状态是指问题在某一阶段的具体表现形式。
在进行状态定义时,需要考虑到问题的最优子结构性质。
状态的定义直接影响到问题的子问题划分和状态转移方程的建立。
2. 难点二:状态转移方程的建立动态规划算法是基于状态转移的思想,即通过求解子问题的最优解来求解原始问题的最优解。
因此,建立合理的状态转移方程是动态规划算法的关键。
在进行状态转移方程的建立时,需要考虑问题的最优子结构性质和状态之间的关系。
3. 难点三:边界条件的处理在动态规划算法中,边界条件是指问题的最简单情况,用于终止递归过程并给出递归基。
边界条件的处理需要考虑问题的具体要求和实际情况,确保问题能够得到正确的解。
二、动态规划算法的应用技巧1. 应用技巧一:最长递增子序列最长递增子序列是一类经典的动态规划问题。
其求解思路是通过定义状态和建立状态转移方程,找到问题的最优解。
在应用最长递增子序列问题时,可以使用一维数组来存储状态和记录中间结果,通过迭代计算来求解最优解。
2. 应用技巧二:背包问题背包问题是另一类常见的动态规划问题。
其求解思路是通过定义状态和建立状态转移方程,将问题转化为子问题的最优解。
在应用背包问题时,可以使用二维数组来存储状态和记录中间结果,通过迭代计算来求解最优解。
3. 应用技巧三:最短路径问题最短路径问题是动态规划算法的经典应用之一。
其求解思路是通过定义状态和建立状态转移方程,利用动态规划的思想来求解最优解。
在应用最短路径问题时,可以使用二维数组来存储状态和记录中间结果,通过迭代计算来求解最优解。
DTM的原理与应用
DTM的原理与应用DTM(Dynamic Time Warping)是一种用于度量两个时间序列之间相似性的方法。
它最初被使用于语音识别领域,现已被广泛应用于许多其他领域,如运动识别、生物信息学、音乐分析等。
本文将介绍DTM的原理和应用。
一、原理1.创建一个距离矩阵,用于存储两个时间序列之间的距离信息。
初始化矩阵的每个元素为无穷大。
2.遍历距离矩阵的每一个元素,计算相应位置的距离。
3.根据动态规划算法的原则,从距离矩阵的左上角出发,通过选择距离最小的路径,逐步填充距离矩阵的每个元素。
4.根据填充完成的距离矩阵,可以得出两个时间序列之间的最小距离。
5.最后,可以通过归一化最小距离,计算两个时间序列的相似度。
二、应用DTM在许多领域都有广泛的应用。
以下是几个典型的应用领域:1.语音识别最初,DTM被广泛用于语音识别领域。
由于人们的发音存在轻微的差异,因此录制的语音序列与训练数据之间的对齐可能存在一些误差。
DTM可以用来度量两个语音序列之间的相似度,从而提高语音识别的准确性。
2.运动识别在运动识别中,DTM可以用于度量不同动作之间的相似性。
通过计算两个动作序列之间的距离,可以检测并分类运动。
例如,在体育竞技中,可以使用DTM来识别不同的运动动作,如击球、投球等。
3.生物信息学DTM在生物信息学中也有重要的应用。
例如,可以使用DTM来比较两个DNA序列之间的相似性,从而研究物种的进化关系。
另外,DTM还可以用于比对蛋白质序列,以发现共有的结构和功能。
4.音乐分析在音乐分析中,DTM可以用于分析和比对音乐序列。
通过计算两个音乐序列之间的距离,可以实现音乐的自动分类、推荐和相似性。
这对于音乐服务提供商和音乐研究人员来说具有重要意义。
5.人体行为分析DTM还可以用于人体行为分析。
通过计算两个人体动作序列之间的距离,可以检测和识别不同的行为,如站立、走路、跑步等。
这在智能监控、人机交互和虚拟现实等领域具有广泛的应用前景。
顺序决策问题中的动态规划算法研究
顺序决策问题中的动态规划算法研究顺序决策问题在运筹学和控制论中广泛应用,其中动态规划算法是解决这类问题的常用方法。
动态规划算法具有高效、简单、好理解等特点,被很多领域的研究者广泛接受。
一、动态规划算法的基本原理动态规划算法是求解最优化问题的一种有效算法,其基本思路是把一个复杂的问题分解为若干个子问题,然后逐一解决这些子问题,得到最终的最优解。
在动态规划算法中,需要建立状态转移方程,通过状态之间的转移来求解最优解。
二、顺序决策问题的定义及特点顺序决策问题是指在多个决策阶段中进行最优化决策的问题。
在每个阶段,需要选择一个决策,然后根据这个决策的结果进行下一阶段的决策。
因此,顺序决策问题需要考虑随着时间推移,决策会产生的代价或效益。
顺序决策问题中,每个决策的结果会影响后续的决策,因此需要考虑全局最优解而非局部最优解。
同时,顺序决策问题的状态空间非常大,因此需要使用动态规划算法来求解最优解。
三、动态规划算法在顺序决策问题中的应用举例1. 股票买卖问题:假设你有一笔钱,可以在股市中进行多次买卖,每次买卖需要支付手续费,求你最大化股票收益。
这个问题可以分成多个阶段,每个阶段是买或卖的决策。
在每一阶段,需要考虑之前的状态,并记录当前买卖情况和手续费。
通过这种方法就能得到最大化收益的状态转移方程,进而求解最优解。
2. 动态资源分配问题:在项目管理中,需要对资源进行合理的分配,以满足不同任务的需要。
当资源有限时,需要通过动态规划来求解最优分配方案。
这个问题可以分成多个阶段,每个阶段是针对一个任务的资源分配决策。
在每一阶段,需要考虑之前的状态和资源已经分配的情况,以及当前任务需要的资源。
通过状态转移方程,可以得到最优解。
四、总结动态规划算法是一种高效、简单、好理解的算法,能够解决多种最优化问题。
在顺序决策问题中,动态规划算法的应用能够得到全局最优解,对于资源分配等问题有着重要的应用价值。
值得注意的是,动态规划算法的设计需要针对具体问题进行,不能直接套用模板。
动态规划算法应用场景
动态规划算法应用场景动态规划(Dynamic Programming)在数学上属于运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法,同时也是计算机科学与技术领域中一种常见的算法思想。
动态规划算法与我们前面提及的分治算法相似,都是通过组合子问题的解来求解原问题的解。
但是两者之间也有很大区别:分治法将问题划分为互不相交的子问题,递归的求解子问题,再将他们的解组合起来求解原问题的解;与之相反,动态规划应用于子问题相互重叠的情况,在这种情况下,分治法还是会做很多重复的不必要的工作,他会反复求解那些公共的子问题,而动态规划算法则对相同的每个子问题只会求解一次,将其结果保存起来,避免一些不必要的计算工作。
Tips: 这里说到的动态规划应用于子问题相互重叠的情况,是指原问题不同的子问题之间具有相同的更小的子子问题,他们的求解过程和结果完全一样。
动态规划算法更多的时候是用来求解一些最优化问题,这些问题有很多可行解,每个解都有一个值,利用动态规划算法是希望找到具有最优值的解。
接下来,就让我们具体看看动态规划算法的求解思路及相关应用场景。
1. 动态规划算法求解分析1.1 适用问题首先,在利用动态规划算法之前,我们需要清楚哪些问题适合用动态规划算法求解。
一般而言,能够利用动态规划算法求解的问题都会具备以下两点性质:最优子结构:利用动态规划算法求解问题的第一步就是需要刻画问题最优解的结构,并且如果一个问题的最优解包含其子问题的最优解,则此问题具备最优子结构的性质。
因此,判断某个问题是否适合用动态规划算法,需要判断该问题是否具有最优子结构。
Tips: 最优子结构的定义主要是在于当前问题的最优解可以从子问题的最优解得出,当子问题满足最优解之后,才可以通过子问题的最优解获得原问题的最优解。
重叠子问题:适合用动态规划算法去求解的最优化问题应该具备的第二个性质是问题的子问题空间必须足够”小“,也就是说原问题递归求解时会重复相同的子问题,而不是一直生成新的子问题。
动态规划算法的详细原理及使用案例
动态规划算法的详细原理及使用案例一、引言动态规划是一种求解最优化问题的算法,它具有广泛的应用领域,如机器学习、图像处理、自然语言处理等。
本文将详细介绍动态规划算法的原理,并提供一些使用案例,以帮助读者理解和应用这一算法的具体过程。
二、动态规划的基本原理动态规划算法通过将问题分解为多个子问题,并利用已解决子问题的解来求解更大规模的问题。
其核心思想是利用存储技术来避免重复计算,从而大大提高计算效率。
具体来说,动态规划算法通常包含以下步骤:1. 定义子问题:将原问题分解为若干个子问题,这些子问题具有相同的结构,但规模更小。
这种分解可以通过递归的方式进行。
2. 定义状态:确定每个子问题的独立变量,即问题的状态。
状态具有明确的定义和可计算的表达式。
3. 确定状态转移方程:根据子问题之间的关系,建立状态之间的转移方程。
这个方程可以是简单的递推关系式、递归方程或其他形式的方程。
4. 解决问题:使用递推或其他方法,根据状态转移方程求解每个子问题,直到获得最终解。
三、动态规划的使用案例1. 背包问题背包问题是动态规划算法的经典案例之一。
假设有一个背包,它能容纳一定重量的物品,每个物品有对应的价值。
目的是在不超过背包总重量的前提下,选取最有价值的物品装入背包。
这个问题可以通过动态规划算法来求解。
具体步骤如下:(1)定义问题:在不超过背包容量的限制下,选取物品使得总价值最大化。
(2)定义状态:令dp[i][j]表示将前i个物品放入容量为j的背包中所能获得的最大价值。
(3)状态转移方程:dp[i][j] = max(dp[i-1][j-w[i]]+v[i], dp[i-1][j]),其中w[i]为第i个物品的重量,v[i]为第i个物品的价值。
(4)解决问题:根据状态转移方程依次计算每个子问题的解,并记录最优解,直到获得最终答案。
2. 最长公共子序列最长公共子序列(Longest Common Subsequence,简称LCS)是一种经典的动态规划问题,它用于确定两个字符串中最长的共同子序列。
动态规划算法在路径规划中的应用
动态规划算法在路径规划中的应用路径规划在日常生活中随处可见,比如搜索最短路线、规划旅游路线、寻找交通路线等等。
其中,动态规划算法被广泛应用于路径规划领域,可解决诸如最短路径、最小花费路径等问题。
这篇文章将介绍动态规划算法在路径规划中的应用。
一、动态规划算法的基本原理动态规划算法是一种求解多阶段决策问题的优化方法。
它将问题分成多个子问题,并分别求解这些子问题的最优解。
最后通过不断合并子问题的最优解得到原问题的最优解。
其基本思想可以用以下三个步骤来概括:1.确定状态:将原问题分解成若干个子问题,每个子问题对应一个状态。
2.确定状态转移方程:确定每个状态之间的转移关系。
3.确定边界条件:确定初始状态和结束状态。
动态规划算法通常包括两种方法:自顶向下的记忆化搜索和自底向上的迭代法。
其中,自顶向下的记忆化搜索依赖于递归调用子问题的解,而自底向上的迭代法则通过维护状态表来解决问题。
二、动态规划算法在路径规划中的应用路径规划是动态规划算法的一个重要应用场景。
动态规划算法可以用来求解最短路径、最小花费路径、最大价值路径等问题。
这里以求解最短路径为例,介绍动态规划算法在路径规划中的应用。
1.问题定义假设我们需要从城市A走到城市B,中途经过若干个城市。
每个城市之间的距离已知,现在需要求出从城市A到城市B的最短路径。
这个问题可以用动态规划算法来求解。
2.状态定义在这个问题中,我们可以用一个二元组(u, v)表示从城市u到城市v的一条路径。
因此,在求解最短路径问题时,我们需要进行状态定义。
通常情况下,状态定义成一个包含一个或多个变量的元组,这些变量描述了在路径中的某个位置、某种状态和其他有关的信息。
在这个问题中,状态定义为S(i,j),它表示从城市A到城市j的一条路径,该路径经过了城市集合{1, 2, …, i}。
3.状态转移方程状态转移方程描述了相邻状态之间的关系,即从一个状态到另一个状态的计算方法。
在求解最短路径问题时,状态转移方程可以定义为:d(i, j) = min{d(i-1, j), d(i, k) + w(k, j)}其中,d(i,j)表示从城市A到城市j经过城市集合{1, 2, …, i}的最短路径长度。
动态规划算法在金融风险管理中的应用分析
动态规划算法在金融风险管理中的应用分析随着金融市场的发展和变化,金融风险管理变得越来越复杂和关键。
在如此高度的不确定性中,高科技和数据科学的介入变得更为重要。
动态规划算法是一种优秀的算法,在金融风险管理中应用广泛,可用于优化投资组合,风险评估和控制,资产定价等方面。
一、动态规划算法的基本原理及优势动态规划的核心是对问题进行递归划分,根据最优性原理,通过将问题划分为更小的子问题,在保证全局最优的前提下,求得最优解。
常用于需要进行多次决策的问题,如优化投资组合、指导决策等。
与其他算法不同,动态规划具有以下优势:1.具有良好的优化性能,能够求得最优解;2.算法的复杂度与输入数据的规模无关,可以处理大规模数据;3.具有明确的最优解结构,便于理解和实现。
二、金融风险管理中动态规划的应用1.优化投资组合投资组合优化是指在给定的投资资产中,选择合适的权重分配,实现最大化收益或最小风险。
传统的投资组合优化方法主要是线性规划和二次规划方法,但是在实际应用中,这些方法的局限性较大,无法充分利用多个资产之间的关联性和变化性。
动态规划将投资决策划分为多个时间段,建立多期资产分配的优化模型,能够更加准确地描述资产的时变特性,基于时间序列数据,进行优化模型的建立,实现更加精准和有效的投资组合优化。
2.风险评估和控制在金融风险管理中,风险评估和控制是至关重要的。
动态规划方法在风险评估和控制中有广泛应用。
基于动态规划的风险模型,可以考虑投资者的风险承担能力、金融市场的变化特性、预期目标等因素,精确地评估金融市场的风险水平。
同时,动态规划算法还能够进行风险控制,即基于风险控制指标,设定合适的止损点和买卖策略,保持资产风险最小化。
3.资产定价在金融市场中,资产的定价是一个非常复杂和动态的过程。
使用动态规划算法,可以基于多个因素的变化情况,建立合适的定价模型,进行资产的价格优化。
定价模型可以考虑市场供需关系、金融市场指标、投资人行为等多个因素,以多期形式,选取适当的时间段,通过最优解的求取,得到更加合理的资产定价方案。
动态规划-动态规划-美国数学家贝尔曼-动态规划领域
物品
1 2 … j …n
重量(公斤/件) a1 a2 … aj … an
每件使用价值 c1 c2 … cj … cn
类似问题:工厂里的下料问题、运输中的 货物装载问题、人造卫星内的物品装载问题等。
生产决策问题:企业在生产过程中,由于需求 是随时间变化的,因此企业为了获得全年的最佳 生产效益,就要在整个生产过程中逐月或逐季度 地根据库存和需求决定生产计划。
描述状态的变量称为状态变量,它可用一个数、 一组数或一向量(多维情形)来描述,第k阶段 的状态变量常用sk表示,通常一个阶段有若干个 状态。
第k阶段的状态就是该阶段所有始点的集合, 用Sk表示。在第1阶段状态变量s1是确定的,称初 始状态。如引例中:
S1 A,S2 B1, B2, B3,S3 C1,C2,C3,S4 D1, D2
min
4
9
12
决策点为B3
AB3
f2
B3
3 9*
f1(A)=12说明从A到E的最短距离为12,最短路 线的确定可按计算顺序反推而得。即
A→B3→C2→D2→E 上述最短路线问题的计算过程,也可借助于图
形直观的表示出来:
12 2 A4
3
11
B1
7 4
6
93
B2 2
4
96
B3
2 5
6
C1 3
多阶段决策过程特点:
(1)根据过程的特性可以将过程按空 间、时间等标志分为若干个互相联系又互相 区别的阶段。
(2)在每一个阶段都需要做出决策,从 而使整个过程达到最好的效果。
(3)在处理各阶段决策的选取上,不仅只 依赖于当前面临的状态,而且还要注意对以后 的发展。即是从全局考虑解决局部(阶段)的 问题。
动态规划算法原理与的应用
动态规划算法原理与的应用动态规划算法是一种用于求解最优化问题的常用算法。
它通过将原问题划分为子问题,并将每个子问题的解保存起来,以避免重复计算,从而降低了问题的时间复杂度。
动态规划算法的核心思想是自底向上地构建解,以达到求解整个问题的目的。
下面将介绍动态规划算法的原理以及一些常见的应用。
1.动态规划算法的原理1)将原问题划分为多个子问题。
2)确定状态转移方程,即找到子问题之间的关系,以便求解子问题。
3)解决子问题,并将每个子问题的解保存起来。
4)根据子问题的解,构建整个问题的解。
2.动态规划算法的应用2.1最长公共子序列1) 定义状态:假设dp[i][j]表示序列A的前i个字符和序列B的前j个字符的最长公共子序列的长度。
2) 确定状态转移方程:若A[i] == B[j],则dp[i][j] = dp[i-1][j-1] + 1;若A[i] != B[j],则dp[i][j] = max(dp[i-1][j],dp[i][j-1])。
3) 解决子问题:从前往后计算dp数组中每个元素的值。
4) 构建整个问题的解:dp[m][n]即为最终的最长公共子序列的长度,其中m和n分别为序列A和序列B的长度。
2.2背包问题背包问题是指给定一个背包的容量和一些物品的重量和价值,要求在不超过背包容量的情况下,选择若干物品放入背包中,使得背包中物品的总价值最大。
该问题可通过动态规划算法求解,具体步骤如下:1) 定义状态:假设dp[i][j]表示在前i个物品中选择若干物品放入容量为j的背包中,能够获得的最大价值。
2) 确定状态转移方程:考虑第i个物品,若将其放入背包,则dp[i][j] = dp[i-1][j-wi] + vi;若不将其放入背包,则dp[i][j] = dp[i-1][j]。
3) 解决子问题:从前往后计算dp数组中每个元素的值。
4) 构建整个问题的解:dp[n][C]即为最终的背包能够获得的最大价值,其中n为物品的个数,C为背包的容量。
动态规划在最短路径问题中的应用
动态规划在最短路径问题中的应用动态规划是一种解决复杂问题的方法,它将问题分解成更小的子问题,并通过保存子问题的解来避免重复计算,从而提高解决问题的效率。
最短路径问题是在图或者网络中找到从起点到终点的最短路径的问题,可以使用动态规划算法来解决。
本文将介绍动态规划在最短路径问题中的应用及其算法实现。
一、最短路径问题在最短路径问题中,我们需要在图或网络中找到从一个节点到另一个节点的最短路径。
最短路径可以通过边的权重来衡量,权重可以表示距离、时间、代价等。
最短路径问题有多种变体,其中最常见的是单源最短路径和全源最短路径。
单源最短路径问题是在给定一个起点的情况下,找到该起点到其他所有节点的最短路径。
最常用的算法是Dijkstra算法和Bellman-Ford算法。
二、动态规划原理动态规划通过保存子问题的解来避免重复计算,从而提高算法的效率。
它将问题分解成更小的子问题,并使用递推关系来计算子问题的解。
在最短路径问题中,我们可以使用动态规划来计算从起点到每个节点的最短路径。
首先,我们定义一个一维数组dist[]来保存从起点到每个节点的最短路径长度。
初始化时,dist[]的值为无穷大,表示路径长度未知。
然后,我们从起点开始逐步计算每个节点的最短路径长度。
具体的动态规划算法如下:1. 初始化dist[]为无穷大,起点的dist[]为0。
2. 对于每个节点v,按照拓扑顺序进行如下操作:2.1. 对于节点v的所有邻接节点u,如果dist[v] + weight(v, u) < dist[u],则更新dist[u]。
2.2. 拓扑顺序可以根据节点的拓扑顺序进行计算或者使用深度优先搜索(DFS)算法。
三、算法实现下面是使用动态规划算法解决最短路径问题的示例代码:```// 定义图的邻接矩阵和节点个数int graph[MAX][MAX];int numNodes;// 定义dist[]数组来保存最短路径长度int dist[MAX];// 定义拓扑排序和DFS算法需要的变量bool visited[MAX];stack<int> s;// 动态规划算法求解最短路径void shortestPath(int startNode) {// 初始化dist[]数组为无穷大for (int i = 0; i < numNodes; i++) {dist[i] = INT_MAX;}dist[startNode] = 0;// 拓扑排序或DFS计算每个节点的最短路径长度 for (int i = 0; i < numNodes; i++) {if (!visited[i]) {DFS(i);}}// 输出最短路径长度for (int i = 0; i < numNodes; i++) {cout << "Node " << i << ": " << dist[i] << endl; }}// 深度优先搜索void DFS(int node) {visited[node] = true;for (int i = 0; i < numNodes; i++) {if (graph[node][i] != 0 && !visited[i]) {DFS(i);}}s.push(node);}```以上示例代码演示了使用动态规划算法求解最短路径问题的基本原理和步骤。
基于Matlab的动态规划算法的实现及应用
基于Matlab的动态规划算法的实现及应用动态规划算法是一种解决多阶段决策问题的优化方法,它可以在每个阶段选择最优决策,并且在各个阶段间保持最优子结构,从而达到整体最优的目的。
在实际应用中,动态规划算法被广泛用于求解优化问题、路径规划、资源分配等方面。
本文将介绍基于Matlab 的动态规划算法的实现及应用,并深入探讨其在实际问题中的应用。
一、动态规划算法的基本原理动态规划算法的基本原理是通过将问题分解为子问题,并计算每个子问题的最优解,然后存储下来以供后续使用。
最终得到整体最优解。
动态规划算法通常包括以下几个步骤:1. 确定状态和状态转移方程:首先需要确定问题的状态,然后建立状态之间的转移关系,也就是状态转移方程。
状态转移方程描述了问题的子问题之间的关系,是动态规划算法的核心。
2. 初始化:初始化动态规划数组,将初始状态下的值填入数组中。
3. 状态转移:利用状态转移方程计算出各个阶段的最优解,并将其存储在动态规划数组中。
4. 求解最优解:根据动态规划数组中存储的各个阶段的最优解,可以得到整体最优解。
Matlab是一种强大的计算软件,具有丰富的数值计算函数和可视化工具,非常适合实现动态规划算法。
下面以一个简单的背包问题为例,介绍如何在Matlab中实现动态规划算法。
假设有n件物品,每件物品的重量为w[i],价值为v[i]。
现在有一个容量为C的背包,问如何选择物品放入背包,使得背包中物品的总价值最大。
我们需要确定问题的状态和状态转移方程。
在这个问题中,我们可以定义状态dp[i][j]表示在前i件物品中选择若干个放入容量为j的背包中所能获得的最大价值。
状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])然后,我们可以利用Matlab实现这个动态规划算法,代码如下:```matlabfunction max_value = knapsack(w, v, C)n = length(w);dp = zeros(n+1, C+1);for i = 1:nfor j = 1:Cif j >= w(i)dp(i+1,j+1) = max(dp(i,j+1), dp(i,j-w(i)+1)+v(i));elsedp(i+1,j+1) = dp(i,j+1);endendendmax_value = dp(n+1,C+1);end```三、动态规划算法在实际问题中的应用动态规划算法在实际问题中有着广泛的应用,下面以路径规划问题为例,介绍动态规划算法的应用。
最优控制问题的动态规划算法
最优控制问题的动态规划算法动态规划(Dynamic Programming)是一种解决多阶段决策问题的优化方法,对于最优控制问题而言,动态规划算法是一种有效的求解方法。
本文将介绍最优控制问题以及如何使用动态规划算法解决该类问题。
一、最优控制问题简介最优控制问题是在给定系统的一些约束条件下,通过对系统进行控制使得某个性能指标达到最优的问题。
该问题可以形式化地表示为数学模型,通常由状态方程、性能指标和约束条件组成。
二、动态规划算法原理动态规划算法采用自底向上的方法,通过建立递推关系,将原问题分解为若干个子问题,并以自底向上的顺序求解子问题的最优解,最终得到原问题的最优解。
三、最优控制问题的动态规划算法步骤1. 确定阶段数和状态变量:将最优控制问题划分为多个阶段,并定义每个阶段的状态变量。
状态变量可以是系统的状态、控制量或其他相关变量。
2. 建立状态转移方程:根据最优控制问题的约束条件和性能指标,建立各个阶段之间的状态转移方程。
状态转移方程表示了系统在不同阶段之间的演化过程。
3. 定义性能指标:根据最优控制问题的要求,定义系统的性能指标。
性能指标可以是系统的能量消耗、最大收益或其他相关指标。
4. 确定边界条件:确定最优控制问题的边界条件,即初始状态和终止状态。
5. 递推求解最优解:采用动态规划算法的核心步骤,即按照递推关系将问题分解为若干个子问题,并求解子问题的最优解。
6. 反推最优解:根据子问题的最优解,反向推导出原问题的最优解。
四、最优控制问题的应用举例以经典的倒立摆问题为例,倒立摆的目标是通过对摆的控制使其保持垂直。
假设倒立摆由质量为m的杆和质量为M的滑块组成。
其动态方程可以表示为:(这里给出具体的动态方程式,包含各个参数和变量)通过建立状态方程和性能指标,我们可以将倒立摆问题转化为最优控制问题。
然后利用动态规划算法求解。
五、总结最优控制问题是一类常见的优化问题,在实际应用中具有广泛的应用价值。
简述动态规划的最优性原理及应用
简述动态规划的最优性原理及应用1. 动态规划的最优性原理动态规划是一种求解最优化问题的方法,它通过将问题分解为更小的子问题,并通过保存中间结果来减少重复计算的次数。
1.1 最优子结构性质动态规划的最优性原理基于最优子结构性质。
最优子结构性质指的是一个问题的最优解包含其子问题的最优解。
当一个问题满足最优子结构性质时,我们可以用递归的方式将问题分解为更小的子问题,然后通过解决这些子问题来得到原问题的最优解。
1.2 重叠子问题性质动态规划的最优性原理还依赖于重叠子问题性质。
重叠子问题性质指的是在求解一个问题时,我们会多次遇到相同的子问题。
通过保存中间结果,我们可以避免对相同的子问题重复计算,从而提高算法的效率。
2. 动态规划的应用动态规划的最优性原理可以应用于解决各种不同的问题,包括最长公共子序列、背包问题、图的最短路径等。
2.1 最长公共子序列最长公共子序列问题是指在两个序列中找到一个最长的公共子序列,该子序列不需要在原序列中是连续的。
通过动态规划的最优性原理,我们可以将最长公共子序列问题分解为更小的子问题,然后通过求解这些子问题来得到原问题的最优解。
2.2 背包问题背包问题是指在给定的容量下,选择一些物品放入背包中,使得物品的总价值最大。
通过动态规划的最优性原理,我们可以将背包问题分解为更小的子问题,然后通过求解这些子问题来得到原问题的最优解。
2.3 图的最短路径图的最短路径问题是指在一个带有加权边的有向图中,找到从一个节点到另一个节点的最短路径。
通过动态规划的最优性原理,我们可以将图的最短路径问题分解为更小的子问题,然后通过求解这些子问题来得到原问题的最优解。
3. 动态规划的实现步骤使用动态规划求解问题的一般步骤如下:1.定义状态:明确问题所求解的状态是什么,一般用函数或数组表示。
2.确定状态转移方程:通过分析问题的最优子结构,构建状态转移方程,表示当前状态与前一个状态之间的关系。
3.初始化边界条件:根据问题的实际情况,初始化边界条件,来解决最小规模的子问题。
基于机器学习的动态规划优化算法研究与应用
基于机器学习的动态规划优化算法研究与应用动态规划是一种解决最优化问题的算法,它通过将问题分解成子问题,并逐步求解子问题的最优解,从而得到整个问题的最优解。
而随着机器学习技术的发展,基于机器学习的动态规划优化算法开始受到人们的关注。
一、动态规划与机器学习的结合动态规划是一种自下而上的算法,而机器学习则是一种自上而下的算法。
两者结合可以在动态规划中引入机器学习的结果,来优化动态规划的更高层次,提高算法的效率。
近年来,随着大数据和机器学习技术的广泛应用,越来越多的学者开始将机器学习方法引入动态规划中,以提高动态规划的计算效率。
二、基于机器学习的动态规划优化算法在实际应用中,动态规划算法面对的问题比较复杂,需要考虑多种因素。
而基于机器学习的动态规划优化算法,可以通过对历史数据的学习,自动选择最适合的解决方案,从而提高计算效率。
以路径规划问题为例,传统的动态规划算法需要考虑到众多的限制条件,例如路况、限速等等。
而基于机器学习的动态规划优化算法则可以根据历史数据,自动调整路径规划的参数,从而最大程度地避免瓶颈问题,提高了算法的计算效率。
三、机器学习的应用近年来,随着互联网、移动互联网和物联网技术的急速发展,数据量呈爆炸式增长。
基于机器学习的动态规划优化算法应用非常广泛,包括大数据分析、智能交通、制造业智能化等等。
在大数据分析中,动态规划算法可以通过学习历史数据,来对未来数据进行预测和分析,从而为企业提供更加准确的决策支持。
在智能交通领域,基于机器学习的动态规划优化算法可以通过历史路况数据的学习,来优化交通路线规划,提高道路利用效率,缓解交通拥堵问题。
在制造业智能化领域,动态规划算法可以针对生产任务进行规划,以实现更加高效的生产,同时通过学习生产数据,为企业提供更加合理的生产决策。
四、结语基于机器学习的动态规划优化算法是当前研究的热点之一,在多个领域都有广泛的应用前景。
未来随着数据规模的不断扩大,基于机器学习的动态规划优化算法将会在更多领域发挥出巨大的作用,为人们的生产和生活带来更多的便利和效率。
资源约束问题的动态规划算法及其应用研究
资源约束问题的动态规划算法及其应用研究随着社会经济的发展,我们面临着资源约束的问题。
资源有限但需求无限,如何利用有限的资源最大程度地满足人们的需求,成为了一个值得探讨的问题。
动态规划算法是一种解决资源约束问题的有效方法,本文将对该算法进行研究和应用。
一、动态规划算法基本概念和原理动态规划算法是一种解决最优化问题的方法,它是基于分治和递归的思想。
动态规划算法通常使用一个递推公式来解决问题,这个递推公式可以分解成子问题,并通过求解子问题的最优解来得到原问题的最优解。
这种思想可以用一个简单的例子来说明。
假如我们有3个数a、b和c,我们希望找出它们之间的最大值。
传统的思路是比较a、b和c之间的大小关系,找出最大值。
但是,如果我们将这个问题分解成子问题,即比较a和b的大小关系,然后将结果与c进行比较,就可以更容易得到问题的最优解。
动态规划算法是比较高效的算法,但也有一些缺点。
它所需要的空间较大,而且对于某些问题,它的解法可能过于复杂。
因此,在实际应用中,需要根据具体问题选择合适的算法。
二、资源约束问题的动态规划算法在资源约束问题中,我们需要考虑如何利用有限的资源最大化利益。
这种问题通常可以使用动态规划算法来解决。
在实际应用中,通常需要考虑以下几个因素。
(1)决策变量:决策变量是指在资源限制条件下需要做出的选择。
例如,生产某种产品时需要考虑生产数量、原材料成本等,这些都是决策变量。
(2)约束条件:约束条件是指在资源有限的情况下需要满足的条件。
例如,生产某种产品需要使用原材料,而原材料的数量是有限的,这就是一种约束条件。
(3)目标函数:目标函数是指要优化的目标。
例如,生产某种产品时需要考虑利润,这就是一种目标函数。
动态规划算法可以通过以下步骤来解决资源约束问题。
(1)定义状态:定义状态是指将问题分解成子问题,用状态表示子问题的解。
状态可以是一个变量,也可以是多个变量的组合。
在资源约束问题中,状态通常是指某种资源的可用数量。
动态规划算法
21(2+19),28(18+10),19(9+10),21(5+16)。
用同样的方法还可以将4阶数塔问题,变为3阶数塔问题。 …… 最后得到的1阶数塔问题,就是整个问题的最优解。
2.存储、求解: 1) 原始信息存储 原始信息有层数和数塔中的数据,层数用一个整型 变量n存储,数塔中的数据用二维数组data,存储成如
29 19 10
21 4
16
数塔及动态规划过程数据
总结
动态规划=贪婪策略+递推(降阶)+存储递推结果 贪婪策略、递推算法都是在“线性”地解决问题,而动态 规划则是全面分阶段地解决问题。可以通俗地说动态规划是 “带决策的多阶段、多方位的递推算法”。
2、算法框架
1.适合动态规划的问题征
动态规划算法的问题及决策应该具有三个性质:最优 化原理、无后向性、子问题重叠性质。 1) 最优化原理(或称为最佳原则、最优子结构)。 2) 无后向性(无后效性)。 3) 有重叠子问题。
2. 动态规划的基本思想
动态规划方法的基本思想是,把求解的问题分成许多阶 段或多个子问题,然后按顺序求解各子问题。最后一个子问 题就是初始问题的解。
由于动态规划的问题有重叠子问题的特点,为了减少重 复计算,对每一个子问题只解一次,将其不同阶段的不同状 态保存在一个二维数组中。
3. 设计动态规划算法的基本步骤
3、动态规划应用
【例1】 背包问题 给定 n种物品和一个容量为 C的背包,物品 i的重 量是 wi ,其价值为 vi ,背包问题是如何选择装入背包 的物品,使得装入背包中物品的总价值最大?
算法分析
前 i 个物品(1≤i≤n)定义的实例: 物品的重量分别为w1,…,wi, 价值分别为v1,…,vi, 背包的承重量为j(1≤j≤W)。 设V[i,j]为该实例的最优解的物品总价值,也就 是说,是能够放进承重量为j的背包中的前i个物品中 最有价值子集的总价值。 可以把前i个物品中能够放进承重量为j的背包中的 子集分成两个类别: 1、包括第i个物品的子集 2、不包括第i个物品的子集
动态规划算法在路径规划中的应用及优化方法
动态规划算法在路径规划中的应用及优化方法路径规划在现代社会中扮演着至关重要的角色,例如无人驾驶、物流配送、机器人导航等领域都需要高效准确的路径规划算法来实现任务的顺利完成。
动态规划算法作为一种常用的优化方法,被广泛应用于路径规划中,可以帮助我们找到最短、最优的路径。
本文将介绍动态规划算法的基本概念及原理,并讨论在路径规划中的具体应用以及优化方法。
首先,我们需要了解动态规划算法的基本概念和原理。
动态规划算法是一种将问题分解成多个子问题,通过解决子问题的最优解来得到原问题的最优解的方法。
其基本步骤包括定义状态,确定状态转移方程,设置边界条件和计算最优值。
通过利用子问题的解来避免重复计算,动态规划算法在路径规划中具有很高的效率和准确性。
在路径规划中,动态规划算法可以应用于不同场景,如最短路径问题、最优路径问题等。
以最短路径问题为例,我们需要从起点到终点寻找最短路径。
首先,我们定义一种数据结构来表示路径和距离,例如矩阵或图。
然后,我们根据状态转移方程,计算路径上每个节点的最短路径距离。
最后,根据计算出的最短路径距离,我们可以通过回溯得到最短路径。
动态规划算法的优化方法在路径规划中也非常重要。
一种常见的优化方法是采用剪枝策略,即通过合理设置条件来减少搜索的空间。
例如,在最短路径问题中,我们可以通过设置一个阈值来避免搜索那些已经超过最短路径距离的节点,从而减少计算量。
另一个优化方法是利用启发式算法,即根据问题的特殊性质设置启发函数,通过估计路径的代价来引导搜索方向,从而减少搜索的次数和时间复杂度。
此外,动态规划算法在路径规划中还可以与其他算法相结合,进一步提高效率和准确性。
例如,可以将动态规划算法与A*算法相结合,A*算法是一种启发式搜索算法,通过估计从当前节点到目标节点的代价来引导搜索过程。
将动态规划算法的最短路径距离作为A*算法的启发函数,可以加快搜索过程并找到更优的路径。
此外,还可以利用并行计算的优势进一步优化动态规划算法。
动态规划算法原理及应用
动态规划算法兴田(工业大学计算机学院软件工程1205班2)摘要:动态规划是解决最优化问题的基本方法,本文介绍了动态规划的基本思想和基本步骤,并通过几个实例的分析,研究了利用动态规划设计算法的具体途径。
关键词:动态规划算法Dynamic ProgrammingLiu xingtian(Zhe Jiang University Of Technology, Computer Science and Technology Campus,Software Engineering 120526630512)Abstract:Dynamic Programming is the most effective way to solve the problem of optimization .This dissertation introduce the thinking of Dynamic Programming and the step to using Dynamic Programming ,it also gives some examples to help analysis Dynamic Programming and the specific method to use Dynamic Programming .Key words : Dynamic Programming , Alsgorithm1.引言规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。
在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。
所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。
将各个阶段的决策综合起来构成一个决策序列,称为一个策略。
计算机基础知识了解计算机算法的动态规划和贪心算法
计算机基础知识了解计算机算法的动态规划和贪心算法计算机基础知识:了解计算机算法的动态规划和贪心算法计算机算法是指在计算机科学中为解决问题而设计的一系列计算步骤。
它是实现特定功能的工具,在计算机科学和软件工程中扮演着重要的角色。
动态规划和贪心算法是计算机算法中常见的两种策略。
本文将详细介绍这两种算法的原理和应用。
一、动态规划算法动态规划算法(Dynamic Programming),又称动态优化算法,是一种将复杂问题分解为更简单子问题的方法,并使用子问题的解来构建原问题的解。
它通常适用于具有重叠子问题和最优子结构性质的问题。
动态规划算法的基本步骤如下:1. 定义问题的状态:将原问题划分为若干个子问题,找出子问题与原问题之间的关系;2. 构造状态转移方程:通过递推或迭代的方式,计算出子问题的解;3. 解决问题:根据状态转移方程,从子问题的解中推导出原问题的最优解;4. 构建解的过程:根据所得的最优解,记录下每一步的决策,以便后续的重建。
动态规划算法的经典应用之一是背包问题。
背包问题是在限定容量的背包中选择合适的物品,使得物品的总价值最大。
通过动态规划算法,我们可以通过计算子问题的解来得到背包问题的最优解。
二、贪心算法贪心算法(Greedy Algorithm)是一种基于贪心策略的算法。
它通过每一步的局部最优选择来达到整体最优解。
贪心算法在每一步的选择中都做出当前最好的选择,而不考虑对后续步骤的影响。
贪心算法的基本思想是:1. 定义问题的解空间和评价标准:确定问题的解空间以及如何评价每个解的好坏;2. 构建解的过程:逐步构建解,每一步都选择当前最优的子解,直到得到最终的解;3. 检查解的有效性:验证得到的解是否符合问题的要求。
贪心算法的经典应用之一是最小生成树问题。
最小生成树问题是在一张无向连通图中选择一棵权值最小的生成树。
贪心算法可以通过每次选择权值最小的边来构建最小生成树。
三、动态规划与贪心算法的比较动态规划算法和贪心算法有相似之处,但也存在一些明显的差异。
wagner法
wagner法Wagner法,又称为Wagner-Whitin算法,是一种经典的生产调度算法。
该算法主要用于解决生产调度优化问题,可以帮助制定最优的生产计划和库存管理策略。
本文将从以下三个方面来介绍Wagner法:算法原理、应用场景以及优缺点。
一、算法原理Wagner法是一种动态规划算法。
该算法主要基于贝尔曼方程,通过计算在不同时间段的生产成本和库存成本,以确定最优的生产计划和库存策略。
在运用Wagner法时,首先需要确定各生产批次之间的时间间隔以及各批次的生产量。
然后,需要计算在每个时间段内所需的生产量和库存量,以及在每个时间段结束时的成本总和。
最后,在所有时间段结束时,可以得到最小的成本总和,这也就是Wagner算法的优化目标。
二、应用场景Wagner法常常被应用于生产调度和库存管理领域中。
对于一些需要经常性进行生产和补货的企业来说,使用Wagner法可以帮助他们合理规划生产和管理库存,并在最短的时间内实现成本最小化,提高企业的盈利能力。
此外,在一些物流或供应链管理中,Wagner法也可以用来优化运输成本。
通过合理规划货物的配送时间和运输量,可以最大限度地降低运输成本,优化供应链管理流程。
三、优缺点Wagner法的优点在于可以得到最优解以及实现成本最小化。
而且,该算法的计算比较简单,适用于不同规模的企业。
不过,Wagner法也存在一些缺点。
首先,对于许多复杂的生产调度问题而言,Wagner法可能无法找到最优解。
其次,它对于产品的需求和成本等参数有着相对较高的敏感度,在实际应用中可能需要进行多次的调整和优化。
总结Wagner法是一种经典的生产调度算法,其应用范围广泛,能够帮助企业实现成本最小化和库存管理优化。
尽管该算法存在一些缺点,但是在实际中仍然具有很高的应用价值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动态规划算法原理及其应用研究系别:x x x 姓名:x x x 指导教员: x x x2012年5月20日摘要:动态规划是解决最优化问题的基本方法,本文介绍了动态规划的基本思想和基本步骤,并通过几个实例的分析,研究了利用动态规划设计算法的具体途径。
关键词:动态规划多阶段决策1.引言规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。
在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。
所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。
将各个阶段的决策综合起来构成一个决策序列,称为一个策略。
显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。
当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。
多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。
动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。
在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。
动态规划的主要创始人是美国数学家贝尔曼(Bellman)。
20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。
1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。
该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。
在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。
爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。
梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数学性质做出了巨大的贡献。
动态规划问世以来,在工程技术、经济管理等社会各个领域都有着广泛的应用,并且获得了显著的效果。
在经济管理方面,动态规划可以用来解决最优路径问题、资源分配问题、生产调度问题、库存管理问题、排序问题、设备更新问题以及生产过程最优控制问题等,是经济管理中一种重要的决策技术。
许多规划问题用动态规划的方法来处理,常比线性规划或非线性规划更有效。
特别是对于离散的问题,由于解析数学无法发挥作用,动态规划便成为了一种非常有用的工具。
动态规划可以按照决策过程的演变是否确定分为确定性动态规划和随机性动态规划;也可以按照决策变量的取值是否连续分为连续性动态规划和离散性动态规划。
虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。
2.动态规划的基本思想一般来说,只要问题可以划分成规模更小的子问题,并且原问题的最优解中包含了子问题的最优解,则可以考虑用动态规划解决。
动态规划的实质是分治思想和解决冗余,因此,动态规划是一种将问题实例分解为更小的、相似的子问题,并存储子问题的解而避免计算重复的子问题,以解决最优化问题的算法策略。
由此可知,动态规划法与分治法和贪心法类似,它们都是将问题实例归纳为更小的、相似的子问题,并通过求解子问题产生一个全局最优解。
其中贪心法的当前选择可能要依赖已经作出的所有选择,但不依赖于有待于做出的选择和子问题。
因此贪心法自顶向下,一步一步地作出贪心选择;而分治法中的各个子问题是独立的(即不包含公共的子子问题),因此一旦递归地求出各子问题的解后,便可自下而上地将子问题的解合并成问题的解。
但不足的是,如果当前选择可能要依赖子问题的解时,则难以通过局部的贪心策略达到全局最优解;如果各子问题是不独立的,则分治法要做许多不必要的工作,重复地解公共的子问题。
解决上述问题的办法是利用动态规划。
该方法主要应用于最优化问题,这类问题会有多种可能的解,每个解都有一个值,而动态规划找出其中最优(最大或最小)值的解。
若存在若干个取最优值的解的话,它只取其中的一个。
在求解过程中,该方法也是通过求解局部子问题的解达到全局最优解,但与分治法和贪心法不同的是,动态规划允许这些子问题不独立,也允许其通过自身子问题的解作出选择,该方法对每一个子问题只解一次,并将结果保存起来,避免每次碰到时都要重复计算。
因此,动态规划法所针对的问题有一个显著的特征,即它所对应的子问题树中的子问题呈现大量的重复。
动态规划法的关键就在于,对于重复出现的子问题,只在第一次遇到时加以求解,并把答案保存起来,让以后再遇到时直接引用,不必重新求解。
3.动态规划的基本概念动态规划的数学描述离不开它的一些基本概念与符号,因此有必要在介绍多阶段决策过程的数学描述的基础上,系统地介绍动态规划的一些基本概念。
多阶段决策问题如果一类活动过程可以分为若干个互相联系的阶段,在每一个阶段都需作出决策,一个阶段的决策确定以后,常常影响到下一个阶段的决策,从而就完全确定了一个过程的活动路线,则称它为多阶段决策问题。
各个阶段的决策构成一个决策序列,称为一个策略。
每一个阶段都有若干个决策可供选择,因而就有许多策略供我们选取,对应于一个策略可以确定活动的效果,这个效果可以用数量来确定。
策略不同,效果也不同,多阶段决策问题,就是要在可以选择的那些策略中间,选取一个最优策略,使在预定的标准下达到最好的效果.动态规划问题中的术语阶段:把所给求解问题的过程恰当地分成若干个相互联系的阶段,以便于求解,过程不同,阶段数就可能不同.描述阶段的变量称为阶段变量。
在多数情况下,阶段变量是离散的,用k表示。
此外,也有阶段变量是连续的情形。
如果过程可以在任何时刻作出决策,且在任意两个不同的时刻之间允许有无穷多个决策时,阶段变量就是连续的。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因素。
在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点。
过程的状态通常可以用一个或一组数来描述,称为状态变量。
一般,状态是离散的,但有时为了方便也将状态取成连续的。
当然,在现实生活中,由于变量形式的限制,所有的状态都是离散的,但从分析的观点,有时将状态作为连续的处理将会有很大的好处。
此外,状态可以有多个分量(多维情形),因而用向量来代表;而且在每个阶段的状态维数可以不同。
无后效性:我们要求状态具有下面的性质:如果给定某一阶段的状态,则在这一阶段以后过程的发展不受这阶段以前各段状态的影响,所有各阶段都确定时,整个过程也就确定了。
换句话说,过程的每一次实现可以用一个状态序列表示,在前面的例子中每阶段的状态是该线路的始点,确定了这些点的序列,整个线路也就完全确定。
从某一阶段以后的线路开始,当这段的始点给定时,不受以前线路(所通过的点)的影响。
状态的这个性质意味着过程的历史只能通过当前的状态去影响它的未来的发展,这个性质称为无后效性。
决策:一个阶段的状态给定以后,从该状态演变到下一阶段某个状态的一种选择(行动)称为决策。
在最优控制中,也称为控制。
在许多间题中,决策可以自然而然地表示为一个数或一组数。
不同的决策对应着不同的数值。
描述决策的变量称决策变量,因状态满足无后效性,故在每个阶段选择决策时只需考虑当前的状态而无须考虑过程的历史。
决策变量的范围称为允许决策集合。
策略:由每个阶段的决策组成的序列称为策略。
对于每一个实际的多阶段决策过程,可供选取的策略有一定的范围限制,这个范围称为允许策略集合。
允许策略集合中达到最优效果的策略称为最优策略。
给定k阶段状态变量x(k)的值后,如果这一阶段的决策变量一经确定,第k+1阶段的状态变量x(k+1)也就完全确定,即x(k+1)的值随x(k)和第k阶段的决策u(k)的值变化而变化,那么可以把这一关系看成(x(k),u(k))与x(k+1)确定的对应关系,用x(k+1)=Tk(x(k),u(k))表示。
这是从k阶段到k+1阶段的状态转移规律,称为状态转移方程。
最优性原理: 作为整个过程的最优策略,它满足:相对前面决策所形成的状态而言,余下的子策略必然构成“最优子策略”。
4.动态规划求解的基本步骤动态规划所处理的问题是一个多阶段决策问题,一般由初始状态开始,通过对中间阶段决策的选择,达到结束状态。
这些决策形成了一个决策序列,同时确定了完成整个过程的一条活动路线(通常是求最优的活动路线)。
如图所示。
动态规划的设计都有着一定的模式,一般要经历以下几个步骤。
初始状态→│决策1│→│决策2│→…→│决策n│→结束状态动态规划决策过程示意图(1)划分阶段:,按照问题的时间或空间特征,把问题分为若干个阶段。
在划分阶段时,注意划分后的阶段一定要是有序的或者是可排序的,否则问题就无法求解。
(2)确定状态和状态变量:将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。
当然,状态的选择要满足无后效性。
(3)确定决策并写出状态转移方程:因为决策和状态转移有着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。
所以如果确定了决策,状态转移方程也就可写出。
但事实上常常是反过来做,根据相邻两段各状态之间的关系来确定决策。
(4)寻找边界条件:给出的状态转移方程是一个递推式,需要一个递推的终止条件或边界条件。
(5)程序设计实现:动态规划的主要难点在于理论上的设计,一旦设计完成,实现部分就会非常简单。
根据上述动态规划设计的步骤,可得到大体解题框架如图所示。
动态规划设计的一般模式图上述提供了动态规划方法的一般模式,对于简单的动态规划问题,可以按部就班地进行动态规划的设计。
下面,给出一个利用动态规划方法求解的典型例子。
<数字三角形问题> 上图示出了一个数字三角形宝塔。
数字三角形中的数字为不超过100的整数。
现规定从最顶层走到最底层,每一步可沿左斜线向下或右斜线向下走。
任务一:假设三角形行数≤10,键盘输入一个确定的整数值M,编程确定是否存在一条路径,使得沿着该路径所经过的数字的总和恰为M,若存在则给出所有路径,若不存在,则输出“NO Answer!”字样。
任务二:假设三角形行数≤100,编程求解从最顶层走到最底层的一条路径,使得沿着该路径所经过的数字的总和最大,输出最大值。