2020年浙江省台州市中考数学试卷(原卷版)

合集下载

2020年浙江省台州市中考数学试卷(含答案解析)

2020年浙江省台州市中考数学试卷(含答案解析)

2020年浙江省台州市中考数学试卷副标题题号一二三四总分得分一、选择题(本大题共10小题,共40.0分)1.计算1−3的结果是()A. 2B. −2C. −4D. 42.用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A. B. C. D.3.计算2a2⋅3a4的结果是()A. 5a6B. 5a8C. 6a6D. 6a84.无理数√10在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间5.在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是()A. 中位数B. 众数C. 平均数D. 方差6.如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,−1)对应点的坐标为()A. (0,0)B. (1,2)C. (1,3)D. (3,1)AB同7.如图,已知线段AB,分别以A,B为圆心,大于12样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A. AB平分∠CADB. CD平分∠ACBC. AB⊥CDD. AB=CDA. 由②推出③,由③推出①B. 由①推出②,由②推出③C. 由③推出①,由①推出②D. 由①推出③,由③推出②9.如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A. B.C. D.10.把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A. 7+3√2B. 7+4√2C. 8+3√2D. 8+4√2二、填空题(本大题共6小题,共30.0分)11.因式分解:x2−9=______.12.计算1x −13x的结果是______.13.如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是______.14.甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s甲2与S乙2,则s甲2______S乙2.(填“>”、“=”、“<“中的一个)15. 如图,在△ABC 中,D 是边BC 上的一点,以AD 为直径的⊙O 交AC 于点E ,连接DE.若⊙O 与BC 相切,∠ADE =55°,则∠C 的度数为______. 16. 用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a ,小正方形地砖面积为b ,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD 的面积为______.(用含a ,b 的代数式表示)三、计算题(本大题共1小题,共8.0分) 17. 解方程组:{x −y =13x +y =7.四、解答题(本大题共7小题,共72.0分) 18. 计算:|−3|+√8−√2.19. 人字折叠梯完全打开后如图1所示,B ,C 是折叠梯的两个着地点,D 是折叠梯最高级踏板的固定点.图2是它的示意图,AB =AC ,BD =140cm ,∠BAC =40°,求点D 离地面的高度DE.(结果精确到0.1cm ;参考数据sin70°≈0.94,cos70°≈20.小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1−y2)与(y2−y3)的大小:y1−y2______y2−y3.21.如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.22.新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端参与度0.2~0.40.4~0.60.6~0.80.8~1人数方式录播416128直播2101612(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4以下的共有多少人?23.如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M.E是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF.(1)求证:△BEF是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.24.用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为ℎ(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4ℎ(H−ℎ).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高hcm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.答案和解析1.【答案】B【解析】解:1−3=1+(−3)=−2.故选:B.根据有理数的加减法法则计算即可判断.本题主要考查了有理数的减法法则,减去一个数,等于加上这个数的相反数.2.【答案】A【解析】解:根据主视图的意义可知,选项A符合题意,故选:A.从正面看所得到的图形即为主视图,因此选项A的图形符合题意.考查简单几何体的三视图的画法,从不同方向对问题进行正投影所得到的图形分别为主视图、左视图、俯视图.3.【答案】C【解析】解:2a2⋅3a4=6a6.故选:C.直接利用单项式乘单项式运算法则计算得出答案.此题主要考查了单项式乘单项式,正确掌握相关运算法则是解题关键.4.【答案】B【解析】解:∵3<√10<4,故选:B.由√9<√10<√16可以得到答案.此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.5.【答案】A【解析】解:班级数学成绩排列后,最中间一个数或最中间两个分数的平均数是这组成绩的中位数,半数同学的成绩位于中位数或中位数以下,小明成绩超过班级半数同学的成绩所用的统计量是中位数,故选:A.根据中位数的意义求解可得.本题主要考查统计量的选择,解题的关键是掌握中位数、众数、平均数及方差的定义和意义.6.【答案】D【解析】解:∵把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,顶点C(0,−1),∴C(0+3,−1+2),即C(3,1),故选:D.利用平移规律进而得出答案.此题主要考查了坐标与图形变化−平移,正确得出对应点位置是解题关键.7.【答案】D【解析】解:由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD,故选:D.根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案.本题主要考查作图−基本作图,解题的关键是掌握菱形的判定与性质.8.【答案】A【解析】解:对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B,C,D错误,故选:A.根据对角线相等的四边形推不出是正方形或矩形即可判断.本题考查正方形的判定和性质,矩形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.【答案】C【解析】解:小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,在右侧上升时,情形与左侧相反,故选:C.小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,由此即可判断.本题考查动点问题函数图象,解题的关键是理解题意,灵活运用所学知识解决问题.10.【答案】D【解析】解:如图,过点M作MH⊥A′R于H,过点N作NJ⊥A′W于J.由题意△EMN是等腰直角三角形,EM=EN=2,MN=2√2,∵四边形EMHK是矩形,∴EK=A′K=MH=1,KH=EM=2,∵△RMH是等腰直角三角形,∴RH=MH=1,RM=√2,同法可证NW=√2,由题意AR=RA′=A′W=WD=4,∴AD=AR+RM+MN+NW+DW=4+√2+2√2+√2+4=8+4√2,故选:D.如图,过点M作MH⊥A′R于H,过点N作NJ⊥A′W于J.想办法求出AR,RM,MN,NW,WD即可解决问题.本题考查翻折变换,等腰直角三角形的判定和性质,矩形的性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形或特殊四边形解决问题.11.【答案】(x+3)(x−3)【解析】【分析】本题考查了因式分解−运用公式法,熟练掌握平方差公式是解本题的关键.原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x−3),故答案为:(x+3)(x−3).12.【答案】23x【解析】解:1x −13x=33x−13x=23x.故答案为:23x.先通分,再相减即可求解.考查了分式加减法,把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.13.【答案】6【解析】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵DE//AB,DF//AC,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.根据三等分点的定义可求EF的长,再根据等边三角形的判定与性质即可求解.考查了等边三角形的性质,平行线的性质,关键是证明△DEF是等边三角形.14.【答案】<【解析】解:由折线统计图得乙同学的成绩波动较大,所以s甲2<S乙2.故答案为:<.利用折线统计图可判断乙同学的成绩波动较大,然后根据方差的意义可得到甲、乙的方差的大小.本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了方差的意义.15.【答案】55°【解析】解:∵AD为⊙O的直径,∴∠AED=90°,∴∠ADE+∠DAE=90°;∵⊙O与BC相切,∴∠ADC=90°,∴∠C+∠DAE=90°,∴∠C=∠ADE,∵∠ADE=55°,∴∠C=55°.由直径所对的圆周角为直角得∠AED =90°,由切线的性质可得∠ADC =90°,然后由同角的余角相等可得∠C =∠ADE =55°.本题考查了切线的性质、圆的相关概念及性质及互余关系等知识点,熟练掌握圆的相关性质是解题的关键. 16.【答案】a +b【解析】解:如图,正方形ABCD 是由4个直角三角形和一个小正方形组成,4个直角三角形的面积和等于大正方形的面积a.故正方形ABCD 的面积=a +b .故答案为a +b .如图,正方形ABCD 是由4个直角三角形和一个小正方形组成,4个直角三角形的面积和等于大正方形的面积a ,由此即可解决问题.本题考查中心对称,全等三角形的判定和性质,图形的拼剪等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型. 17.【答案】解:{x −y =1 ①3x +y =7 ②,①+②得:4x =8, 解得:x =2,把x =2代入①得:y =1,则该方程组的解为{x =2y =1.【解析】方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【答案】解:原式=3+2√2−√2 =3+√2.【解析】直接利用绝对值的性质和二次根式的性质化简得出答案. 此题主要考查了实数运算,正确化简二次根式是解题关键. 19.【答案】解:过点A 作AF ⊥BC 于点F ,则AF//DE , ∴∠BDE =∠BAF ,∵AB =AC ,∠BAC =40°, ∴∠BDE =∠BAF =20°,∴DE =BD ⋅cos20°≈140×0.94=131.6(cm).答:点D离地面的高度DE约为131.6cm.【解析】过点A作AF⊥BC于点F,根据等腰三角形的三线合一性质得∠BAF的度数,进而得∠BDE的度数,再解直角三角形得结果.本题主要考查了解直角三角形,等腰三角形的性质,关键是构造直角三角形求得∠BDE的度数.20.【答案】>【解析】解:(1)设y与x之间的函数关系式为:y=kx,把(3,400)代入y=kx 得,400=k3,解得:k=1200,∴y与x之间的函数关系式为y=1200x;(2)把x=6,8,10分别代入y=1200x 得,y1=12006=200,y2=12008=150,y3=120010=120,∵y1−y2=200−150=50,y2−y3=150−120=30,∵50>30,∴y1−y2>y2−y3,故答案为:>.(1)设y与x之间的函数关系式为:y=kx ,把(3,400)代入y=kx即可得到结论,(2)把x=6,8,10分别代入y=1200x得到求得y1,y2,y3值,即可得到结论.本题考查了反比例函数的应用,待定系数法求函数的解析式,反比例函数的性质,正确的理解题意是解题的关键.21.【答案】证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC−∠ABD=∠ACB−∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.【解析】(1)由“SAS”可证△ABD≌△ACE;(2)由全等三角形的性质可得∠ABD=∠ACE,由等腰三角形的性质可得∠ABC=∠ACB,可求∠OBC=∠OCB,可得BO=CO,即可得结论.本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,灵活运用全等三角形的性质是本题的关键.22.【答案】解:(1)“直播”教学方式学生的参与度更高:理由:“直播”参与度在0.6以上的人数为28人,“录播”参与度在0.6以上的人数为20人,参与度在0.6以上的“直播”人数远多于“录播”人数,所以“直播”教学方式学生的参与度更高;(2)12÷40=0.3=30%,答:估计该学生的参与度在0.8及以上的概率是30%;(3)“录播”总学生数为800×11+3=200(人),“直播”总学生数为800×31+3=600(人),所以“录播”参与度在0.4以下的学生数为200×440=20(人),“直播”参与度在0.4以下的学生数为600×240=30(人),所以参与度在0.4以下的学生共有20+30=50(人).【解析】(1)根据表格数据得出两种教学方式参与度在0.6以上的人数,比较即可作出判断;(2)用表格中“直播”教学方式学生参与度在0.8以上的人数除以被调查的总人数即可估计对应概率;(3)先根据“录播”和“直播”的人数之比为1:3及该校学生总人数求出“直播”、“录播”人数,再分别乘以两种教学方式中参与度在0.4以下人数所占比例求出对应人数,再相加即可得出答案.本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.23.【答案】(1)证明:∵∠EFB=∠∠EDB,∠EBF=∠EDF,∴∠EFB+∠EBF=∠EDB+∠EDF=∠ADB=90°,∴∠BEF=90°,∴△BEF是直角三角形.(2)证明:∵BC=BD,∴∠BDC=∠BCD,∵∠EFB=∠EDB,∴∠EFB=∠BCD,∵AC=AD,BC=BD,∴AB⊥CD,∴∠AMC=90°,∵∠BCD+∠ACD=∠ACD+∠CAB=90°,∴∠BCD =∠CAB ,∴∠BFE =∠CAB ,∵∠ACB =∠FEB =90°,∴△BEF∽△BCA .(3)解:设EF 交AB 于J.连接AE .∵EF 与AB 互相平分,∴四边形AFBE 是平行四边形,∴∠EFA =∠FEB =90°,即EF ⊥AD ,∵BD ⊥AD ,∴EF//BD ,∵AJ =JB ,∴AF =DF ,∴FJ =12BD =m 2, ∴EF =m ,∵△ABC∽△CBM ,∴BC :MB =AB :BC ,∴BM =m 26,∵△BEJ∽△BME ,∴BE :BM =BJ :BE ,∴BE =√2,∵△BEF∽△BCA ,∴AC EF =BC BE , 即√36−m 2m =m m √2,解得m =2√3(负根已经舍弃).【解析】(1)想办法证明∠BEF =90°即可解决问题(也可以利用圆内接四边形的性质直接证明).(2)根据两角对应相等两三角形相似证明.(3)证明四边形AFBE 是平行四边形,推出FJ =12BD =m 2,EF =m ,由△ABC∽△CBM ,可得BM =m 26,由△BEJ∽△BME ,可得BE =√2,由△BEF∽△BCA ,推出AC EF =BCBE ,由此构建方程求解即可.本题属于圆综合题,考查了圆周角定理,相似三角形的判定和性质平行四边形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题. 24.【答案】解:(1)∵s 2=4ℎ(H −ℎ),∴当H =20时,s 2=4ℎ(20−ℎ)=−4(ℎ−10)2+400,∴当ℎ=10时,s 2有最大值400,∴当ℎ=10时,s 有最大值20cm .∴当h 为何值时,射程s 有最大值,最大射程是20cm ;(2)∵s 2=4ℎ(20−ℎ),设存在a ,b ,使两孔射出水的射程相同,则有:4a(20−a)=4b(20−b),∴20a−a2=20b−b2,∴a2−b2=20a−20b,∴(a+b)(a−b)=20(a−b),∴(a−b)(a+b−20)=0,∴a−b=0,或a+b−20=0,∴a=b或a+b=20;)2+(20+m)2,(3)设垫高的高度为m,则s2=4ℎ(20+m−ℎ)=−4(ℎ−20+m2∴当ℎ=20+m时,s max=20+m=20+16,2=18.∴m=16,此时ℎ=20+m2∴垫高的高度为16cm,小孔离水面的竖直距离为18cm.【解析】(1)将s2=4ℎ(20−ℎ)写成顶点式,按照二次函数的性质得出s2的最大值,再求s2的算术平方根即可;(2)设存在a,b,使两孔射出水的射程相同,则4a(20−a)=4b(20−b),利用因式分解变形即可得出答案;(3)设垫高的高度为m,写出此时s2关于h的函数关系式,根据二次函数的性质可得答案.本题考查了二次函数在实际问题中的应用,理清题中的数量关系并明确二次函数的性质是解题的关键.。

2020年浙江省台州市中考数学试卷 (Word版,含答案)

2020年浙江省台州市中考数学试卷 (Word版,含答案)

2020年台州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分)1.计算1﹣3的结果是()A.2 B.﹣2 C.4 D.﹣42.用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A.B.C.D.3.计算2a2•3a4的结果是()A.5a6B.5a8C.6a6D.6a84.无理数在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是()A.中位数B.众数C.平均数D.方差6.如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,﹣1)对应点的坐标为()A.(0,0)B.(1,2)C.(1,3)D.(3,1)7.如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD8.下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②9.如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A.B.C.D.10.把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A.7+3B.7+4C.8+3D.8+4二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:x2﹣9=.12.计算的结果是.13.如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F 沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.14.甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s甲2与S乙2,则s甲2S乙2.(填“>”、“=”、“<“中的一个)15.如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为.16.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为.(用含a,b的代数式表示)三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.计算:|﹣3|+﹣.18.解方程组:.19.人字折叠梯完全打开后如图1所示,B,C是折叠梯的两个着地点,D是折叠梯最高级踏板的固定点.图2是它的示意图,AB=AC,BD=140cm,∠BAC=40°,求点D离地面的高度DE.(结果精确到0.1cm;参考数据sin70°≈0.94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94)20.小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1﹣y2)与(y2﹣y3)的大小:y1﹣y2y2﹣y3.21.如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.22.新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).0.2~0.4 0.4~0.6 0.6~0.8 0.8~1参与度人数方式录播 4 16 12 8直播 2 10 16 12 (1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4以下的共有多少人?23.如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB 于点M.E是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF.(1)求证:△BEF是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.24.用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4h(H﹣h).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高hcm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.参考答案一、BACBA DDACD二、11.(x+3)(x﹣3).12..13.6.14.<.15.55°.16.a+b.三、17.解:原式=3+2﹣=3+.18.解:,①+②得:4x=8,解得:x=2,把x=2代入①得:y=1,则该方程组的解为19.解:过点A作AF⊥BC于点F,则AF∥DE,∴∠BDE=∠BAF,∵AB=AC,∠BAC=40°,∴∠BDE=∠BAF=20°,∴DE=BD•cos20°≈140×0.94=131.6(cm).答:点D离地面的高度DE约为131.6cm.20.解:(1)设y与x之间的函数关系式为:y=,把(3,400)代入y=得,400=,解得:k=1200,∴y与x之间的函数关系式为y=;(2)把x=6,8,10分别代入y=得,y1==200,y2==150,y3==120,∵y1﹣y2=200﹣150=50,y2﹣y3=150﹣120=30,∵50>30,∴y1﹣y2>y2﹣y3,21.证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.22.解:(1)“直播”教学方式学生的参与度更高:理由:“直播”参与度在0.6以上的人数为28人,“录播”参与度在0.6以上的人数为20人,参与度在0.6以上的“直播”人数远多于“录播”人数,所以“直播”教学方式学生的参与度更高;(2)12÷40=0.3=30%,答:估计该学生的参与度在0.8及以上的概率是30%;(3)“录播”总学生数为800×=200(人),“直播”总学生数为800×=600(人),所以“录播”参与度在0.4以下的学生数为200×=20(人),“直播”参与度在0.4以下的学生数为600×=30(人),所以参与度在0.4以下的学生共有20+30=50(人).23.(1)证明:∵∠EFB=∠∠EDB,∠EBF=∠EDF,∴∠EFB+∠EBF=∠EDB+∠EDF=∠ADB=90°,∴∠BEF=90°,∴△BEF是直角三角形.(2)证明:∵BC=BD,∴∠BDC=∠BCD,∵∠EFB=∠EDB,∴∠EFB=∠BCD,∵AC=AD,BC=BD,∴AB⊥CD,∴∠AMC=90°,∵∠BCD+∠ACD=∠ACD+∠CAB=90°,∴∠BCD=∠CAB,∴∠BFE=∠CAB,∵∠ACB=∠FEB=90°,∴△BEF∽△BCA.(3)解:设EF交AB于J.连接AE.∵EF与AB互相平分,∴四边形AFBE是平行四边形,∴∠EFA=∠FEB=90°,即EF⊥AD,∵BD⊥AD,∴EF∥BD,∵AJ=JB,∴AF=DF,∴FJ=BD=,∴EF=m,∵△ABC∽△CBM,∴BC:MB=AB:BC,∴BM=,∵△BEJ∽△BME,∴BE:BM=BJ:BE,∴BE=,∵△BEF∽△BCA,∴=,即=,解得m=2(负根已经舍弃).24.解:(1)∵s2=4h(H﹣h),∴当H=20时,s2=4h(20﹣h)=﹣4(h﹣10)2+400,∴当h=10时,s2有最大值400,∴当h=10时,s有最大值20cm.∴当h为何值时,射程s有最大值,最大射程是20cm;(2)∵s2=4h(20﹣h),设存在a,b,使两孔射出水的射程相同,则有:4a(20﹣a)=4b(20﹣b),∴20a﹣a2=20b﹣b2,∴a2﹣b2=20a﹣20b,∴(a+b)(a﹣b)=20(a﹣b),∴(a﹣b)(a+b﹣20)=0,∴a﹣b=0,或a+b﹣20=0,∴a=b或a+b=20;(3)设垫高的高度为m,则s2=4h(20+m﹣h)=﹣4+(20+m)2,∴当h=时,s max=20+m=20+16,∴m=16,此时h==18.∴垫高的高度为16cm,小孔离水面的竖直距离为18cm.。

2020年浙江台州市中考数学试题(含答案)

2020年浙江台州市中考数学试题(含答案)

2020年浙江台州市中考数学试题一、选择题(本题有10小题,每小题4分,共40分. 请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1. 计算1-3的结果是( ▲ )A. 2B. -2C. 4D. -42. 用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是( ▲ )3. 计算2a 3·3 a 4的结果是( ▲ )A . 5a 6 B. 5a 8 C. 6a 6 D. 6a 8 4. 无理数√10在( ▲ )A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间 5. 在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折 得出这个结论所用的统计量是( ▲ )A. 中位数B. 众数C. 平均数D. 方差 6. 如图,把△ABC 先向右平移3个单位,再向上平移2个单位得到△DEF , 则顶点C (0,-1)对应点的坐标为( ▲ )A. (0,0)B. (1,2)C. (1,3)D. (3,1)7. 如图,已知线段AB ,分别以A ,B 为圆心,大于12AB 同样长为半径画弧,两弧交于点C ,D ,连接AC ,AD ,BC ,BD ,CD ,则下列说法错误的是( ▲ )A .AB 平分∠CAD B. CD 平分∠ACB C. AB ⊥CD D AB=CD8.下是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形. 下列推理过程正确的是( ▲ )A 由②推出③,由③推出① B. 由①推出②,由②推出③ C. 由③推出①,由①推出② D. 由①推出③,由③推出②A.B.C.D.y x第6图BA F DCE DC9.如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v (单位:m/s )与运动时间t (单位:s )的函数图象如图2,则该小球的运动路程y (单位:m )与运动时间t (单位:s )之间的函数图象大致是( ▲ )10. 把一张宽为1cm 的长方形纸片ABCD 折叠成如图所示的阴影图案,顶点A ,D 互相重合,中间空白部分是以E 为直角顶点,腰长为2cm 的等腰直角三角形,则纸片的长AD (单位:cm )为( ▲ ) A. 7+3√2 B. 7+4√2 C. 8+3√2 D. 8+4√2 二、填空题(本题有6小题,每小题5分,共30分) 11. 因式分解:x 2-9= ▲ . 12. 计算1x −13x的结果是 ▲ .13. 如图,等边三角形纸片ABC 的边长为6,E ,F 是边BC 上的三等分点. 分别过点E ,F 沿着平行于BA ,CA 方向各剪一刀,则剪下的△DEF 的周长是 ▲ .14. 甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s 甲2与S 乙2,则s 甲2 ▲S 乙2填">”、“=”、 “<"中的一个)15. 如图,在△ABC 中,D 是边BC 上的一点,以AD 为直径的⊙O 交AC 于点E ,连接DE . 若⊙O 与BC 相切,∠ADE=55°,则∠C 的度数为 ▲ .16. 用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a ,小正方形地砖面积为依次连接四块大正方形地砖的中心得到正方形ABCD. 则正方形ABCD 的面积为 ▲ . (用含a ,b 的代数式表示)第16题图BCDA图2O tv第10题BCD A A'(D')E第15图EOBCD(第13题)DA三、解答題(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第题14分,共80分)17. 计算:|-3|+√8—√2. 18. 解方程组:{x −y =1。

2020年浙江省台州市中考数学试卷(原卷版)-【经典教育教学资料】

2020年浙江省台州市中考数学试卷(原卷版)-【经典教育教学资料】

2020年浙江省台州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)计算1﹣3的结果是()A.2 B.﹣2 C.4 D.﹣42.(4分)用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A.ﻩB.ﻩC.ﻩD.3.(4分)计算2a2•3a4的结果是()A.5a6ﻩB.5a8 C.6a6D.6a84.(4分)无理数在()A.2和3之间ﻩB.3和4之间ﻩC.4和5之间ﻩD.5和6之间5.(4分)在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是()A.中位数ﻩB.众数ﻩC.平均数ﻩD.方差6.(4分)如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,﹣1)对应点的坐标为()A.(0,0) B.(1,2)ﻩC.(1,3)ﻩD.(3,1)(第6题图)(第7题图)7.(4分)如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是( )A.AB平分∠CADﻩB.CD平分∠ACBﻩC.AB⊥CD D.AB=CD8.(4分)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是( )A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②9.(4分)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A. B.C.ﻩD.10.(4分)把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为( )A.7+3B.7+4ﻩC.8+3 D.8+4二、填空题(本题有6小题,每小题5分,共30分)11.(5分)因式分解:x2﹣9=.12.(5分)计算﹣的结果是.13.(5分)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA 方向各剪一刀,则剪下的△DEF的周长是.14.(5分)甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s甲2与S乙2,则s甲2S乙2.(填“>”、“=”、“<”中的一个)15.(5分)如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为.16.(5分)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为.(用含a,b的代数式表示)三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)计算:|﹣3|+﹣.18.(8分)解方程组:19.(8分)人字折叠梯完全打开后如图1所示,B,C是折叠梯的两个着地点,D是折叠梯最高级踏板的固定点.图2是它的示意图,AB=AC,BD=140cm,∠BAC=40°,求点D离地面的高度DE.(结果精确到0.1cm;参考数据sin70°≈0.94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94)20.(8分)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1﹣y2)与(y2﹣y3)的大小:y1﹣y2y2﹣y3.21.(10分)如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.22.(12分)新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).0.2~0.4 0.4~0.6 0.6~0.8 0.8~1参与度人数方式录播416 12 8直播 2 10 16 12(1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4以下的共有多少人?23.(12分)如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M.E 是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF.(1)求证:△BEF是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.24.(14分)用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4h(H﹣h).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高hcm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b 之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.2020年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)实数3的相反数是( )A.﹣3ﻩB.3 C.﹣ﻩD.2.(3分)分式的值是零,则x的值为()A.2 B.5 C.﹣2ﻩD.﹣53.(3分)下列多项式中,能运用平方差公式分解因式的是()A.a2+b2ﻩB.2a﹣b2 C.a2﹣b2D.﹣a2﹣b24.(3分)下列四个图形中,是中心对称图形的是()A.ﻩB.ﻩC. D.5.(3分)如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是()A.ﻩB.C. D.6.(3分)如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由是()A.连结直线外一点与直线上各点的所有线段中,垂线段最短B.在同一平面内,垂直于同一条直线的两条直线互相平行ﻩC.在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线D.经过直线外一点,有且只有一条直线与这条直线平行7.(3分)已知点(﹣2,a)(2,b)(3,c)在函数y=(k>0)的图象上,则下列判断正确的是()A.a<b<c B.b<a<cﻩC.a<c<bD.c<b<a8.(3分)如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是上一点,则∠EPF的度数是( )A.65°ﻩB.60°ﻩC.58°D.50°9.(3分)如图,在编写数学谜题时,“□”内要求填写同一个数字,若设“□”内数字为x.则列出方程正确的是() A.3×2x+5=2x B.3×20x+5=10x×2C.3×20+x+5=20x D.3×(20+x)+5=10x+210.(3分)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD 相交于点O、BD与HC相交于点P.若GO=GP,则的值是( )A.1+ﻩB.2+C.5﹣ﻩD.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)点P(m,2)在第二象限内,则m的值可以是(写出一个即可).12.(4分)数据1,2,4,5,3的中位数是.13.(4分)如图为一个长方体,则该几何体主视图的面积为cm2.14.(4分)如图,平移图形M,与图形N可以拼成一个平行四边形,则图中α的度数是°.15.(4分)如图是小明画的卡通图形,每个正六边形的边长都相等,相邻两正六边形的边重合,点A,B,C均为正六边形的顶点,AB与地面BC所成的锐角为β.则tanβ的值是.16.(4分)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是cm.(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:(﹣2020)0+﹣tan45°+|﹣3|.18.(6分)解不等式:5x﹣5<2(2+x).19.(6分)某市在开展线上教学活动期间,为更好地组织初中学生居家体育锻炼,随机抽取了部分初中学生对“最喜爱的体育锻炼项目”进行线上问卷调查(每人必须且只选其中一项),得到如图两幅不完整的统计图表.请根据图表信息回答下列问题:抽取的学生最喜爱体育锻炼项目的统计表类别项目人数(人)A跳绳59B健身操▲C俯卧撑31D开合跳▲E其它22(1)求参与问卷调查的学生总人数.(2)在参与问卷调查的学生中,最喜爱“开合跳”的学生有多少人?(3)该市共有初中学生约8000人,估算该市初中学生中最喜爱“健身操”的人数.20.(8分)如图,的半径OA=2,OC⊥AB于点C,∠AOC=60°.(1)求弦AB的长.(2)求的长.21.(8分)某地区山峰的高度每增加1百米,气温大约降低0.6℃,气温T(℃)和高度h(百米)的函数关系如图所示.请根据图象解决下列问题:(1)求高度为5百米时的气温;(2)求T关于h的函数表达式;(3)测得山顶的气温为6℃,求该山峰的高度.22.(10分)如图,在△ABC中,AB=4,∠B=45°,∠C=60°.(1)求BC边上的高线长.(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.①如图2,当点P落在BC上时,求∠AEP的度数.②如图3,连结AP,当PF⊥AC时,求AP的长.23.(10分)如图,在平面直角坐标系中,已知二次函数y =﹣(x﹣m)2+4图象的顶点为A,与y轴交于点B,异于顶点A的点C(1,n)在该函数图象上.(1)当m=5时,求n的值.(2)当n=2时,若点A在第一象限内,结合图象,求当y≥2时,自变量x的取值范围.(3)作直线AC与y轴相交于点D.当点B在x轴上方,且在线段OD上时,求m的取值范围.24.(12分)如图,在平面直角坐标系中,正方形ABOC的两直角边分别在坐标轴的正半轴上,分别过O B,OC的中点D,E作AE,AD的平行线,相交于点F,已知OB=8.(1)求证:四边形AEFD为菱形.(2)求四边形AEFD的面积.(3)若点P在x轴正半轴上(异于点D),点Q在y轴上,平面内是否存在点G,使得以点A,P,Q,G为顶点的第11页(共12页)四边形与四边形AEFD相似?若存在,求点P的坐标;若不存在,试说明理由.第12页(共12页)。

2020年浙江省台州市中考数学试卷(含解析)

2020年浙江省台州市中考数学试卷(含解析)

2020年浙江省台州市中考数学试卷(考试时间:120分钟满分:150分)一、选择题(本题有10小题,每小题4分,共40分.)1.计算1﹣3的结果是()A.2 B.﹣2 C.4 D.﹣42.用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A.B.C.D.3.计算2a2•3a4的结果是()A.5a6B.5a8C.6a6D.6a84.无理数在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间5.在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是()A.中位数B.众数C.平均数D.方差6.如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,﹣1)对应点的坐标为()A.(0,0)B.(1,2)C.(1,3)D.(3,1)7.如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD8.下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②9.如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A.B.C.D.10.把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A.7+3B.7+4C.8+3D.8+4二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:x2﹣9=.12.计算的结果是.13.如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.14.甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s甲2与S乙2,则s甲2S乙2.(填“>”、“=”、“<“中的一个)15.如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为.16.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为.(用含a,b的代数式表示)三、解答题(本题有8小题,共80分)17.(8分)计算:|﹣3|+﹣.18.(8分)解方程组:.19.(8分)人字折叠梯完全打开后如图1所示,B,C是折叠梯的两个着地点,D是折叠梯最高级踏板的固定点.图2是它的示意图,AB=AC,BD=140cm,∠BAC=40°,求点D离地面的高度DE.(结果精确到0.1cm;参考数据sin70°≈0.94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94)20.(8分)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1﹣y2)与(y2﹣y3)的大小:y1﹣y2y2﹣y3.21.(10分)如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.22.(12分)新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).0.2~0.4 0.4~0.6 0.6~0.8 0.8~1参与度人数方式录播 4 16 12 8直播 2 10 16 12(1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4以下的共有多少人?23.(12分)如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M.E 是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF.(1)求证:△BEF是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.24.(14分)用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为h (单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4h(H﹣h).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高hcm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.参考答案与试题解析1.【解答】解:1﹣3=1+(﹣3)=﹣2.故选:B.2.【解答】解:根据主视图的意义可知,选项A符合题意,故选:A.3.【解答】解:2a2•3a4=6a6.故选:C.4.【解答】解:∵3<<4,故选:B.5.【解答】解:班级数学成绩排列后,最中间一个数或最中间两个分数的平均数是这组成绩的中位数,半数同学的成绩位于中位数或中位数以下,小明成绩超过班级半数同学的成绩所用的统计量是中位数,故选:A.6.【解答】解:∵把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,顶点C(0,﹣1),∴C(0+3,﹣1+2),即C(3,1),故选:D.7.【解答】解:由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD,故选:D.8.【解答】解:对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B,C,D错误,故选:A.9.【解答】解:小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,在右侧上升时,情形与左侧相反,故选:C.10.【解答】解:如图,过点M作MH⊥A′R于H,过点N作NJ⊥A′W于J.由题意△EMN是等腰直角三角形,EM=EN=2,MN=2,∵四边形EMHK是矩形,∴EK=A′K=MH=1,KH=EM=2,∵△RMH是等腰直角三角形,∴RH=MH=1,RM=,同法可证NW=,由题意AR=RA′=A′W=WD=4,∴AD=AR+RM+MN+NW+DW=4++2++4=8+4,故选:D.11.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).12.【解答】解:=﹣=.故答案为:.13.【解答】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵DE∥AB,DF∥AC,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.14.【解答】解:由折线统计图得乙同学的成绩波动较大,所以s甲2<S乙2.故答案为:<.15.【解答】解:∵AD为⊙O的直径,∴∠AED=90°,∴∠ADE+∠DAE=90°;∵⊙O与BC相切,∴∠ADC=90°,∴∠C+∠DAE=90°,∴∠C=∠ADE,∵∠ADE=55°,∴∠C=55°.故答案为:55°.16.【解答】解:如图,正方形ABCD是由4个直角三角形和一个小正方形组成,4个直角三角形的面积和等于大正方形的面积a.故正方形ABCD的面积=a+b.故答案为a+b.17.【解答】解:原式=3+2﹣=3+.18.【解答】解:,①+②得:4x=8,解得:x=2,把x=2代入①得:y=1,则该方程组的解为19.【解答】解:过点A作AF⊥BC于点F,则AF∥DE,∴∠BDE=∠BAF,∵AB=AC,∠BAC=40°,∴∠BDE=∠BAF=20°,∴DE=BD•cos20°≈140×0.94=131.6(cm).答:点D离地面的高度DE约为131.6cm.20.【解答】解:(1)设y与x之间的函数关系式为:y=,把(3,400)代入y=得,400=,解得:k=1200,∴y与x之间的函数关系式为y=;(2)把x=6,8,10分别代入y=得,y1==200,y2==150,y3==120,∵y1﹣y2=200﹣150=50,y2﹣y3=150﹣120=30,∵50>30,∴y1﹣y2>y2﹣y3,故答案为:>.21.【解答】证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.22.【解答】解:(1)“直播”教学方式学生的参与度更高:理由:“直播”参与度在0.6以上的人数为28人,“录播”参与度在0.6以上的人数为20人,参与度在0.6以上的“直播”人数远多于“录播”人数,所以“直播”教学方式学生的参与度更高;(2)12÷40=0.3=30%,答:估计该学生的参与度在0.8及以上的概率是30%;(3)“录播”总学生数为800×=200(人),“直播”总学生数为800×=600(人),所以“录播”参与度在0.4以下的学生数为200×=20(人),“直播”参与度在0.4以下的学生数为600×=30(人),所以参与度在0.4以下的学生共有20+30=50(人).23.【解答】(1)证明:∵∠EFB=∠∠EDB,∠EBF=∠EDF,∴∠EFB+∠EBF=∠EDB+∠EDF=∠ADB=90°,∴∠BEF=90°,∴△BEF是直角三角形.(2)证明:∵BC=BD,∴∠BDC=∠BCD,∵∠EFB=∠EDB,∴∠EFB=∠BCD,∵AC=AD,BC=BD,∴AB⊥CD,∴∠AMC=90°,∵∠BCD+∠ACD=∠ACD+∠CAB=90°,∴∠BCD=∠CAB,∴∠BFE=∠CAB,∵∠ACB=∠FEB=90°,∴△BEF∽△BCA.(3)解:设EF交AB于J.连接AE.∵EF与AB互相平分,∴四边形AFBE是平行四边形,∴∠EFA=∠FEB=90°,即EF⊥AD,∵BD⊥AD,∴EF∥BD,∵AJ=JB,∴AF=DF,∴FJ=BD=,∴EF=m,∵△ABC∽△CBM,∴BC:MB=AB:BC,∴BM=,∵△BEJ∽△BME,∴BE:BM=BJ:BE,∴BE=,∵△BEF∽△BCA,∴=,即=,解得m=2(负根已经舍弃).24.【解答】解:(1)∵s2=4h(H﹣h),∴当H=20时,s2=4h(20﹣h)=﹣4(h﹣10)2+400,∴当h=10时,s2有最大值400,∴当h=10时,s有最大值20cm.∴当h为何值时,射程s有最大值,最大射程是20cm;(2)∵s2=4h(20﹣h),设存在a,b,使两孔射出水的射程相同,则有:4a(20﹣a)=4b(20﹣b),∴20a﹣a2=20b﹣b2,∴a2﹣b2=20a﹣20b,∴(a+b)(a﹣b)=20(a﹣b),∴(a﹣b)(a+b﹣20)=0,∴a﹣b=0,或a+b﹣20=0,∴a=b或a+b=20;(3)设垫高的高度为m,则s2=4h(20+m﹣h)=﹣4+(20+m)2,∴当h=时,s max=20+m=20+16,∴m=16,此时h==18.∴垫高的高度为16cm,小孔离水面的竖直距离为18cm。

2020年浙江省台州市中考数学试卷及答案解析

2020年浙江省台州市中考数学试卷及答案解析

2020年浙江省台州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.(4分)计算1﹣3的结果是( ) A .2B .﹣2C .4D .﹣42.(4分)用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是( )A .B .C .D .3.(4分)计算2a 2•3a 4的结果是( ) A .5a 6B .5a 8C .6a 6D .6a 84.(4分)无理数√10在( ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间5.(4分)在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是( ) A .中位数B .众数C .平均数D .方差6.(4分)如图,把△ABC 先向右平移3个单位,再向上平移2个单位得到△DEF ,则顶点C (0,﹣1)对应点的坐标为( )A .(0,0)B .(1,2)C .(1,3)D .(3,1)7.(4分)如图,已知线段AB ,分别以A ,B 为圆心,大于12AB 同样长为半径画弧,两弧交于点C ,D ,连接AC ,AD ,BC ,BD ,CD ,则下列说法错误的是( )A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD8.(4分)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②9.(4分)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A.B.C.D.10.(4分)把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D 互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A .7+3√2B .7+4√2C .8+3√2D .8+4√2二、填空题(本题有6小题,每小题5分,共30分) 11.(5分)因式分解:x 2﹣9= . 12.(5分)计算1x −13x的结果是 .13.(5分)如图,等边三角形纸片ABC 的边长为6,E ,F 是边BC 上的三等分点.分别过点E ,F 沿着平行于BA ,CA 方向各剪一刀,则剪下的△DEF 的周长是 .14.(5分)甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s 甲2与S 乙2,则s 甲2 S乙2.(填“>”、“=”、“<”中的一个)15.(5分)如图,在△ABC 中,D 是边BC 上的一点,以AD 为直径的⊙O 交AC 于点E ,连接DE .若⊙O 与BC 相切,∠ADE =55°,则∠C 的度数为 .16.(5分)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a ,小正方形地砖面积为b ,依次连接四块大正方形地砖的中心得到正方形ABCD .则正方形ABCD 的面积为 .(用含a ,b 的代数式表示)三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分) 17.(8分)计算:|﹣3|+√8−√2. 18.(8分)解方程组:{x −y =1,3x +y =7.19.(8分)人字折叠梯完全打开后如图1所示,B ,C 是折叠梯的两个着地点,D 是折叠梯最高级踏板的固定点.图2是它的示意图,AB =AC ,BD =140cm ,∠BAC =40°,求点D 离地面的高度DE .(结果精确到0.1cm ;参考数据sin70°≈0.94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94)20.(8分)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y (单位:秒)与训练次数x (单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y 与x 之间的函数关系式;(2)当x 的值为6,8,10时,对应的函数值分别为y 1,y 2,y 3,比较(y 1﹣y 2)与(y 2﹣y 3)的大小:y 1﹣y 2 y 2﹣y 3.21.(10分)如图,已知AB =AC ,AD =AE ,BD 和CE 相交于点O . (1)求证:△ABD ≌△ACE ;(2)判断△BOC 的形状,并说明理由.22.(12分)新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).参与度 人数 方式 0.2~0.40.4~0.60.6~0.80.8~1录播 4 16 12 8 直播2101612(1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4以下的共有多少人?23.(12分)如图,在△ABC 中,∠ACB =90°,将△ABC 沿直线AB 翻折得到△ABD ,连接CD 交AB 于点M .E 是线段CM 上的点,连接BE .F 是△BDE 的外接圆与AD 的另一个交点,连接EF ,BF . (1)求证:△BEF 是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.24.(14分)用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4h(H﹣h).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高hcm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.2020年浙江省台州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.(4分)计算1﹣3的结果是()A.2B.﹣2C.4D.﹣4【解答】解:1﹣3=1+(﹣3)=﹣2.故选:B.2.(4分)用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A.B.C.D.【解答】解:根据主视图的意义可知,选项A符合题意,故选:A.3.(4分)计算2a2•3a4的结果是()A.5a6B.5a8C.6a6D.6a8【解答】解:2a2•3a4=6a6.故选:C.4.(4分)无理数√10在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【解答】解:∵3<√10<4,故选:B.5.(4分)在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是()A.中位数B.众数C.平均数D.方差【解答】解:班级数学成绩排列后,最中间一个数或最中间两个分数的平均数是这组成绩的中位数,半数同学的成绩位于中位数或中位数以下,小明成绩超过班级半数同学的成绩所用的统计量是中位数, 故选:A .6.(4分)如图,把△ABC 先向右平移3个单位,再向上平移2个单位得到△DEF ,则顶点C (0,﹣1)对应点的坐标为( )A .(0,0)B .(1,2)C .(1,3)D .(3,1)【解答】解:∵把△ABC 先向右平移3个单位,再向上平移2个单位得到△DEF ,顶点C (0,﹣1), ∴C (0+3,﹣1+2), 即C (3,1), 故选:D .7.(4分)如图,已知线段AB ,分别以A ,B 为圆心,大于12AB 同样长为半径画弧,两弧交于点C ,D ,连接AC ,AD ,BC ,BD ,CD ,则下列说法错误的是( )A .AB 平分∠CADB .CD 平分∠ACBC .AB ⊥CDD .AB =CD【解答】解:由作图知AC =AD =BC =BD , ∴四边形ACBD 是菱形,∴AB 平分∠CAD 、CD 平分∠ACB 、AB ⊥CD , 不能判断AB =CD ,故选:D.8.(4分)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②【解答】解:对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B,C,D错误,故选:A.9.(4分)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A.B.C.D.【解答】解:小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,在右侧上升时,情形与左侧相反,故选:C.10.(4分)把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D 互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A .7+3√2B .7+4√2C .8+3√2D .8+4√2【解答】解:如图,过点M 作MH ⊥A ′R 于H ,过点N 作NJ ⊥A ′W 于J .由题意△EMN 是等腰直角三角形,EM =EN =2,MN =2√2, ∵四边形EMHK 是矩形,∴EK =A ′K =MH =1,KH =EM =2, ∵△RMH 是等腰直角三角形,∴RH =MH =1,RM =√2,同法可证NW =√2, 由题意AR =RA ′=A ′W =WD =4,∴AD =AR +RM +MN +NW +DW =4+√2+2√2+√2+4=8+4√2, 故选:D .二、填空题(本题有6小题,每小题5分,共30分) 11.(5分)因式分解:x 2﹣9= (x +3)(x ﹣3) . 【解答】解:原式=(x +3)(x ﹣3), 故答案为:(x +3)(x ﹣3). 12.(5分)计算1x −13x 的结果是 23x.【解答】解:1x−13x=33x−13x=23x.故答案为:23x.13.(5分)如图,等边三角形纸片ABC 的边长为6,E ,F 是边BC 上的三等分点.分别过点E ,F 沿着平行于BA ,CA 方向各剪一刀,则剪下的△DEF 的周长是 6 .【解答】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵DE∥AB,DF∥AC,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.14.(5分)甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s甲2与S乙2,则s甲2<S乙2.(填“>”、“=”、“<”中的一个)【解答】解:由折线统计图得乙同学的成绩波动较大,所以s甲2<S乙2.故答案为:<.15.(5分)如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为55°.【解答】解:∵AD为⊙O的直径,∴∠AED=90°,∴∠ADE+∠DAE=90°;∵⊙O与BC相切,∴∠ADC=90°,∴∠C+∠DAE=90°,∴∠C=∠ADE,∵∠ADE=55°,∴∠C=55°.故答案为:55°.16.(5分)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为a+b.(用含a,b的代数式表示)【解答】解:如图,正方形ABCD是由4个直角三角形和一个小正方形组成,4个直角三角形的面积和等于大正方形的面积a.故正方形ABCD的面积=a+b.故答案为a+b.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.(8分)计算:|﹣3|+√8−√2.【解答】解:原式=3+2√2−√2=3+√2.18.(8分)解方程组:{x −y =1,3x +y =7. 【解答】解:{x −y =1①3x +y =7②,①+②得:4x =8, 解得:x =2,把x =2代入①得:y =1, 则该方程组的解为{x =2y =1.19.(8分)人字折叠梯完全打开后如图1所示,B ,C 是折叠梯的两个着地点,D 是折叠梯最高级踏板的固定点.图2是它的示意图,AB =AC ,BD =140cm ,∠BAC =40°,求点D 离地面的高度DE .(结果精确到0.1cm ;参考数据sin70°≈0.94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94)【解答】解:过点A 作AF ⊥BC 于点F ,则AF ∥DE , ∴∠BDE =∠BAF , ∵AB =AC ,∠BAC =40°, ∴∠BDE =∠BAF =20°,∴DE =BD •cos20°≈140×0.94=131.6(cm ).答:点D 离地面的高度DE 约为131.6cm .20.(8分)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1﹣y2)与(y2﹣y3)的大小:y1﹣y2>y2﹣y3.【解答】解:(1)设y与x之间的函数关系式为:y=k x,把(3,400)代入y=kx得,400=k3,解得:k=1200,∴y与x之间的函数关系式为y=1200 x;(2)把x=6,8,10分别代入y=1200x得,y1=12006=200,y2=12008=150,y3=120010=120,∵y1﹣y2=200﹣150=50,y2﹣y3=150﹣120=30,∵50>30,∴y1﹣y2>y2﹣y3,故答案为:>.21.(10分)如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.【解答】证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.22.(12分)新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).参与度0.2~0.40.4~0.60.6~0.80.8~1人数方式录播416128直播2101612(1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4以下的共有多少人?【解答】解:(1)“直播”教学方式学生的参与度更高:理由:“直播”参与度在0.6以上的人数为28人,“录播”参与度在0.6以上的人数为20人,参与度在0.6以上的“直播”人数远多于“录播”人数,所以“直播”教学方式学生的参与度更高;(2)12÷40=0.3=30%,答:估计该学生的参与度在0.8及以上的概率是30%;(3)“录播”总学生数为800×11+3=200(人),“直播”总学生数为800×31+3=600(人),所以“录播”参与度在0.4以下的学生数为200×440=20(人),“直播”参与度在0.4以下的学生数为600×240=30(人),所以参与度在0.4以下的学生共有20+30=50(人).23.(12分)如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M.E是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF.(1)求证:△BEF是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.【解答】(1)证明:∵∠EFB=∠∠EDB,∠EBF=∠EDF,∴∠EFB+∠EBF=∠EDB+∠EDF=∠ADB=90°,∴∠BEF=90°,∴△BEF是直角三角形.(2)证明:∵BC=BD,∴∠BDC=∠BCD,∵∠EFB=∠EDB,∴∠EFB=∠BCD,∵AC=AD,BC=BD,∴AB⊥CD,∴∠AMC=90°,∵∠BCD+∠ACD=∠ACD+∠CAB=90°,∴∠BCD=∠CAB,∴∠BFE=∠CAB,∵∠ACB=∠FEB=90°,∴△BEF∽△BCA.(3)解:设EF交AB于J.连接AE.∵EF与AB互相平分,∴四边形AFBE是平行四边形,∴∠EF A=∠FEB=90°,即EF⊥AD,∵BD⊥AD,∴EF∥BD,∵AJ=JB,∴AF=DF,∴FJ=12BD=m2,∴EF=m,∵△ABC∽△CBM,∴BC:MB=AB:BC,∴BM=m2 6,∵△BEJ∽△BME,∴BE:BM=BJ:BE,∴BE=2,∵△BEF∽△BCA,∴AC EF=BC BE, 即√36−m 2m=mm √2, 解得m =2√3(负根已经舍弃).24.(14分)用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H (单位:cm ),如果在离水面竖直距离为h (单位:cm )的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s (单位:cm )与h 的关系为s 2=4h (H ﹣h ).应用思考:现用高度为20cm 的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高hcm 处开一个小孔.(1)写出s 2与h 的关系式;并求出当h 为何值时,射程s 有最大值,最大射程是多少? (2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a ,b ,要使两孔射出水的射程相同,求a ,b 之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm ,求整高的高度及小孔离水面的竖直距离.【解答】解:(1)∵s2=4h(H﹣h),∴当H=20时,s2=4h(20﹣h)=﹣4(h﹣10)2+400,∴当h=10时,s2有最大值400,∴当h=10时,s有最大值20cm.∴当h为何值时,射程s有最大值,最大射程是20cm;(2)∵s2=4h(20﹣h),设存在a,b,使两孔射出水的射程相同,则有:4a(20﹣a)=4b(20﹣b),∴20a﹣a2=20b﹣b2,∴a2﹣b2=20a﹣20b,∴(a+b)(a﹣b)=20(a﹣b),∴(a﹣b)(a+b﹣20)=0,∴a﹣b=0,或a+b﹣20=0,∴a=b或a+b=20;(3)设垫高的高度为m,则s2=4h(20+m﹣h)=﹣4(ℎ−20+m2)2+(20+m)2,∴当h=20+m2时,s max=20+m=20+16,∴m=16,此时h=20+m2=18.∴垫高的高度为16cm,小孔离水面的竖直距离为18cm.。

2020年浙江省台州中考数学试卷-答案

2020年浙江省台州中考数学试卷-答案

2020年浙江省台州市初中学业水平考试数学答案解析一、1.【答案】B【解析】根据减法法则计算即可.()13132-=+-=-.故选B .【提示】熟练掌握减去一个数等于加上这个数的相反数是解答本题的关键.【考点】有理数的减法运算2.【答案】A【解析】根据三视图的相关知识直接找出主视图即可.主视图即从图中箭头方向看,得出答案为A ,故答案选:A .【考点】立体图形的三视图3.【答案】C【解析】直接利用单项式乘单项式运算法则计算得出答案.解:246236a a a =.故选:C .【提示】运算法则为:数字与数字相乘,字母为同底数幂相乘,底数不变,指数相加,掌握运算法则是解题关键.【考点】单项式与单项式的乘法4.【答案】B【解析】根据被开方数的范围,确定出所求即可.91016<<,34∴,3与4之间.故选:B .【提示】解题的关键是熟知无理数估算的方法.【考点】估算无理数的大小5.【答案】A【解析】根据中位数的定义即可判断.小明成绩72分,超过班级半数同学的成绩,由此可得所用的统计量是中位数;故选A .【提示】解题的关键是熟知中位数的定义.【考点】中位数的意义6.【答案】D【解析】先找到顶点C 的对应点为F ,再根据直角坐标系的特点即可得到坐标.顶点C 的对应点为F ,由图可得F 的坐标为()3,1,故选D .【提示】解题的关键是熟知直角坐标系的特点.【考点】坐标与图形7.【答案】D【解析】根据作图判断出四边形ACBD 是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案.解:由作图知AC AD BC BD ===,∴四边形ACBD 是菱形,AB ∴平分CAD ∠、CD 平分ACB ∠、AB CD ⊥,不能判断AB CD =,故选:D .【提示】解题的关键是掌握菱形的判定与性质.【考点】线段垂直平分线的尺规作图,菱形的判定方法8.【答案】A【解析】根据正方形特点由②可以推理出③,再由矩形的性质根据③推出①,故选A .【提示】根据正方形和矩形的性质定理解题即可.【考点】正方形和矩形的性质定理9.【答案】C【解析】由图2知小球速度先是逐渐增大,后来逐渐减小,则随着时间的增加,小球刚开始路程增加较快,后来增加较慢,由此得出正处答案.由图2知小球速度不断变化,因此判定小球运动速度v 与运动时间t 之间的函数关系是()()1111222200,0v k t k v k t b k b ⎧=>⎪⎨=+⎪⎩<>(1t 为前半程时间,2t 为后半程时间), ∴前半程路程函数表达式为:2111y k t =,后半程路程为2222222=+=v k t t bt y ,2100,><k k ,即前半段图像开口向上,后半段开口向下,∴C 项图像满足此关系式,故答案为:C .【考点】根据函数式判断函数图像的大致位置10.【答案】D【解析】如图,过点M 作'MH A R ⊥于H ,过点N 作'NJ A W ⊥于J .想办法求出AR ,RM ,MN ,NW ,WD 即可解决问题.解:如图,过点M 作'MH A R ⊥于H ,过点N 作'NJ A W ⊥于J .由题意EMN △是等腰直角三角形,2EM EN ==,MN =四边形EMHK 是矩形,'1EK A K MH ∴===,2KH EM ==, RMH △是等腰直角三角形,1RH M H ∴==,RM =NW =题意''4AR RA A W WD ====,448AD AR RM MN NW DW ∴=++++==+.故答案为:D .【提示】解题的关键是学会添加常用辅助线,构造特殊三角形或特殊四边形解决问题.【考点】翻折变换,等腰直角三角形的判定和性质,矩形的性质二、11.【答案】(3)(3)x x +-【解析】原式利用平方差公式分解即可.解:原式(3)(3)x x =+-,故答案为:(3)(3)x x +-.【提示】熟练掌握平方差公式是解题关键.【考点】因式分解12.【答案】22x【解析】先通分,再相加即可求得结果. 解:1131333x x x x-=- 23x=, 故答案为:23x . 【提示】先通分化为同分母分式再相加即可.【考点】分式的加法13.【答案】6【解析】先说明DEF △是等边三角形,再根据E ,F 是边BC 上的三等分求出BC 的长,最后求周长即可. 解:等边三角形纸片ABC ,60B C ∴∠=∠=︒DE AB ∥,DF AC ∥60DEF DFE ∴∠=∠=︒DEF ∴△是等边三角形DE EF DF ∴== E ,F 是边BC 上的三等分点,6BC =2EF ∴=2DE EF DF ∴===6DEF DE EF DF ∴=++=△故答案为6.【提示】灵活应用等边三角形的性质是正确解答本题的关键.【考点】等边三角形的判定和性质,三等分点的意义14.【答案】<【解析】利用折线统计图可判断乙同学的成绩波动较大,然后根据方差的意义可得到甲、乙的方差的大小. 解:由折线统计图得乙同学的成绩波动较大,22s S ∴甲乙<.故答案为:<.【考点】方差的意义15.【答案】55︒【解析】根据AD 是直径可得90AED ∠=︒,再根据BC 是O 的切线可得90ADC ∠=︒,再根据直角的定义及角度等量替换关系即可得到55C ADE ∠=∠=︒. AD 是直径,90AED ∴∠=︒,90ADE DAE ∴∠+∠=︒, BC 是O 的切线,90ADC ∴∠=︒,90C DAE ∴∠+∠=︒55C ADE ∴∠=∠=︒.故答案为:55︒.【提示】解题的关键是熟知切线的性质.【考点】圆内的角度求解16.【答案】a b +【解析】如图,连接AE 、AF ,先证明GAE HAF △≌△,由此可证得=AEF GAHE S S △四边形,进而同理可得,根据正方形ABCD 的面积等于四个相同四边形的面积之和及小正方形的面积即可求得答案.解:如图,连接AE 、AF ,点A 为大正方形的中心,AE AF ∴=,90EAF ∠=︒,45AEF AFE ∴∠=∠=︒,90GEF ∠=︒,45AEG GEF AEF ∴∠=∠-∠=︒,AEG AFE ∴∠=∠,四边形ABCD 为正方形,90DAB EAF ∴∠=∠=︒,GAE HAF ∴∠=∠,在GAE △与HAF △中,GAE HAF AE AFAEG AFH =⎧⎪=⎨⎪=⎩∠∠∠∠ ()GAE HAF ASA ∴△≌△,GdE HAF S S∆∴=, GAE AEH HAF AEH S S SS ∴+=+, 即GAHE AEF S S =四边形,1144AEF SS a ==大正方形, ∴11=44GAHE S S a =四边形大正方形, ∴同理可得:1=44ABCD S a b ⨯+正方形, 即144ABCD S a b =⨯+正方形, 故答案为:a b +.【提示】熟练掌握正方形的性质并能作出正确的辅助线是解决本题的关键.【考点】正方形的性质,全等三角形的判定及性质三、17.【答案】解:原式33=+=.故答案为:3.【解析】按照绝对值的概念、平方根的概念逐个求解,然后再用二次根式加减运算即可.具体解题过程参照答案.【提示】熟练掌握运算公式及法则是解决此类题的关键.【考点】绝对值的概念,平方根的概念,二次根式的加减运算18.【答案】解:10,37x y x y -=⎧⎨+=⎩①②. +①②得:48x =,所以2x =.把2x =代入①得:1y =.所以,该方程组的解为2,1.x y =⎧⎨=⎩【解析】首先将两式相加得出关于x 的一元一次方程,求出x 的值,然后将x 的值代入第一个方程求出y 的值,从而得出方程组的解.具体解题过程参照答案.19.【答案】解:过点A 作AF BC ⊥于点F ,则AF DE ∥,BDE BAF ∴∠=∠,AB AC =,40BAC ∠=︒,20BDE BAF ∴∠=∠=︒,()cos 201400.94131.6cm DE BD ∴=⨯︒≈⨯=故点D 离地面的高度DE 约为131.6cm .【解析】过点A 作AF BC ⊥于点F ,根据等腰三角形的三线合一性质得BAF ∠的度数,进而得BDE ∠的度数,再解直角三角形得结果.具体解题过程参照答案.【提示】关键是构造直角三角形求得∠BDE 的度数.【考点】解直角三角形,等腰三角形的性质20.【答案】(1)解:设反比例函数解析式为(0)k y k x =≠, 将点(3,400)代入,即得34001200k =⨯=, 故反比例函数的解析式为:1200(0)y x x =>. 故答案为:1200(0)=>y x x. (2)当x =6时,代入反比例函数中,解得112002006y ==, 当8x =时,代入反比例函数中,解得212001508y ==, 当10x =时,代入反比例函数中,解得3120012010y ==, 1220015050y y ∴-=-=,2315012030y y -=-=1223y y y y ∴-->.故答案为:>.【解析】(1)设反比例函数解析式为k y x =,将点()3,400代入求出k 即可,最后注意自变量的取值范围.具体解题过程参照答案.(2)分别将x 的值为6,8,10时,对应的函数值分别为1y ,2y ,3y 的值求出,然后再比较大小求解.具体解题过程参照答案.【考点】点在反比例函数上,则将点的坐标代入解析式中,得到等式进而求解.【提示】反比例函数的解析式求法,反比例函数的图像性质21.【答案】(1)证明:AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴△≌△;(2)解:BOC △是等腰三角形,理由如下:ABD ACE △≌△,ABD ACE ∴∠=∠,AB AC =,ABC ACB ∴∠=∠,ABC ABD ACB ACE ∴∠∠=∠∠--,OBC OCB ∴∠=∠,BO CO ∴=,BOC ∴△是等腰三角形.【解析】(1)由“SAS ”可证ABD ACE △≌△;具体解题过程参照答案.(2)由全等三角形的性质可得ABD ACE ∠=∠,由等腰三角形的性质可得ABC ACB ∠=∠,可求OBC OCB ∠=∠,可得BO CO =,即可得结论.具体解题过程参照答案.【考点】全等三角形的判定与性质,等腰三角形的判定22.【答案】(1)解:“直播”教学方式学生参与度更高:理由:“直播”参与度在0.6以上的人数为28人,“录播”参与度在0.6以上的人数为20人,参与度在0.6以上的“直播”人数远多于“录播”人数,∴“直播”教学方式学生的参与度更高;(2)解:12400.330%÷==,答:估计该学生的参与度在0.8及以上的概率是30%;(3)解:“录播”总学生数为180020013⨯=+(人), “直播”总学生数为380060013⨯=+(人), ∴“录播”参与度在0.4以下的学生数为42002040⨯=(人), “直播”参与度在0.4以下的学生数为26003040⨯=(人), ∴参与度在0.4以下的学生共有203050+=(人).【解析】(1)根据表格数据得出两种教学方式参与度在0.6以上的人数,比较即可作出判断;具体解题过程参照答案. (2)用表格中“直播”教学方式学生参与度在0.8以上的人数除以被调查的总人数即可估计对应概率;具体解题过程参照答案. (3)先根据“录播”和“直播”的人数之比为1:3及该校学生总人数求出“直播”、“录播”人数,再分别乘以两种教学方式中参与度在0.4以下人数所占比例求出对应人数,再相加即可得出答案.具体解题过程参照答案. 【提示】弄清题意,正确分析,确定计算方法是解题关键. 【考点】概率的计算的23.【答案】(1)证明:由折叠可知,90ADB ACB ∠=∠=︒, EFB EDB ∠=∠,EBF EDF ∠=∠,90EFB EBF EDB EDF ADB ∴∠+∠=∠+∠=∠=︒, 90BEF ∴∠=︒,BEF ∴△是直角三角形.(2)证明:BC BD =,BDC BCD ∴∠=∠,EFB EDB ∠=∠,EFB BCD ∴∠=∠,AC AD =,BC BD =,AB CD ∴⊥,90AMC ∴∠=︒,90BCD ACD ACD CAB ∠+∠=∠+∠=︒,BCD CAB ∴∠=∠,BFE CAB ∴∠=∠,90ACB FEB ∠=∠=︒,BEF BCA ∴△∽△.(3)解:设EF 交AB 于J .连接AE ,如下图所示:EF 与AB 互相平分,∴四边形AFBE 是平行四边形,90EFA FEB ∴∠=∠=︒,即EF AD ⊥,BD AD ⊥,EF BD ∴∥,AJ JB =,AF DF ∴=,1 22m FJ BD ∴==, EF m ∴=,ABC CBM △∽△,::BC MB AB BC ∴=26m BM ∴=, BEJ BME △∽△,::BE BM BJ BE ∴=2m BE ∴=, BEF BCA △∽△,AC BC EF BE∴=即m m m=解得m =(负根舍去).故答案为:.【解析】(1)想办法证明90BEF ∠=︒即可解决问题(也可以利用圆内接四边形的性质直接证明).具体解题过程参照答案.(2)根据两角对应相等两三角形相似证明.具体解题过程参照答案.(3)证明四边形AFBE 是平行四边形,推出1122FJ BD m ==,EF m =,由ABC CBM △∽△,可得26m BM =,由BEF BCA △∽△,推出AC BC EF BE =,由此构建方程求解即可.具体解题过程参照答案. 【提示】解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.【考点】圆周角定理,相似三角形的判定和性质,平行四边形的判定和性质24.【答案】(1)解:()24s h H h =-,∴当20H =时,()()22420410400s h h h =-=--+,∴当10h =时,2s 有最大值400, ∴当10h =时,s 有最大值20cm .∴当h 为何值时,射程s 有最大值,最大射程是20cm ;故答案为:最大射程是20cm .(2)()2420s h h =-,设存在a ,b ,使两孔射出水的射程相同,则有:()()420420a a b b -=-,222020a a b b ∴-=-,222020a b a b ∴-=-,()()()20a b a b a b ∴+-=-,()()200a b a b ∴-+-=,0a b ∴-=或200a b +-=,a b ∴=或20a b +=.故答案为:a b =或20a b +=.(3)解:设垫高的高度为m ,则222204(20)4(20)2m s h m h h m +⎛⎫=+-=--++ ⎪⎝⎭, ∴当20 2m h +=时,max 202016s m =+=+, 16m ∴=时,此时20182m h +==, ∴垫高的高度为16cm ,小孔离水面的竖直距离为18cm .故答案为:垫高的高度为16cm ,小孔离水面的竖直距离为18cm .【解析】(1)将()2420s h h =-写成顶点式,按照二次函数的性质得出2s 的最大值,再求2s 的算术平方根即可;具体解题过程参照答案.(2)设存在a b ,,使两孔射出水的射程相同,则()()420420a a b b -=-,利用因式分解变形即可得出答案;具体解题过程参照答案.(3)设垫高的高度为m ,写出此时2s 关于h 的函数关系式,根据二次函数的性质可得答案.具体解题过程参照答案.【提示】厘清题中的数量关系并明确二次函数的性质是解题的关键.【考点】二次函数在实际问题中的应用。

2020年浙江省台州市中考数学试卷【题干后附答案、详细解释;可编辑】适合讲解用

2020年浙江省台州市中考数学试卷【题干后附答案、详细解释;可编辑】适合讲解用

2020年浙江省台州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1. 计算1−3的结果是( ) A.2 B.−2 C.4 D.−4 【答案】 B【解答】1−3=1+(−3)=−2.2. 用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是( )A. B. C. D.【答案】 A【解答】根据主视图的意义可知,选项A 符合题意,3. 计算2a 2⋅3a 4的结果是( ) A.5a 6 B.5a 8 C.6a 6 D.6a 8【答案】 C【解答】2a 2⋅3a 4=6a 6.4. 无理数√10在( ) A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间【答案】 B【解答】∵ 3<√10<4, 5. 在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是( ) A.中位数 B.众数 C.平均数 D.方差 【答案】 A【解答】班级数学成绩排列后,最中间一个数或最中间两个分数的平均数是这组成绩的中位数,半数同学的成绩位于中位数或中位数以下,小明成绩超过班级半数同学的成绩所用的统计量是中位数,6. 如图,把△ABC 先向右平移3个单位,再向上平移2个单位得到△DEF ,则顶点C(0, −1)对应点的坐标为( )A.(0, 0)B.(1, 2)C.(1, 3)D.(3, 1) 【答案】 D【解答】∵ 把△ABC 先向右平移3个单位,再向上平移2个单位得到△DEF ,顶点C(0, −1),∴ C(0+3, −1+2), 即C(3, 1),7. 如图,已知线段AB ,分别以A ,B为圆心,大于12AB 同样长为半径画弧,两弧交于点C ,D ,连接AC ,AD ,BC ,BD ,CD ,则下列说法错误的是( )A.AB 平分∠CADB.CD 平分∠ACBC.AB ⊥CDD.AB =CD【答案】D【解答】由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD,8. 下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A.由②推出③,由③推出①B.由①推出②,由②推出③C.由③推出①,由①推出②D.由①推出③,由③推出②【答案】A【解答】对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B,C,D错误,故选:A.9. 如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A. B.C. D.【答案】C【解答】小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,在右侧上升时,情形与左侧相反,10. 把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A.7+3√2B.7+4√2C.8+3√2D.8+4√2【答案】D【解答】如图,过点M作MH⊥A′R于H,过点N作NJ⊥A′W于J.由题意△EMN是等腰直角三角形,EM=EN=2,MN=2√2,∵四边形EMHK是矩形,∴EK=A′K=MH=1,KH=EM=2,∵△RMH是等腰直角三角形,∴RH=MH=1,RM=√2,同法可证NW=√2,由题意AR=RA′=A′W=WD=4,∴AD=AR+RM+MN+NW+DW=4+√2+2√2+√2+4=8+4√2,二、填空题(本题有6小题,每小题5分,共30分)11. 因式分解:x2−9=________.【答案】(x+3)(x−3)【解答】原式=(x+3)(x−3),12. 计算1x −13x 的结果是________.【答案】 23x【解答】 1x −13x =33x −13x =23x .13. 如图,等边三角形纸片ABC 的边长为6,E ,F 是边BC 上的三等分点.分别过点E ,F 沿着平行于BA ,CA 方向各剪一刀,则剪下的△DEF 的周长是________.【答案】6【解答】∵ 等边三角形纸片ABC 的边长为6,E ,F 是边BC 上的三等分点,∴ EF =2, ∵ DE // AB ,DF // AC , ∴ △DEF 是等边三角形,∴ 剪下的△DEF 的周长是2×3=6.14. 甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s 甲2与S 乙2,则s 甲2 < S 乙2.(填“>”、“=”、“<“中的一个)<【解答】由折线统计图得乙同学的成绩波动较大,所以s 甲2<S 乙2.15. 如图,在△ABC 中,D 是边BC 上的一点,以AD 为直径的⊙O 交AC 于点E ,连接DE .若⊙O 与BC 相切,∠ADE =55∘,则∠C 的度数为________.【答案】 55∘【解答】∵ AD 为⊙O 的直径,∴ ∠AED =90∘,∴ ∠ADE +∠DAE =90∘;∵ ⊙O 与BC 相切,∴ ∠ADC =90∘, ∴ ∠C +∠DAE =90∘, ∴ ∠C =∠ADE , ∵ ∠ADE =55∘, ∴ ∠C =55∘.16. 用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a ,小正方形地砖面积为b ,依次连接四块大正方形地砖的中心得到正方形ABCD .则正方形ABCD 的面积为________.(用含a ,b 的代数式表示)a+b【解答】如图,正方形ABCD是由4个直角三角形和一个小正方形组成,4个直角三角形的面积和等于大正方形的面积a.故正方形ABCD的面积=a+b.三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17. 计算:|−3|+√8−√2.【答案】原式=3+2√2−√2=3+√2.【解答】原式=3+2√2−√2=3+√2.18. 解方程组:{x−y=13x+y=7.【答案】{x−y=13x+y=7,①+②得:4x=8,解得:x=2,把x=2代入①得:y=1,则该方程组的解为{x=2 y=1.【解答】{x−y=13x+y=7,①+②得:4x=8,解得:x=2,把x=2代入①得:y=1,则该方程组的解为{x=2y=1.19. 人字折叠梯完全打开后如图1所示,B,C是折叠梯的两个着地点,D是折叠梯最高级踏板的固定点.图2是它的示意图,AB=AC,BD=140cm,∠BAC=40∘,求点D离地面的高度DE.(结果精确到0.1cm;参考数据sin70∘≈0.94,cos70∘≈0.34,sin20∘≈0.34,cos20∘≈0.94)【答案】点D离地面的高度DE约为131.6cm【解答】过点A作AF⊥BC于点F,则AF // DE,∴∠BDE=∠BAF,∵AB=AC,∠BAC=40∘,∴∠BDE=∠BAF=20∘,∴DE=BD⋅cos20∘≈140×0.94=131.6(cm).20. 小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y (单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y 与x 之间的函数关系式;(2)当x 的值为6,8,10时,对应的函数值分别为y 1,y 2,y 3,比较(y 1−y 2)与(y 2−y 3)的大小:y 1−y 2 > y 2−y 3.【答案】设y 与x 之间的函数关系式为:y =kx , 把(3, 400)代入y =kx 得,400=k3, 解得:k =1200,∴ y 与x 之间的函数关系式为y =1200x ; 把x =6,8,10分别代入y =1200x得,y 1=12006=200,y 2=12008=150,y 3=120010=120,∵ y 1−y 2=200−150=50,y 2−y 3=150−120=30, ∵ 50>30,∴ y 1−y 2>y 2−y 3, 故答案为:>.21. 如图,已知AB =AC ,AD =AE ,BD 和CE 相交于点O .(1)求证:△ABD ≅△ACE ;(2)判断△BOC 的形状,并说明理由.【答案】∵ AB =AC ,∠BAD =∠CAE ,AD =AE , △BOC 是等腰三角形, 理由如下:∵ △ABD ≅△ACE , ∴ ∠ABD =∠ACE , ∵ AB =AC ,∴ ∠ABC =∠ACB ,∴ ∠ABC −∠ABD =∠ACB −∠ACE , ∴ ∠OBC =∠OCB , ∴ BO =CO ,∴ △BOC 是等腰三角形.22. 新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).(1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4以下的共有多少人?【答案】“直播”教学方式学生的参与度更高:理由:“直播”参与度在0.6以上的人数为28人,“录播”参与度在0.6以上的人数为20人,参与度在0.6以上的“直播”人数远多于“录播”人数, 所以“直播”教学方式学生的参与度更高; 12÷40=0.3=30%,答:估计该学生的参与度在0.8及以上的概率是30%;13。

2020年浙江省台州市中考数学试题(含答案)

2020年浙江省台州市中考数学试题(含答案)
三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)
17.(8分)计算:|﹣3|+ ﹣ .
18.(8分)解方程组:
19.(8分)人字折叠梯完全打开后如图1所示,B,C是折叠梯的两个着地点,D是折叠梯最高级踏板的固定点.图2是它的示意图,AB=AC,BD=140cm,∠BAC=40°,求点D离地面的高度DE.(结果精确到0.1cm;参考数据sin70°≈0.94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94)
3.(4分)计算2a2•3a4的结果是( )
A.5a6B.5a8C.6a6D.6a8
4.(4分)无理数 在( )
A.2和3之间B.3和4之间C.4和5之间D.5和6之间
5.(4分)在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是( )
A.中位数B.众数C.平均数D.方差
A.AB平分∠CADB.CD平分∠ACBC.AB⊥CDD.AB=CD
8.(4分)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是( )
A.由②推出③,由③推出①B.由①推出②,由②推出③
C.由③推出①,由①推出②D.由①推出③,由③推出②
9.(4分)如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是( )
应用思考:现用高度为20cm的圆柱体塑料水瓶做相关研究,水瓶直立地面,通过连续注水保证它始终盛满水,在离水面竖直距离hcm处开一个小孔.

2020年浙江省台州市中考数学试卷(有答案)

2020年浙江省台州市中考数学试卷(有答案)

2020年浙江省台州市中考数学试卷班级:___________姓名:___________ 得分:___________一、选择题(本大题共10小题,共40.0分)1.计算1−3的结果是()A. 2B. −2C. −4D. 42.用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A. B. C. D.3.计算2a2⋅3a4的结果是()A. 5a6B. 5a8C. 6a6D. 6a84.无理数√10在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间5.在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是()A. 中位数B. 众数C. 平均数D. 方差6.如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,−1)对应点的坐标为()A. (0,0)B. (1,2)C. (1,3)D. (3,1)AB同7.如图,已知线段AB,分别以A,B为圆心,大于12样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A. AB平分∠CADB. CD平分∠ACBC. AB⊥CDD. AB=CD8.下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A. 由②推出③,由③推出①B. 由①推出②,由②推出③C. 由③推出①,由①推出②D. 由①推出③,由③推出②9.如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A. B.C. D.10.把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A. 7+3√2B. 7+4√2C. 8+3√2D. 8+4√2二、填空题(本大题共6小题,共30.0分)11.因式分解:x2−9=______.12.计算1x −13x的结果是______.13.如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是______.14.甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s甲2与S乙2,则s甲2______S乙2.(填“>”、“=”、“<“中的一个)15. 如图,在△ABC 中,D 是边BC 上的一点,以AD 为直径的⊙O 交AC 于点E ,连接DE.若⊙O 与BC 相切,∠ADE =55°,则∠C 的度数为______.16. 用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a ,小正方形地砖面积为b ,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD 的面积为______.(用含a ,b 的代数式表示)三、计算题(本大题共1小题,共8.0分) 17. 解方程组:{x −y =13x +y =7.四、解答题(本大题共7小题,共72.0分) 18. 计算:|−3|+√8−√2.19. 人字折叠梯完全打开后如图1所示,B ,C 是折叠梯的两个着地点,D 是折叠梯最高级踏板的固定点.图2是它的示意图,AB =AC ,BD =140cm ,∠BAC =40°,求点D 离地面的高度DE.(结果精确到0.1cm ;参考数据sin70°≈0.94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94)20.小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1−y2)与(y2−y3)的大小:y1−y2______y2−y3.21.如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.22.新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数据分组包含左端值不包含右端值).参与度0.2~0.40.4~0.60.6~0.80.8~1人数方式录播416128直播2101612(1)你认为哪种教学方式学生的参与度更高?简要说明理由.(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4以下的共有多少人?23.如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M.E是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF.(1)求证:△BEF是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.24.用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为ℎ(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4ℎ(H−ℎ).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高hcm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;孔离水面的竖直距离.答案和解析1.【答案】B【解析】解:1−3=1+(−3)=−2.故选:B.根据有理数的加减法法则计算即可判断.本题主要考查了有理数的减法法则,减去一个数,等于加上这个数的相反数.2.【答案】A【解析】解:根据主视图的意义可知,选项A符合题意,故选:A.从正面看所得到的图形即为主视图,因此选项A的图形符合题意.考查简单几何体的三视图的画法,从不同方向对问题进行正投影所得到的图形分别为主视图、左视图、俯视图.3.【答案】C【解析】解:2a2⋅3a4=6a6.故选:C.直接利用单项式乘单项式运算法则计算得出答案.此题主要考查了单项式乘单项式,正确掌握相关运算法则是解题关键.4.【答案】B【解析】解:∵3<√10<4,故选:B.由√9<√10<√16可以得到答案.此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.5.【答案】A【解析】解:班级数学成绩排列后,最中间一个数或最中间两个分数的平均数是这组成绩的中位数,半数同学的成绩位于中位数或中位数以下,小明成绩超过班级半数同学的成绩所用的统计量是中位数,故选:A.根据中位数的意义求解可得.本题主要考查统计量的选择,解题的关键是掌握中位数、众数、平均数及方差的定义和意义.6.【答案】D【解析】解:∵把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,顶点C(0,−1),∴C(0+3,−1+2),即C(3,1),故选:D.利用平移规律进而得出答案.此题主要考查了坐标与图形变化−平移,正确得出对应点位置是解题关键.7.【答案】D【解析】解:由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD,故选:D.根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案.本题主要考查作图−基本作图,解题的关键是掌握菱形的判定与性质.8.【答案】A【解析】解:对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B,C,D错误,故选:A.根据对角线相等的四边形推不出是正方形或矩形即可判断.本题考查正方形的判定和性质,矩形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.【答案】C【解析】解:小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,在右侧上升时,情形与左侧相反,故选:C.小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,由此即可判断.本题考查动点问题函数图象,解题的关键是理解题意,灵活运用所学知识解决问题.10.【答案】D【解析】解:如图,过点M作MH⊥A′R于H,过点N作NJ⊥A′W于J.由题意△EMN是等腰直角三角形,EM=EN=2,MN=2√2,∵四边形EMHK是矩形,∴EK=A′K=MH=1,KH=EM=2,∵△RMH是等腰直角三角形,∴RH=MH=1,RM=√2,同法可证NW=√2,由题意AR=RA′=A′W=WD=4,∴AD=AR+RM+MN+NW+DW=4+√2+2√2+√2+4=8+4√2,故选:D.如图,过点M作MH⊥A′R于H,过点N作NJ⊥A′W于J.想办法求出AR,RM,MN,NW,WD即可解决问题.本题考查翻折变换,等腰直角三角形的判定和性质,矩形的性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形或特殊四边形解决问题.11.【答案】(x+3)(x−3)【解析】【分析】本题考查了因式分解−运用公式法,熟练掌握平方差公式是解本题的关键.原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x−3),故答案为:(x+3)(x−3).12.【答案】23x【解析】解:1x −13x=33x−13x=23x.故答案为:23x.先通分,再相减即可求解.考查了分式加减法,把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.13.【答案】6【解析】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵DE//AB,DF//AC,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.根据三等分点的定义可求EF的长,再根据等边三角形的判定与性质即可求解.考查了等边三角形的性质,平行线的性质,关键是证明△DEF是等边三角形.14.【答案】<【解析】解:由折线统计图得乙同学的成绩波动较大,所以s甲2<S乙2.故答案为:<.利用折线统计图可判断乙同学的成绩波动较大,然后根据方差的意义可得到甲、乙的方差的大小.本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了方差的意义.15.【答案】55°【解析】解:∵AD为⊙O的直径,∴∠AED=90°,∴∠ADE+∠DAE=90°;∵⊙O与BC相切,∴∠ADC=90°,∴∠C+∠DAE=90°,∴∠C=∠ADE,∵∠ADE=55°,由直径所对的圆周角为直角得∠AED =90°,由切线的性质可得∠ADC =90°,然后由同角的余角相等可得∠C =∠ADE =55°.本题考查了切线的性质、圆的相关概念及性质及互余关系等知识点,熟练掌握圆的相关性质是解题的关键. 16.【答案】a +b【解析】解:如图,正方形ABCD 是由4个直角三角形和一个小正方形组成,4个直角三角形的面积和等于大正方形的面积a.故正方形ABCD 的面积=a +b .故答案为a +b .如图,正方形ABCD 是由4个直角三角形和一个小正方形组成,4个直角三角形的面积和等于大正方形的面积a ,由此即可解决问题.本题考查中心对称,全等三角形的判定和性质,图形的拼剪等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型. 17.【答案】解:{x −y =1 ①3x +y =7 ②,①+②得:4x =8, 解得:x =2,把x =2代入①得:y =1,则该方程组的解为{x =2y =1.【解析】方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【答案】解:原式=3+2√2−√2 =3+√2.【解析】直接利用绝对值的性质和二次根式的性质化简得出答案. 此题主要考查了实数运算,正确化简二次根式是解题关键. 19.【答案】解:过点A 作AF ⊥BC 于点F ,则AF//DE , ∴∠BDE =∠BAF ,∵AB =AC ,∠BAC =40°, ∴∠BDE =∠BAF =20°,∴DE =BD ⋅cos20°≈140×0.94=131.6(cm).答:点D离地面的高度DE约为131.6cm.【解析】过点A作AF⊥BC于点F,根据等腰三角形的三线合一性质得∠BAF的度数,进而得∠BDE的度数,再解直角三角形得结果.本题主要考查了解直角三角形,等腰三角形的性质,关键是构造直角三角形求得∠BDE的度数.20.【答案】>【解析】解:(1)设y与x之间的函数关系式为:y=kx,把(3,400)代入y=kx 得,400=k3,解得:k=1200,∴y与x之间的函数关系式为y=1200x;(2)把x=6,8,10分别代入y=1200x 得,y1=12006=200,y2=12008=150,y3=120010=120,∵y1−y2=200−150=50,y2−y3=150−120=30,∵50>30,∴y1−y2>y2−y3,故答案为:>.(1)设y与x之间的函数关系式为:y=kx ,把(3,400)代入y=kx即可得到结论,(2)把x=6,8,10分别代入y=1200x得到求得y1,y2,y3值,即可得到结论.本题考查了反比例函数的应用,待定系数法求函数的解析式,反比例函数的性质,正确的理解题意是解题的关键.21.【答案】证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC−∠ABD=∠ACB−∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.【解析】(1)由“SAS”可证△ABD≌△ACE;(2)由全等三角形的性质可得∠ABD=∠ACE,由等腰三角形的性质可得∠ABC=∠ACB,可求∠OBC=∠OCB,可得BO=CO,即可得结论.本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,灵活运用全等三角形的性质是本题的关键.22.【答案】解:(1)“直播”教学方式学生的参与度更高:理由:“直播”参与度在0.6以上的人数为28人,“录播”参与度在0.6以上的人数为20人,参与度在0.6以上的“直播”人数远多于“录播”人数,所以“直播”教学方式学生的参与度更高;(2)12÷40=0.3=30%,答:估计该学生的参与度在0.8及以上的概率是30%;(3)“录播”总学生数为800×11+3=200(人),“直播”总学生数为800×31+3=600(人),所以“录播”参与度在0.4以下的学生数为200×440=20(人),“直播”参与度在0.4以下的学生数为600×240=30(人),所以参与度在0.4以下的学生共有20+30=50(人).【解析】(1)根据表格数据得出两种教学方式参与度在0.6以上的人数,比较即可作出判断;(2)用表格中“直播”教学方式学生参与度在0.8以上的人数除以被调查的总人数即可估计对应概率;(3)先根据“录播”和“直播”的人数之比为1:3及该校学生总人数求出“直播”、“录播”人数,再分别乘以两种教学方式中参与度在0.4以下人数所占比例求出对应人数,再相加即可得出答案.本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.23.【答案】(1)证明:∵∠EFB=∠∠EDB,∠EBF=∠EDF,∴∠EFB+∠EBF=∠EDB+∠EDF=∠ADB=90°,∴∠BEF=90°,∴△BEF是直角三角形.(2)证明:∵BC=BD,∴∠BDC=∠BCD,∵∠EFB=∠EDB,∴∠EFB=∠BCD,∵AC=AD,BC=BD,∴AB⊥CD,∴∠AMC=90°,∵∠BCD+∠ACD=∠ACD+∠CAB=90°,∴∠BCD =∠CAB ,∴∠BFE =∠CAB ,∵∠ACB =∠FEB =90°,∴△BEF∽△BCA .(3)解:设EF 交AB 于J.连接AE .∵EF 与AB 互相平分,∴四边形AFBE 是平行四边形,∴∠EFA =∠FEB =90°,即EF ⊥AD ,∵BD ⊥AD ,∴EF//BD ,∵AJ =JB ,∴AF =DF ,∴FJ =12BD =m 2, ∴EF =m ,∵△ABC∽△CBM ,∴BC :MB =AB :BC ,∴BM =m 26,∵△BEJ∽△BME ,∴BE :BM =BJ :BE ,∴BE =√2,∵△BEF∽△BCA ,∴AC EF =BC BE , 即√36−m 2m =m m √2,解得m =2√3(负根已经舍弃).【解析】(1)想办法证明∠BEF =90°即可解决问题(也可以利用圆内接四边形的性质直接证明).(2)根据两角对应相等两三角形相似证明.(3)证明四边形AFBE 是平行四边形,推出FJ =12BD =m 2,EF =m ,由△ABC∽△CBM ,可得BM =m 26,由△BEJ∽△BME ,可得BE =√2,由△BEF∽△BCA ,推出AC EF =BCBE ,由此构建方程求解即可.本题属于圆综合题,考查了圆周角定理,相似三角形的判定和性质平行四边形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题. 24.【答案】解:(1)∵s 2=4ℎ(H −ℎ),∴当H =20时,s 2=4ℎ(20−ℎ)=−4(ℎ−10)2+400,∴当ℎ=10时,s 2有最大值400,∴当ℎ=10时,s 有最大值20cm .∴当h 为何值时,射程s 有最大值,最大射程是20cm ;(2)∵s 2=4ℎ(20−ℎ),设存在a ,b ,使两孔射出水的射程相同,则有:4a(20−a)=4b(20−b),∴20a−a2=20b−b2,∴a2−b2=20a−20b,∴(a+b)(a−b)=20(a−b),∴(a−b)(a+b−20)=0,∴a−b=0,或a+b−20=0,∴a=b或a+b=20;)2+(20+m)2,(3)设垫高的高度为m,则s2=4ℎ(20+m−ℎ)=−4(ℎ−20+m2∴当ℎ=20+m时,s max=20+m=20+16,2=18.∴m=16,此时ℎ=20+m2∴垫高的高度为16cm,小孔离水面的竖直距离为18cm.【解析】(1)将s2=4ℎ(20−ℎ)写成顶点式,按照二次函数的性质得出s2的最大值,再求s2的算术平方根即可;(2)设存在a,b,使两孔射出水的射程相同,则4a(20−a)=4b(20−b),利用因式分解变形即可得出答案;(3)设垫高的高度为m,写出此时s2关于h的函数关系式,根据二次函数的性质可得答案.本题考查了二次函数在实际问题中的应用,理清题中的数量关系并明确二次函数的性质是解题的关键.。

2020年浙江省台州市中考数学测试试题附解析

2020年浙江省台州市中考数学测试试题附解析

2020年浙江省台州市中考数学测试试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列命题中,假命题的是( )A .圆的切线垂直于过切点的半径B .垂直于切线的直线必经过圆心C .若圆的两条切线平行,那么经过两切点的直线必经过圆心D .经过半径的外揣并且垂直于这条半径的直线是圆的切线2.对角线互相垂直平分的四边形是( )A .矩形B .菱形C .平行四边形D .梯形 3.平行四边形的一边为32,则它的两条对角线长不可能是( ) A .20和40B .30和50C .40和50D .20和60 4.化简)22(28+-得( ) A .-2 B .22- C .2 D .224-5. 已知下列条件,不能作出三角形的是( )A .两边及其夹角B 两角及其夹边C .三边D .两边及除夹角外的另一个角6.下列各式由左边到右边的变形中,是分解因式的为( )A .ay ax y x a +=+)(B .4)4(442+-=+-x x x xC .)12(55102-=-x x x xD .x x x x x 3)4)(4(3162+-+=+-7.桌上放着6张扑克牌,全部正面朝下,其中恰有2张是老K.两人做游戏,游戏规则是:随机取2张牌并把它们翻开,若2张牌中没有老K ,则红方胜,否则蓝方胜.哪方赢的机会大?( )A .红方B .蓝方C .一样D .不知道8.一艘轮船从点A 出发,沿南偏西60°方向航行到B 点,再从8点出发沿北偏东15°方向航行到C 点,则∠ABC= ( )A .45°B .75°C .105°D .135°9.小宝和爸爸、妈妈三人在操场上玩跷跷板,爸爸体重为69千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈同坐在跷跷板的一端,这是爸爸的一端仍然着地.后来小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果爸爸被跷起离地.小宝体重可能是( ) A .23.3千克 B .23千克 C .21.1千克 D .19.9千克二、填空题10.如图,一游人由山脚A 沿坡角为30的山坡AB 行走600m ,到达一个景点B ,再由B 沿山坡BC 行走200m 到达山顶C ,若在山顶C 处观测到景点B 的俯角为45,则山高CD 等于 (结果用根号表示) 11.如图,将边长为2 cm 的正方形ABCD 沿其对角线AC 剪开,再把△ABC 沿着AD 方向平移,得到△C B A '''ˊ,若两个三角形重叠部分的面积是1cm 2,则它移动的距离A A '等于 cm.12.将50个数据分成三组,其中第一组与第三组的频率之和是0.7,则第二组的频率是 ,第二组的频数是 .13.一元二次方程2980y -=的根是 .14.某市居民用水的价格是2.2元/m 3,设小煜家用水量为卫(m 3),所付的水费为y 元,则y 关于x 的函数解析式为 ;当x=15时,函数值y 是 ,它的实际意义是 .15.从某鱼塘里捕上l50条鱼做上标记,然后放回鱼塘里去,经过一段时间,待带标记的鱼完全混合于鱼群中后,再捕第二次样品鱼200条,若其中带标记的鱼有10条,可估计鱼塘里有 条鱼.16.化简:293x x -=- .17.如图所示是一个可以自由转动的转盘,转盘停下来时,当指针指向几,就按顺时针方向跳几步. 例如,当指针指向“2”时,使它顺时针跳 2 步,最终停在“4”上. 按照以上规则,试说明下列各个事件分别属于哪种事件:(1)指针最终停在数字“5”上是 事件;(2)指针最终停在数字“6”上是 事件;(3)指针最终停在的数字为偶数是 事件.18.将一付常规三角板拼成如图所示的图形,则∠ABC =_______度.19.给出下列等式:2231881-==⨯,22531682-==⨯,22752483-==⨯,…. 观察后可得出规律: 22(21)(21)n n +--= .20.在括号内填上适当的项:(1)a-( )=a-b-c, x+y-1=-( ) ,3[( )+x]=-6y+3x.(2) 2282x xy y -+= 2x +( )= 2x -( ).(3)22)12m mn n -+-=1-( )(4) (-a+b+c)(a+b-c)=[b+( )][b-( )].三、解答题21.添线补全下列物体的三视图:22.画出函数y=x 2-2x-3图像,并利用图像回答:x 取何值时,y 随x 的增大而减小?23.在同一坐标系内画出13y x=和221y x =-的图象,并借助图象回答下列问题: 主视图左视图俯视图A BCD H EF G (1)x 为何值时12y y =?(2)x 为何值时,13y >-且23y <-?(3)x 为何值时,12y y <?24.已知:如图,在四边形ABCD 中,AB=DC ,AD=BC ,点E 在BC 上,点F 在AD 上,AF=CE ,EF 与对角线BD 相交于点O ,求证:O 是BD 的中点.25.已知:如图,E ,F 分别是△ABC 的边AB ,BC 的中点.G ,H 是AC 上的三等分点,EG ,FH 的延长线相交于D.求证:(1)BG =DH ;(2)四边形ABCD 是平行四边形.26.说出下列命题的题设和结论,并指出它是真命题还是假命题:(1)系数相同的单项式是同类项;(2)有两个角和一条边对应相等的两个三角形全等;(3)同旁内角相等.27.要做一个高是8cm ,底面的长比宽多5cm ,体积是528cm 3 的长方体木箱,问底面的长和宽各是多少?28.下面让我们来探究生活中有关粉刷墙壁时,刷具扫过面积的问题:(π≈3.14)(1)甲工人用的刷具形状是一根细长的棍子(如图(1),长度AB为20cm(宽度忽略不计),他把刷具绕A点旋转90度,则刷具扫过的面积是多少?(2)乙工人用的刷具形状是圆形(如图(2)),直径CD为20cm,点O、C、D在同一直线上,OC=30cm,他把刷具绕O点旋转90度,则刷具扫过的面积是多少?29.如图①表示某地区2003年12个月中每月的平均气温,图②表示该地区某家庭这年12个月中每月的用电量.根据统计图,请你说出该家庭用电量与气温之间的关系(只要求写出一条信息即可):30.解下列方程(1)1.510.530.6x x--=(2)0.180.21 0.20.03x x--=【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.A4.A5.D6.C7.B8.A9.C二、填空题10.11.(300m112.0.3,1513. 223y =±14. y=2.2x ,33,用水量为15吨时所付水费为33元15.300016.x +317.(1)不可能;(2)随机;(3)必然18.135º19.8n 20.(4)c a -, c a -(1) b c +,1x y --+,2y - (2)282xy y -+, 282xy y - (3) 222m mn n -+三、解答题21.案:如图:22.图略,当x ≤1时,y 随x 的增大而减小.23.图象见解图,(1)当32x =或x=一1 时,12y y = (2)当x <— 1 时,y l >—3且 y 2<一3;(3)当 一1<x<0 或32x >时,12y y < 24.提示:△DOF ≌△BOE .25.提示:(1)连结BH ,则BH ∥DG ,BG ∥DH ;(2)连结BD 交AC 于点O ,由(1)得OG =OH ,OB =OD .26.(1)题设:单项式的系数相同;结论:它们是同类项,是假命题;(2)题设:两个三角形的两个角和一条边对应相等;结论:这两个三角形全等,是假命题;(3)题设:两个角是同旁内角;结论:这两个角相等,是假命题27.11 cm ,6cm28.(1)314cm 2;(2)1570cm 2.29.不唯一,如:气温高或低的月份用电量最大30.(1)57x =- (2)35x =。

2020年浙江省台州市中考数学精编试卷附解析

2020年浙江省台州市中考数学精编试卷附解析

2020年浙江省台州市中考数学精编试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知⊙O 的半径为 5 cm ,如果一条直线和圆心0的距离为 5 cm ,那么这条直线和⊙O 的位置关系是( )A .相交B .相切C . 相离D . 相交或相离2.如图所示,为了测量河两岸A 、B 两点之间的距离,在与 AB 垂直方向上取点 C ,测得 ∠ACB=θ,AC=a ,则AB 的长为( )A .tan a θB .sin a θC .cos a θD .tan a θ3.在△ABC 中,AB = AC ,AB = 2BC ,那么sinB 的值等于 ( )A .12B 3C 15D .144.已知△ABC 的三边长分别为6 cm ,7.5 cm ,9 cm ,△DEF 的一边长为4 cm ,当△DEF 的另两边长是下列哪一组时,这两个三角形相似( )A .2 cm ,3 cmB .4 cm ,5 cmC .5 cm ,6 cmD .6 cm ,7 cm5.下列命题中,真命题是( )A .一组对边平行且有一组邻边相等的四边形是平行四边形B .顺次连结四边形各边中点所得到的四边形是矩形C .等边三角形既是轴对称图形又是中心对称图形D .对角线互相垂直平分的四边形是菱形6.命题“垂直于同一条直线的两条直线互相平行”的题设是( )A .垂直B .两条直线C .同一条直线D .两条直线垂直于同一条直线7.在函数1y x =-x 的取值范围是( ) A .x ≥-l B .x ≠1 C .x ≥1D .x ≤1 8.如图,为了测出湖两岸A 、B 间的距离.一个观测者在在C 处设桩,使三角形ABC 恰为直角三角形,通过测量得到AC 的长为160 m ,BC 长为l28 m ,那么从点A 穿过湖到点B 的距离为()A.86 m B.90 m C.96 m D.l00 m9.三角形的一边长为(3a b+)cm,这条边上的高为2a cm,这个三角形的面积为()A.5a b+ cm2 B.262a ab+ cm2 C.23a ab+ cm2 D.232a ab+ cm210.如图,直线AB、CD相交于点O,OM⊥AB,若∠COB=135°,则∠MOD等于()A.45°B.35°C.25°D.15°11.如图是某校九年级(1)班的全体同学最喜欢的球类运动的统计图,则下列说法中,正确的是()A.从图中可以直接看出喜欢各种球类的具体人数B.从图中可以直接看出全班的总人数C.从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况D.从图中可以直接看出全班同学现在最喜欢各种球类的人数的比例12.两个有理数和的绝对值与这两个数绝对值的和相等,那么这两个数()A.都是正数B. 两数同号或有一个数为 0C.都是负数D.无法确定13.数轴上A、B两点分别是8.2,365,则 A.B两点间的距离为()A.4145B.2145C.-1. 6 D.1. 6二、填空题14.在①长方体、②球、③圆锥、④圆柱、⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是 (填上序号即可). 15.如图,已知⊙O 半径为5,弦AB 长为8,点P 为弦AB 上一动点,连结OP ,则线段OP 的最小长度是 . 16.12y y y =+,若 y l 与x 成正比例,y 2 与x 成反比例,当x=1 时,y= 一5,且它的图象经过点 (2,一4),则 y 关于x 的函数解析式为 .17.如果代数式232++x x 的值为8,则代数式5932-+x x 的值为 .18.象棋中,有“马走日,象走田……”的规则(列数在前,排数在后)图中“马”可移动到 上,“象”可移动到 上.19.根据图形,把下列语句填写完整.(1)直线a 、b 相交于 ;(2)直线c 由 两点所确定;(3)点D 在直线 外,点E 在直线 上.20. 一个两位数,个位与十位上的数字之和为 12,如果将个位上的数字与十位上的数字交换,那么所得新数比原教大36. 设原两位数的个位数字为x ,则可得方程 .21.把方程0.10.2x 110.30.7x +--=中的分母化为整数,得 . 22.写出一个一无一次方程,使它的解为12x =-,这个方程是 .23.如图,∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2;②BE =CF ;③△ACN ≌△ABM ;④CD =DN .其中正确的结论是____________________________(将你认为正确的结论序号填上).三、解答题24.某超市销售一种商品,每件商品的成本是20元.经统计销售情况发现,当这种商品的单价定为40元时,每天售出200件.在此基础上,假设这种商品的单价每降低1元,每天就会多售出20件.(1)用代数式表示,这种商品的单价为x元(x<40)时,销售1件该商品的利润和每天销售该商品的数量;(2)当商品单价定为多少时,该超市每天销售这种商品获得的利润为4500元.25.如图,∠1与∠2是直线a,b被直线c所截得的同位角,且∠l≠∠2,用反证法证明a不平行b,试完成下列证明过程中的填空:证明:假设,则∠l=∠2.这与相矛盾,故不成立.∴a不平行b.26.若二次三项式2++是一个完全平方式,求系数a的值.x ax414±27.“母亲节”到了,九年级(1)班班委发起慰问烈属王大妈的活动,决定在“母亲节”期间全班同学利用课余时间去卖鲜花筹集慰问金.已知同学们从花店按每支1.2元买进鲜花,并按每支3元卖出.(1)求同学们卖出鲜花的销售额y(元)与销售量x(支)之间的函数关系式;(2)若从花店购买鲜花的同时,还总共用去40元购买包装材料,求所筹集的慰问金w(元)与销售量x(支)之间的函数关系式;若要筹集不少于500元的慰问金,则至少要卖出鲜花多少支?(慰问金=销售额-成本)28.如图,∠B = 40°,∠AQB = 98°,∠D = 42°,则 AB∥CD,请说明理由..29.先化简,再求值:3x2+4x-(2x2+x)+(x2-3x-1) 其中x=-3.30.计算:(1)|2||2|-++;(2)|2||3|-⨯+【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.C4.C5.D6.D7.C8.C9.C10.A11.D12.B13.D二、填空题14.②15.316.4y x x =--17.1318.(1,3)或(3,3)或(4,2),(1,8)或(5,8)19.(1)E (2)C 、D (3)a ,a 或b20.10(12)[10(12)]36x x x x +-=-++21. 101210137x x +--=22. 答案不唯一,如102x +=,210x +=23.①②③三、解答题24.(1)x -20;200+(40-x )×20;(2)(x -20)(1000-20x )=4500,x =35.25.a ∥b ,已知,假设26.4±27.解:(1)3y x =;(2)3 1.240w x x =-- 1.840x =-∴所筹集的慰问金w (元)与销售量x (支)之间的函数关系式为 1.840w x =- 解法一:当500w ≥时,1.840500x -≥,解得300x ≥ ∴若要筹集不少于500元的慰问金,至少要售出鲜花300支 28.说明∠A=∠D 或∠B=∠C29.原式=2x 2-1,当x=-3时,原式=1730.(1)4 (2)6。

2020年浙江省台州市中考数学试卷

2020年浙江省台州市中考数学试卷

2020年浙江省台州市中考数学试卷一、选择题(本大题共10小题,共40.0分)1.计算1−3的结果是()A. 2B. −2C. −4D. 42.用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是()A. B. C. D.3.计算2a2⋅3a4的结果是()A. 5a6B. 5a8C. 6a6D. 6a84.无理数√10在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间5.在一次数学测试中,小明成绩72分,超过班级半数同学的成绩,分折得出这个结论所用的统计量是()A. 中位数B. 众数C. 平均数D. 方差6.如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,−1)对应点的坐标为()A. (0,0)B. (1,2)C. (1,3)D. (3,1)7.如图,已知线段AB,分别以A,B为圆心,大AB同样长为半径画弧,两弧交于点C,D,于12连接AC,AD,BC,BD,CD,则下列说法错误的是()A. AB平分∠CADB. CD平分∠ACBC. AB⊥CDD. AB=CD8.下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是()A. 由②推出③,由③推出①B. 由①推出②,由②推出③C. 由③推出①,由①推出②D. 由①推出③,由③推出②9.如图1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的运动速度v(单位:m/s)与运动时间t(单位:s)的函数图象如图2,则该小球的运动路程y(单位:m)与运动时间t(单位:s)之间的函数图象大致是()A. B.C. D.10.把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为()A. 7+3√2B. 7+4√2C. 8+3√2D. 8+4√2二、填空题(本大题共6小题,共30.0分)11.因式分解:x2−9=______.12.计算1x −13x的结果是______.13.如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是______.14.甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为s甲2与S乙2,则s甲2______S乙2.(填“>”、“=”、“<“中的一个)15.如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC 相切,∠ADE=55°,则∠C的度数为______.16.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为______.(用含a,b的代数式表示)三、计算题(本大题共1小题,共8.0分)17.解方程组:{x−y=13x+y=7.四、解答题(本大题共7小题,共72.0分)18.计算:|−3|+√8−√2.19.人字折叠梯完全打开后如图1所示,B,C是折叠梯的两个着地点,D是折叠梯最高级踏板的固定点.图2是它的示意图,AB=AC,BD=140cm,∠BAC=40°,求点D离地面的高度DE.(结果精确到0.1cm;参考数据sin70°≈0.94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94)20.小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1−y2)与(y2−y3)的大小:y1−y2______y2−y3.21.如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.22.新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取40人调查学习参与度,数据整理结果如表(数参与度0.2~0.40.4~0.60.6~0.80.8~1人数方式录播 4 16 12 8直播 2 10 16 12(2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在0.8及以上的概率是多少?(3)该校共有800名学生,选择“录播”和“直播”的人数之比为1:3,估计参与度在0.4以下的共有多少人?23.如图,在△ABC中,∠ACB=90°,将△ABC沿直线AB翻折得到△ABD,连接CD交AB于点M.E是线段CM上的点,连接BE.F是△BDE的外接圆与AD的另一个交点,连接EF,BF.(1)求证:△BEF是直角三角形;(2)求证:△BEF∽△BCA;(3)当AB=6,BC=m时,在线段CM上存在点E,使得EF和AB互相平分,求m的值.24.用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H(单位:cm),如果在离水面竖直距离为ℎ(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4ℎ(H−ℎ).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高hcm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.答案和解析1.【答案】B【解析】解:1−3=1+(−3)=−2.故选:B.根据有理数的加减法法则计算即可判断.本题主要考查了有理数的减法法则,减去一个数,等于加上这个数的相反数.2.【答案】A【解析】解:根据主视图的意义可知,选项A符合题意,故选:A.从正面看所得到的图形即为主视图,因此选项A的图形符合题意.考查简单几何体的三视图的画法,从不同方向对问题进行正投影所得到的图形分别为主视图、左视图、俯视图.3.【答案】C【解析】解:2a2⋅3a4=6a6.故选:C.直接利用单项式乘单项式运算法则计算得出答案.此题主要考查了单项式乘单项式,正确掌握相关运算法则是解题关键.4.【答案】B【解析】解:∵3<√10<4,故选:B.由√9<√10<√16可以得到答案.此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.5.【答案】A【解析】解:班级数学成绩排列后,最中间一个数或最中间两个分数的平均数是这组成绩的中位数,半数同学的成绩位于中位数或中位数以下,小明成绩超过班级半数同学的成绩所用的统计量是中位数,故选:A.根据中位数的意义求解可得.本题主要考查统计量的选择,解题的关键是掌握中位数、众数、平均数及方差的定义和意义.6.【答案】D【解析】解:∵把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,顶点C(0,−1),∴C(0+3,−1+2),即C(3,1),故选:D.利用平移规律进而得出答案.此题主要考查了坐标与图形变化−平移,正确得出对应点位置是解题关键.7.【答案】D【解析】解:由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD,故选:D.根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案.本题主要考查作图−基本作图,解题的关键是掌握菱形的判定与性质.8.【答案】A【解析】解:对角线相等的四边形推不出是正方形或矩形,故①→②,①→③错误,故选项B,C,D错误,故选:A.根据对角线相等的四边形推不出是正方形或矩形即可判断.本题考查正方形的判定和性质,矩形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.【答案】C【解析】解:小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,在右侧上升时,情形与左侧相反,故选:C.小球从左侧的斜坡滚下是匀变速运动,运动的路程y是t的二次函数,图象是先缓后陡,由此即可判断.本题考查动点问题函数图象,解题的关键是理解题意,灵活运用所学知识解决问题.10.【答案】D【解析】解:如图,过点M作MH⊥A′R于H,过点N作NJ⊥A′W于J.由题意△EMN是等腰直角三角形,EM=EN=2,MN=2√2,∵四边形EMHK是矩形,∴EK=A′K=MH=1,KH=EM=2,∵△RMH是等腰直角三角形,∴RH=MH=1,RM=√2,同法可证NW=√2,由题意AR=RA′=A′W=WD=4,∴AD=AR+RM+MN+NW+DW=4+√2+2√2+√2+4=8+4√2,故选:D.如图,过点M作MH⊥A′R于H,过点N作NJ⊥A′W于J.想办法求出AR,RM,MN,NW,WD即可解决问题.本题考查翻折变换,等腰直角三角形的判定和性质,矩形的性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形或特殊四边形解决问题.11.【答案】(x+3)(x−3)【解析】【分析】本题考查了因式分解−运用公式法,熟练掌握平方差公式是解本题的关键.原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x−3),故答案为:(x+3)(x−3).12.【答案】23x【解析】解:1x −13x=33x−13x=23x.故答案为:23x.先通分,再相减即可求解.考查了分式加减法,把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减.13.【答案】6【解析】解:∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵DE//AB,DF//AC,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.根据三等分点的定义可求EF的长,再根据等边三角形的判定与性质即可求解.考查了等边三角形的性质,平行线的性质,关键是证明△DEF是等边三角形.14.【答案】<【解析】解:由折线统计图得乙同学的成绩波动较大,所以s甲2<S乙2.故答案为:<.利用折线统计图可判断乙同学的成绩波动较大,然后根据方差的意义可得到甲、乙的方差的大小.本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了方差的意义.15.【答案】55°【解析】解:∵AD为⊙O的直径,∴∠AED=90°,∴∠ADE+∠DAE=90°;∵⊙O与BC相切,∴∠ADC=90°,∴∠C+∠DAE=90°,∴∠C=∠ADE,∵∠ADE=55°,∴∠C=55°.故答案为:55°.由直径所对的圆周角为直角得∠AED=90°,由切线的性质可得∠ADC=90°,然后由同角的余角相等可得∠C=∠ADE=55°.本题考查了切线的性质、圆的相关概念及性质及互余关系等知识点,熟练掌握圆的相关性质是解题的关键.16.【答案】a+b【解析】解:如图,正方形ABCD是由4个直角三角形和一个小正方形组成,4个直角三角形的面积和等于大正方形的面积a.故正方形ABCD的面积=a+ b.故答案为a+b.如图,正方形ABCD是由4个直角三角形和一个小正方形组成,4个直角三角形的面积和等于大正方形的面积a,由此即可解决问题.本题考查中心对称,全等三角形的判定和性质,图形的拼剪等知识,解题的关键灵活运用所学知识解决问题,属于中考常考题型.17.【答案】解:{x−y=1 ①3x+y=7 ②,①+②得:4x=8,解得:x=2,把x=2代入①得:y=1,则该方程组的解为{x=2 y=1.【解析】方程组利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【答案】解:原式=3+2√2−√2=3+√2.【解析】直接利用绝对值的性质和二次根式的性质化简得出答案. 此题主要考查了实数运算,正确化简二次根式是解题关键.19.【答案】解:过点A 作AF ⊥BC 于点F ,则AF//DE ,∴∠BDE =∠BAF ,∵AB =AC ,∠BAC =40°,∴∠BDE =∠BAF =20°,∴DE =BD ⋅cos20°≈140×0.94=131.6(cm).答:点D 离地面的高度DE 约为131.6cm .【解析】过点A 作AF ⊥BC 于点F ,根据等腰三角形的三线合一性质得∠BAF 的度数,进而得∠BDE 的度数,再解直角三角形得结果.本题主要考查了解直角三角形,等腰三角形的性质,关键是构造直角三角形求得∠BDE 的度数.20.【答案】>【解析】解:(1)设y 与x 之间的函数关系式为:y =k x ,把(3,400)代入y =k x 得,400=k 3,解得:k =1200,∴y 与x 之间的函数关系式为y =1200x ; (2)把x =6,8,10分别代入y =1200x 得,y 1=12006=200,y 2=12008=150,y 3=120010=120,∵y 1−y 2=200−150=50,y 2−y 3=150−120=30,∵50>30,∴y 1−y 2>y 2−y 3,故答案为:>.(1)设y 与x 之间的函数关系式为:y =k x ,把(3,400)代入y =k x 即可得到结论,(2)把x =6,8,10分别代入y =1200x 得到求得y 1,y 2,y 3值,即可得到结论.本题考查了反比例函数的应用,待定系数法求函数的解析式,反比例函数的性质,正确的理解题意是解题的关键.21.【答案】证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC−∠ABD=∠ACB−∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC是等腰三角形.【解析】(1)由“SAS”可证△ABD≌△ACE;(2)由全等三角形的性质可得∠ABD=∠ACE,由等腰三角形的性质可得∠ABC=∠ACB,可求∠OBC=∠OCB,可得BO=CO,即可得结论.本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,灵活运用全等三角形的性质是本题的关键.22.【答案】解:(1)“直播”教学方式学生的参与度更高:理由:“直播”参与度在0.6以上的人数为28人,“录播”参与度在0.6以上的人数为20人,参与度在0.6以上的“直播”人数远多于“录播”人数,所以“直播”教学方式学生的参与度更高;(2)12÷40=0.3=30%,答:估计该学生的参与度在0.8及以上的概率是30%;(3)“录播”总学生数为800×11+3=200(人),“直播”总学生数为800×31+3=600(人),所以“录播”参与度在0.4以下的学生数为200×440=20(人),“直播”参与度在0.4以下的学生数为600×240=30(人),所以参与度在0.4以下的学生共有20+30=50(人).【解析】(1)根据表格数据得出两种教学方式参与度在0.6以上的人数,比较即可作出判断;(2)用表格中“直播”教学方式学生参与度在0.8以上的人数除以被调查的总人数即可估计对应概率;(3)先根据“录播”和“直播”的人数之比为1:3及该校学生总人数求出“直播”、“录播”人数,再分别乘以两种教学方式中参与度在0.4以下人数所占比例求出对应人数,再相加即可得出答案.本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.23.【答案】(1)证明:∵∠EFB=∠∠EDB,∠EBF=∠EDF,∴∠EFB+∠EBF=∠EDB+∠EDF=∠ADB=90°,∴∠BEF=90°,∴△BEF 是直角三角形.(2)证明:∵BC =BD ,∴∠BDC =∠BCD ,∵∠EFB =∠EDB ,∴∠EFB =∠BCD ,∵AC =AD ,BC =BD ,∴AB ⊥CD ,∴∠AMC =90°,∵∠BCD +∠ACD =∠ACD +∠CAB =90°,∴∠BCD =∠CAB ,∴∠BFE =∠CAB ,∵∠ACB =∠FEB =90°,∴△BEF ∽△BCA .(3)解:设EF 交AB 于J.连接AE .∵EF 与AB 互相平分,∴四边形AFBE 是平行四边形,∴∠EFA =∠FEB =90°,即EF ⊥AD ,∵BD ⊥AD ,∴EF//BD ,∵AJ =JB ,∴AF =DF ,∴FJ =12BD =m 2, ∴EF =m ,∵△ABC ∽△CBM ,∴BC :MB =AB :BC ,∴BM =m 26,∵△BEJ ∽△BME ,∴BE :BM =BJ :BE ,∴BE =√2,∵△BEF ∽△BCA ,∴AC EF =BC BE ,即√36−m 2m =m m√2,解得m =2√3(负根已经舍弃).【解析】(1)想办法证明∠BEF =90°即可解决问题(也可以利用圆内接四边形的性质直接证明).(2)根据两角对应相等两三角形相似证明.(3)证明四边形AFBE是平行四边形,推出FJ=12BD=m2,EF=m,由△ABC∽△CBM,可得BM=m26,由△BEJ∽△BME,可得BE=√2,由△BEF∽△BCA,推出ACEF =BCBE,由此构建方程求解即可.本题属于圆综合题,考查了圆周角定理,相似三角形的判定和性质平行四边形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.24.【答案】解:(1)∵s2=4ℎ(H−ℎ),∴当H=20时,s2=4ℎ(20−ℎ)=−4(ℎ−10)2+400,∴当ℎ=10时,s2有最大值400,∴当ℎ=10时,s有最大值20cm.∴当h为何值时,射程s有最大值,最大射程是20cm;(2)∵s2=4ℎ(20−ℎ),设存在a,b,使两孔射出水的射程相同,则有:4a(20−a)=4b(20−b),∴20a−a2=20b−b2,∴a2−b2=20a−20b,∴(a+b)(a−b)=20(a−b),∴(a−b)(a+b−20)=0,∴a−b=0,或a+b−20=0,∴a=b或a+b=20;(3)设垫高的高度为m,则s2=4ℎ(20+m−ℎ)=−4(ℎ−20+m2)2+(20+ m)2,∴当ℎ=20+m2时,s max=20+m=20+16,∴m=16,此时ℎ=20+m2=18.∴垫高的高度为16cm,小孔离水面的竖直距离为18cm.【解析】(1)将s2=4ℎ(20−ℎ)写成顶点式,按照二次函数的性质得出s2的最大值,再求s2的算术平方根即可;(2)设存在a,b,使两孔射出水的射程相同,则4a(20−a)=4b(20−b),利用因式分解变形即可得出答案;(3)设垫高的高度为m,写出此时s2关于h的函数关系式,根据二次函数的性质可得答案.本题考查了二次函数在实际问题中的应用,理清题中的数量关系并明确二次函数的性质是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23.(12 分)如图,在△ABC 中,∠ACB=90°,将△ABC 沿直线 AB 翻折得到△ABD,连接 CD 交 AB 于点 M.E 是线段 CM 上的点,连接 BE.F 是△BDE 的外接圆与 AD 的另一个交点,连接 EF,BF. (1)求证:△BEF 是直角三角形; (2)求证:△BEF∽△BCA; (3)当 AB=6,BC=m 时,在线段 CM 上存在点 E,使得 EF 和 AB 互相平分,求 m 的值.
14.(5 分)甲、乙两位同学在 10 次定点投篮训练中(每次训练投 8 个),各次训练成绩(投中个数)的 折线统计图如图所示,他们成绩的方差分别为 s 甲 2 与 S 乙 2,则 s 甲 2 S 乙 2.(填“>”、“=”、“<” 中的一个)
15.(5 分)如图,在△ABC 中,D 是边 BC 上的一点,以 AD 为直径的⊙O 交 AC 于点 E,连接 DE.若⊙O 与 BC 相切,∠ADE=55°,则∠C 的度数为 .
18.(8 分)解方程组:
第 3 页(共 6 页)
19.(8 分)人字折叠梯完全打开后如图 1 所示,B,C 是折叠梯的两个着地点,D 是折叠梯最高级踏板的 固定点.图 2 是它的示意图,AB=AC,BD=140cm,∠BAC=40°,求点 D 离地面的高度 DE.(结果精确 到 0.1cm;参考数据 sin70°≈0.94,cos70°≈0.34,sin20°≈0.34,cos20°≈0.94)
A.
B.
ห้องสมุดไป่ตู้
C.
D.
3.(4 分)计算 2a2•3a4 的结果是( )
A.5a6
B.5a8
C.6a6
D.6a8
4.(4 分)无理数 在( )
A.2 和 3 之间
B.3 和 4 之间
C.4 和 5 之间
D.5 和 6 之间
5.(4 分)在一次数学测试中,小明成绩 72 分,超过班级半数同学的成绩,分折得出这个结论所用的统计
连接 AC,AD,BC,BD,CD,则下列说法错误的是( )
A.AB 平分∠CAD
B.CD 平分∠ACB C.AB⊥CD
D.AB=CD
8.(4 分)下列是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩
形.下列推理过程正确的是( )
A.由②推出③,由③推出①
B.由①推出②,由②推出③
20.(8 分)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练 次数不超过 15 次时,完成一次训练所需要的时间 y(单位:秒)与训练次数 x(单位:次)之间满足如图所 示的反比例函数关系.完成第 3 次训练所需时间为 400 秒. (1)求 y 与 x 之间的函数关系式; (2)当 x 的值为 6,8,10 时,对应的函数值分别为 y1,y2,y3,比较(y1﹣y2)与(y2﹣y3)的大小:y1﹣y2 y2﹣y3.
11.(5 分)因式分解:x2﹣9= .
12.(5 分)计算 ﹣ 的结果是 .
D.8+4
13.(5 分)如图,等边三角形纸片 ABC 的边长为 6,E,F 是边 BC 上的三等分点.分别过点 E,F 沿着平 行于 BA,CA 方向各剪一刀,则剪下的△DEF 的周长是 .
第 2 页(共 6 页)
A.
B.
C.
D.
10.(4 分)把一张宽为 1cm 的长方形纸片 ABCD 折叠成如图所示的阴影图案,顶点 A,D 互相重合,中间
空白部分是以 E 为直角顶点,腰长为 2cm 的等腰直角三角形,则纸片的长 AD(单位:cm)为( )
A.7+3
B.7+4
C.8+3
二、填空题(本题有 6 小题,每小题 5 分,共 30 分)
21.(10 分)如图,已知 AB=AC,AD=AE,BD 和 CE 相交于点 O. (1)求证:△ABD≌△ACE; (2)判断△BOC 的形状,并说明理由.
第 4 页(共 6 页)
22.(12 分)新冠疫情期间,某校开展线上教学,有“录播”和“直播”两种教学方式供学生选择其中一 种.为分析该校学生线上学习情况,在接受这两种教学方式的学生中各随机抽取 40 人调查学习参与度,数 据整理结果如表(数据分组包含左端值不包含右端值).
量是( )
A.中位数
B.众数
C.平均数
D.方差
6.(4 分)如图,把△ABC 先向右平移 3 个单位,再向上平移 2 个单位得到△DEF,则顶点 C(0,﹣1)对
应点的坐标为( )
A.(0,0)
B.(1,2)
C.(1,3)
D.(3,1)
(第 6 题图)
(第 7 题图)
7.(4 分)如图,已知线段 AB,分别以 A,B 为圆心,大于 AB 同样长为半径画弧,两弧交于点 C,D,
C.由③推出①,由①推出②
D.由①推出③,由③推出②
第 1 页(共 6 页)
9.(4 分)如图 1,小球从左侧的斜坡滚下,到达底端后又沿着右侧斜坡向上滚,在这个过程中,小球的 运动速度 v(单位:m/s)与运动时间 t(单位:s)的函数图象如图 2,则该小球的运动路程 y(单位:m) 与运动时间 t(单位:s)之间的函数图象大致是( )
16.(5 分)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为 a, 小正方形地砖面积为 b,依次连接四块大正方形地砖的中心得到正方形 ABCD.则正方形 ABCD 的面积 为 .(用含 a,b 的代数式表示)
三、解答题(本题有 8 小题,第 17~20 题每题 8 分,第 21 题 10 分,第 22,23 题每题 12 分,第 24 题 14 分, 共 80 分) 17.(8 分)计算:|﹣3|+ ﹣ .
2020 年浙江省台州市中考数学试卷
一、选择题(本题有 10 小题,每小题 4 分,共 40 分.请选出各题中一个符合题意的正确选项,不选、多选、
错选,均不给分)
1.(4 分)计算 1﹣3 的结果是( )
A.2
B.﹣2
C.4
D.﹣4
2.(4 分)用三个相同的正方体搭成如图所示的立体图形,则该立体图形的主视图是( )
参与度 人数 方式
0.2~0.4
0.4~0.6
0.6~0.8
0.8~1
录播
4
16
12
8
直播
2
10
16
12
(1)你认为哪种教学方式学生的参与度更高?简要说明理由. (2)从教学方式为“直播”的学生中任意抽取一位学生,估计该学生的参与度在 0.8 及以上的概率是多少? (3)该校共有 800 名学生,选择“录播”和“直播”的人数之比为 1:3,估计参与度在 0.4 以下的共有多少人?
相关文档
最新文档