高中数学平面向量专题讲解,平面向量典型例题及答案解析

合集下载

高中数学第六章平面向量及其应用考点题型与解题方法(带答案)

高中数学第六章平面向量及其应用考点题型与解题方法(带答案)

高中数学第六章平面向量及其应用考点题型与解题方法单选题1、在△ABC 中,若AB⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ <0,则△ABC -定是( ) A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形 答案:C分析:根据向量的数量积的运算公式,求得cosA <0,得到A 为钝角,即可求解. 由向量的数量积的运算公式,可得AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =|AB ⃗⃗⃗⃗⃗ |⋅|AC ⃗⃗⃗⃗⃗ |cosA <0,即cosA <0, 因为A ∈(0,π),所以A 为钝角,所以△ABC -定是钝角三角形. 故选:C.2、已知a ,b ⃗ 是不共线的向量,OA ⃗⃗⃗⃗⃗ =λa +μb ⃗ ,OB ⃗⃗⃗⃗⃗ =3a −2b ⃗ ,OC ⃗⃗⃗⃗⃗ =2a −3b ⃗ ,若A,B,C 三点共线,则实数λ,µ满足( )A .λ=μ−5B .λ=μ+5C .λ=μ−1D .λ=μ+1 答案:B解析:根据向量的线性运算方法,分别求得AB ⃗⃗⃗⃗⃗ =(3−λ)a −(2+μ)b ⃗ ,BC ⃗⃗⃗⃗⃗ =−a −b ⃗ ; 再由AB⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ ,得到3−λ=−(2+μ),即可求解. 由OA ⃗⃗⃗⃗⃗ =λa +μb ⃗ ,OB ⃗⃗⃗⃗⃗ =3a −2b ⃗ ,OC ⃗⃗⃗⃗⃗ =2a −3b⃗ , 可得AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =(3−λ)a −(2+μ)b ⃗ ,BC ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ =−a −b ⃗ ; 若A,B,C 三点共线,则AB ⃗⃗⃗⃗⃗ //BC ⃗⃗⃗⃗⃗ ,可得3−λ=−(2+μ),化简得λ=μ+5. 故选:B.3、在△ABC 中,角A,B,C 的对边分别为a,b,c ,且B =π3,b =3,a =√3,则c =( ). A .√3B .2√3C .3−√3D .3 答案:B分析:利用余弦定理可构造方程直接求得结果.在△ABC 中,由余弦定理得:b 2=a 2+c 2−2accosB =3+c 2−√3c =9,即c 2−√3c −6=0,解得:c =−√3(舍),∴c =2√3.c故选:B.4、已知非零向量a →与b →共线,下列说法不正确的是( ) A .a →=b →或a →=−b →B .a →与b →平行C .a →与b →方向相同或相反D .存在实数λ,使得a →=λb →答案:A分析:根据向量共线的概念,以及向量共线定理,逐项判断,即可得出结果. 非零向量a →与b →共线,对于A ,a →=λb →,λ≠0,故A 错误;对于B ,∵向量a →与b →共线,∴向量a →与b →平行,故B 正确; 对于C ,∵向量a →与b →共线,∴a →与b →方向相同或相反,故C 正确; 对于D ,∵a →与b →共线,∴存在实数λ,使得a →=λb →,故D 正确. 故选:A.5、已知向量a =(−1,m ),b ⃗ =(m +1,2),且a ⊥b ⃗ ,则m =( ) A .2B .−2C .1D .−1 答案:C分析:由向量垂直的坐标表示计算.由题意得a ⋅b ⃗ =−m −1+2m =0,解得m =1 故选:C .6、已知f (x )=sin (ωx +π6)+cosωx (ω>0),将f (x )图象上的横坐标伸长到原来的2倍(纵坐标不变时),得到g (x )的图象.g (x )的部分图象如图所示(D 、C 分别为函数的最高点和最低点):其中CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗⃗ |22,则ω=( )A .π4B .π2C .πD .2π 答案:C分析:先求出g (x )的解析式,再利用CA ⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗⃗ |22得到cos∠ACB =12,进而求出|AB |=2,所以T =2×2=4,ω=π 由f (x )=√32sinωx +32cosωx =√3sin (ωx +π3),∴g (x )=√3sin (12ωx +π3),因为D 、C 分别为函数的最高点和最低点,所以DA =AC =CB ,由CA⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =|AD ⃗⃗⃗⃗⃗⃗ |22,即|CA ⃗⃗⃗⃗⃗ |2⋅cos∠ACB =|AD |22∴cos∠ACB =12,∴△ACB 为正三角形,又△ABC 的高为√3, ∴|AB |=2 ∴T =2×2=4, ∴即2π12ω=4πω=4,∴ω=π, 故选:C .7、某人先向东走3km ,位移记为a →,接着再向北走3km ,位移记为b →,则a →+b →表示( ) A .向东南走3√2km B .向东北走3√2km C .向东南走3√3km D .向东北走3√3km 答案:B分析:由向量的加法进行求解.由题意和向量的加法,得a →+b →表示先向东走3km ,再向北走3km,即向东北走3√2km.故选:B.8、在锐角△ABC中,角A,B,C的对边分别为a,b,c,S为△ABC的面积,且2S=a2−(b−c)2,则2b2+c2bc 的取值范围为()A.(4315,5915)B.[2√2,4315)C.[2√2,5915)D.[2√2,+∞)答案:C分析:根据余弦定理和△ABC的面积公式,结合题意求出sinA、cosA的值,再用C表示B,求出bc =sinBsinC的取值范围,即可求出2b2+c2bc的取值范围.解:在△ABC中,由余弦定理得a2=b2+c2−2bccosA,且△ABC的面积S=12bcsinA,由2S=a2−(b−c)2,得bcsinA=2bc−2bccosA,化简得sinA+2cosA=2,又A∈(0,π2),sin2A+cos2A=1,联立得5sin2A−4sinA=0,解得或sinA=0(舍去),所以bc =sinBsinC=sin(A+C)sinC=sinAcosC+cosAsinCsinC=45tanC+35,因为△ABC为锐角三角形,所以0<C<π2,B=π−A−C<π2,所以π2−A<C<π2,所以tanC>tan(π2−A)=1tanA=34,所以1tanC∈(0,43),所以bc∈(35,53),设bc =t,其中t∈(35,53),所以2b2+c2bc=2bc+cb=2t+1t=2(t+12t),由对勾函数单调性知y=2t+1t 在(35,√22)上单调递减,在(√22,53)上单调递增,当t=√22时,y=2√2;当t=35时,y=4315;当t=53时,y=5915;所以y∈[2√2,5915),即2b2+c2bc的取值范围是[2√2,5915).故选:C.小提示:关键点点睛:由2b2+c2bc =2bc+cb,所以本题的解题关键点是根据已知及bc=sinBsinC=sin(A+C)sinC=4 sin5AsinAcosC+cosAsinCsinC=45tanC+35求出bc的取值范围.多选题9、等边三角形ABC 中,BD →=DC →,EC →=2AE →,AD 与BE 交于F ,则下列结论正确的是( ) A .AD →=12(AB →+AC →)B .BE →=23BC →+13BA →C .AF →=12AD →D .BF →=12BA →+13BC →答案:AC分析:可画出图形,根据条件可得出D 为边BC 的中点,从而得出选项A 正确; 由EC →=2AE →可得出AE →=13AC →,进而可得出BE →=13BC →+23BA →,从而得出选择B 错误;可设AF →=12AD →,进而得出AF →=λ2AB →+3λ2AE →,从而得出λ=12,进而得出选项C 正确;由AF →=12AD →即可得出BF →=12BA →+14BC →,从而得出选项D 错误. 如图,∵BD →=DC →,∴D 为BC 的中点,∴AD →=12(AB →+AC →),∴A 正确; ∵EC →=2AE →,∴AE →=13AC →=13(BC →−BA →),∴BE →=BA →+AE →=BA →+13(BC →−BA →)=13BC →+23BA →,∴ B 错误;设AF →=λAD →=λ2AB →+λ2AC →=λ2AB →+3λ2AE →,且B ,F ,E 三点共线,∴λ2+3λ2=1,解得λ=12,∴AF →=12AD →,∴C 正确;BF →=BA →+AF →=BA →+12AD →=BA →+12(BD →−BA →)=BA →+14BC →−12BA →=12BA →+14BC →,∴D 错误. 故选:AC10、已知△ABC 是边长为2的等边三角形,D ,E 分别是AC,AB 上的点,且AE ⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,BD 与CE 交于点O ,则( )A .OC ⃗⃗⃗⃗⃗ +EO ⃗⃗⃗⃗⃗ =0⃗B .AB⃗⃗⃗⃗⃗ ⋅CE ⃗⃗⃗⃗⃗ =0 C .|OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |=√3D .ED ⃗⃗⃗⃗⃗ 在BC ⃗⃗⃗⃗⃗ 方向上的投影为76 答案:BD解析:可证明EO =CE ,结合平面向量线性运算法则可判断A ;由AB⃗⃗⃗⃗⃗ ⊥CE ⃗⃗⃗⃗⃗ 结合平面向量数量积的定义可判断B ;建立直角坐标系,由平面向量线性运算及模的坐标表示可判断C ;由投影的计算公式可判断D. 因为△ABC 是边长为2的等边三角形,AE⃗⃗⃗⃗⃗ =EB ⃗⃗⃗⃗⃗ , 所以E 为AB 的中点,且CE ⊥AB ,以E 为原点如图建立直角坐标系,则E (0,0),A (−1,0),B (1,0),C(0,√3),由AD ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ 可得AD ⃗⃗⃗⃗⃗ =23AC ⃗⃗⃗⃗⃗ =(23,2√33),则D (−13,2√33), 取BD 的中点G ,连接GE ,易得GE//AD 且GE =12AD =DC , 所以△CDO ≌△EGO ,EO =CO ,则O (0,√32), 对于A ,OC⃗⃗⃗⃗⃗ +EO ⃗⃗⃗⃗⃗ =EC ⃗⃗⃗⃗⃗ ≠0⃗ ,故A 错误;对于B ,由AB ⃗⃗⃗⃗⃗ ⊥CE ⃗⃗⃗⃗⃗ 可得AB⃗⃗⃗⃗⃗ ⋅CE ⃗⃗⃗⃗⃗ =0,故B 正确; 对于C ,OA ⃗⃗⃗⃗⃗ =(−1,−√32),OB ⃗⃗⃗⃗⃗ =(1,−√32),OC ⃗⃗⃗⃗⃗ =(0,√32),OD ⃗⃗⃗⃗⃗⃗ =(−13,√36), 所以OA⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ =(−13,−√33),所以|OA ⃗⃗⃗⃗⃗ +OB⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ +OD ⃗⃗⃗⃗⃗⃗ |=23,故C 错误; 对于D ,BC⃗⃗⃗⃗⃗ =(−1,√3),ED ⃗⃗⃗⃗⃗ =(−13,2√33), 所以ED ⃗⃗⃗⃗⃗ 在BC ⃗⃗⃗⃗⃗ 方向上的投影为BC ⃗⃗⃗⃗⃗ ⋅ED ⃗⃗⃗⃗⃗⃗ |BC⃗⃗⃗⃗⃗ |=13+22=76,故D 正确.故选:BD.小提示:关键点点睛:建立合理的平面直角坐标系是解题关键. 11、下列说法中错误的是( ). A .若a //b ⃗ ,b ⃗ //c ,c //d ,则a //d B .若|a |=|b ⃗ |且a //b ⃗ ,则a =b⃗ C .若a ,b ⃗ 非零向量且|a +b ⃗ |=|a −b ⃗ |,则a ⊥b ⃗ D .若a //b ⃗ ,则有且只有一个实数λ,使得a =λb ⃗ 答案:ABD分析:对于题中所给的条件与结论需要考虑周全,可以得出结论. A 选项,当b ⃗ ,c 中至少有一个0⃗ 时,a 与d 可能不平行,故A 错误; B 选项,由|a |=|b ⃗ |且a //b ⃗ ,可得a =b ⃗ 或a =−b⃗ ,故B 错误; C 选项,|a +b ⃗ |=|a −b ⃗ |,根据数量积规则,则两边平方化简可得a ⋅b ⃗ =0, ∴a ⊥b⃗ ,故C 正确; D 选项,根据向量共线基本定理可知当a ,b⃗ 都为非零向量时成立, a 为零向量时也成立(λ=0) ,若b ⃗ =0⃗ 时,λ 不存在,但b ⃗ //a (零向量与所有的向量共线),故D 错误; 故选:ABD.12、下列说法错误的是( )A .若a //b ⃗ ,则存在唯一实数λ使得a =λb⃗ B .两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则a 与b⃗ 共线且反向C .已知a =(1,2),b ⃗ =(1,1),且a 与a +λb ⃗ 的夹角为锐角,则实数λ的取值范围是(−53,+∞) D .在△ABC 中,BC ⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ ,则△ABC 为等腰三角形 答案:AC分析:若a =b ⃗ =0⃗ 可判断A ;将已知条件两边平方再进行数量积运算可判断B ;求出a +λb ⃗ 的坐标,根据a ⋅(a +λb ⃗ )>0且a 与a +λb ⃗ 不共线求出λ的取值范围可判断C ;取AC 的中点D ,根据向量的线性运算可得CA ⃗⃗⃗⃗⃗ ⋅BD⃗⃗⃗⃗⃗⃗ =0可判断D ,进而可得正确选项. 对于A :若a =b ⃗ =0⃗ 满足a //b⃗ ,则实数λ不唯一,故选项A 错误; 对于B :两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则(a −b ⃗ )2=(|a |+|b⃗ |)2, 所以a 2+b ⃗ 2−2a ⋅b ⃗ =|a |2+|b ⃗ |2+2|a ||b ⃗ |,可得2a ⋅b ⃗ =2|a ||b ⃗ |⋅cos 〈a ⋅b ⃗ 〉=−2|a ||b ⃗ |,cos 〈a ⋅b ⃗ 〉=−1,因为0≤〈a ⋅b ⃗ 〉≤π,所以〈a ⋅b ⃗ 〉=π,所以a 与b⃗ 共线且反向,故选项B 正确; 对于C :已知a =(1,2),b ⃗ =(1,1),所以a +λb ⃗ =(1+λ,2+λ),若a 与a +λb ⃗ 的夹角为锐角,则a ⋅(a +λb ⃗ )=1+λ+2(2+λ)>0,解得:λ>−53,当λ=0时,a +λb ⃗ =a ,此时a 与a +λb ⃗ 的夹角为0,不符合题意,所以λ≠0,所以λ的取值范围是(−53,0)∪(0,+∞),故选项C 不正确;对于D :在△ABC 中,取AC 的中点D ,由BC⃗⃗⃗⃗⃗ ⋅CA ⃗⃗⃗⃗⃗ =CA ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ ,得CA ⃗⃗⃗⃗⃗ ⋅(BC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=CA ⃗⃗⃗⃗⃗ ⋅(BC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ )=CA ⃗⃗⃗⃗⃗ ⋅2BD ⃗⃗⃗⃗⃗⃗ =0,故BD 垂直平分AC ,所以△ABC 为等腰三角形,故选项D 正确. 故选:AC .13、有下列说法,其中错误的说法为 A .若a //b ⃗ ,b ⃗ //c ,则a //cB .若2OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ =0,S ΔAOC ,S ΔABC 分别表示ΔAOC ,ΔABC 的面积,则S ΔAOC :S ΔABC =1:6 C .两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则a 与b ⃗ 共线且反向D .若a //b ⃗ ,则存在唯一实数λ使得a =λb ⃗ 答案:AD分析:对每一个选项逐一分析判断得解.A. 若a //b ⃗ ,b ⃗ //c ,则a //c ,如果a ,c 都是非零向量,b ⃗ =0⃗ ,显然满足已知条件,但是结论不一定成立,所以该选项是错误的;B. 如图,D,E 分别是AC,BC 的中点,2OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +3OC ⃗⃗⃗⃗⃗ =0⃗ ,∴2(OA ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )+(OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ )=0⃗ ,∴4OD ⃗⃗⃗⃗⃗⃗ +2OE ⃗⃗⃗⃗⃗ =0⃗ ,∴OE ⃗⃗⃗⃗⃗ =−2OD ⃗⃗⃗⃗⃗⃗ , 所以OD =16AB,则S ΔAOC :S ΔABC =1:6,所以该选项是正确的;C. 两个非零向量a ,b ⃗ ,若|a −b ⃗ |=|a |+|b ⃗ |,则a 与b ⃗ 共线且反向,所以该选项是正确的;D. 若a //b ⃗ ,如果a 是非零向量,b ⃗ =0⃗ ,则不存在实数λ使得a =λb ⃗ ,所以该选项是错误的. 故选A,D小提示:本题主要考查平面向量的运算,考查向量的平行及性质,意在考查学生对这些知识的理解掌握水平,属于基础题. 填空题14、已知P ,Q 分别是四边形ABCD 的对角线AC 与BD 的中点,BC ⃗⃗⃗⃗⃗ =a ,DA ⃗⃗⃗⃗⃗ =b ⃗ ,且a ,b ⃗ 是不共线的向量,则向量PQ⃗⃗⃗⃗⃗ =___________. 答案:−12a −12b⃗ 分析:取AB 的中点E ,连接PE,QE ,然后利用向量的加法法则和三角形中位线定理求解. 如图,取AB 的中点E ,连接PE,QE ,因为P ,Q 分别是四边形ABCD 的对角线AC 与BD 的中点,BC ⃗⃗⃗⃗⃗ =a ,DA ⃗⃗⃗⃗⃗ =b⃗ 所以PE ⃗⃗⃗⃗⃗ =12CB ⃗⃗⃗⃗⃗ =−12a ,EQ ⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ =−12b ⃗ , 所以PQ ⃗⃗⃗⃗⃗ =PE ⃗⃗⃗⃗⃗ +EQ ⃗⃗⃗⃗⃗ =12CB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗ =−12a −12b⃗ .所以答案是:−12a−12b⃗15、在△ABC中,若a=2,c=2√3,cosC=−12,M是BC的中点,则AM的长为____________.答案:√7分析:在△ABC中,由余弦定理求出b=2,进而,在△AMC中,由余弦定理可得AM.在△ABC中,由余弦定理c2=b2+a2−2abcosC得b2+2b−8=0,又b>0,所以b=2.在△AMC中,CA=b=2,CM=a2=1,由余弦定理得AM2=CA2+CM2−2CA⋅CM⋅cosC=22+12−2×2×1×(−12)=7,所以AM=√7.所以答案是:√7.16、在△ABC中,cos∠BAC=−13,AC=2,D是边BC上的点,且BD=2DC,AD=DC,则AB等于 ___.答案:3分析:运用余弦定理,通过解方程组进行求解即可.设DC=x,AB=y,因为BD=2DC,AD=DC,所以BC=3x,AD=DC=x,在△ADC中,由余弦定理可知:cosC=AC2+CD2−AD22AC⋅DC =4+x2−x24x=1x,在△ABC中,由余弦定理可知:cosC=AC2+CB2−AB22AC⋅BC =4+9x2−y212x,于是有4+9x2−y212x =1x⇒9x2−y2=8(1),在△ABC中,由余弦定理可知:cosA=AB2+CA2−CB22AB⋅AC =y2+4−9x24y=−13,⇒27x2−3y2−4y=12(2),把(1)代入(2)中得,y=3,所以答案是:3解答题17、记△ABC的内角A,B,C的对边分别为a,b,c﹐已知sinCsin(A−B)=sinBsin(C−A).(1)若A=2B,求C;(2)证明:2a2=b2+c2答案:(1)5π8;(2)证明见解析.分析:(1)根据题意可得,sinC=sin(C−A),再结合三角形内角和定理即可解出;(2)由题意利用两角差的正弦公式展开得sinC(sinAcosB−cosAsinB)=sinB(sinCcosA−cosCsinA),再根据正弦定理,余弦定理化简即可证出.(1)由A=2B,sinCsin(A−B)=sinBsin(C−A)可得,sinCsinB=sinBsin(C−A),而0<B<π2,所以sinB∈(0,1),即有sinC=sin(C−A)>0,而0<C<π,0<C−A<π,显然C≠C−A,所以,C+C−A=π,而A=2B,A+B+C=π,所以C=5π8.(2)由sinCsin(A−B)=sinBsin(C−A)可得,sinC(sinAcosB−cosAsinB)=sinB(sinCcosA−cosCsinA),再由正弦定理可得,accosB−bccosA=bccosA−abcosC,然后根据余弦定理可知,1 2(a2+c2−b2)−12(b2+c2−a2)=12(b2+c2−a2)−12(a2+b2−c2),化简得:2a2=b2+c2,故原等式成立.18、如图,有一景区的平面图是一个半圆形,其中O为圆心,直径AB的长为2km,C,D两点在半圆弧上,且BC=CD,设∠COB=θ;(1)当θ=π12时,求四边形ABCD的面积.(2)若要在景区内铺设一条由线段AB,BC,CD和DA组成的观光道路,则当θ为何值时,观光道路的总长l 最长,并求出l的最大值.答案:(1)√6−√24+14;(2)5分析:(1)把四边形ABCD分解为三个等腰三角形:△COB,△COD,△DOA,利用三角形的面积公式即得解;(2)利用θ表示(1)中三个等腰三角形的顶角,利用正弦定理分别表示BC,CD和DA,令t=sinθ2,转化为二次函数的最值问题,即得解.(1)连结,则∠COD=π12,∠AOD=5π6∴四边形ABCD的面积为2×12×1×1×sinπ12+12×1×1×sin5π6=√6−√24+14(2)由题意,在△BOC中,∠OBC=π−θ2,由正弦定理BC sinθ=OBsin(π−θ2)=1cosθ2∴BC=CD=sinθcosθ2=2sinθ2同理在△AOD中,∠OAD=θ,∠DOA=π−2θ,由正弦定理DAsin(π−2θ)=ODsinθ∴DA=sin2θsinθ=2cosθ∴l=2+4sin θ2+2cosθ=2+4sinθ2+2(1−2sin2θ2),0<θ<π2OD令t =sin θ2(0<t <√22) ∴l =2+4t +2(1−2t 2)=4+4t −4t 2=−4(t −12)2+5 ∴t =12时,即θ=π3,l 的最大值为5 小提示:本题考查了三角函数和解三角形综合实际应用问题,考查了学生综合分析,数学建模,转化划归,数学运算能力,属于较难题。

高二数学平面向量试题答案及解析

高二数学平面向量试题答案及解析

高二数学平面向量试题答案及解析1.若干个能唯一确定一个数列的量称为该数列的“基本量”.设是公比为的无穷等比数列,下列的四组量中,一定能成为该数列“基本量”的是第组;①;②;③;④.【答案】①④【解析】由得,所以①唯一确定数列,由得,方程的解不定,所以②不能唯一确定数列,由得方程的解不定,所以③不能唯一确定数列,由得,所以④唯一确定数列.【考点】数列基本量运算2.下列各组向量中不平行的是()A.a="(1,2,-2),b=(-2,-4,4)"B.c=(1,0,0),d=(-3,0,0)C.e="(2,3,0)," f="(0,0,0)"D.g=(-2,3,5),h=(16,-24,40)【答案】D【解析】略3.已知则 ,.【答案】;【解析】由三边可知,以向量为邻边的平行四边形是菱形,夹角为,,为另一对角线长度为1【考点】向量运算与三角形法则4.已知向量与的夹角为且,若,且,则实数的值为A.B.1C.2D.【答案】B【解析】因为,所以,所以得.【考点】1.数量积;2.向量垂直.5.已知向量,,若,则__________________.【答案】或【解析】两向量平行,所以,解得:或.【考点】向量平行的坐标表示6.设,向量,且,则()A.﹣2B.4C.﹣1D.0【答案】D【解析】向量,且,可得,解得或(舍去,因为).则.故选:D.【考点】平面向量数量积的运算7.已知||=2,||=4,⊥(+),则与夹角的度数为.【答案】120【解析】设与夹角为.由⊥(+)得,,解得,所以.【考点】向量的数量积及其运算律并求向量的夹角.8.已知平面向量满足,且,则向量与的夹角为()A.B.C.D.【答案】C【解析】根据题意,由于平面向量满足,且,那么代入可知向量与的夹角的余弦值为,即可知向量与的夹角为,选C.【考点】向量的数量积公式.9.设,,且,则锐角为()A.B.C.D.【答案】C【解析】由,得,即,由二倍角公式得,故选C.【考点】1、向量的坐标运算;2、向量共线的基本定理.【思路点晴】本题主要考查的向量的基本概念与简单运算、向量的坐标运算,属于容易题.本题通过向量共线,得,代入坐标运算的公式;再由二倍角公式,得到关于角的三角函数值,从而求得锐角的值.10.在平面直角坐标系中,为原点,,动点满足,则的最大值是.【答案】【解析】设,表示以为圆心,r=1为半径的圆,而,所以,,,故得最大值为【考点】1.圆的标准方程;2.向量模的运算11.若||=1,||=2,=+,且⊥,则与的夹角为________。

高三数学平面向量的几何应用试题答案及解析

高三数学平面向量的几何应用试题答案及解析

高三数学平面向量的几何应用试题答案及解析1.已知向量a=(2,1),b=(0,-1).若(a+λb)⊥a,则实数λ=.【答案】5【解析】因为(a+λb)⊥a,所以【考点】向量数量积2.在平面直角坐标系xOy中,已知圆C:x2+y2-6x+5=0,点A,B在圆C上,且AB=2,则的最大值是.【答案】8【解析】设AB中点为M,则.因为圆C:,AB=2,所以,因此的最大值是8.【考点】直线与圆位置关系3.设P是△ABC所在平面内的一点,,则()A.B.C.D.【答案】B【解析】∵,∴P为AC的中点,∴.【考点】向量的运算.4.已知、是两个单位向量,那么下列结论正确的是()A.=B.•=0C.•<1D.2=2【答案】D【解析】A不正确,、的方向不确定.B不正确,当、垂直时,.C不正确,尽管、的长度都是1,但它们的方向不确定,,当两向量的方向相同时,.由于单位向量的模都等于1,但它们的方向不确定,故一定有,从而2=2,故D正确.故选 D.5.设,是平面内两个不共线的向量,=(a﹣1)+,=b﹣2(a>0,b>0),若A,B,C三点共线,则+的最小值是()A.2B.4C.6D.8【答案】B【解析】∵A,B,C三点共线,∴,共线,∴存在实数λ,使得可解得,b=2﹣2a∵a>0,b>0∴0<a<1∴==当a=时,取最小值为4故选:B.6.已知直角△ABC中,AB=2,AC=1,D为斜边BC的中点,则向量在上的投影为。

【答案】【解析】在上的投影为.【考点】向量的射影问题.7.在△ABC所在的平面上有一点P满足++=,则△PBC与△ABC的面积之比是________.【答案】【解析】因为++=,所以+++=0,即=2,所以点P是CA边上的靠近A点的一个三等分点,故.8.如图,在直角梯形ABCD中,AD⊥AB,AB∥DC,AD=DC=1,AB=2,动点P在以点C为圆心,且与直线BD相切的圆上或圆内移动,设=λ+μ (λ,μ∈R),则λ+μ的取值范围是 ().A.(1,2)B.(0,3)C.[1,2]D.[1,2)【答案】C【解析】以A为原点,AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,则B(2,0),D(0,1),C(1,1),设P(x,y),则(x,y)=λ(0,1)+μ(2,0)=(2μ,λ),即令z=λ+μ=+y.由圆C与直线BD相切可得圆C的半径为.由于直线y=-+z与圆C有公共点,所以,解得1≤z≤2.9.设向量,,若满足,则( )A.B.C.D.【答案】D【解析】因为,所以, ,解得:,故选D.【考点】向量共线的条件.10.已知点,点,向量,若,则实数的值为()A.5B.6C.7D.8【答案】C【解析】由已知得,又,所以存在实数,使,即,解得,所以正确答案为C.【考点】平行向量11.已知向量a,若向量与垂直,则的值为()A.B.7C.D.【答案】A【解析】由已知得,,又这两个向量垂直,所以,解得,所以正确答案为A.【考点】向量的运算与垂直关系12.直线与抛物线:交于两点,点是抛物线准线上的一点,记,其中为抛物线的顶点.(1)当与平行时,________;(2)给出下列命题:①,不是等边三角形;②且,使得与垂直;③无论点在准线上如何运动,总成立.其中,所有正确命题的序号是___.【答案】;①②③【解析】由抛物线方程知,焦点,准线为。

平面向量知识点总结、经典例题及解析、高考题50道及答案

平面向量知识点总结、经典例题及解析、高考题50道及答案

)))))))第五章 平面向量【考纲说明】1、理解平面向量的概念和几何表示,理解两个向量相等及共线的含义,掌握向量的加、减、数乘运算及其几何意义,会用坐标表示。

2、了解平面向量的基本定理,掌握平面向量的坐标运算。

3、掌握数量积的坐标表达式,会进行平面向量数量积的运算,会用向量方法解决简单的平面几何问题、力学问题与其他一些实际问题。

【知识梳理】一、 向量的基本概念与线性运算 1 向量的概念:(1)向量:既有大小又有方向的量,记作AB ;向量的大小即向量的模(长度),记作|AB | 向量不能比较大小,但向量的模可以比较大小.(2)零向量:长度为0的向量,记为0 ,其方向是任意的,0与任意向量平行(3)单位向量:模为1个单位长度的向量常用e 表示.(4)平行向量(共线向量):方向相同或相反的非零向量,记作a ∥b平行向量也称为共线向量(5)相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a= 大小相等,方向相同),(),(2211y x y x =⎩⎨⎧==⇔2121y y x x(6)相反向量:与a 长度相等、方向相反的向量,叫做a的相反向量记作a-,零向量的相反向量仍是零向量若a 、b是互为相反向量,则a =b -,b =a -,a +b =2 向量的线性运算:(1)向量的加法:求两个向量和的运算叫做向量的加法 向量加法满足交换律与结合律;向量加法有“三角形法则”与“平行四边形法则” .(2)向量的减法 :求向量a 加上b 的相反向量的运算叫做a 与b的差.向量的减法有三角形法则,b a -可以表示为从b 的终点指向a 的终点的向量(a 、b有共同起点)(3)向量的数乘运算:求实数λ与向量a 的积的运算,记作λa.①a a⋅=λλ;②当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a的方向相反; 当0=λ时,0 =a λ,方向是任意的③数乘向量满足交换律、结合律与分配律3. 两个向量共线定理:向量b 与非零向量a共线⇔有且只有一个实数λ,使得b =λ向量b 与非零向量a共线⇔有两个均不是零的实数λ、μ,使得0a b λμ+=.二、平面向量的基本定理与坐标表示 1 平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e叫做表示这一平面内所有向量的一组基底2. 平面向量的坐标表示:(1)在直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量,i j 作为基底 由平面向量的基本定理知,该平面内的任一向量a 可表示成a xi yj =+,由于a 与数对(x,y)是一一对应的,因此把(x,y)叫做向量a 的坐标,记作a =(x,y),其中x 叫作a 在x 轴上的坐标,y 叫做在y 轴上的坐标显然0=(0,0),(1,0)i =,(0,1)j =. (2)设OA xi y j =+.则向量OA 的坐标(x,y)就是终点A 的坐标,即若OA =(x,y),则A 点的坐标为(x,y),反之亦成立(O 是坐标原点). 3 平面向量的坐标运算:(1)若()()1122,,,a x y b x y ==,则()1212,a b x x y y ±=±±. (2)若()()2211,,,y x B y x A ,则()2121,AB x x y y =--,1(AB x =(3)若a =(x,y),则λa =(λx,λy).(4)若()()1122,,,a x y b x y ==,则1221//0a b x y x y ⇔-=. (5)若()()1122,,,a x y b x y ==,则1212a b x x y y ⋅=⋅+⋅. 三、平面向量的数量积 1 两个向量的数量积:已知两个非零向量a 与b ,它们的夹角为θ,a ·b 等于a 的长度与b 在a 方向上的投影的乘积叫做a 与b 的数量积(或内积),即a ·b =︱a ︱·︱b ︱cos θ,规定00a ⋅=2 向量的投影:︱b ︱cos θ=||a ba ⋅∈R ,称为向量b 在a 方向上的投影 投影的绝对值称为射影 3 向量的模与平方的关系:22||a a a a ⋅==4 乘法公式成立:()()2222a b a b a b a b +⋅-=-=-; ()2222a b a a b b±=±⋅+222a a b b =±⋅+.5 平面向量数量积的运算律:①交换律成立:a b b a ⋅=⋅.②对实数的结合律成立:()()()()a b a b a b R λλλλ⋅=⋅=⋅∈.③分配律成立:()a b c a c b c ±⋅=⋅±⋅()c a b =⋅±; 特别注意:①结合律不成立:()()a b c a b c ⋅⋅≠⋅⋅.②消去律不成立a b a c⋅=⋅不能得到b c =.③a b ⋅=0不能得到a =0或b =06 两个向量的数量积的坐标运算:已知两个向量1122(,),(,)a x y b x y ==,则a ·b =1212x x y y + 7 向量的夹角:已知两个非零向量a 与b ,作OA =a , OB =b ,则∠AOB=θ (001800≤≤θ)叫做向量a 与b 的夹角cos θ=cos ,a b a b a b⋅<>=⋅=当且仅当两个非零向量a 与b 同方向时,θ=00,当且仅当a 与b 反方向时θ=1800,同时0与其它任何非零向量之间不谈夹角这一问题8 垂直:如果a 与b 的夹角为900则称a 与b 垂直,记作a ⊥ba ⊥b ⇔a ·b=O ⇔2121=+y y x x【经典例题】【例1】(2010全国Ⅱ,8)△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若CB a =,ECBA CA b =,1,2a b ==,则CD = ( )(A )1233a b + (B )2133a b + (C )3455a b + (D )4355a b + 【答案】B .【解析】由角平分线的性质得2AD DB =,即有22()()33AD CB CA a b =-=-.从而221()333CD CA AD b a b a b =+=+-=+.故选B .【例2】(2009北京,2)已知向量a 、b 不共线,c k =a +b (k ∈R ),d =a -b ,如果c //d , 那么 ( ) A .1k =且c 与d 同向 B .1k =且c 与d 反向 C .1k =-且c 与d 同向 D .1k =-且c 与d 反向 【答案】D .【解析】取a ()1,0=,b ()0,1=,若1k =,则c =a +b ()1,1=,d =a -b ()1,1=-, 显然,a 与b 不平行,排除A 、B .若1k =-,则c =-a +b ()1,1=-,d =-a +b ()1,1=--, 即c //d 且c 与d 反向,排除C ,故选D .【例3】(2009湖南卷文)如图,D ,E ,F 分别是∆ABC 的边AB ,BC ,CA 的中点,则( ) A .0AD BE CF ++= B .0BD CF DF -+=C .0AD CE CF +-= D .0BD BE FC --= 【答案】A . 【解析】,,AD DB AD BE DB BE DE FC =∴+=+==得0AD BE CF ++=.或0AD BE CF AD DF CF AF CF ++=++=+=.【例4】(2009宁夏海南卷文)已知()()3,2,1,0a b =-=-,向量a b λ+与2a b -垂直,则实数λ的值为( )A.17-B.17C.16-D.16【答案】A .【解析】向量a b λ+=(-3λ-1,2λ),2a b -=(-1,2),因为两个向量垂直,故有(-3λ-1,2λ)×(-1,2)=0,即3λ+1+4λ=0,解得:λ=17-,故选A . 【例5】(2009全国卷Ⅰ文)设非零向量a 、b 、c 满足c b a c b a =+==|,|||||,则>=<b a , ( )A .150° B.120° C.60° D.30° 【答案】B .【解析】由向量加法的平行四边形法则,知a 、b 可构成菱形的两条相邻边,且a 、b 为起点处的对角线长等于菱形的边长,故选择B .【例6】(2009安徽卷文)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点,或=+,其中,R ,则+= _________.【答案】43. 【解析】设BC b =、BA a =则12AF b a =- ,12AE b a =- ,AC b a =- 代入条件得2433u u λλ==∴+=. 【例7】(2009辽宁卷文)在平面直角坐标系xoy 中,四边形ABCD 的边AB ∥DC,AD ∥BC,已知点A(-2,0),B (6,8),C(8,6),则D 点的坐标为___________. 【答案】(0,-2).【解析】平行四边形ABCD 中,OB OD OA OC +=+ ∴OD OA OC OB =+-=(-2,0)+(8,6)-(6,8)=(0,-2) 即D 点坐标为(0,-2).【例8】(2012江苏)如图,在矩形ABCD 中,22AB BC ==,,点E 为 BC 的中点,点F 在边CD 上,若2AB AF =,则AE BF 的值是___.【答案】2.【解析】由2AB AF =,得cos 2ABAF FAB ∠=,由矩形的性质,得cos =AF FAB DF ∠.∵2AB =,∴22DF ⋅=,∴1DF =∴21CF =-.记AE BF 和之间的夹角为,AEB FBC θαβ∠=∠=,,则θαβ=+. 又∵2BC =,点E 为BC 的中点,∴1BE =. ∴()()=cos =cos =cos cos sin sin AE BF AEBF AEBF AE BF θαβαβαβ+-()=cos cos sin sin =122212AE BF AE BF BE BC AB CF αβαβ--=⨯--=.本题也可建立以, AB AD 为坐标轴的直角坐标系,求出各点坐标后求解.【例9】(2009湖南卷理)在ABC ∆,已知2233AB AC AB AC BC ⋅=⋅=,求角A ,B ,C 的大小. 【答案】2,,663A B C πππ===. 【解析】解:设,,BC a AC b AB c ===由23AB AC AB AC ⋅=⋅得2cos 3bc A bc =,所以3cos 2A = 又(0,),A π∈因此6A π=由233AB AC BC ⋅=得23bc a =,于是23sin sin 3sin 4C B A ⋅=-所以53sin sin()64C C π⋅-=,133sin (cos sin )224C C C ⋅+=,因此 22sin cos 23sin 3,sin 23cos 20C C C C C ⋅+=-=,既sin(2)03C π-=由A=6π知506C π<<,所以3π-,4233C ππ-<,从而20,3C π-=或2,3C ππ-=,既,6C π=或2,3C π=故2,,,636A B C πππ===或2,,663A B C πππ===. 【课堂练习】一、选择题1.(2012辽宁理)已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确的是( )A .a ∥bB .a ⊥bC .{0,1,3}D .a +b =a -b2. (2009年广东卷文)已知平面向量a =,1x (),b =2,x x (-),则向量+a b ( )A. 平行于x 轴B. 平行于第一、三象限的角平分线C. 平行于y 轴D. 平行于第二、四象限的角平分线3.(2012天津文)在ABC ∆中,90A ∠=︒,1AB =,AC=2,设点,P Q 满足,(1),AP AB AQ AC R λλλ==-∈.若2BQ CP ⋅=-,则λ=( )( )A .13 B .23C .43D .2 4.(2009浙江卷理)设向量a ,b 满足:||3=a ,||4=b ,0⋅=a b .以a ,b ,-a b 的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为 ( )A .3 B.4 C .5D .65.(2012重庆理)设,x y ∈R,向量()()()4,2,,1,1,-===c y b x a ,且c b c a //,⊥,则a b += ()A B C .D .106. (2009浙江卷文)已知向量(1,2)=a ,(2,3)=-b .若向量c 满足()//+c a b ,()⊥+c a b ,则c =( )A .77(,)93B .77(,)39--C .77(,)39D .77(,)93--7.(2012浙江理)设a ,b 是两个非零向量.( )A .若|a +b |=|a |-|b |,则a ⊥bB .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得a =λbD .若存在实数λ,使得a =λb ,则|a +b |=|a |-|b |8.(2009全国卷Ⅰ理)设a 、b 、c 是单位向量,且a ·b =0,则()()a c b c -•-的最 小值为( )A.2- 2C.1-D.19.(2012天津理)已知△ABC 为等边三角形,=2AB ,设点P,Q 满足=AP AB λ,=(1)AQ AC λ-,R λ∈,若3=2BQ CP ⋅-,则=λ ( )A .12 B .12± C .12± D .32-±10.(2009全国卷Ⅱ理)已知向量()2,1,10,||a a b a b =⋅=+=||b =( )A.B. C. 5 D. 2511.(2012大纲理)ABC ∆中,AB 边上的高为CD ,若,,0,||1,||2CB a CA b a b a b ==⋅===,则AD =( )A .1133a b -B .2233a b - C .3355a b - D .4455a b - 12.(2008湖南)设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且2,DC BD =2,CE EA =2,AF FB =则AD BE CF ++与BC( )A. 反向平行B. 同向平行C. 互相垂直D. 既不平行也不垂直13.(2008广东)在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( )A .1142+a b B .2133+a b C .1124+a bD .1233+a b 14.(2007湖北)设(43)=,a ,a 在b 上的投影为522,b 在x 轴上的投影为2,且||14≤b ,则b 为( )A .(214),B .227⎛⎫- ⎪⎝⎭,C .227⎛⎫- ⎪⎝⎭,D .(28),15.(2012安徽理)在平面直角坐标系中,(0,0),(6,8)O P ,将向量OP 按逆时针旋转34π后,得向量OQ 则点Q 的坐标是 ( ) A .(72,2)-- B .(72,2)- C .(46,2)-- D .(46,2)-二、填空题16.(2012浙江文)在△ABC 中,M 是BC 的中点,AM=3,BC=10,则AB AC ⋅=________.17.(2009安徽卷理)给定两个长度为1的平面向量OA 和OB ,它们的夹角为120o.如图所示,点C 在以O 为圆心的圆弧AB 上变动. 若,OC xOA yOB =+其中,x y R ∈,则x y + 的最大值是________.18.(2012上海文)在知形ABCD 中,边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD 上的点,且满足||||||||CD CN BC BM =,则AN AM ⋅的取值范围是_________ .19.(2012课标文)已知向量a ,b 夹角为045,且|a |=1,|2-a b |=10,则|b |=_______. 20.(2012湖南文)如图4,在平行四边形ABCD 中 ,AP ⊥BD,垂足为P,3AP =且APAC = _____.A DBCP21.(2012湖北文)已知向量(1,0),(1,1)a b ==,则(Ⅰ)与2a b +同向的单位向量的坐标表示为____________; (Ⅱ)向量3b a -与向量a 夹角的余弦值为____________.22.(2012北京文)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB ⋅的值为________. 23.(2012安徽文)设向量(1,2),(1,1),(2,)a m b m c m ==+=,若()a c +⊥b ,则a =_____.24.(2012江苏)如图,在矩形ABCD 中,22AB BC ==,,点E 为BC 的中点,点F 在边CD上,若2AB AF =,则AE BF 的值是___.25.(2012安徽理)若平面向量,a b 满足:23a b -≤;则a b 的最小值是_____三、解答题26. (2009年广东卷文)(已知向量)2,(sin -=θa 与)cos ,1(θ=b 互相垂直,其中)2,0(πθ∈(1)求θsin 和θcos 的值(2)若ϕϕθcos 53)cos(5=-,<<ϕ02π,求ϕcos 的值 27.(2009上海卷文)已知ΔABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量(,)m a b =, (sin ,sin )n B A =,(2,2)p b a =-- .(1) 若m //n ,求证:ΔABC 为等腰三角形; (2) 若m ⊥p ,边长c = 2,角C =3π,求ΔABC 的面积 . 28. 已知A 、B 、C 分别为ABC △的三边a 、b 、c 所对的角,向量)sin ,(sin B A m =,)cos ,(cos A B n =,且C n m 2sin =⋅.(Ⅰ)求角C 的大小;(Ⅱ)若A sin ,C sin ,B sin 成等差数列,且18)(=-⋅AC AB CA ,求边c 的长.【课后作业】一、选择题1.(2009辽宁卷理)平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b +=( )A.B. C. 4 D. 22.(2009宁夏海南卷理)已知O ,N ,P 在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且PA PB PB PC PC PA •=•=•,则点O ,N ,P 依次是ABC ∆的( )A. 重心 外心 垂心B. 重心 外心 内心C. 外心 重心 垂心D. 外心 重心 内心3.(2008安徽)在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB =,(1,3)AC =,则BD =( )A . (-2,-4)B .(-3,-5)C .(3,5)D .(2,4)4.(2008浙江)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足0)()(=-⋅-c b c a ,则c 的最大值是( )A. 1B. 2C.2 D.225.(2007海南、宁夏)已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b( ) A .(21)--, B .(21)-,C .(10)-,D .(12),6.(2007湖南)设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条直线,则必有( )A .⊥a bB .∥a bC .||||=a bD .||||≠a b7. (2007天津)设两个向量22(2cos )λλα=+-,a 和sin 2m m α⎛⎫=+ ⎪⎝⎭,b ,其中mλα,,为实数.若2=a b ,则mλ的取值范围是 ( ) A .[-6,1]B .[48],C .(-6,1]D .[-1,6]8. 在ABC BC AB ABC ∆︒︒=︒︒=∆则已知向量中),27cos 2,63cos 2(),72cos ,18(cos ,的面积等于( ) A .22 B .42 C .23 D .29. 已知平面向量(3,1),(,3),//,a b x a b x ==-则等于 ( )A .9B .1C .-1D .-910. 已知a 、b 是不共线的AB a b λ=+AC a b μ=+(,)R λμ∈,则A 、B 、C 三点共线的充要条件是:( )A .1λμ+=B .1λμ-=C .1λμ=-D .1λμ=二、填空题11. 设向量2,3,19,AB AC AB AC CAB ==+=∠=则_________.12. 若向量,2,2,()a b a b a b a ==-⊥ 满足,则向量b a 与的夹角等于 .13. 已知平面上的向量PA 、PB 满足224PA PB +=,2AB =,设向量2PC PA PB =+,则PC 的最小值是 .14.(2008江苏)a ,b 的夹角为120︒,1a =,3b = 则5a b -= . 15. (2007安徽)在四面体O ABC -中,OA OB OC D ===,,,a b c 为BC 的中点,E 为AD 的中点,则OE = (用,,a b c 表示).16.(2007北京)已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是 .17. 已知向量(cos15,sin15)a =,(sin15,cos15)b =--,则a b |+|的值为 .18.(2007广东)若向量a 、b 满足b a b a 与,1==的夹角为120°,则b a b a ··+= .三、解答题19.(2009湖南卷文)已知向量(sin ,cos 2sin ),(1,2).a b θθθ=-=(1)若//a b ,求tan θ的值;(2)若||||,0,a b θπ=<<求θ的值。

高中数学-平面向量(含详细答案)

高中数学-平面向量(含详细答案)



2 3
→AB
D.A→Q = B→P
2. 答案 D
3.( 教材习题改编) 如图ꎬDꎬEꎬF 分别是△ABC 各边的中点ꎬ则下
列结论错误的是
( )
A.E→F = C→D
B.→AB与D→E共线
C.B→D与C→D是相反向量
D.→AE =
1 2
| →AC |
3. 答案 D 根据向量的有关概念可知ꎬE→F = C→Dꎬ→AB∥D→EꎬB→D
(2) ①是错误的ꎬ两个向量起点相同ꎬ终点相同ꎬ则两个向量
相等ꎻ但两个向量相等ꎬ不一定有相同的起点和终点. ②是错误的ꎬ | a | = | b | ꎬ但 aꎬb 方向不确定ꎬ所以 aꎬb 的方向
不一定相等或相反.
③是正确的ꎬ因为→AB = D→Cꎬ所以 | →AB | = | D→C | 且→AB∥D→Cꎻ又
( )
( 2) 零向量与任意向量平行.
( )
(3) 若 a∥bꎬb∥cꎬ则 a∥c.
( )
(4) 若向量→AB与向量C→D是共线向量ꎬ则 AꎬBꎬCꎬD 四点在一条
直线上.
( )
(5) 当两个非零向量 aꎬb 共线时ꎬ一定有 b = λaꎬ反之成立.
( )
(6) 在△ABC
①若两个向量相等ꎬ则它们的起点相同ꎬ终点相同ꎻ ②若 | a | = | b | ꎬ则 a = b 或 a = -bꎻ
③若 AꎬBꎬCꎬD 是不共线的四点ꎬ且→AB = D→Cꎬ则 ABCD 为平
行四边形ꎻ ④a = b 的充要条件是 | a | = | b | 且 a∥bꎻ ⑤已知 λꎬμ 为实数ꎬ若 λa = μbꎬ则 a 与 b 共线. 其中真命题的序号是 . 答案 (1)D (2)③

高中数学第二章平面向量向量应用举例例题与探究(含解析)

高中数学第二章平面向量向量应用举例例题与探究(含解析)

2.7 向量应用举例典题精讲例1用向量法证明平行四边形两对角线的平方和等于四条边的平方和。

思路分析:把平行四边形的边和对角线的长看成向量的长度,转化为证明向量长度之间的关系.基向量法和坐标法均可解决.答案:已知:四边形ABCD是平行四边形,求证:|AC|2+|BD|2=2|AB|2+2|AD|2。

证法一:如图2—7—1所示,设AB=a, AD=b,∴AC=AB+AD=a+b,BD=AD-AB=b-a。

图2-7—1∴|AC|2=(a+b)2=a2+2a·b+b2,|BD|2=(b—a)2=a2-2a·b+b2。

∴|AC|2+|BD|2=2a2+2b2.又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和.证法二:如图2—7-2所示,以A为原点,以AB所在直线为x轴,建立直角坐标系.设A(0,0)、D(a,b)、B(c,0),∴AC=AB+AD图2—7-2=OB+OD=(c,0)+(a,b)=(a+c,b),BD=AD—AB=OD—OB=(a,b)-(c,0)=(a-c,b)。

∴|AC|2=(c+a)2+b2,|BD|2=(a-c)2+b2.∴|AC|2+|BD|2=2a2+2c2+2b2。

又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2c2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和。

绿色通道:1。

向量法解决几何问题的步骤:①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算(有基向量法和坐标法两种),研究几何元素之间的关系;③把运算结果“翻译”成几何关系。

这是用向量法解决平面几何问题的“三步曲”.又简称为:一建二算三译;也可说成为:捡便宜(建算译)。

平面向量知识点+例题+练习+答案

平面向量知识点+例题+练习+答案

五、平面向量1.向量的概念①向量 既有大小又有方向的量。

向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a |。

向量不能比较大小,但向量的模可以比较大小。

向量表示方法:(1)几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。

如果向量的起点在原点,那么向量的坐标与向量的终点坐标相同。

向量和数量的区别:向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。

如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(答:(3,0))②零向量长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ⇔|a |=0。

由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。

(注意与0的区别)③单位向量 模为1个单位长度的向量,向量0a 为单位向量⇔|0a |=1。

(与AB 共线的单位向量是||AB AB ±);④平行向量(共线向量)方向相同或相反的非零向量。

任意一组平行向量都可以移到同一直线上,方向相同或相反的向量,称为平行向量,记作a ∥b ,规定零向量和任何向量平行。

由于向量可以进行任意的平移(即自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量。

提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线⇔ AB AC 、共线;数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的。

平面向量经典例题讲解

平面向量经典例题讲解

平面向量经典例题讲解 讲课时间:___________姓名:___________课时:___________讲课教师:___________一、选择题(题型注释)1. 空间四边形OABC 中,OA a =,OB b =, OC c =,点M 在OA 上,且MA OM 2=,N 为BC 的中点,则MN =( ) A 121-32a b c + B 211322a b c ++C 112-223a b c +D 221-a b c +【答案】B 【解析】试题分析:因为N 为BC 1()2ON OB OC =+,12()2MN ON OM OB OC OA =-=+-=112b c a +-,选B2.已知平面向量a ,b 满足||1=a ,||2=b ,且()+⊥a b a ,则a 与b 的夹角是( )(A (B (C (【解析】 试题分析:2()()00a b a a b a a a b +⊥∴+⋅=∴+⋅=,||1=a ,||2=b ,设夹角为θ,则2112cos a a b+⋅=+⨯考点:本题考查向量数量积的运算点评:两向量垂直的充要条件是点乘积得0,用向量运算得到cos θ的值,求出角3.若OA 、OB 、OC 三个单位向量两两之间夹角为60OA OB OC ++= 【答案】D 【解析】试题分析: OA 、OB 、OC 三个单位向量两两之间夹角为60°222222232coa b c a b c ab bc ac a b ++=+++++=+4.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC a =,BD b =,则AF =( )A.1142a b + B.1233a b +C.1124a b + D.2133a b +【答案】D【解析】试题分析:AEB 与FED ∆相似,且相似比为3:1,所以1DF DC =,,AB AD a AD AB b +=-=,解得,,a b a bAD AB +-==121AF AD DF AD AB a b =+=+=+,故考点:平面向量的加减法5.在边长为1的等边ABC ∆中,,D E 分别在边BC 与AC 上,且BD DC =,2AE EC = 则AD BE ⋅=( )AC A 【解析】试题分析:由已知,D E 分别在边BC 与AC 上,且BD DC =,2AE EC = 则D 是BC 的中轴点,E 为AC 的三等分点,以D 为坐标原点,DA所在直线为y 轴,BC 边所在直线为x 轴,建立平面直角坐标系,设),(y x E ,由EC AE =2可得:考点:平面向量的坐标运算6.在平行四边形ABCD 中,AC 为一条对角线,(2,4)AB =,(1,3)AC =,则DA =( )A .(2,4)B .(3,5)C .(1,1)D .(-1,-1) 【答案】C . 【解析】试题分析:()(1,1)DA AD AC AB =-=--=. 考点:平面向量的线性运算.7.已知向量()1,2a =,()//a b b +,则b 可以为( )A .()1,2B .()1,2-C .()2,1D .()2,1- 【答案】A 【解析】试题分析:设),(y x b =,则)2,1(++=+y x b a ,因()//a b b +,所以0)2()1(=+-+y x y x ,02=-x y ,只有A满足考点:向量共线的条件8.已知向量(2,3),(1,2)a b ==-,若4ma b +与2a b -共线,则m 的值为( ) A . 2 C .2- 【答案】D 【解析】试题分析:由已知得4ma b+)83,42()2,1(4)3,2(+-=-+=m m m ,又因为4ma b +与2a b -共线, 所以有228140)83(4)1()42(-=⇒-=⇒=+⨯--⨯-m m m m ,故选D .考点:1.向量的坐标运算;2.向量平行的坐标条件.9.已知平面直角坐标系内的两个向量)2,1(=→a ,)23,(-=→m m b ,且平面内的任一向量→c 都可以唯一的表示成→→→+=b a c μλμλ,(为实数),则实数m 的取值范围是( )A .(,2)-∞B .(2,)+∞C .(,)-∞+∞D .(,2)(2,)-∞+∞【答案】D【解析】试题分析:平面内的任一向量→c 都可以唯一的表示成→→→+=b a c μλμλ,(为实数)的充要条件是)2,1(=→a ,)23,(-=→m m b 不共线,即()132202m m m ⨯--⨯≠⇒≠,故选 D.考点:平面向量的基底及向量共线 10.若向量(1,2)=-a ,(2,1)=b ,(4,2)--c =,则下列说法中错误..的是( ) A. a b ⊥B. 向量a 与向量c 的夹角为90︒C. b ∥cD.对同一平面内的任意向量d ,都存在一对实数12,k k ,使得12k k =d b+c 【答案】D 【解析】A 正确;0)2()2()4(1=-⨯-+-⨯=⋅c a ,所以B 正故C 正确;因为c b ,是共线D 错 考点:向量的夹角11.已知向量()3,4a =,)A .1C .1±D 【解析】试题分析:因为()3,4a =,所以,解得:1λ=±,故选D . 考点:1、向量的数乘运算;2、向量的模. 12.若向量()2,1a =-,()0,2b =,则以下向量中与a b +垂直的是( )A .()1,2-B .()1,2C .()2,1D .()0,2 【答案】A 【解析】试题分析:∵向量()2,1a =-,()0,2b =,∴(2,1)a b +=,而12(2)10⨯+-⨯=,∴以下向量中与a b +垂直的是()1,2-.考点:向量垂直的充要条件.13.在边长为1的正三角形ABC 中,设2BC BD =,CA CE λ=,若1A DB E ⋅=-则λ的值为( )(A (B )2 (C )1(D C【解析】试题分析:由题意可得: =211AB BC BC AB CA BC CAλλ⋅++⋅+⋅14.已知向量(1,2)a =, (1,0)b =,(3,4)c =,若λ为实数,()a b c λ+⊥,则)D 【解析】试题分析:()1,2a bλλ+=+,因为()a b c λ+⊥,所以()()31420a b c λλ+⋅=++⨯=,解得故D 正确. ;向量的数量积.15.在△ABC 中,已知||4,||1AB AC ==,,则AB AC ⋅的值为( ) (A )2-(B )2(C )4±(D )2± 【答案】D 【解析】试题分析:由题根据三角形面积公式不难得到角A 的正弦值,然后得到其对应的余弦值,结合平面向量数量积运算求得结果.cosA AB AC AB AC ∴⋅=⨯⨯故选D 考点:平面向量的数量积二、填空题(题型注释) 16.已知两个非零向量a 与b ,定义|a×b|=|a|·|b|sin θ,其中θ为a 与b 的夹角.若a =(-3,4),b =(0,2),则|a×b|的值为________. 【答案】6 【解析】|a|5,|b|=2,a·b=-3×0+4×2=8,所以cos θθ∈[0,π],所以sin θ故根据定义可知|a×b|=|a|·|b|sin θ 6.17.△ABC 中AB =2,AC 点D 是△ABC 的重心,则AD ·BC =________.E 为边BC 是△ABC 的重心,所以AD =3AE =3(AB +AC )3(AB +AC ),又BC =AC -AB ,所以AD ·BC =3(AB +AC )·(AC -AB )(AC 2-AB 2)=18.已知a =(2,0),||3b =,,a b 的夹角为2|a b -= 【解析】 试题分析:2224416a b a a b b -=-⋅+=-.考点:向量的基本运算.19.已知A 、B 、C 是球O 的球面上三点,∠BAC=90°,AB=2,BC=4,球O 的表面积为48π,则异面直线AB 与OC 所成角余弦值为 .【解析】试题分析:过O 作BC 的垂线,垂足为M ,以MA 所在线为x 轴,以MC 所在线为y 轴,以MO 所在线为z 轴,建立直角坐标系,所以(2,00)A ,,(0,2,0)B -,(0,2,0)C ,,(2,2,0)BA =,(0,2,OC =考点:1.空间向量法;2.夹角公式. 20.已知||1a =,||2b =,a 与b 的夹角为120︒,0a c b ++=,则a 与c 的夹角为 .【答案】90︒ 【解析】试题分析:要求a 与c 的夹角一般可先求两向量的数量积a c ⋅,而()c a b =-+,因此a c ⋅=()a a b -⋅+=2a ab --⋅,而根据已知,这是可求的,而且其结果是0,故a ⊥c ,夹角为90︒.考点:向量的夹角.21.已知0=++c b a ,且a 与c 的夹角为︒60,,则〉〈b a ,cos 等于 .【解析】试题分析:∵0=++c b a ,∴()b a c =-+,∴22202||||cos60b a c a c =++, ∴2223||||a a c a c =++,∴222||||0a a c c --=,∴||||a c =, ∴2203()||||||cos60a b a a c a a c a a c ∙=-+=--∙=--=-23||32,2||||||3||a ab a b a b a a -∙>===-.考点:1.向量的运算;2.两向量的夹角公式. 22.已知点G 为ABC △的重心,过点G 作直线与AB ,AC 两边分别交于,M N两点,且,AM xAB = ,AN y AC = ,x y R ∈,则【答案】3 【解析】试题分析:根据题意画出图像,因为G 为ABC △的重心,所以()2111111AG AB AC AM AN AM ⎛⎫=⨯+=+=+⎪,因为:,,M G N 三点共线,所以答案为: 3.考点:1.向量的运算;2.三点共线的性质.23.已知向量),2,4(),3,1,2(x b a -=-=,若//a b ,则=x ; 【答案】-6 【解析】试题分析:由b a λ=可知,2λ=-,所以6x =-.考点:空间向量共线定理. 24.设向量(3,1),(2,2)a b ==-,若()()a b a b λλ+⊥-,则实数λ= .【解析】试题分析:由已知得(3a b λλ+=+(3a b λλ-=- 由()()a b a b λλ+⊥-得()()0a b a b λλ+⋅-=所以有即0842=-λ,解得考点:向量的数量积的坐标运算. 25.已知向量(1,2)a =-,(2,3)b =,若m a b λ=+与n a b =-的夹角为钝角,则实数λ的取值范围是 . 【答案】9λ<且1x ≠- 【解析】试题分析:m a b λ=+(2,23)λλ=-++,n a b =-(3,1)=--,若m a b λ=+与n a b =-的夹角为钝角,则()()3(2)(23)0a b a b λλλ+⋅-=--+-+<,即:9λ<,又m n 与不共线,则(2)λ--+3+(23)0λ+≠,即:1λ≠-,则9λ<且1x ≠-考点:1.向量的夹角;2.向量的数量积;3.共线向量;4.向量的坐标运算公式; 26.已知向量b a ,满足则a 在b 上的投影为_______________.试题分析:设a 与b 的夹角为θ,∵向量a ,b满足(∴22146a a b b a b +⋅+=+⋅+=,∴a b ⋅=1.∴cos a b a b⋅⋅=12,再由围为[0,ππ.若向量a 与b 满足||2a =,||2b =,()a b a -⊥.则向量a 与b 的夹角等于 ;||a b += 10. 试题分析:()a b a -⊥,()0a b a -⋅=,22a a b ∴=⋅=,2cos ,2a b a b a b⋅∴==,,4a b π=,()2222a b a ba ab b+=+=+⋅+24410=++=.222(2)()21226a b a b a a b b a b +⋅-=+⋅-=+⋅-⨯=-,1a b ⋅=,所以1cos ,2a b a b a b ⋅<>==,,a b π<>=.考点:向量的数量积与向量的夹角.三、解答题(题型注释),若b ka -与.(2)13k =-.2)两向量()(),,,a x y b x y ==平行,满足条件是).)()()2,21,3,1x --=-,则分5,6.- 分⑵因为()()1,31,5=-,)(()4,12,2,1BC =--, 8分所以)()2,51k k k -==---a b ,)7,2-. 10分 70=,向量共线.BM =BC ,CN =CD ,OA =,OB=b ,用a 、b 表示OM 、ON 、MN . 26【解析】BA =,BM =6BA =6,OM =OB +BM =6a +6b .OD ,ON =OC +CN =2OD +6OD =3OD =3a +3b .MN =ON -OM =2a -6b(2)小问cos6014a b a b ⋅=⋅=⨯()()222222a b a b a a b b -⋅+=+⋅-=+2)∵()()2a b a b λ+⊥-,∴()()20a b a b λ+⋅-=,∴()22220a a b b λλ+-⋅-=,∴()22320λ--=,点评:解决此题的关键是掌握平面向量数(1试题解析:(1)因为⊥a b ,所以=0⋅a b ,2分4分因为cos 0θ≠,所以6分(2)由a ∥b ,得8分11分14分考点:向量平行与垂直,两角和正弦及二倍角公式33.(本题满分9分)已知向量)sin ,(cos αα=a ,)sin ,(cos ββ=b ,(1)求cos()αβ-的值; (2,求sin α的值。

高三数学平面向量试题答案及解析

高三数学平面向量试题答案及解析

高三数学平面向量试题答案及解析1.已知点为的外接圆的圆心,且,则的内角等于( ) A.B.C.D.【答案】A【解析】由得,所以四边形为菱形,因此,即.【考点】1.向量运算;2.三角形外心.2.已知是单位向量,.若向量满足()A.B.C.D.【答案】A;【解析】因为,,做出图形可知,当且仅当与方向相反且时,取到最大值;最大值为;当且仅当与方向相同且时,取到最小值;最小值为.3.已知向量,,则向量在上的正射影的数量为()A.B.C.D.【答案】D【解析】向量在上的正射影的数量为选D.【考点】向量正投影4.设向量,,则向量在向量上的投影为.【答案】-1【解析】由已知向量,,向量在向量上的投影为.【考点】向量的投影.5.已知向量,,若与垂直,则()A.B.C.2D.4【答案】C【解析】因为两向量垂直,所以,即,代入坐标运算:,解得:,所以.【考点】向量数量积的坐标运算6.已知向量满足,,.若对每一确定的,的最大值和最小值分别是,则对任意,的最小值是.【答案】【解析】设,则,设OA中点为D,则,因此四点A,D,B,C共圆,圆心为AB中点M,直径为AB,从而的最大值和最小值分别是因此【考点】向量几何意义7.已知向量满足,则在方向上的投影为.【答案】【解析】根据,求得,根据投影公式可得在方向上的投影为.【考点】向量在另一个向量方向上的投影.8.若O是△ABC所在平面内一点,且满足|-|=|+-2|,则△ABC一定是A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形【答案】B【解析】根据题意有,即,从而得到,所以三角形为直角三角形,故选B.【考点】向量的加减运算,向量垂直的条件,三角形形状的判断.9.已知、是不共线的向量,,那么三点共线的充要条件为()A.B.C.D.【答案】B【解析】因为三点共线,所以,所以,故选B.【考点】向量共线的充要条件.10.已知是内的一点,且,,若,和的面积分别为、、,则的最小值是()A.B.C.D.【答案】B【解析】利用向量的数量积的运算求得bc的值,利用三角形的面积公式求得x+y的值,进而把转化为利用基本不等式求得的最小值即可.因为,,所以故选B.【考点】平面向量;均值不等式11.设向量a=(-1,2),b=(m,1),如果向量a+2b与2a-b平行,则a 与b的数量积等于()A.-B.-C.D.【答案】D【解析】由已知可得,因为与平行,所以可得,解得.即..故D正确.【考点】1向量共线;2数量积公式.12.在中,已知,,分别是边上的三等分点,则的值是()A.B.C.D.【答案】C【解析】因为、分别是边上的三等分点所以,所以又所以得所以故答案选【考点】1.向量的线性关系;2.向量的数量积.13.如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,作EF⊥AE交∠BCD的外角平分线于F.设,记,则函数的值域是;当面积最大时,.【答案】,【解析】如图,作,交延长线于,则,易证得,所以设,则所以所以由题知,所以故的值域是因为,所以当面积最大时,,即则在中,所以【考点】1.向量的数量积;2.二次函数的最值.14.边长为2的正三角形内(包括三边)有点,,求的取值范围.【答案】.【解析】如下图所示,建立平面直角坐标系,∴,,,,,∴,即点P的轨迹为圆夹在三角形ABC内及其边界的一段圆弧,在中,有,又∵,即的取值范围是.【考点】平面向量数量积.【思路点睛】平面向量的综合题常与角度与长度结合在一起考查,在解题时运用向量的运算,数量积的几何意义,同时,需注意挖掘题目中尤其是几何图形中的隐含条件,常利用数形结合思想将问题等价转化为利用几何图形中的不等关系将问题简化,一般会与函数,不等式等几个知识点交汇,或利用平面向量的数量积解决其他数学问题是今后考试命题的趋势.15.在直角梯形ABCD中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E,F分别为AB,BC的中点,点P在以A为圆心,AD为半径的圆弧上变动(如图所示).若,其中的取值范围是.【答案】【解析】建立如下图所示直角坐标系,则,,,,,所以,,又因为点在以为圆心、为半径的圆上,且在第一象限,所以点的坐标为,,所以,所以.,,由三角函数的性质可知,函数的值域为,所以的取值范围为.【考点】1.向量的坐标运算;2.圆的参数方程;3.三角函数的性质.【方法点睛】本题主要考查向量的坐标运算、圆的参数方程的应用、三角函数的性质、数形结合思想,属难题.平面向量的坐标运算主要是利用向量加、减、数乘运算的法则进行求解的,若已知有向线段两端点的坐标,应先求出向量的坐标,解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)求解进行,并注意方程思想与转化思想的应用.16.已知向量,,若与平行,则的值是 _.【答案】【解析】由题意与平行,则可得到【考点】共线向量17.在中,,D是边BC上一点,(1)求的值;(2)求的值【答案】(1)(2)【解析】(1)在中,已知三边求一角,故应用余弦定理:,解得,(2)因为,而,因此只需求边AB,这可由正弦定理解得:试题解析:在中,由余弦定理得:.把,,代入上式得.因为,所以.在中,由正弦定理得:.故.所以.【考点】正余弦定理【名师】1.正弦定理可以处理①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角.余弦定理可以处理①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两个角.其中已知两边及其一边的对角,既可以用正弦定理求解也可以用余弦定理求解.2.利用正、余弦定理解三角形其关键是运用两个定理实现边角互化,从而达到知三求三的目的.18.已知向量,其中,则向量的夹角是()A.B.C.D.【答案】D【解析】由于,则,即,则,则有,所以向量的夹角是.【考点】平面向量的数量积的运算.19.(2015秋•上海月考)已知||=2,||=1,的夹角为,则= .【答案】1【解析】代入向量数量级定义式计算.解:=||•||cos=2×1×=1.故答案为:1.【考点】平面向量数量积的运算.20.(2015•河南模拟)已知向量=(2,1),=(0,﹣1).若(+λ)⊥,则实数λ=.【答案】5【解析】本题先将向量坐标化,利用两向量垂直得到它们的数量积为零,求出λ的值,得到本题答案.解:∵向量=(2,1),=(0,﹣1),∴.∵(+λ)⊥,∴2×2+1×(1﹣λ)=0,λ=5.故答案为:5.【考点】平面向量数量积的运算.21.已知两定点,,点P在椭圆上,且满足=2,则为()A.-12B.12C.一9D.9【答案】D【解析】由,可得点的轨迹是以两定点,为焦点的双曲线的上支,且∴的轨迹方程为:,由和联立可解得:,则.故选D.【考点】椭圆的简单性质.22.在边长为1的正三角形ABC中,设,则__________.【答案】.【解析】如图:由知点D是BC边的中点,点E是CA边上靠近点C的一个三等分点,.故答案应填:.【考点】向量的数量积.23.在中,则∠C的大小为()A.B.C.D.【答案】B【解析】,解得,所以,故选B.【考点】平面向量数量积的应用.24.已知点P是内一点,且,则()A.B.C.D.【答案】C【解析】设点M是中点,则点P是一个三等分点,,选C.【考点】向量表示25.知△ABC和点M满足+=-,若存在实数m使得m+m=成立,则m等于()A.B.2C.D.3【答案】C【解析】由,得,知点是的重心,由,由于是的重心,所以,,故选C.【考点】平面向量.26.已知向量,设.(1)求函数的解析式及单调增区间;(2)在中,分别为内角的对边,且,求的面积.【答案】(1),;(2)【解析】(Ⅰ)利用三角函数恒等变换的应用化简函数解析式可得,由,可解得函数的单调增区间.(Ⅱ)由,可得,结合范围,可得,从而求得,由余弦定理可解得的值,利用三角形面积公式即可得解.试题解析:解:(Ⅰ)由可得所以函数的单调递增区间为,(Ⅱ)由可得【考点】1.余弦定理;2.三角函数中的恒等变换应用.27.在中,,点是线段上的动点,则的最大值为_______.【答案】.【解析】,所以当M,N重合时,,最大,为,又设所以,显然当时,最大为,故的最大值为3.【考点】数量积的应用.28.已知向量若则()A.B.C.2D.4【答案】C【解析】由已知,因为,所以,,所以.故选C.【考点】向量垂直的坐标运算,向量的模.29.已知||=,||=2,若(+)⊥,则与的夹角是.【答案】150°.【解析】根据已知条件即可得到,所以根据进行数量积的运算即可得到3,所以求出cos<>=,从而便求出与的夹角.解:∵;∴=;∴;∴与的夹角为150°.故答案为:150°.【考点】平面向量数量积的运算.30.已知点为内一点,且则________.【答案】【解析】如图,即,又,所以有,则.【考点】向量的运算.【思路点睛】因为有相同的底边,所以只要分别求得顶点的距离或者其比值便可求得面积之比,显然求比值较容易,由三角形相似的性质可知顶点的距离之比等于的比值,所以要结合利用向量的运算求得的比值.31.若非零向量满足,且,则与的夹角为()A.B.C.D.【答案】D【解析】,因为,所以有,其中为与的夹角,将代入前式中,可求得,故本题的正确选项为D.【考点】向量的运算.32.已知△ABC和点M满足.若存在实数m使得成立,则m=()A.2B.3C.4D.5【答案】B【解析】解题时应注意到,则M为△ABC的重心.解:由知,点M为△ABC的重心,设点D为底边BC的中点,则==,所以有,故m=3,故选:B.【考点】向量的加法及其几何意义.33.等腰直角三角形中,是斜边上一点,且,则.【答案】4【解析】因为,而,.所以答案应填:4.【考点】平面向量数量积的运算.【方法点睛】欲求的值的关键是选为一组基底,用表述出,代入数量积进行运算.另一种方法:以为原点,分别以为轴,建立直角坐标系,则,所以,由知,所以.本题考查平面向量的数量积的运算,属于基础题.34.在中,是上的点,若,则实数的值为___________.【答案】【解析】因为,所以,即,所以,又因为三点共线,所以.【考点】1.向量的线性运算;2.向量共线定理.35.如图,在中,为的中点,为上任一点,且,则的最小值为.【答案】9【解析】因为是中点,所以,又在线段上,所以,且,所以,当且仅当,即时等号成立,所以的最小值为9.【考点】平面向量的基本定理,基本不等式.【名师】设点是直线外任一点,,则是三点共线的充要条件.36.在平面直角坐标系中有不共线三点,,.实数满足,则以为起点的向量的终点连线一定过点()A.B.C.D.【答案】C【解析】由题意得,,所以.设点在向量的中点连线上,则,所以一点过点,故选C.【考点】向量的坐标运算.【方法点晴】本题主要考查了平面向量的坐标运算及平面向量的共线定理的应用,属于中档试题,着重考查了学生的推理、运算能力和转化与化归的思想方法,本题的解答中,根据,设点在向量的中点连线上,利用平面向量的共线定理和平面向量的坐标运算,得到向量的表示,即可到结论.37.四边形中,且,则的最小值为【答案】【解析】通过建立坐标系,设C(a,0),D(0,b),利用数量积的坐标运算得出数量积关于a,b的函数,求出函数的最小值.设AC与BD交点为O,以O为原点,AC,BD为坐标轴建立平面直角坐标系,设C(a,0),D(0,b),则A(a-2,0),B(0,b-3),当时,取得最小值.【考点】平面向量的坐标运算【方法点睛】平面向量与三角函数的综合问题的解题思路(1)题目条件给出向量的坐标中含有三角函数的形式,运用向量共线或垂直或等式成立等,得到三角函数的关系式,然后求解.(2)给出用三角函数表示的向量坐标,要求的是向量的模或者其他向量的表达形式,解题思路是经过向量的运算,利用三角函数在定义域内的有界性,求得值域等.38.已知是两个互相垂直的单位向量,且,则对任意实数,的最小值为____________.【答案】【解析】,建立如图所示的直角坐标系, 取,设.,当且仅当时取等号. 故答案为.【考点】1、向量的几何性质、平面向量的数量积公式;2、利用基本不等式求最值.【易错点晴】本题主要考查向量的几何性质、平面向量的数量积公式以及利用基本不等式求最值,属于难题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用“或”时等号能否同时成立).39.已知曲线上的任意点到点的距离比它到直线的距离小1,(1)求曲线的方程;(2)点的坐标为,若为曲线上的动点,求的最小值(3)设点为轴上异于原点的任意一点,过点作曲线的切线,直线分别与直线及轴交于,以为直径作圆,过点作圆的切线,切点为,试探究:当点在轴上运动(点与原点不重合)时,线段的长度是否发生变化?请证明你的结论【答案】(1);(2)的最小值为2;(3)线段的长度为定值【解析】(1)根据抛物线的定义得出轨迹方程;(2)设,将表示为(或)的函数,根据函数性质求出最小值;(3)设坐标和直线的斜率,根据相切得出的关系,求出坐标得出圆的圆心和半径,利用切线的性质得出的长.试题解析:(1)设为曲线上的任意一点,依题意,点到点的距离与它到直线的距离相等,所以曲线是以为焦点,直线为准线的抛物线,所以曲线的方程为(2)设,则因为,所以当时,有最小值2(3)当点在轴上运动(与原点不重合)时,线段的长度不变,证明如下:依题意,直线的斜率存在且不为0,设,代入得,由得将代入直线的方程得,又,故圆心所以圆的半径为当点在轴上运动(点与原点不重合)时,线段的长度不变,为定值【考点】抛物线的定义及其标准方程,向量的数量积运算,直线与圆锥曲线的关系40.平面向量与的夹角为60°,,则等于()A.B.4C.12D.16【解析】,因此,选A.【考点】向量的模41.已知向量,则a与b夹角的大小为_________.【答案】【解析】两向量夹角为,又两个向量夹角范围是,所以夹角为.【考点】向量数量积与夹角公式【名师】由向量数量积的定义(为,的夹角)可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近几年高考中出现的频率很高,应熟练掌握其解法.42.已知向量,且,则m=A.−8B.−6C.6D.8【答案】D【解析】,由得,解得,故选D.【考点】平面向量的坐标运算、数量积【名师】已知非零向量a=(x1,y1),b=(x2,y2):|a|=|a|=cos θ=cos θ=a·b=0x x+y y=043.在中,点M是边BC的中点.若,则的最小值是____.【答案】【解析】设,由,即有,得,点是的中点,则,.当且仅当取得最小值,且为.则的最小值为,故答案为:.【考点】平面向量数量积的运算.44.已知向量,,则()A.2B.-2C.-3D.4【解析】因,故,应选A。

方法技巧专题26 平面向量(解析版)

方法技巧专题26 平面向量(解析版)

方法技巧专题26 平面向量解析版【一】向量的概念1.例题【例1】给出下列结论:①数轴上相等的向量,它们的坐标相等;反之,若数轴上两个向量的坐标相等,则这两个向量相等; ②对于任何一个实数,数轴上存在一个确定的点与之对应;③数轴上向量AB 的坐标是一个实数,实数的绝对值为线段AB 的长度,若起点指向终点的方向与数轴同方向,则这个实数取正数,反之取负数;④数轴上起点和终点重合的向量是零向量,它的方向不确定,它的坐标是0. 其中正确结论的个数是( ) A.1 B.2C.3D.4【答案】D【解析】①向量相等,则它们的坐标相等,坐标相等,则向量相等,①正确;②实数和数轴上的点是一一对应的关系,即有一个实数就有一个点跟它对应,有一个点也就有一个实数与它对应,②正确;③数轴用一个实数来表示向量AB ,正负决定其方向,绝对值决定其长度,③正确; ④数轴上零向量其起点和终点重合,方向不确定,大小为0,其坐标也为0,④正确. 【例2】下列命题中,正确的个数是( ) ①单位向量都相等;②模相等的两个平行向量是相等向量;③若a ,b 满足b a >且a 与b 同向,则a b >; ④若两个向量相等,则它们的起点和终点分别重合; ⑤若a b b c ∥,∥,则a c ∥. A .0个 B .1个C .2个D .3个【答案】A【解析】对于①,单位向量的大小相等,但方向不一定相同,故①错误; 对于②,模相等的两个平行向量是相等向量或相反向量,故②错误; 对于③,向量是有方向的量,不能比较大小,故③错误;对于④,向量是可以自由平移的矢量,当两个向量相等时,它们的起点和终点不一定相同,故④错误; 对于⑤,0b =时,a b b c ∥,∥,,则a 与c 不一定平行. 综上,以上正确的命题个数是0. 2.巩固提升综合练习 【练习1】给出下列命题: ①若c b b a ==,则c a=;②若A ,B ,C ,D 是不共线的四点,则DC AB =是四边形ABCD 为平行四边形的充要条件;③b a==且b a //;④若c b b a //,//,则c a //; 其中正确命题的序号是 . 【答案】①②【解析】①正确.∵a =b ,∴a ,b 的长度相等且方向相同, 又b =c ,∴b ,c 的长度相等且方向相同, ∴a ,c 的长度相等且方向相同,故a =c .②正确.∵DC AB ==且DC AB //, 又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形; 反之,若四边形ABCD 为平行四边形,=且DC AB //,,因此,DC AB =.③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件. ④不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是①②.【二】平面向量的线性表示1.例题【例1】在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则=EB ( )A.AC AB 4143- B. AC AB 4341- C. AC AB 4143+ D. AC AB 4341+ 【解析】根据向量的运算法则,可得,所以,故选A.【例2】在梯形ABCD 中,AB →=3DC →,则BC →等于( )A .-13AB →+23AD → B .-23AB →+43AD → C.23AB →-AD → D .-23AB →+AD →【解析】 在线段AB 上取点E ,使BE =DC ,连接DE ,则四边形BCDE 为平行四边形, 则BC →=ED →=AD →-AE →=AD →-23AB →;故选D.【例3】已知A ,B ,C 为圆O 上的三点,若()12AO AB AC =+则AB 与AC 的夹角为__________. 【解析】由()12AO AB AC =+可得O 为BC 的中点,则BC 为圆O 的直径,即∠BAC =90°,故AB 与AC 的夹角为90°. 2.巩固提升综合练习【练习1】在正方形ABCD 中,E 为DC 的中点,若AE AB AC λμ=+,则λμ+的值为( ) A .12-B .12C .1-D .1【答案】B【解析】由题得1111111122222222AE AD AC BC AC AC AB AC AB AC =+=+=-+=-+, 11,1,22λμλμ∴=-=∴+=.故选:B【练习2】已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足:OP →=13⎪⎭⎫ ⎝⎛++OC OB OA 22121,则P 一定为△ABC 的( )A .重心B .AB 边中线的三等分点(非重心)C .AB 边中线的中点D .AB 边的中点【解析】如图所示:设AB 的中点是E ,△O 是三角形ABC 的重心,OP →=13⎪⎭⎫ ⎝⎛++C O B O A O 22121=13()OE →+2OC →,△2EO →=OC →, △OP →=13()4EO →+OE →=EO →,△P 在AB 边的中线上,是中线的三等分点,不是重心,故选B.【练习3】如图,在平面四边形ABCD 中,,,120,1,AB BC AD CD BAD AB AD ⊥⊥∠===若点E 为边CD 上的动点,则AE BE ⋅的最小值为 ( )A.2116B.32C.2516D.3【答案】A【解析】连接BD,取AD 中点为O,可知ABD △为等腰三角形,而,AB BC AD CD ⊥⊥,所以BCD 为等边三角形,BD =.设(01)DE tDC t =≤≤AE BE ⋅223()()()2AD DE BD DE AD BD DE AD BD DE BD DE DE =+⋅+=⋅+⋅++=+⋅+ =233322t t -+(01)t ≤≤ 所以当14t =时,上式取最小值2116,选A.【三】向量共线的应用1.例题【例1】设两个非零向量a 与b不共线.(1)若b a AB +=,b a BC 82+=,)(3b a CD-=,求证:D B A ,,三点共线;(2)试确定实数k ,使b a k +和b k a+共线.【答案】(1)见解析;(2)k =±1.【解析】(1)证明:∵AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ), ∴BD →=BC →+CD →=2a +8b +3(a -b )=2a +8b +3a -3b =5(a +b )=5AB →,∴AB →,BD →共线.又∵它们有公共点B ,∴A ,B ,D 三点共线.(2)假设k a +b 与a +k b 共线,则存在实数λ,使k a +b =λ(a +k b ), 即(k -λ)a =(λk -1)b .又a ,b 是两个不共线的非零向量,∴k -λ=λk -1=0. 消去λ,得k 2-1=0,∴k =±1.【例2】已知点()3,1A ,()1,4B -,则与向量AB 的方向相反的单位向量是( ) A.43,55⎛⎫-⎪⎝⎭ B.43,55⎛⎫-⎪⎝⎭ C.34,55⎛⎫-⎪⎝⎭D.34,55⎛⎫- ⎪⎝⎭1.共线向量定理:向量a (0≠a )与b 共线,当且仅当有唯一一个实数λ,使得a b λ=2.平面向量共线定理的三个应用:3.求解向量共线问题的注意事项:(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用;(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线;(3)直线的向量式参数方程:B P A ,,三点共线OB t OA t OP +-=⇔)1((O 为平面内任一点,R t ∈).【解析】(4,3)AB =-,∴向量AB 的方向相反的单位向量为4343(,)(,)5555||AB AB --=-=-,2.巩固提升综合练习【练习1】设P 是△ABC 所在平面内的一点,且CP →=2P A →,则△P AB 与△PBC 的面积的比值是( )A.13B.12C.23D.34【解析】 因为CP →=2P A →,所以|CP →||P A →|=21,又△P AB 在边P A 上的高与△PBC 在边PC 上的高相等,所以S △P AB S △PBC =|P A →||CP →|=12.【练习2】设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=_________.【解析】因为向量a b λ+与2a b +平行,所以2a b k a b λ+=+(),则12,k k λ=⎧⎨=⎩,所以12λ=.【四】平面向量基本定理及应用 1.例题【例1】如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若(,)DE AB AD R λμλμ=+∈,则λμ+等于( ).A .12-B .12C .1D .1-【答案】A【解析】由平面向量基本定理,化简()11DE DA AE DA AC AD AB AD 44=+=+=-++ 13AB AD 44=-,所以13λ,μ44==-,即1λμ2+=-,【例2】在中,点满足,当点在射线(不含点)上移动时,若,则 的 取值范围为__________.【答案】【解析】因为点在射线(不含点)上,设,又,所以, 所以 , , 故的取值范围.2.巩固提升综合练习【练习1】如图,在平行四边形ABCD 中,E 和F 分别在边CD 和BC 上,且DC →=3 DE →,BC →=3 BF →,若AC →=mAE →+nAF →,其中m ,n △R ,则m +n =________.【解析】 由题设可得AE →=AD →+DE →=AD →+13DC →=AD →+13AB →,AF →=AB →+BF →=AB →+13AD →=AB →+13AD →,又AC→=mAE →+nAF →,故AC →=mAD →+13mAB →+nAB →+13nAD →=(13m +n )AB →+(m +13n )AD →,而AC →=12(AB →+AD →),故⎩⎨⎧13m +n =12m +13n =12△m +n =32. 故应填答案32.ABC ∆D 34BD BC =E AD A AE AB AC λμ=+()221λμ++()1,+∞E AD A ,0AE k AD k =<34BD BC=()()33444kk AE k AB AD k AB AC AB AB AC ⎡⎤=+=+-=+⎢⎥⎣⎦4{34kk λμ==()2222295291114168510k t k k λμ⎛⎫⎛⎫=++=++=++> ⎪ ⎪⎝⎭⎝⎭()221λμ++()1,+∞【练习2】如图,在ABC ∆中,D 是BC 的中点,E 在边AB 上,EA BE 2=,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+-()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故AB AC=【五】平面向量的坐标运算1.例题【例1】已知向量)3,2(=a,)2,3(=b ,则=-b a ( )A .2B .2C .52D .50【答案】A【解析】由已知,(2,3)(3,2)(1,1)-=-=-a b ,所以||-==a b故选A【例2】在平面直角坐标系中,向量n =(2,0),将向量n 绕点O 按逆时针方向旋转π3后得向量m ,若向量a满足|a -m -n |=1,则|a |的最大值是( )A .23-1B .23+1C .3 D.6+2+1 【解析】 由题意得m =(1,3).设a =(x ,y ),则a -m -n =(x -3,y -3), △|a -m -n |2=(x -3)2+(y -3)2=1,而(x ,y )表示圆心为(3,3)的圆上的点, 求|a |的最大值,即求该圆上点到原点的距离的最大值,最大值为23+1.【例3】在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的取值范围是( )A .[4,6]B .[19-1,19+1]C .[23,27]D .[7-1,7+1]【解析】 法一:设出点D 的坐标,利用向量的坐标运算公式及向量模的运算公式求解.设D (x ,y ),则由|CD →|=1,C (3,0),得(x -3)2+y 2=1. 又△OA →+OB →+OD →=(x -1,y +3), △|OA →+OB →+OD →|=(x -1)2+(y +3)2.△|OA →+OB →+OD →|的几何意义为点P (1,-3)与圆(x -3)2+y 2=1上点之间的距离,由|PC |=7知,|OA →+OB →+OD →|的最大值是1+7,最小值是7-1.故选D.法二:根据向量OA →+OB →的平行四边形法则及减法法则的几何意义,模的几何意义求解.如图,设M (-1,3),则OA →+OB →=OM →,取N (1,-3),△OM →=-ON →.由|CD →|=1,可知点D 在以C 为圆心,半径r =1的圆上, △OA →+OB →+OD →=OD →-ON →=ND →,△|OA →+OB →+OD →|=|ND →|,△|ND →|max =|NC →|+1=7+1,|ND →|min =7-1.2.巩固提升综合练习【练习1】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .22C. 5D .2【解析】如图所示,建立平面直角坐标系:设A (0,1),B (0,0),C (2,0),D (2,1),P (x ,y ),根据等面积公式可得圆的半径r =25,即圆C 的方程是(x -2)2+y 2=45,AP →=(x ,y -1),AB →=(0,-1),AD →=(2,0),若满足AP →=λAB →+μAD →,即⎩⎪⎨⎪⎧x =2μy -1=-λ,μ=x 2,λ=1-y ,所以λ+μ=x 2-y +1,设z =x 2-y +1,即x 2-y +1-z=0,点P (x ,y )在圆(x -2)2+y 2=45上,所以圆心到直线的距离d ≤r ,即|2-z |14+1≤25,解得1≤z ≤3,所以z的最大值是3,即λ+μ的最大值是3.【练习2】如图,正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC →=λAM →+μBN →,则λ+μ=( )A .2 B.83 C.65 D.85【解析】 法一 如图以AB ,AD 为坐标轴建立平面直角坐标系,设正方形边长为1, AM →=⎪⎭⎫ ⎝⎛21,1,BN →=⎪⎭⎫ ⎝⎛-1,21,AC →=(1,1).△AC →=λAM →+μBN →=λ⎪⎭⎫ ⎝⎛21,1+μ⎪⎭⎫ ⎝⎛-1,21=⎪⎭⎫ ⎝⎛+-μλμλ2,2,△⎩⎨⎧λ-12μ=1,λ2+μ=1,解之得⎩⎨⎧λ=65,μ=25,故λ+μ=85.法二 以AB →,AD →作为基底,△M ,N 分别为BC ,CD 的中点, △AM →=AB →+BM →=AB →+12AD →,BN →=BC →+CN →=AD →-12AB →,因此AC →=λAM →+μBN →=⎪⎭⎫ ⎝⎛-2μλAB →+⎪⎭⎫ ⎝⎛+μλ2AD →,又AC →=AB →+AD →,因此⎩⎨⎧λ-μ2=1,λ2+μ=1,解得λ=65且μ=25.所以λ+μ=85【例1】已知向量(1,)a m =,(,2)b m =,若//a b ,则实数m 等于( ) A.C.D.0【答案】C 【解析】.【例2】若()3,4a =-,则与a 同方向的单位向量0a =____________【答案】34,55⎛⎫- ⎪⎝⎭【解析】与a 同方向的单位向量0134(3,4)(,)555aa a ==-=-2.巩固提升综合练习【练习1】如图,在平面四边形ABCD 中,90CBA CAD ∠=∠=︒,30ACD ∠=︒,AB BC =,点E 为线段BC 的中点.若AC AD AE λμ=+(,R λμ∈),则λμ的值为_______.【解析】以A 为原点,建立如图所示的平面直角坐标系,不妨设AB =BC =2, 则有A (0,0),B (2,0),C (2,2),E (2,1),AC =, AD =,过D 作DF⊥x 轴于F ,∠DAF=180°-90°-45°=45°, DF=32=D(), AC =(2,2),AD=(3-),AE =(2,1),因为AC AD AE λμ=+,所以,(2,2)=λ(3-,3)+μ(2,1),所以,2223μλμ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:43λμ⎧=⎪⎪⎨⎪=⎪⎩λμ【练习2】已知向量a =(3,1),b =(1,3),c =(k ,-2),若(a -c )△b ,则向量a 与向量c 的夹角的余弦值是( )A.55 B.15 C .-55 D .-15【解析】 △a =(3,1),b =(1,3),c =(k ,-2),△a -c =(3-k,3),△(a -c )△b , △(3-k )·3=3×1,△k =2,△a ·c =3×2+1×(-2)=4,△|a |=10,|c |=22, △cos 〈a ,b 〉=a ·c |a |·|c |=410·22=55,故选A.【一】平面向量数量积的概念 1.例题【例1】在如图的平面图形中,已知0120,2,1=∠==MON ON OM ,NA CN MA BM 2,2==则OM BC •的值为( )1.两个向量的夹角:(1)定义:已知两个非零向量a 和b ,作a =,b =,则θ=∠AOB 叫做向量a 与b 的夹角.(2)范围:向量夹角θ的范围是πθ≤≤0;a 与b 同向时,夹角θ=0°;a 与b反向时,夹角θ=180°.(3)向量垂直:如果向量a 与b 的夹角是90°,则a 与b垂直,记作b a ⊥.2.平面向量的数量积的概念:(1)已知两个非零向量a 与b ,则数量θcos b a ⋅叫做a 与b的数量积,记作b a •,即:b a •=θcos b a ⋅,其中θ是a 与b的夹角.规定:00=•a ;(2)b a •的几何意义:数量积b a•等于a 的长度a与b在a的方向上的投影θcos b的乘积. 3.数量积的运算律:(1)交换律:a b b a•=•;(2)分配律:()c b c a c b a •+•=•+;(3)对R ∈λ,()())(b a b a b aλλλ•=•=•.4.计算向量数量积的三种常用方法:(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即b a •=θcos b a⋅,其中θ是a 与b的夹角.(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解.OA OBA .B .C .D .0【答案】C【解析】如图所示,连结MN , 由 可知点分别为线段上靠近点的三等分点,则,由题意可知:,,结合数量积的运算法则可得:.本题选择C 选项.【例2】已知AB =(2,3),AC =(3,t ),||BC =1,则AB BC ⋅=( ) A .-3 B .-2 C .2 D .3【答案】C【解析】由(1,3)BC AC AB t =-=-,211BC ==,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .2.巩固提升综合练习【练习1】如图,AB 是半圆O 的直径,C 、D 是弧AB 的三等分点,M ,N 是线段AB 的三等分点.若6OA =,则MD NC ⋅的值是( )A.12B.C.26D.36【答案】C 【解析】连接,OC OD ,由C 、D 是弧AB 的三等分点,得∠AOD =∠BOC =60°,()()MD NC OD OM OC ON ⋅=-⋅-OD OC OD ON OM OC OM ON =⋅-⋅-⋅+⋅66cos6062cos12026cos12022=⨯⨯-⨯⨯-⨯⨯-⨯18664=++-26=.【练习2】已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>= 22133a c a c ⋅==⨯⋅. 【练习3】已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =__________.【解析】∵c =t a +(1-t )b ,∴b ·c =t a ·b +(1-t )|b |2.又∵|a |=|b |=1,且a 与b 夹角为60°,b ⊥c ,∴0=t |a ||b |cos 60°+(1-t ),0=12t +1-t .∴t =2.1.例题【例1】已知平面向量,a b不共线,且1a=,1a b⋅=,记b与2a b+的夹角是θ,则θ最大时,a b-=()A.1B C D.2【答案】C【解析】设|b|=x,则()22·22?2b a b a b b x+=+=+,22|2+|=44?8a b a a b b++=+所以()2·22cos 28b a bb a bx θ++==++易得cos 0θ>,()()()2222222222211cos 124811411222263x x x x xx θ+===+⎛⎫-++--+⎪+++⎝⎭, 当24x =时,2cos θ取得最小值,θ取得最大值, 此时22||=2?12a b a a b b --+=-=故选C.【例2】已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>= 22133a c a c ⋅==⨯⋅. 【例3】设向量a =(1,0),b =(−1,m ),若()a mab ⊥-,则m =_________. 【解析】(1,0),(1,)a b m ==-,(,0)(1,)(1,)ma b m m m m ∴-=--=+-,由()a ma b ⊥-得:()0a ma b ⋅-=,()10a ma b m ∴⋅-=+=,即1m =-.2.巩固提升综合练习【练习1】若两个非零向量a ,b 满足2a b a b a +=-=,则向量a b +与a b -的夹角是( ) A.6πB.2π C.23π D.56π 【解析】将2a b a b a +=-=平方得:22222224a a b b a a b b a +⋅+=-⋅+=,解得:2203a b b a⎧⋅=⎪⎨=⎪⎩ . 222()()1cos ,42||||a b a b a b a b a b a a b a b +⋅--<+->===-+-.所以向量a b +与a b -的夹角是23π.【练习2】已知非零向量a与b满足b a2=,且b b a⊥-)(,则a与b的夹角为( ) A .π6B .π3C .2π3D .5π6【解析】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B . 【练习3】已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,则|b |=________. 【解析】由|2a -b |=10,得4 a 2-4 a ·b +b 2=10,得4-4×|b |×cos45°+|b |2=10,即-6-22|b |+|b |2=0,解得|b |=32或|b |=-2(舍去).1.例题【例1】已知e b a ,,是平面向量,e 是单位向量.若非零向量a 与e的夹角为3π,向量b 满足0342=+•-b e b ,则b a-的最小值是( )A .1-3B .13+C .2D .3-2 【答案】A 【解析】设,则由得,由得因此的最小值为圆心到直线的距离减去半径1,为选A.【例2】在ABC △,若0AB AC BC AB AC ⎛⎫ ⎪+⋅= ⎪⎝⎭,且12AB AC AB AC ⋅=,则ABC △的形状为( ) A.直角三角形 B.等腰三角形C.等边三角形D.无法判断【答案】C【解析】由题意可得:()cos cos AB BC B AC BC C AB AC BC AB AC AB AC ⎛⎫⨯⨯-⨯⨯ ⎪+⋅=+ ⎪⎝⎭()cos cos BC C B =⨯-,故()cos cos 0BC C B ⨯-=,cos cos ,B C B C ∴==,且:cos 1cos 2AB AC A AB AC A ABACAB AC⨯⨯⋅===⨯,则3A π=, 结合,3B C A π==可知△ABC 为等边三角形.【例3】如图所示,直线x =2与双曲线C :x 24-y 2=1的渐近线交于E 1,E 2两点.记OE 1→=e 1,OE 2→=e 2,任取双曲线C 上的点P ,若OP →=a e 1+b e 2(a ,b △R ),则ab 的值为( )A.14 B .1 C.12 D.18【解析】由题意易知E 1(2,1),E 2(2,-1),△e 1=(2,1),e 2=(2,-1),故OP →=a e 1+b e 2=(2a +2b ,a -b ),又点P 在双曲线上,△(2a +2b )24-(a -b )2=1,整理可得4ab =1,△ab =14.【答案】 A2.巩固提升综合练习【练习1】在平面四边形ABCD 中,o90=∠BAD ,1,2==AD AB ,若CB CA BC BA AC AB •=•+•34, 则CD CB 21+的最小值为____.【答案】【解析】如图,以的中点为坐标原点,以方向为轴正向,建立如下平面直角坐标系.则,,设,则,,因为所以,即:整理得:,所以点在以原点为圆心,半径为的圆上. 在轴上取,连接可得,所以,所以由图可得:当三点共线时,即点在图中的位置时,最小.此时最小为.【练习2】已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值. 【答案】(1)5π6x =(2)0x =时,取得最大值,为3; 5π6x =时,取得最小值,为23-.【解析】解:(1)因为co ()s ,sin x x =a ,(3,=b ,a ∥b ,(2)π(cos ,sin )(3,3cos ())6f x x x x x x =⋅=⋅==+a b . 因为,所以ππ7π[,]666x +∈, 从而π1cos()62x -≤+≤. 于是,当ππ66x +=,即0x =时,取到最大值3; 当π6x +=π,即5π6x =时,取到最小值23-.1.已知O,A,B 是平面上的三个点,直线AB 上有一点C ,且20AC CB +=,则OC =( ) A.2OA OB - B.2OA OB -+C.2133OA OB - D.1233OA OB -+【答案】A【解析】因为20AC CB +=,所以2()()0OC OA OB OC -+-=, 所以OC =2OA OB -, 故选:A.2.已知G 是ABC ∆的重心,D 是AB 的中点 则GA GB GC +-=____________ 【答案】4GD【解析】因为D 是AB 的中点,G 是ABC ∆的重心,则2CG GD =,即2GC GD =- 又1()2GD GA GB =+,所以2GA GB GD +=, 所以2(2)4GA GB GC GD GD GD +-=--=, 故答案为:4GD .3.在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且2EF =,则的AE BF ⋅最小值为____.【答案】-3【解析】根据题意,设E (0,a ),F (0,b ); ∴2EF a b =-=; ∴a=b+2,或b=a+2;且()()12AE a BF b ==-,,,; ∴2AE BF ab ⋅=-+;当a=b+2时,()22222AE BF b b b b ⋅=-++⋅=+-;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅的最小值为﹣3,同理求出b=a+2时,AE BF ⋅的最小值为﹣3. 故答案为:﹣3.4.在四边形ABCD 中,AD BC ∥,AB =,5AD = ,30A ∠=︒ ,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=__________. 【答案】1-.【解析】建立如图所示的直角坐标系,则B ,5()22D . 因为AD ∥BC ,30BAD ∠=︒,所以150CBA ∠=︒, 因为AE BE =,所以30BAE ABE ∠=∠=︒,所以直线BE y x =-,直线AE的斜率为-y x =.由(3y x y ⎧=-⎪⎪⎨⎪=⎪⎩得x =1y =-,所以1)E -.所以35(,)(3,1)122BD AE =-=-.5.已知数列{}n a 为等差数列,且满足12107OA a OB a OC =+,若AB AC λ=(R λ∈),点O 为直线BC 外一点,则1009a =( )A . 3B . 2C . 1D .12【答案】D6.设向量a,b 满足|+|=a b ||-=a b ,则a ·b =( ).A .1B .2C .3D .5 【解析】∵|+|=a b (a +b )2=10,即a 2+b 2+2a ·b =10.①∵||-=a b ,∴(a -b )2=6,即a 2+b 2-2a ·b =6.②由①②可得a ·b =1.故选A.7.已知a =(3,2),b =(2,-1),若λa +b 与a +λb 平行,则λ=________.【解析】 △a =(3,2),b =(2,-1),△λa +b =(3λ+2,2λ-1),a +λb =(3+2λ,2-λ),△λa +b △a +λb ,△(3λ+2)(2-λ)=(2λ-1)(3+2λ), 解得λ=±18.在平行四边形ABCD 中,|AD →|=3,|AB →|=5,AE →=23AD →,BF →=13BC →,cos A =35,则|EF →|=( )A.14 B .2 5 C .4 2 D .211 【解析】如图,取AE 的中点G ,连接BG △AE →=23AD →,BF →=13BC →,△AG →=12AE →=13AD →=13BC →=BF →,△EF →=GB →,△|GB →|2=|AB →-AG |2=AB →2-2AB →·AG →+AG →2=52-2×5×1×35+1=20,△|EF →|=|GB →|=25,故选B.9.已知锐角△ABC 的外接圆的半径为1,△B =π6,则BA →·BC →的取值范围为__________.【解析】如图,设|BA →|=c ,|BC →|=a ,△ABC 的外接圆的半径为1,△B =π6.由正弦定理得a sin A =c sin C =2,△a=2sin A ,c =2sin C ,C =5π6-A ,由⎩⎨⎧0<A <π20<5π6-A <π2,得π3<A <π2,△BA →·BC →=ca cos π6=4×32sin A sin C =23sin A sin ⎪⎭⎫ ⎝⎛-A 65π =23sin A ⎪⎪⎭⎫ ⎝⎛+A A sin 23cos 21=3sin A cos A +3sin 2A=32sin2A +3(1-cos2A )2=32sin2A +32cos2A +32=3sin ⎪⎭⎫ ⎝⎛-32πA +32. △π3<A <π2,△π3<2A -π3<2π3,△32<sin ⎪⎭⎫ ⎝⎛-32πA ≤1,△3<3sin ⎪⎭⎫ ⎝⎛-32πA +32≤3+32. △BA →·BC →的取值范围为⎥⎦⎤ ⎝⎛+233,3.10.已知点O ,N ,P 在△ABC 所在的平面内,且|OA →|=|OB →|=|OC →|,NA →+NB →+NC →=0,P A →·PB →=PB →·PC →=PC →·P A →,则点O ,N ,P 依次是△ABC 的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心 【解析】因为|OA →|=|OB →|=|OC →|,所以点O 到三角形的三个顶点的距离相等,所以O 为△ABC 的外心;由NA →+NB →+NC →=0,得NA →+NB →=-NC →=CN →,由中线的性质可知点N 在三角形AB 边的中线上,同理可得点N 在其他边的中线上,所以点N 为△ABC 的重心;由P A →·PB →=PB →·PC →=PC →·P A →,得P A →·PB →-PB →·PC →=PB →·CA →=0,则点P 在AC 边的垂线上,同理可得点P 在其他边的垂线上,所以点P 为△ABC 的垂心. 【答案】 C11.设向量a =(a 1,a 2),b =(b 1,b 2),定义一种向量积:a △b =(a 1,a 2)△(b 1,b 2)=(a 1b 1,a 2b 2).已知向量m =⎪⎭⎫ ⎝⎛4,21,n =⎪⎭⎫⎝⎛0,6π,点P 在y =cos x 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m △OP →+n (其中O 为坐标原点),则y =f (x )在区间⎥⎦⎤⎢⎣⎡3,6ππ上的最大值是( ) A .4 B .2 C .2 2 D .23【解析】 因为点P 在y =cos x 的图象上运动,所以设点P 的坐标为(x 0,cos x 0),设Q 点的坐标为(x ,y ),则OQ →=m △OP →+n △(x ,y )=⎪⎭⎫ ⎝⎛4,21△(x 0,cos x 0)+⎪⎭⎫ ⎝⎛0,6π△(x ,y )=⎪⎭⎫ ⎝⎛+00cos 4,621x x π△⎩⎪⎨⎪⎧x =12x 0+π6,y =4cos x 0,即⎪⎩⎪⎨⎧=⎪⎭⎫ ⎝⎛-=00cos 462xy x x π△y =4cos ⎪⎭⎫ ⎝⎛-32πx , 即f (x )=4cos ⎪⎭⎫⎝⎛-32πx ,当x △⎥⎦⎤⎢⎣⎡3,6ππ时,由π6≤x ≤π3△π3≤2x ≤2π3△0≤2x -π3≤π3, 所以12≤cos ⎪⎭⎫ ⎝⎛-32πx ≤1△2≤4cos ⎪⎭⎫ ⎝⎛-32πx ≤4,所以函数y =f (x )在区间⎥⎦⎤⎢⎣⎡3,6ππ的最大值是4,故选A. 12.已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小是( ) A .-2 B .-32 C .-43 D .-1【解析】 以BC 为x 轴,BC 的垂直平分线AD 为y 轴,D 为坐标原点建立坐标, 则A (0,3),B (-1,0),C (1,0),设P (x ,y ),所以 P A →=(-x ,3-y ),PB →=(-1-x ,-y ),PC →=(1-x ,-y )所以PB →+PC →=(-2x ,-2y ),P A →·(PB →+PC →)=2x 2-2y (3-y )=2x 2+2223⎪⎪⎭⎫ ⎝⎛-y -32≥-32当P ⎪⎪⎭⎫ ⎝⎛23,0时,所求的最小值为-32,故选B.13.已知O 是正△ABC 的中心.若CO AB ACλμ→→→=+,其中λ, R μ∈,则λμ的值为( ) A . 14-B . 13-C . 12- D . 2 【解析】由题O 是正△ABC 的中心,延长CO 交AB 与.D 则()()221112,332333CO CD CA CB AC AB AC AB AC ⎡⎤==+=-+-=-⎢⎥⎣⎦ 即121,,.332λλμμ==-=- 故选C.。

含解析高中数学《平面向量》专题训练30题(精)

含解析高中数学《平面向量》专题训练30题(精)

含解析高中数学《平面向量》专题训练30题(精)含解析高中数学《平面向量》专题训练30题(精)1.已知向量.(1)若,求x的值;(2)记,求函数y=f(x)的最大值和最小值及对应的x的值.【答案】(1)(2)时,取到最大值3;时,取到最小值.【解析】【分析】(1)根据,利用向量平行的充要条件建立等式,即可求x的值.(2)根据求解求函数y=f(x)解析式,化简,结合三角函数的性质即可求解最大值和最小值及对应的x的值.【详解】解:(1)∵向量.由,可得:,即,∵x∈[0,π]∴.(2)由∵x∈[0,π],∴∴当时,即x=0时f(x)max=3;当,即时.【点睛】本题主要考查向量的坐标运用以及三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.2.已知中,点在线段上,且,延长到,使.设.(1)用表示向量;(2)若向量与共线,求的值.【答案】(1),;(2)【解析】【分析】(1)由向量的线性运算,即可得出结果;(2)先由(1)得,再由与共线,设,列出方程组求解即可.【详解】解:(1)为BC的中点,,可得,而(2)由(1)得,与共线,设即,根据平面向量基本定理,得解之得,.【点睛】本题主要考查向量的线性运算,以及平面向量的基本定理,熟记定理即可,属于常考题型.3.(1)已知平面向量、,其中,若,且,求向量的坐标表示;(2)已知平面向量、满足,,与的夹角为,且(+)(),求的值.【答案】(1)或;(2)【解析】【分析】(1)设,根据题意可得出关于实数、的方程组,可求得这两个未知数的值,由此可得出平面向量的坐标;(2)利用向量数量积为零表示向量垂直,化简并代入求值,可解得的值.【详解】(1)设,由,可得,由题意可得,解得或.因此,或;(2),化简得,即,解得4.已知向量,向量.(1)求向量的坐标;(2)当为何值时,向量与向量共线.【答案】(1)(2)【解析】【详解】试题分析:(1)根据向量坐标运算公式计算;(2)求出的坐标,根据向量共线与坐标的关系列方程解出k;试题解析:(1)(2),∵与共线,∴∴5.已知向量与的夹角,且,.(1)求,;(2)求与的夹角的余弦值.【答案】(1),;(2).【解析】【分析】(1)利用平面向量数量积的定义可计算得出的值,利用平面向量数量积的运算性质计算得出的值;(2)计算出的值,利用平面向量夹角的余弦公式可求得与的夹角的余弦值.【详解】(1)由已知,得,;(2)设与的夹角为,则,因此,与的夹角的余弦值为.6.设向量,,记(1)求函数的单调递减区间;(2)求函数在上的值域.【答案】(1);(2).【解析】【详解】分析:(1)利用向量的数量积的坐标运算式,求得函数解析式,利用整体角的思维求得对应的函数的单调减区间;(2)结合题中所给的自变量的取值范围,求得整体角的取值范围,结合三角函数的性质求得结果.详解:(1)依题意,得.由,解得故函数的单调递减区间是.(2)由(1)知,当时,得,所以,所以,所以在上的值域为.点睛:该题考查的是有关向量的数量积的坐标运算式,三角函数的单调区间,三角函数在给定区间上的值域问题,在解题的过程中一是需要正确使用公式,二是用到整体角思维.7.在中,内角,,的对边分别是,,,已知,点是的中点.(Ⅰ)求的值;(Ⅱ)若,求中线的最大值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(1)由正弦定理,已知条件等式化边为角,结合两角和的正弦公式,可求解;(2)根据余弦定理求出边的不等量关系,再用余弦定理把用表示,即可求解;或用向量关系把用表示,转化为求的最值.【详解】(Ⅰ)由已知及正弦定理得.又,且,∴,即.(Ⅱ)方法一:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴在和中,由余弦定理得,,①.②由①②,得,当且仅当时,取最大值.方法二:在中,由余弦定理得,∵,当且仅当时取等号,∴.∵是边上的中线,∴,两边平方得,∴,当且仅当时,取最大值.【点睛】本题考查正弦定理、余弦定理在三角形中应用,考查基本不等式和向量的模长公式的灵活运用,是一道综合题.8.已知平面向量,.(1)若,求的值;(2)若,与共线,求实数m的值.【答案】(1);(2)4.【解析】(1)求出,即可由坐标计算出模;(2)求出,再由共线列出式子即可计算.【详解】(1),所以;(2),因为与共线,所以,解得m=4.9.已知向量.(Ⅰ)若,求的值;(Ⅱ)若,求向量与夹角的大小.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)首先求出的坐标,再根据,可得,即可求出,再根据向量模的坐标表示计算可得;(Ⅱ)首先求出的坐标,再根据计算可得;【详解】解:(Ⅰ)因为,所以,由,可得,即,解得,即,所以;(Ⅱ)依题意,可得,即,所以,因为,所以与的夹角大小是.10.如图,在中,,,,,.(1)求的长;(2)求的值.【答案】(1);(2).【解析】(1)将用和表示,利用平面向量数量积的运算律和定义计算出的值,即可得出的长;(2)将利用和表示,然后利用平面向量数量积的运算律和定义计算出的值.【详解】(1),,,,,,.;(2),,,.【点睛】本题考查平面向量模与数量积的计算,解题的关键就是选择合适的基底将题中所涉及的向量表示出来,考查计算能力,属于中等题.11.如图所示,在中,,,,分别为线段,上一点,且,,和相交于点.(1)用向量,表示;(2)假设,用向量,表示并求出的值.【答案】(1);(2),.【解析】【分析】(1)把放在中,利用向量加法的三角形法则即可;(2)把,作为基底,表示出,利用求出.【详解】解:由题意得,,所以,(1)因为,,所以.(2)由(1)知,而而因为与不共线,由平面向量基本定理得解得所以,即为所求.【点睛】在几何图形中进行向量运算:(1)构造向量加、减法的三角形法则和平行四边形法则;(2)树立“基底”意识,利用基向量进行线性运算.12.已知向量与的夹角为,且,.(1)若与共线,求k;(2)求,;(3)求与的夹角的余弦值【答案】(1);(2),;(3).【解析】【分析】(1)利用向量共线定理即可求解.(2)利用向量数量积的定义:可得数量积,再将平方可求模.(3)利用向量数量积即可夹角余弦值.【详解】(1)若与共线,则存在,使得即,又因为向量与不共线,所以,解得,所以.(2),,(3).13.已知.(1)当为何值时,与共线(2)当为何值时,与垂直?(3)当为何值时,与的夹角为锐角?【答案】(1);(2);(3)且.【解析】【分析】(1)利用向量共线的坐标表示:即可求解.(2)利用向量垂直的坐标表示:即可求解.(3)利用向量数量积的坐标表示,只需且不共线即可求解.【详解】解:(1).与平行,,解得.(2)与垂直,,即,(3)由题意可得且不共线,解得且.14.如图,在菱形ABCD中,,.(1)若,求的值;(2)若,,求.(3)若菱形ABCD的边长为6,求的取值范围.【答案】(1);(2);(3).【解析】【分析】(1)由向量线性运算即可求得值;(2)先化,再结合(1)中关系即可求解;(3)由于,,即可得,根据余弦值范围即可求得结果.【详解】解:(1)因为,,所以,所以,,故.(2)∵,∴∵ABCD为菱形∴∴,即.(3)因为,所以∴的取值范围:.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算;(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.15.已知,,与夹角是.(1)求的值及的值;(2)当为何值时,?【答案】(1);(2)【解析】【分析】(1)利用数量积定义及其向量的运算性质,即可求解;(2)由于,可得,利用向量的数量积的运算公式,即可求解.【详解】(1)由向量的数量积的运算公式,可得,.(2)因为,所以,整理得,解得.即当值时,.【点睛】本题主要考查了数量积定义及其运算性质、向量垂直与数量积的关系,其中解答中熟记向量的数量积的运算公式,以及向量垂直的坐标运算是解答的关键,着重考查了推理能力与计算能力,属于中档题.16.设向量(I)若(II)设函数【答案】(I)(II)【解析】【详解】(1)由=(sinx)2+(sinx)2=4sin2x,=(cosx)2+(sinx)2=1,及,得4sin2x=1.又x∈,从而sinx=,所以x=.(2)sinx·cosx+sin2x=sin2x-cos2x+=sin+,当x∈时,-≤2x-≤π,∴当2x-=时,即x=时,sin取最大值 1.所以f(x)的最大值为.17.化简.(1).(2).【答案】(1);(2).【解析】(1)利用平面向量加法的三角形法则化简可得所求代数式的结果;(2)利用平面向量加法的三角形法则化简可得所求代数式的结果.【详解】(1);(2).18.已知点,,,是原点.(1)若点三点共线,求与满足的关系式;(2)若的面积等于3,且,求向量.【答案】(1)(2)或【解析】【分析】(1)由题意结合三点共线的充分必要条件确定m,n满足的关系式即可;(2)由题意首先求得n的值,然后求解m的值即可确定向量的坐标.【详解】(1),,由点A,B,C三点共线,知∥,所以,即;(2)由△AOC的面积是3,得,,由,得,所以,即,当时,,?解得或,当时,,方程没有实数根,所以或.【点睛】本题主要考查三点共线的充分必要条件,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.19.如图,在直角梯形中,为上靠近B的三等分点,交于为线段上的一个动点.(1)用和表示;(2)求;(3)设,求的取值范围.【答案】(1);(2)3;(3).【解析】【分析】(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,将由这一组基向量的唯一表示出而得解;(3)由动点P设出,结合平面向量基本定理,建立为x的函数求解.【详解】(1)依题意,,,;(2)因交于D,由(1)知,由共起点的三向量终点共线的充要条件知,,则,,;(3)由已知,因P是线段BC上动点,则令,,又不共线,则有,,在上递增,所以,故的取值范围是.【点睛】由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.20.设向量满足,且.(1)求与的夹角;(2)求的大小.【答案】(1);(2)【解析】【分析】(1)由已知得,展开求得,结合夹角公式即可求解;(2)由化简即可求解.【详解】(1)设与的夹角为θ由已知得,即,因此,得,于是,故θ=,即与的夹角为;(2)由.21.已知,,(t∈R),O是坐标原点.(1)若点A,B,M三点共线,求t的值;(2)当t取何值时,取到最小值?并求出最小值.【答案】(1)t;(2)当t时,?的最小值为.【解析】【分析】(1)求出向量的坐标,由三点共线知与共线,即可求解t的值.(2)运用坐标求数量积,转化为函数求最值.【详解】(1),,∵A,B,M三点共线,∴与共线,即,∴,解得:t.(2),,,∴当t时,?取得最小值.【点睛】关键点点睛:(1)由三点共线,则由它们中任意两点构成的向量都共线,求参数值.(2)利用向量的数量积的坐标公式得到关于参数的函数,即可求最值及对应参数值.22.设向量,,.(1)求;(2)若,,求的值;(3)若,,,求证:A,,三点共线.【答案】(1) 1(2)2(3)证明见解析【解析】【分析】(1)先求,进而求;(2)列出方程组,求出,进而求出;(3)求出,从而得到,得到结果.(1),;(2),所以,解得:,所以;(3)因为,所以,所以A,,三点共线.23.在平面直角坐标系中,已知,.(Ⅰ)若,求实数的值;(Ⅱ)若,求实数的值.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)求出向量和的坐标,然后利用共线向量的坐标表示得出关于的方程,解出即可;(Ⅱ)由得出,利用向量数量积的坐标运算可得出关于实数的方程,解出即可.【详解】(Ⅰ),,,,,,解得;(Ⅱ),,,解得.【点睛】本题考查平面向量的坐标运算,考查利用共线向量和向量垂直求参数,考查计算能力,属于基础题.24.在中,,,,点,在边上且,.(1)若,求的长;(2)若,求的值.【答案】(1);(2).【解析】【分析】(1)先设,,根据题意,求出,,再由向量模的计算公式,即可得出结果;(2)先由题意,得到,,再由向量数量积的运算法则,以及题中条件,得到,即可求出结果.【详解】(1)设,,则,,因此,所以,,(2)因为,所以,同理可得,,所以,∴,即,同除以可得,.【点睛】本题主要考查用向量的方法求线段长,考查由向量数量积求参数,熟记平面向量基本定理,以及向量数量积的运算法则即可,属于常考题型.25.已知向量,,,且.(1)求,;(2)求与的夹角及与的夹角.【答案】(1),;(2),.【解析】【分析】(1)由、,结合平面向量数量积的运算即可得解;(2)记与的夹角为,与的夹角为,由平面向量数量积的定义可得、,即可得解.【详解】(1)因为向量,,,且,所以,所以,又,所以;(2)记与的夹角为,与的夹角为,则,所以.,所以.【点睛】本题考查了平面向量数量积的运算与应用,考查了运算求解能力,属于基础题.26.平面内给定三个向量,,.(1)求满足的实数,;(2)若,求实数的值.【答案】(1),;(2).【解析】【分析】(1)依题意求出的坐标,再根据向量相等得到方程组,解得即可;(2)首先求出与的坐标,再根据向量共线的坐标表示计算可得;【详解】解:(1)因为,,,且,,,,.,解得,.(2),,,.,,,.,解得.27.如图,已知中,为的中点,,交于点,设,.(1)用分别表示向量,;(2)若,求实数t的值.【答案】(1),;(2).【解析】(1)根据向量线性运算,结合线段关系,即可用分别表示向量,;(2)用分别表示向量,,由平面向量共线基本定理,即可求得t的值.【详解】(1)由题意,为的中点,,可得,,.∵,∴,∴(2)∵,∴∵,,共线,由平面向量共线基本定理可知满足,解得.【点睛】本题考查了平面向量的线性运算,平面向量共线基本定理的应用,属于基础题.28.已知,向量,.(1)若向量与平行,求k的值;(2)若向量与的夹角为钝角,求k的取值范围【答案】(1)或;(2).【解析】(1)利用向量平行的坐标表示列式计算即得结果;(2)利用,且不共线,列式计算即得结果.【详解】解:(1)依题意,,,又,得,即解得或;(2)与的夹角为钝角,则,即,即,解得或.由(1)知,当时,与平行,舍去,所以.【点睛】思路点睛:两向量夹角为锐角(或钝角)的等价条件:(1)两向量夹角为锐角,等价于,且不共线;(2)两向量夹角为钝角,等价于,且不共线.29.已知.(1)若,求的值;(2)若,求向量在向量方向上的投影.【答案】(1)(2)【解析】【分析】(1)先得到,根据可得,即可求出m;(2)根据求出m=2,再根据求在向量方向上的投影.【详解】;;;;;;;在向量方向上的投影为.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题.30.平面内给定三个向量.(1)求;(2)求满足的实数m和n;(3)若,求实数k.【答案】(1)6;(2);(3).【解析】(1)利用向量加法的坐标运算得到,再求模长即可;(2)先写的坐标,再根据使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可.【详解】解:(1)由,得,;(2),,,,故,解得;(3),,,,,,即,解得.【点睛】结论点睛:若,则等价于;等价于.试卷第1页,共3页试卷第1页,共3页。

高三数学平面向量试题答案及解析

高三数学平面向量试题答案及解析

高三数学平面向量试题答案及解析1.已知,若共线,则实数x=A.B.C.1D.2【答案】B【解析】此题考查向量共线的条件;由已知得到,又因为共线,所以。

选B2.已知向量的夹角为()A.30°B.45°C.60°D.90°【答案】C【解析】故选C3.已知向量、的夹角为,且,,则向量与向量+2的夹角等于()A.150°B.90°C.60°D.30°【答案】D【解析】设量与向量+2的夹角为故选D4.设向量,是两个相互垂直的单位向量,一直角三角形两条边所对应的向量分别为,,,则的值可能是()A.或B.或C.或D.或【答案】C【解析】若则;若则若则无解;故选C5.已知,则实数k的值是。

【答案】-1【解析】略6.已知:(1)求关于x的表达式,并求的最小正周期;(2)若时,的最小值为5,求m的值.【答案】(1)(2)3【解析】7.已知向量,则实数k的值为()A.B.0C.3D.【答案】C【解析】,又,,即,解得【考点】平面向量的坐标运算。

8.已知平面向量,,,,,,若,则实数()A.4B.-4C.8D.-8【答案】D.【解析】∵,,∴,故选D【考点】平面向量共线的坐标表示.9.若向量,,则=()A.B.C.D.【答案】B【解析】因为向量,,所以.故选B.【考点】向量减法的坐标的运算.10.已知向量,满足,,则夹角的余弦值为( ) A.B.C.D.【答案】D【解析】,,则的夹角余弦值为.故选D.【考点】向量的基本运算.11.已知向量若与平行,则实数的值是()A.-2B.0C.2D.1【答案】C【解析】,根据题意有,解得,故选C.【考点】向量的运算,向量共线的坐标表示.12.(本小题满分12分)已知向量,函数.(1)若,求的值;(2)若,求函数的值域.【答案】(1);(2).【解析】本题主要考查平面向量的数量积的运算、三角函数中的恒等变换的应用、两角和与差的正弦公式、倍角公式、三角函数的值域、正弦函数的图象和性质等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,运用平面向量的数量积的坐标表示和两角差的正弦公式以及二倍角的余弦公式,即可得到结论;第二问,由,则可以得到,运用正弦函数的图象和性质,即可得到函数的值域.试题解析:(1)向量,则函数,,则,;(2)由,则,,则.则的值域为.【考点】平面向量的数量积的运算、三角函数中的恒等变换应用、三角函数的值域、正弦函数的图象和性质.13.设,,若,则= .【答案】【解析】因为,所以,解得,所以=.【考点】1、平面向量垂直的充要条件;2、平面向量的模.14.己知向量,满足||=||=2且,则向量与的夹角为.【答案】【解析】因为||=||=2,所以由数量积的运算律可将化为,即,所以,故向量与的夹角为.【考点】①向量数量积的运算律;②向量夹角计算公式.15.在△ABC中,若点D满足,则()A.B.C.D.【答案】A【解析】由于,因此.【考点】向量的加法法则.16.设向量,,且,则的值是()A.B.C.D.【答案】C【解析】由得,即,解得,故选C.【考点】向量垂直的条件,向量数量积坐标运算公式.17.已知,,,且与垂直,则实数的值为.【答案】.【解析】本题考查两个向量垂直,向量的数量积的计算,难度简单.由得.由得,所以.【考点】向量垂直,向量的数量积.18.设直角的三个顶点都在单位圆上,点M,则的最大值是()A.B.C.D.【答案】C【解析】由题意,,当且仅当共线同向时,取等号,即取得最大值,最大值是,故选:C.【考点】1.点与圆的位置关系;2.平面向量及应用.【思路点睛】由题意,,当且仅当共线同向时,取等号,即可求出的最大值.19.已知为同一平面内的四个点,若,则向量等于()A.B.C.D.【答案】C【解析】由得,即,故选C.【考点】向量的回头法运算及几何意义.20.已知点,,点在轴上,当取最小值时,点的坐标是()A.B.C.D.【答案】D【解析】设,则,所以,由二次函数的性质得,当时有最小值,所以点的坐标是.【考点】1.向量的运算;2.二次函数.21.已知向量,,,若向量与共线,则的值为()A.B.C.D.【答案】D【解析】由题意得,,故由与共线得,解得,故D项正确.【考点】平面向量的运算及共线定理.22.设是所在平面内一点,且,则()A.B.C.D.【答案】D【解析】,又,所以,即.故选D.【考点】向量的线性运算.23.已知向量的夹角为,,向量,的夹角为,,则与的夹角正弦值为,.【答案】,或【解析】作,则,向量,由题意可得为边长为的等边三角形,向量的夹角为,可得,由,可得四点共圆,在中,,由正弦定理可得,在中,,由余弦定理可得,解得,当在中,同理可得.【考点】平面向量的数量积的运算.24.设向量与的夹角为,且,则等于()A.B.C.D.6【答案】B【解析】,故选B.【考点】平面向量数量积的定义.25.已知向量,,则当时,的取值范围是___________.【答案】.【解析】根据向量的差的几何意义,表示向量终点到终点的距离,当时,该距离取得最小值为1,当时,根据余弦定理,可算得该距离取得最大值为,即的取值范围是,故填:.【考点】平面向量的线性运算.26.如图,在梯形ABCD中,AB∥CD,AB=4,AD=3,CD=2,.若=-3,则=.【答案】【解析】因为,所以【考点】向量数量积27.如图,中,,为的中点,以为圆心,为半径的半圆与交于点,为半圆上任意一点,则的最小值为()A.B.C.D.【答案】D【解析】以为坐标原点,所在直线为轴建立直角坐标系,所以,设且,所以,令,则,其中.所以当时有最小值.故选D.【考点】1、平面向量的数量积公式;2、圆的参数方程的应用.28.梯形中,,则()A.B.C.D.不能确定【答案】C【解析】由梯形易得:,所以,又,所以,由于,所以,可得,故选C.【考点】1、平面向量基本定理;2、向量的平行.29.设向量,若向量与向量垂直,则的值为()A.3B.1C.D.-1【答案】D【解析】因为向量,向量与向量垂直,所以,故选D.考点 1、向量的坐标表示;2、平面向量的数量积公式 .30.边长为的等边三角形中心为,是边上的动点,则()A.有最大值B.有最小值C.是定值D.与的位置有关【答案】C【解析】设是中点,则.故选C.【考点】向量的数量积.【名师】本题是求平面向量的数量积的问题,解题时要把动点与定点结合起来,如果能化动为静,则问题易解.为此可选取两个向量作为基底,其他向量都用它们表示,然后求解,在求数量积时,垂直的向量是我们要着重考虑的,因为垂直的数量积为0,计算时比较方便,易于求解.31.如图,四边形是三个全等的菱形,,设,,已知点在各菱形边上运动,且,,则的最大值为 .【答案】4【解析】根据条件知,G,O,C三点共线,连接OE,则OE⊥GC;∴分别以OC,OE所在直线为x轴,y轴,建立如图所示平面直角坐标系,设棱形的边长为2,则;设,则;∴;∴;∴;设,则,表示在y轴上的截距;当截距最大时,取到最大值;由图形可以看出当直线经过点时截距最大;∴;即x+y的最大值为4.【考点】向量的线性运算.【名师】考查向量的线性运算,通过建立平面直角坐标系,利用向量坐标解决向量问题的方法,能确定平面上点的坐标,以及向量坐标的加法和数乘运算,直线的点斜式方程,线性规划的运用.这是一道综合题,有一定的难度,对学生分析问题解决问题的能力要求较高.32.若向量,,则=()A.B.C.D.【答案】B【解析】由题意,向量,故选B.【考点】向量的运算.33.设是圆上不同的三个点,且,若存在实数,使得,则实数的关系为()A.B.C.D.【答案】A【解析】∵,两边平方得:,∵,∴,故选A.【考点】(1)直线与圆的方程的应用;(2)向量共线定理;(3)平面向量的垂直.【思路点晴】本题主要考查圆的定义及向量的模及其数量积运算,还考查了向量与实数的转化.在向量的加,减,数乘和数量积运算中,数量积的结果是实数,所以考查应用较多.由是圆上不同的三个点,可得,又,所以对两边平方即可得到结论.34.如图,正方形中,为的中点,若,则的值为()A.B.C.1D.-1【答案】A【解析】,又,所以,又,那么.故本题选A.【考点】1.平面向量的线性运算;2.平面向量的基本定理.35.已知角的顶点为坐标原点,始边为轴的正半轴,终边落在第二象限,是其终边上的一点,向量,若,则()A.B.C.D.【答案】D【解析】设与轴正向的夹角为,则,因为角的顶点为坐标原点,始边为轴的正半轴,终边落在第二象限且,所以,.故应选D.【考点】1、向量垂直的性质;2、两角和的正切公式.36.已知非零向量且对任意的实数都有,则有()A.B.C.D.【答案】C【解析】因为非零向量且对任意的实数都有,所以,,,即,,故选C.【考点】1、平面向量数量积公式;2、一元二次方程根与系数的关系.【方法点睛】本题主要考查平面向量数量积公式以及一元二次方程根与系数的关系,属于难题.对于一元二次方程根与系数的关系的题型常见解法有两个:一是对于未知量为不做限制的题型可以直接运用判别式解答(本题属于这种类型);二是未知量在区间上的题型,一般采取列不等式组(主要考虑判别式、对称轴、的符号)的方法解答.37.已知向量,则下列结论正确的是()A.B.C.D.【答案】C【解析】因为,所以A错;因为,所以B错;因为,所以,所以,所以C正确,故选C.【考点】向量平行与垂直的充要条件.38.如图所示,矩形的对角线相交于点,的中点为,若(为实数),则()A.1B.C.D.【答案】C【解析】,,所以,故选C.【考点】平面向量基本定理39.已知向量=(-1,1),向量=(3,t),若∥(+),则t=________.【答案】-3【解析】,由∥(+)得,.【考点】向量平行.40.已知向量,若,则()A.B.C.D.【答案】C【解析】因,故代入可得,故应选C.【考点】向量坐标形式及运算.41.已知向量满足,那么向量的夹角为()A.30°B.60°C.150°D.120°【答案】D【解析】.【考点】向量运算.42.已知非零向量满足,且,则与的夹角为()A.B.C.D.【答案】D【解析】若,则,即有,由,可得,即有,,由,可得与夹角的大小为.故选:D.【考点】向量的夹角.43.等腰直角三角形中,,,点分别是中点,点是(含边界)内任意一点,则的取值范围是()A.B.C.D.【答案】A【解析】以为坐标原点,边所在直线为轴,建立直角坐标系,则,,设,则且,,,令,结合线性规划知识,则,当直线经过点时,有最小值,将代入得,当直线经过点时,有最大值,将代入得,故答案为A.【考点】(1)平面向量数量积的运算;(2)简单线性规划的应用.【方法点睛】本题考查的知识点是平面向量的数量积运算及线性规划,处理的关键是建立恰当的坐标系,求出各点、向量的坐标,利用平面向量的数量积公式,将其转化为线性规划问题,再利用“角点法”解决问题.选择合适的原点建立坐标系,分别给出动点(含参数)和定点的坐标,结合向量内积计算公式进行求解.44.设向量,且,则的值是()A.2B.C.8D.【答案】C【解析】由已知得,∴.【考点】平面向量坐标运算.45.边长为的正三角形,其内切圆与切于点为内切圆上任意一点,则的取值范围为__________.【答案】【解析】以点为坐标原点,所在直线为轴建立平面直角坐标系,如图所示,则点,,内切圆的方程为,设点,则.【考点】向量的坐标运算;向量的数量积.【方法点晴】本题主要考查了平面向量的坐标运算、平面向量的数量接的运算等知识点的应用,解答中,以点为坐标原点,所在直线为轴建立平面直角坐标系,确定点的坐标,利用内切圆得出的坐标,利用向量的数量积的公式和坐标运算,即可求解的取值范围,着重考查了学生的推理与运算能力,属于中档试题.46.平面向量与的夹角为30°,已知,则()A.B.C.D.【答案】D【解析】因,故,故应选D.【考点】向量的有关运算.47.已知非零向量的夹角为,且,则()A.B.1C.D.2【答案】A【解析】由得,,解得,故选A.【考点】向量的数量积.48.在等腰梯形中,已知,点和点分别在线段和上,且,则的值为_____________.【答案】【解析】以为坐标原点,为轴的正方向建立平面直角坐标系,则,所以.【考点】向量的数量积、向量运算.【思路点晴】本题主要考查向量的数量积、向量运算,利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 对于向量数量积与线性运算的综合运算问题,可先利用数量积的运算律化简,再进行运算.对向量与几何图形的综合问题,可通过向量的数量积运算把向量问题转化为代数问题来求解.49.已知是单位圆上的两点(为圆心),,点是线段上不与重合的动点.是圆的一条直径,则的取值范围是()A.B.C.D.【答案】A【解析】,点是线段上,,故选A.【考点】向量及其运算.50.设是单位向量,且,则的最小值为()A.-2B.C.-1D.【答案】D【解析】当时,,故选D.【考点】向量及其基本计算.51.在平行四边形中,为一条对角线,,,则=()A.(2,4)B.(3,5)C.(1,1)D.(-1,-1)【解析】,故选C.【考点】平面向量的线性运算.52.已知在内有一点,满足,过点作直线分别交、于、,若,,则的最小值为A.B.C.D.【答案】A【解析】由知P是的重心,则,所以,∵共线,∴,∴,当且仅当时取等号,∴的最小值为.故选A.【考点】平面向量基本定理,三点共线定理.【名师】设上直线外一点,,则三点共线的条件是.利用此共线定理可以解决平面向量中的共线点问题,通过它把几何问题代数化.53.已知是平面上一定点,是平面上不共线的三个点,动点满足,则点的轨迹一定通过的()A.重心B.垂心C.内心D.外心【答案】A【解析】由正弦定理得,所以,而,所以表示与共线的向量,而点是的中点,即的轨迹一定是通过三角形的重心,故选A.【考点】平面向量.【思路点晴】本题主要考查向量的加法和减法的几何意义,考查了解三角形正弦定理,考查了三角形四心等知识.在几何图形中应用平面向量加法和减法,往往要借助几何图形的特征,灵活应用三角形法则和平行四边形.当涉及到向量或点的坐标问题时,应用向量共线的充要条件解题较为方便.三角形的四心是:内心、外心、重心和垂心.54.已知向量,,且,则.【答案】【解析】因为,所以,所以.【考点】向量运算.55.已知菱形的对角线,则()A.1B.C.2D.【解析】在菱形中,,设相交于点,由向量数量积的几何意义可知,故选C.【考点】向量数量积的几何意义.56.已知向量,向量,则_____________.【答案】【解析】,所以.【考点】向量的坐标运算.57.已知向量满足,且,则___________.【答案】【解析】由于,两边平方得,因为.【考点】向量运算.58.已知向量,满足,,且(),则.【答案】【解析】设,则,又因为,即,所以,解得,即,解得.【考点】向量的坐标运算.59.已知向量_________.【答案】【解析】,解得,,那么,故填:.【考点】向量数量积的坐标表示60.已知向量,,且,则()A.B.C.D.【答案】A【解析】因为所以所以所以故答案选A【考点】向量的数量积;向量的模.61.设向量.若,则实数等于()A.-1B.1C.-2D.2【解析】,∴,得.故选C.【考点】向量的基本运算.62.已知向量,,若,则实数__________.【答案】【解析】因为向量,,所以有 , 若,则有,解得.63.已知,分别是椭圆的左、右焦点.(1)若点是第一象限内椭圆上的一点,,求点的坐标;(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率的取值范围.【答案】(1);(2).【解析】(1)首先得到焦点的坐标,点满足两个条件,一个是点在椭圆上,满足椭圆方程,另一个是将 ,转化为坐标表示,这样两个方程两个未知数,解方程组;(2)首项设过点的直线为,与方程联立,得到根与系数的关系,和,以及,根据向量的数量积可知,为锐角,即,这样代入根与系数的关系,以及,共同求出的取值范围.试题解析:(1)易知.,设,则,又.联立,解得,故.(2)显然不满足题设条件,可设的方程为,设,联立由,得.①又为锐角,又.②综①②可知的取值范围是【点睛】解析几何中的参数范围的考查是高考经常考的的问题,这类问题,要将几何关系转化为代数不等式的运算,必然会考查转化与化归的能力,将为锐角转化为 ,这样就代入根与系数的关系,转化为解不等式的问题,同时不要忽略.64.若向量,且∥,则实数_________.【答案】【解析】依题设,,由∥得,,解得.65.已知向量,若,则__________.【答案】11【解析】由题意可知,因为,所以∙=0,解得m=11.66.已知函数的部分图象如图所示,点,是该图象与轴的交点,过点的直线与该图象交于,两点,则的值为()A.B.C.D.2【答案】D【解析】解:∵函数的周期,则,即C点是一个对称中心,根据向量的平行四边形法则可知: ,则: .本题选择D选项.67.已知向量,若向量与向量共线,则实数__________.【答案】【解析】因为,又因为向量与向量共线,所以,所以.68.(理科)已知平面上共线的三点和与这三点不共线的定点,若等差数列满足:,则数列的前38项之和为__________.【答案】19【解析】三点共线,,,,故答案为.69.已知向量满足,若,的最大值和最小值分别为,则等于()A.B.2C.D.【答案】C【解析】因为所以;因为,所以的最大值与最小值之和为,选C.70.已知向量,,且,则向量和的夹角为()A.B.C.D.【答案】C【解析】,则,,则向量和的夹角为,选C.【点睛】本题考查平面向量的有关知识及及向量运算,借助向量的模方和模,求向量的夹角,本题属于基础题.解决向量问题有两种方法,第一种是借助向量的几何意义,利用加法、减法、数乘、数量积运算,借助线性运算解题,另一种方法是建立适当的平面直角坐标系,利用向量的坐标运算解题.71.在中,,,,,是线段的三等分点,则的值为()A.B.C.D.【答案】B【解析】,,则【点睛】向量的运算有两种方法,一种是线性运算,如本题以为基底,把有关向量利用加法、减法及数乘运算表示出来,然后利用数量积运算计算出结果,另一种方法是建立直角坐标系,把相关点得坐标写出来,然后利用坐标运算公式计算出结果.72.在为所在平面内一点,且,则()A.B.C.D.【答案】A【解析】由题可知.故本题选.点睛:本题主要考查平面向量的基本定理.用平面向量的基本定理解决问题的一般思路是:先选择一组基底,并且运用平面向量的基本定理将条件和结论表示成基底的线性组合.在基底未给出的情况下进行向量的运算,合理地选取基底会给解题带来方便.进行向量运算时,要尽可能转化到平行四边形或三角形中.73.已知,,则的最大值是__________.【答案】3【解析】,所以的最大值是3.74.设向量,.则与垂直的向量可以是A.B.C.D.【答案】A【解析】由题意可知:,本题选择A选项.75.已知的外接圆圆心为,且,若,则的最大值为__________.【答案】【解析】设三个角所对的边分别为,由于,,,所以,解得,.76.若向量,且,则的最大值是A.1B.C.D.3【答案】D【解析】× ,选D.77.设,向量且,若不等式恒成立,则实数k的最大值为____.【答案】【解析】由向量平行的充要条件有:,据此可得:,其中整理可得:,当时满足题意,否则:当时,由对称轴处的函数值可得恒成立,综上可得实数k的最大值为.78.已知向量,若与垂直,则实数的值是_________.【解析】,79.已知过抛物线的焦点的直线与抛物线交于,两点,且,抛物线的准线与轴交于点,于点,若四边形的面积为,则准线的方程为( ) A.B.C.D.【答案】A【解析】由题意,知,直线的方程为.设,则,.由,得,即①.设直线的方程为,代入抛物线方程消去,得,所以②.联立①②,得或(舍去),所以.因为=,将的值代入解得,所以直线的方程为,故选A.点睛:本题考查抛物线的几何性质、直线与抛物线的位置关系和平面向量的坐标运算.求解与向量交汇的圆锥曲线问题,通常利用点的坐标对已知的或所求的向量式进行转化,然后再利用解析几何的知识求解.80.(20分)已知为的外心,以线段为邻边作平行四边形,第四个顶点为,再以为邻边作平行四边形,它的第四个顶点为.(1)若,试用表示;(2)证明:;(3)若的外接圆的半径为,用表示.【答案】解:(1)由平行四边形法则可得:即(2)O是的外心,∣∣=∣∣=∣∣,即∣∣=∣∣=∣∣,而,=∣∣-∣∣=0,(3)在中,O是外心A=,B=于是∣∣2=(=+2+2=(),【解析】略81.已知向量a=(cosθ,sinθ),θ∈[0,π],向量b=(,-1).(1)若a⊥b,求θ的值;(2)若|2a-b|<m恒成立,求实数m的取值范围.【答案】(1)(2)(4,+∞)【解析】解:(1)∵a⊥b,∴cosθ-sinθ=0,得tanθ=,又θ∈[0,π],∴θ=.(2)∵2a-b=(2cosθ-,2sinθ+1),∴|2a-b|2=(2cosθ-)2+(2sinθ+1)2=8+8(sinθ-cosθ)=8+8sin(θ-),又θ∈[0,π],∴θ-∈[-,],∴sin(θ-)∈[-,1],∴|2a-b|2的最大值为16,∴|2a-b|的最大值为4,又|2a-b|<m恒成立,∴m>4.故m的取值范围为(4,+∞).82. [2014·牡丹江模拟]设e1,e2是两个不共线的向量,且a=e1+λe2与b=-e2-e1共线,则实数λ=()A.-1B.3C.-D.【答案】D【解析】∵a=e1+λe2与b=-e2-e1共线,∴存在实数t,使得b=ta,即-e2-e1=t(e1+λe2),- e2-e1=te1+tλe2,由题意,e1,e2不共线,∴t=-1,tλ=-,即λ=,故选D.83.已知,若,则__________.【答案】1【解析】因为,所以,,解得。

(完整word版)平面向量(逐题详解)

(完整word版)平面向量(逐题详解)

2012年高考文科数学解析分类汇编:平面向量一、选择题1 .(2012年高考(重庆文))设x R ∈ ,向量(,1),(1,2),a x b ==-且a b ⊥ ,则||a b +=( )A .5B .10C .25D .102 .(2012年高考(浙江文))设a,b 是两个非零向量.( )A .若|a+b|=|a|-|b|,则a ⊥bB .若a ⊥b,则|a+b|=|a|-|b|C .若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD .若存在实数λ,使得b=λa,则|a+b|=|a|-|b|3 .(2012年高考(天津文))在ABC ∆中,90A ∠=︒,1AB =,设点,P Q 满足,(1),AP AB AQ AC R λλλ==-∈.若2BQ CP ⋅=-,则λ=( )A .13B .23 C .43D .24 .(2012年高考(四川文))设a 、b 都是非零向量,下列四个条件中,使||||a ba b =成立的充分条件是( )A .||||a b =且//a bB .a b =-C .//a bD . 2a b =5 .(2012年高考(辽宁文))已知向量a = (1,—1),b = (2,x).若a ·b = 1,则x =( )A .—1B .—12C .12D .16 .(2012年高考(广东文))(向量、创新)对任意两个非零的平面向量α和β,定义⋅⋅=⋅αβαβββ,若平面向量a 、b 满足0≥>a b ,a 与b 的夹角0,4πθ⎛⎫∈ ⎪⎝⎭,且a b 和b a 都在集合2n n Z ⎧⎫∈⎨⎬⎩⎭中,则=ab ()A .12B .1C .32D .527 .(2012年高考(广东文))(向量)若向量()1,2AB =,()3,4BC =,则AC =( )A .()4,6B .()4,6--C .()2,2--D .()2,28 .(2012年高考(福建文))已知向量(1,2),(2,1)a x b =-=,则a b ⊥的充要条件是( )A .12x =-B .1x =-C .5x =D .0x =9 .(2012年高考(大纲文))ABC ∆中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =( )A .1133a b - B .2233a b - C .3355a b -D .4455a b -二、填空题10.(2012年高考(浙江文))在△ABC 中,M 是BC 的中点,AM=3,BC=10,则AB AC ⋅=________.11.(2012年高考(上海文))在知形ABCD 中,边AB 、AD 的长分别为2、1. 若M 、N 分别是边BC 、CD 上的点,且满足||||||||CD CN BC BM =,则AN AM ⋅的取值范围是_________ .12.(2012年高考(课标文))已知向量a ,b 夹角为045,且|a |=1,|2-a b |=10,则|b |=_______. 13.(2012年高考(江西文))设单位向量(,),(2,1)m x y b ==-。

高一数学平面向量试题答案及解析

高一数学平面向量试题答案及解析

高一数学平面向量试题答案及解析1.一物体受到相互垂直的两个力f1、f2的作用,两力大小都为5N,则两个力的合力的大小为()A.10N B.0NC.5N D.N【答案】C【解析】根据向量加法的平行四边形法则,合力f的大小为×5=5 (N).2.河水的流速为2m/s,一艘小船想以垂直于河岸方向10m/s的速度驶向对岸,则小船在静水中的速度大小为()A.10m/s B.2m/sC.4m/s D.12m/s【答案】B【解析】设河水的流速为v1,小船在静水中的速度为v2,船的实际速度为v,则|v1|=2,|v|=10,v⊥v1.∴v2=v-v1,v·v1=0,∴|v2|====2.3.在△ABC所在的平面内有一点P,满足++=,则△PBC与△ABC的面积之比是()A.B.C.D.【答案】C【解析】由++=,得+++=0,即=2,所以点P是CA边上的三等分点,如图所示.故==.4..已知向量a,e满足:a≠e,|e|=1,对任意t∈R,恒有|a-te|≥|a-e|,则()A.a⊥e B.a⊥(a-e)C.e⊥(a-e)D.(a+e)⊥(a-e)【答案】C【解析】由条件可知|a-te|2≥|a-e|2对t∈R恒成立,又∵|e|=1,∴t2-2a·e·t+2a·e-1≥0对t∈R恒成立,即Δ=4(a·e)2-8a·e+4≤0恒成立.∴(a·e-1)2≤0恒成立,而(a·e-1)2≥0,∴a·e-1=0.即a·e=1=e2,∴e·(a-e)=0,即e⊥(a-e).5.设D、E、F分别是△ABC的三边BC、CA、AB上的点,且=2,=2,=2,则++与 ()A.反向平行B.同向平行C.互相垂直D.既不平行也不垂直【答案】A【解析】++=++++-=++---= (-)+=+=-,故选A.6.在▱ABCD中,=a,=b,=4,P为AD的中点,则=()A.a+b B.a+bC.-a-b D.-a-b【答案】C【解析】如图,=-=-=- (+)=b- (a+b)=-a-b.7.已知△ABC中,点D在BC边上,且=2,=r+s,则r+s的值是() A.B.C.-3D.0【答案】D【解析】∵=-,=-.∴=--=--.∴=-,∴=-.又=r+s,∴r=,s=-,∴r+s=0.8.设非零向量a、b、c满足|a|=|b|=|c|,a+b=c,则〈a,b〉=()A.150°B.120°C.60°D.30°【答案】B【解析】∵|a|=|b|=|c|≠0,且a+b=c∴如图所示就是符合题设条件的向量,易知OACB是菱形,△OBC和△OAC都是等边三角形.∴〈a,b〉=120°.9.如右图,已知正六边形P1P2P3P4P5P6,下列向量的数量积中最大的是()A.·B.·C.·D.·【答案】A【解析】设正六边形的边长是1,则·=1××cos30°=;·=1×2×cos60°=1;·=1××cos90°=0;·=1×1×cos120°=-.10. (2010·湖南理,4)在Rt△ABC中,∠C=90°,AC=4,则·等于()A.-16B.-8C.8D.16【答案】D【解析】因为∠C=90°,所以·=0,所以·=(+)·=||2+·=AC2=16.11.已知向量a、b满足|a|=1,|b|=4,且a·b=2,则a与b的夹角为()A.B.C.D.【答案】C【解析】根据向量数量积的意义,a·b=|a|·|b|·cosθ=4cosθ=2及0≤θ≤π,可得θ=,选C.12. (09·天津文)若等边△ABC的边长为2,平面内一点M满足=+,则·=______________.【答案】-2【解析】∵=+,∴=-=-,=-=-.∴·=- 2- 2+·=-×12-×12+×12×=-2.13.已知|a|=,|b|=3,a与b夹角为45°,求使a+λb与λa+b的夹角为钝角时,λ的取值范围.【答案】<λ<且λ≠-1.【解析】由条件知,cos45°=,∴a·b=3,设a+λb与λa+b的夹角为θ,则θ为钝角,∴cosθ=<0,∴(a+λb)(λa+b)<0.λa2+λb2+(1+λ2)a·b<0,∴2λ+9λ+3(1+λ2)<0,∴3λ2+11λ+3<0,∴<λ<.若θ=180°时,a+λb与λa+b共线且方向相反,∴存在k<0,使a+λb=k(λa+b),∵a,b不共线,∴,∴k=λ=-1,∴<λ<且λ≠-1.本题易忽视θ=180°时,也有a·b<0,忘掉考虑夹角不是钝角而致误.14. (2010·烟台市诊断)已知向量a=(4,2),b=(x,3),且a∥b,则x的值是()A.6B.-6C.9D.12【答案】A【解析】∵a∥b,∴=,∴x=6.15. (2010·湖南长沙)已知O是平面上一定点,A、B、C是平面上不共线的三点,动点P满足=+λ(+),λ∈[0,+∞),则点P的轨迹一定通过△ABC的()A.外心B.垂心C.内心D.重心【答案】D【解析】设+=,则可知四边形BACD是平行四边形,而=λ表明A、P、D三点共线.又D在BC的中线所在直线上,于是点P的轨迹一定通过△ABC的重心.16.(09·广东文)已知平面向量a=(x,1),b=(-x,x2),则向量a+b()A.平行于x轴B.平行于第一、三象限的角平分线C.平行于y轴D.平行于第二、四象限的角平分线【答案】C【解析】a+b=(0,1+x2),由1+x2≠0及向量的性质可知,C正确.17.已知向量a=(-2,3),b∥a,向量b的起点为A(1,2),终点B在坐标轴上,则点B的坐标为________.【答案】或【解析】由b∥a,可设b=λa=(-2λ,3λ).设B(x,y),则=(x-1,y-2)=b.由⇒.又B点在坐标轴上,则1-2λ=0或3λ+2=0,所以B或.18.平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C满足=α+β,其中α、β∈R且α+β=1,则点C的轨迹方程为()A.(x-1)2+(y-2)2=5B.3x+2y-11=0C.2x-y=0D.x+2y-5=0【答案】D【解析】解法1:设C(x,y),则=(x,y),=(3,1),=(-1,3).由=α+β得(x,y)=(3α,α)+(-β,3β)=(3α-β,α+3β).于是由(3)得β=1-α代入(1)(2)消去β得,.再消去α得x+2y=5,即x+2y-5=0.∴选D.解法2:由平面向量共线定理,当=α+β,α+β=1时,A、B、C三点共线.因此,点C的轨迹为直线AB,由两点式直线方程得=,即x+2y-5=0.∴选D.19.已知平面向量a=(1,-1),b=(-1,2),c=(3,-5),则用a,b表示向量c为() A.2a-b B.-a+2bC.a-2b D.a+2b【答案】C【解析】设c=xa+yb,∴(3,-5)=(x-y,-x+2y),∴,解之得,∴c=a-2b,故选C.20.已知=(2,-1),=(-4,1),则的坐标为________.【答案】(-6,2)【解析】=-=(-6,2).21.已知G是△ABC的重心,直线EF过点G且与边AB、AC分别交于点E、F,=α,=β,则+的值为________.【答案】3【解析】连结AG并延长交BC于D,∵G是△ABC的重心,∴== (+),设=λ,∴-=λ(-),∴=+,∴+=+,∵与不共线,∴,∴,∴+=3.22.已知△ABC中,A(7,8),B(3,5),C(4,3),M、N是AB、AC的中点,D是BC的中点,MN与AD交于点F,求.【答案】(1.75,2).【解析】因为A(7,8),B(3,5)C(4,3)所以=(-4,-3),AC=(-3,-5).又因为D是BC的中点,有= (+)=(-3.5,-4),而M、N分别为AB、AC的中点,所以F为AD的中点,故有==-=(1.75,2).[点评]注意向量表示的中点公式,M是A、B的中点,O是任一点,则=(+).23.如图所示,在▱ABCD中,已知=,=.求证:B、F、E三点共线.【答案】略【解析】设=a,=b.则=+=a+b.∵=b-a,∴==(b-a).∴=+=a+ (b-a)=a+b-a=a+b=.∴=.∴向量与向量共线,它们有公共点B.∴B、F、E三点共线.24.已知圆C:(x-3)2+(y-3)2=4及点A(1,1),M为圆C上的任意一点,点N在线段MA的延长线上,且=2,求点N的轨迹方程.【答案】所求的轨迹方程为x2+y2=1.【解析】设M(x0,y),N(x,y),由=2,得(1-x0,1-y)=2(x-1,y-1),所以,又∵M(x0,y)在圆C上,把x0、y代入方程(x-3)2+(y-3)2=4,整理得x2+y2=1,所以所求的轨迹方程为x2+y2=1.25.下列说法正确的是()①向量与是平行向量,则A、B、C、D四点一定不在同一直线上②向量a与b平行,且|a|=|b|≠0,则a+b=0或a-b=0③向量的长度与向量的长度相等④单位向量都相等A.①③B.②④C.①④D.②③【答案】D【解析】对于①,向量平行时,表示向量的有向线段所在直线可以是重合的,故①错.对于②,由于|a|=|b|≠0,∴a,b都是非零向量,∵a∥b,∴a与b方向相同或相反,∴a+b=0或a-b=0.对于③,向量与向量方向相反,但长度相等.对于④,单位向量不仅仅长度为1,还有方向,而向量相等需要长度相等而且方向相同.选D. 26.给出下列各命题:(1)零向量没有方向;(2)若|a|=|b|,则a=b;(3)单位向量都相等;(4)向量就是有向线段;(5)两相等向量若其起点相同,则终点也相同;(6)若a=b,b=c,则a=c;(7)若a∥b,b∥c,则a∥c;(8)若四边形ABCD是平行四边形,则=,=.其中正确命题的序号是________.【答案】(5)(6)【解析】(1)该命题不正确,零向量不是没有方向,只是方向不定;(2)该命题不正确,|a|=|b|只是说明这两向量的模相等,但其方向未必相同;(3)该命题不正确,单位向量只是模为单位长度1,而对方向没要求;(4)该命题不正确,有向线段只是向量的一种表示形式,但不能把两者等同起来;(5)该命题正确,因两相等向量的模相等,方向相同,故当它们的起点相同时,其终点必重合;(6)该命题正确.由向量相等的定义知,a与b的模相等,b与c的模相等,从而a与c的模相等;又a与b的方向相同,b与c的方向相同,从而a与c的方向也必相同,故a=c;(7)该命题不正确.因若b=0,则对两不共线的向量a与c,也有a∥0,0∥c,但a∥\ c;(8)该命题不正确.如图所示,显然有≠,≠.27.已知A、B、C是不共线的三点,向量m与向量是平行向量,与是共线向量,则m=________.【解析】∵A、B、C不共线,∴与不共线,又∵m与、都共线,∴m=0.28.如图所示,已知▱ABCD,▱AOBE,▱ACFB,▱ACGD,▱ACDH,点O是▱ABCD的对角线交点,且=a,=b,=c.(1)写出图中与a相等的向量;(2)写出图中与b相等的向量;(3)写出图中与c相等的向量.【答案】略【解析】(1)在▱OAEB中,==a;在▱ABCD中,==a,所以a==.(2)在▱ABCD中,==b;在▱AOBE中,==b,所以b==.(3)在▱ABCD中,==c;在▱ACGD中,==c,所以c==29.在水流速度大小为10km/h的河中,如果要使船实际以10km/h大小的速度与河岸成直角横渡,求船行驶速度的大小与方向.【答案】船行驶速度为20km/h,方向与水流方向成120°角【解析】如右图所示,OA表示水流方向,表示垂直于对岸横渡的方向,表示船行速度的方向,由=+易知||=||=10,又∠OBC=90°,∴||=20,∴∠BOC=30°,∴∠AOC=120°,即船行驶速度为20km/h,方向与水流方向成120°角.30..如图,在平行四边形ABCD中,下列结论中错误的是()A.=B.+=C.-=D.+=0【答案】C【解析】A显然正确.由平行四边形法则知B正确.C中-=,故C错误.D中+=+=0.。

部编版高中数学必修二第六章平面向量及其应用带答案知识点汇总

部编版高中数学必修二第六章平面向量及其应用带答案知识点汇总

(名师选题)部编版高中数学必修二第六章平面向量及其应用带答案知识点汇总单选题1、已知直角三角形ABC 中,∠A =90°,AB =2,AC =4,点P 在以A 为圆心且与边BC 相切的圆上,则PB ⃑⃑⃑⃑⃑ ⋅PC ⃑⃑⃑⃑⃑ 的最大值为( )A .16+16√55B .16+8√55C .165D .5652、已知向量a =(√3,1),向量a −b ⃑ =(√3+1,√3+1),则a 与b ⃑ 的夹角大小为( ) A .30°B .60°C .120°D .150°3、P 是△ABC 所在平面内一点,满足|CB ⃑⃑⃑⃑⃑ |−|PB ⃑⃑⃑⃑⃑ +PC ⃑⃑⃑⃑⃑ −2PA ⃑⃑⃑⃑⃑ |=0,则△ABC 的形状是( ) A .等腰直角三角形B .直角三角形C .等腰三角形D .等边三角形4、在锐角△ABC 中,角A ,B ,C 所对的边为a ,b ,c ,若sinBsinC 3sinA=cosA a+cosC c,且S △ABC =√34(a 2+b 2−c 2),则c 2a+b的取值范围是( )A .(6,2√3]B .(6,4√3]C .[12,√33)D .[√3,2) 5、在△ABC 中,sin 2A =sinBsinC ,若∠A =π3,则∠B 的大小是( ) A .π6B .π4C .π3D .2π36、设a ,b ⃑ 均为单位向量,且|a −b ⃑ |=1,则|a −2b ⃑ |=( ) A .√3B .√7C .3D .77、下列命题中假命题是( ) A .向量AB⃑⃑⃑⃑⃑ 与BA ⃑⃑⃑⃑⃑ 的长度相等 B .两个相等的向量,若起点相同,则终点也相同 C .只有零向量的模等于0 D .共线的单位向量都相等8、△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc = A .6B .5C .4D .3 多选题9、设△ABC 的内角A 、B 、C 所对边的长分别为a 、b 、c ,下列命题正确的是( ) A .若a 2+b 2<c 2,则C >π2B .若ab =c 2,则C ≥π3 C .若a 3+b 3=c 3,则C <π2D .若a +b =2c ,则C >π210、已知E ,F 分别是△ABC 的边AB ,AC 的中点,若AP ⃑⃑⃑⃑⃑ =xAB ⃑⃑⃑⃑⃑ +yAC ⃑⃑⃑⃑⃑ ,则点P 在四边形BCFE 内(包括边界)的有( )A .x =12,y =13B .x =−12,y =1 C .x =14,y =45D .x =14,y =1311、对于任意的平面向量a ,b ⃑ ,c ,下列说法错误的是( ) A .若a //b ⃑ 且b ⃑ //c ,则a //c B .(a +b ⃑ )⋅c =a ⋅c +b ⃑ ⋅cC .若a ⋅b ⃑ =a ⋅c ,且a ≠0,则b ⃑ =cD .(a ⋅b ⃑ )⋅c =a ⋅(b ⃑ ⋅c ) 填空题12、a →,b →为不共线的向量,设条件M:b →⊥(a →−b →);条件N:对一切x ∈R ,不等式|a →−xb →|≥|a →−b →|恒成立.则M是N的__________条件.部编版高中数学必修二第六章平面向量及其应用带答案(二十四)参考答案1、答案:D分析:建立如图所示的坐标系,根据PB ⃑⃑⃑⃑⃑ ·PC ⃑⃑⃑⃑⃑ =|PD ⃑⃑⃑⃑⃑ |2−5可求其最大值. 以A 为原点建系,B (0,2),C (4,0),BC:x4+y2=1,即x +2y −4=0,故圆的半径为r =√5∴圆A:x 2+y 2=165,设BC 中点为D (2,1),PB ⃑⃑⃑⃑⃑ ·PC ⃑⃑⃑⃑⃑ =PD ⃑⃑⃑⃑⃑ 2−14BC ⃑⃑⃑⃑⃑ 2=|PD ⃑⃑⃑⃑⃑ |2−14×20=|PD ⃑⃑⃑⃑⃑ |2−5, |PD |max =|AD |+r =√5+√5=√5,∴(PB ⃑⃑⃑⃑⃑ ·PC ⃑⃑⃑⃑⃑ )max=815−5=565, 故选:D. 2、答案:D分析:计算可得b →=(−1,−√3),利用数量积公式计算即可得出结果. ∵向量a =(√3,1),向量a −b ⃑ =(√3+1,√3+1), ∴b →=(−1,−√3),cos <a ,b ⃑ >=−√3−√32×2=−√32,且0≤<a ,b⃑ >≤π, ∴a →,b →的夹角为5π6=150°.故选:D. 3、答案:B分析:根据平面向量的线性运算与模长公式,可以得出AB⃑⃑⃑⃑⃑ ⋅AC ⃑⃑⃑⃑⃑ =0,由此可判断出△ABC 的形状. 由|CB ⃑⃑⃑⃑⃑ |=|PB ⃑⃑⃑⃑⃑ +PC ⃑⃑⃑⃑⃑ −2PA ⃑⃑⃑⃑⃑ |,可得|CB ⃑⃑⃑⃑⃑ |=|AB ⃑⃑⃑⃑⃑ +AC ⃑⃑⃑⃑⃑ |,即|AB ⃑⃑⃑⃑⃑ −AC ⃑⃑⃑⃑⃑ |=|AC ⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ |, 等式|AB ⃑⃑⃑⃑⃑ −AC ⃑⃑⃑⃑⃑ |=|AC ⃑⃑⃑⃑⃑ +AB ⃑⃑⃑⃑⃑ |两边平方,化简得AB ⃑⃑⃑⃑⃑ ⋅AC ⃑⃑⃑⃑⃑ =0,∴AB ⃑⃑⃑⃑⃑ ⊥AC ⃑⃑⃑⃑⃑ , 因此,△ABC 是直角三角形. 故选:B.小提示:本题考查了平面向量的线性运算与数量积运算,也考查了模长公式应用,是中等题. 4、答案:D分析:根据给定条件利用正弦定理、余弦定理、三角形面积定理求出角C 及边c ,再求出a +b 的范围即可计算作答.在锐角△ABC 中,由余弦定理及三角形面积定理得:S △ABC =√34(a 2+b 2−c 2)=√32abcosC =12absinC , 即有tanC =√3,而C ∈(0,π2),则C =π3,又sinBsinC 3sinA=cosA a+cosC c,由正弦定理、余弦定理得,b⋅√323a =b 2+c 2−a 22bca +a 2+b 2−c 22abc,化简得:c =2√3,由正弦定理有:asinA =bsinB =c sinC =√3√32=4,即a =4sinA ,b =4sinB ,△ABC 是锐角三角形且C =π3,有A ∈(0,π2),B =2π3−A ∈(0,π2),解得A ∈(π6,π2),因此a +b =4(sinA +sinB)=4[sinA +sin(2π3−A)] =4(sinA +√32cosA +12sinA)=4√3sin(A +π6),由A ∈(π6,π2)得:A +π6∈(π3,2π3),sin(A +π6)∈(√32,1], 所以c 2a+b =4√3sin(A+π6)∈[√3,2).故选:D小提示:思路点睛:涉及求三角形周长范围问题,时常利用三角形正弦定理,转化为关于某个角的函数,再借助三角函数的性质求解. 5、答案:C分析:由正弦定理边角互化,以及结合余弦定理,即可判断△ABC 的形状,即可判断选项. 因为sin 2A =sinBsinC ,所以a 2=bc ,由余弦定理可知a 2=b 2+c 2−2bccos π3=b 2+c 2−bc =bc , 即(b −c)2=0,得b =c , 所以△ABC 是等边三角形,∠B =π3. 故选:C 6、答案:A分析:由已知,利用向量数量积的运算律求得a ⋅b ⃑ =12,又|a −2b ⃑ |2=a 2−4a ⋅b ⃑ +4b ⃑ 2即可求|a −2b ⃑ |. 由题设,|a −b ⃑ |2=a 2−2a ⋅b ⃑ +b ⃑ 2=1,又a ,b ⃑ 均为单位向量, ∴a ⋅b ⃑ =12, ∴|a −2b ⃑ |2=a 2−4a ⋅b ⃑ +4b ⃑ 2=3,则|a −2b ⃑ |=√3. 故选:A 7、答案:D分析:利用相反向量的概念可判断A 选项的正误;利用相等向量的定义可判断B 选项的正误;利用零向量的定义可判断C 选项的正误;利用共线向量的定义可判断D 选项的正误. 对于A 选项,AB⃑⃑⃑⃑⃑ 与BA ⃑⃑⃑⃑⃑ 互为相反向量,这两个向量的长度相等,A 选项正确; 对于B 选项,两个相等的向量,长度相等,方向相同,若两个相等向量的起点相同,则终点也相同,B 选项正确;对于C 选项,只有零向量的模等于0,C 选项正确;对于D 选项,共线的单位向量是相等向量或相反向量,D 选项错误. 故选:D.小提示:本题考查平面向量的相关概念,考查相等向量、相反向量、共线向量以及零向量的定义的应用,属于基础题. 8、答案:A分析:利用余弦定理推论得出a,b,c关系,在结合正弦定理边角互换列出方程,解出结果. 详解:由已知及正弦定理可得a2−b2=4c2,由余弦定理推论可得−14=cosA=b2+c2−a22bc , ∴c2−4c22bc=−14 , ∴3c2b=14 , ∴bc=32×4=6,故选A.小提示:本题考查正弦定理及余弦定理推论的应用.9、答案:AC分析:利用余弦定理及基本不等式一一判断即可;解:对于A选项,a2+b2<c2,可以得出cosC=a2+b2−c22ab <0,∴C>π2,故A正确;对于B选项,因为ab=c2,所以cos C=a2+b2−c22ab ≥2ab−ab2ab=12,当且仅当a=b时取等号,因为C∈(0,π),所以0<C≤π3,故B错误;对于C选项,假设C≥π2,则c>a,c>b,则c2≥a2+b2,所以c3≥a2c+b2c>a3+b3与a3+b3=c3矛盾,∴C<π2,故C正确,对于D选项,取a=b=c=2,满足a+b=2c,此时C=π3,故D错误;故选:AC.10、答案:AD分析:由题意可知点P在四边形BCFE内(包括边界),则{x≥0 y≥01 2≤x+y≤1,逐个判断即可求解由题意可知点P在四边形BCFE内(包括边界),则{x≥0 y≥01 2≤x+y≤1,对于A:x+y=12+13=56,满足条件,故A正确;对于B:x=−12<0,不满足条件,故B错误;对于C:x+y=14+45=2120>1,不满足条件,故C错误;对于D:x+y=14+13=712,满足条件,故D正确;故选:AD 11、答案:ACD分析:根据平面向量共线,平面向量数量积的运算律,依次判断各项正误. 解:a //b ⃑ 且b ⃑ //c ,当b ⃑ 为零向量时,则a 与c 不一定共线,即A 错误; 由向量数量积的分配律得(a +b ⃑ )⋅c =a ⋅c +b ⃑ ⋅c ,即B 正确;因为a ⋅b ⃑ =a ⋅c ,则a ⋅(b ⃑ −c )=0,又a ≠0,则b ⃑ =c 或a ⊥(b ⃑ −c ),即C 错误;取a ,b ⃑ ,c 为非零向量,且a 与b ⃑ 垂直,b ⃑ 与c 不垂直,则(a ⋅b ⃑ )⋅c =0⃑ ,a ⋅(b ⃑ ⋅c )≠0⃑ ,即D 错误. 故选:ACD . 12、答案:充要分析:由条件M:b →⊥(a →−b →),可得b ⃑ ⋅(a −b ⃑ )=a ⋅b ⃑ −b ⃑ 2=0;不等式|a →−xb →|≥|a →−b →|化为x 2b ⃑ 2−2xa ⋅b ⃑ +2a ⋅b ⃑ −b ⃑ 2≥0.由于对一切x ∈R ,不等式|a →−xb →|≥|a →−b →|恒成立,所以可得Δ≤0,化简即可得出.由条件M:b →⊥(a →−b →),可得b ⃑ ⋅(a −b ⃑ )=a ⋅b ⃑ −b ⃑ 2=0; 不等式|a →−xb →|≥|a →−b →|化为x 2b ⃑ 2−2xa ⋅b ⃑ +2a ⋅b⃑ −b ⃑ 2≥0, ∵对一切x ∈R ,不等式|a →−xb →|≥|a →−b →|恒成立, ∴Δ=4(a ⋅b ⃑ )2−4(2a ⋅b ⃑ −b ⃑ 2)b ⃑ 2≤0, 化为(a ⋅b ⃑ −b ⃑ 2)2≤0, ∴a ⋅b ⃑ −b ⃑ 2=0,所以M ⇔N . 所以答案是:充要.小提示:关键点睛:本题的解题关键是由不等式|a →−xb →|≥|a →−b →|化为x 2b ⃑ 2−2xa ⋅b ⃑ +2a ⋅b ⃑ −b ⃑ 2≥0后由一元二次不等式的知识得出Δ=4(a b ⃑ )2−4(2a b ⃑ −b ⃑ 2)b ⃑ 2≤0,从而得解.。

高一数学平面向量试题答案及解析

高一数学平面向量试题答案及解析

高一数学平面向量试题答案及解析1.已知向量a b则向量a在向量b方向上的投影为 ( )A.B.C.0D.1【答案】B【解析】略2.已知平面向量0)满足(1)当时,求的值;(2)当的夹角为时,求的取值范围。

【答案】解:(1) 即,化简得,即的值为……………………………………6分(2)如图,设,由题,的夹角为,因此,在△ABO中,∠OBA=,根据正弦定理,即的取值范围是。

…………………………………12分【解析】略3.在中,,是边上任意一点(与不重合),若,则=()A.B.C.D.【答案】D【解析】根据题意画出相应的图形,如图所示:过A作AO⊥BC,交BC于点O,以BC所在的直线为x轴,AO所在的直线为y轴建立平面直角坐标系,设A(0,a),B(b,0),C(c,0),D(d,0),∵|AB|2=|AD|2+|BD|×|DC|,∴a2+b2=a2+d2+(d-b)(c-d),即d2-b2+(d-b)(c-d)=0,∴(d+b)(d-b)+(d-b)(c-d)=0,即(d-b)(b+c)=0,∵D与B不重合,∴d≠b,即d-b≠0,∴b+c=0,即b=-c,∴B与C关于y轴对称,∴AB=AC,则△ABC为等腰三角形.得到∠B=∠C=75°4.已知中,点是的中点,过点的直线分别交直线于两点,若,,则的最小值是()A.B.C.D.【答案】D【解析】,因为,三点共线,所以,.【考点】1.平面向量基本定理;2.三点共线;3.基本不等式求最值.5.(本小题满分12分)已知点(1)若,求的值;(2)若,其中为坐标原点,求的值。

【答案】(1);(2).【解析】(1)首先求的坐标表示,然后再用模的公式进行化简,最后解得;(2)根据向量的坐标表示向量的和,和向量的数量积的坐标表示,得到,最后两边平方,解得.试题解析:解:(1)A(1,0),B(0,1),,化简得(若,则,上式不成立)所以(2),,【考点】1.向量的坐标表示;2.三角函数的化简.6.已知平面向量,且,则()A.B.C.D.【答案】B【解析】,故选B.【考点】(1)平面向量共线(平行)的坐标表示;(2)平面向量的坐标运算.7.已知为锐角,,且,则为.【答案】或【解析】因为,,故为或.【考点】平行向量的坐标表示8.已知是所在平面上一点,满足,则点()A.在与边垂直的直线上B.在的平分线所在直线上C.在边的中线所在直线上D.以上都不对【答案】A【解析】移项得设AB边的中点为D,则所以O在与边垂直的直线上,选A.【考点】向量加减法的几何意义,数量积的性质.9.如果向量与的夹角为θ,那么我们称×为向量与的“向量积”,×是一个向量,它的长度|×|=||||sinθ,如果||=3,||=2,·=-2,则|×|=__________.【答案】【解析】由向量数量积知;所以.【考点】新定义问题、向量的运算.10.(本小题满分10分)已知向量,向量.(1)若向量与向量垂直,求实数的值;(2)当为何值时,向量与向量平行?并说明它们是同向还是反向.【答案】(1);(2),同向.【解析】(1)本题考察的是平面向量的垂直问题,这类问题要写出两个向量的坐标表示,然后利用两向量的数量积等于0,即可得到所需答案.本题中分别写出向量与向量的坐标,两向量垂直数量积等于0,代入相关数值,即可求出实数的值.(2)本题考察的是两向量平行(共线)的问题,两向量平行,则.代入相关数值,即可求出实数的值,再利用向量共线定理即可得出是否同向.试题解析:,.(1)由向量与向量垂直,得,解得.(2),得,解得.此时,所以方向相同【考点】平面向量数量积的运算11.设的夹角为锐角,则实数的取值范围是()A.B.C.D.【答案】A【解析】,,设与夹角为且为锐角,则:,且,解得且,所以实数的取值范围是,故选A.【考点】平面向量数量积的计算12.已知的顶点坐标为,,,点P的横坐标为14,且,点是边上一点,且.(1)求实数的值与点的坐标;(2)求点的坐标;(3)若为线段(含端点)上的一个动点,试求的取值范围.【答案】(1)(2)(3)【解析】(1)由,根据向量共线,设出P点坐标即可得设出Q点坐标,根据可得一个方程,然后利用Q在AB上利用向量共线得另一个方程,解方程组可得Q点坐标。

(精选试题附答案)高中数学第六章平面向量及其应用经典大题例题

(精选试题附答案)高中数学第六章平面向量及其应用经典大题例题

(名师选题)(精选试题附答案)高中数学第六章平面向量及其应用经典大题例题单选题1、魏晋时刘徽撰写的《海岛算经》是有关测量的数学著作,其中第一题是测海岛的高.如图,点E,H,G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”,GC与EH的差称为“表目距的差”则海岛的高AB=()A.表高×表距表目距的差+表高B.表高×表距表目距的差−表高C.表高×表距表目距的差+表距D.表高×表距表目距的差−表距答案:A分析:利用平面相似的有关知识以及合分比性质即可解出.如图所示:由平面相似可知,DEAB =EHAH,FGAB=CGAC,而DE=FG,所以DE AB =EHAH=CGAC=CG−EHAC−AH=CG−EHCH,而CH=CE−EH=CG−EH+EG,即AB =CG−EH+EG CG−EH ×DE =EG×DE CG−EH +DE = 表高×表距表目距的差+表高.故选:A.小提示:本题解题关键是通过相似建立比例式,围绕所求目标进行转化即可解出.2、已知单位向量a ⃗,b⃗⃗,则下列说法正确的是( ) A .a ⃗=b ⃗⃗B .a ⃗+b ⃗⃗=0⃗⃗C .|a ⃗|=|b ⃗⃗|D .a ⃗//b⃗⃗ 答案:C分析:利用向量的有关概念及单位向量的定义依次判断即得.对于A ,向量a ⃗,b ⃗⃗为单位向量,向量a ⃗,b⃗⃗的方向不一定相同,A 错误; 对于B ,向量a ⃗,b ⃗⃗为单位向量,但向量a ⃗, b⃗⃗不一定为相反向量,B 错误; 对于C ,向量a ⃗,b ⃗⃗为单位向量,则|a ⃗|=|b⃗⃗|=1,C 正确; 对于D ,向量a ⃗,b ⃗⃗为单位向量,向量a ⃗,b ⃗⃗的方向不一定相同或相反,即a ⃗与b⃗⃗不一定平行,D 错误. 故选:C.3、已知向量a ⃑=(−1,m ),b ⃗⃑=(2,4),若a ⃑与b⃗⃑共线,则m =( ) A .−1B .1C .−2D .2答案:C分析:根据平面向量共线坐标表示可得答案.由题意得2m =−4,即m =−2.故选:C4、某人先向东走3km ,位移记为a →,接着再向北走3km ,位移记为b →,则a →+b →表示( )A .向东南走3√2kmB .向东北走3√2kmC .向东南走3√3kmD .向东北走3√3km答案:B分析:由向量的加法进行求解.由题意和向量的加法,得a →+b →表示先向东走3km ,再向北走3km ,即向东北走3√2km .故选:B.5、已知向量a ⃑,b ⃗⃑满足|a ⃑|=2,|b ⃗⃑|=1,a ⃑⋅(a ⃑−2b ⃗⃑)=2,则a ⃑与b⃗⃑的夹角为( ) A .30°B .60°C .120°D .150°答案:B分析:由题意,先求出a ⃑⋅b⃗⃑,然后根据向量的夹角公式即可求解. 解:因为a ⃑⋅(a ⃑−2b ⃗⃑)=a ⃑2−2a ⃑⋅b ⃗⃑=|a ⃑|2−2a ⃑⋅b ⃗⃑=4−2a ⃑⋅b ⃗⃑=2,所以a ⃑⋅b⃗⃑=1, 设a ⃑与b ⃗⃑的夹角为θ,则cosθ=a ⃗⃑⋅b ⃗⃑|a ⃗⃑||b ⃗⃑|=12, 因为θ∈[0°,180°],所以θ=60°,故选:B.6、已知非零平面向量a ⃗,b ⃗⃗,c ⃗,下列结论中正确的是( )(1)若a ⃗⋅c ⃗=b ⃗⃗⋅c ⃗,则a ⃗=b ⃗⃗;(2)若|a ⃗+b ⃗⃗|=|a ⃗|+|b ⃗⃗|,则a ⃗//b⃗⃗ (3)若|a ⃗+b ⃗⃗|=|a ⃗−b ⃗⃗|,则a ⃗⊥b ⃗⃗(4)若(a ⃗+b ⃗⃗)⋅(a ⃗−b ⃗⃗)=0,则a ⃗=b ⃗⃗或a ⃗=−b⃗⃗ A .(1)(2)B .(2)(3)C .(3)(4)D .(2)(3)(4)答案:B解析:根据向量的数量积运算,以及向量模的计算公式,逐项判断,即可得出结果.已知非零平面向量a ⃗,b ⃗⃗,c ⃗,(1)若a ⃗⋅c ⃗=b ⃗⃗⋅c ⃗,则(a ⃗−b ⃗⃗)⋅c ⃗=0,所以a ⃗=b ⃗⃗或(a ⃗−b ⃗⃗)⊥c ⃗,即(1)错;(2)若|a ⃗+b ⃗⃗|=|a ⃗|+|b ⃗⃗|,则a ⃗与b ⃗⃗同向,所以a ⃗//b⃗⃗,即(2)正确;(3)若|a ⃗+b ⃗⃗|=|a ⃗−b ⃗⃗|,则|a ⃗|2+|b ⃗⃗|2+2a ⃗⋅b ⃗⃗=|a ⃗|2+|b ⃗⃗|2−2a ⃗⋅b ⃗⃗,所以2a ⃗⋅b ⃗⃗=0,则a ⃗⊥b⃗⃗;即(3)正确; (4)若(a ⃗+b ⃗⃗)⋅(a ⃗−b ⃗⃗)=0,则|a ⃗|2−|b ⃗⃗|2=0,所以|a ⃗|=|b⃗⃗|,不能得出向量共线,故(4)错; 故选:B.小提示:本题主要考查向量数量积的运算,考查向量有关的判定,属于基础题型.7、△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,C =30∘,c =10.如果△ABC 有两解,则a 的取值范围是( )A .[10,20]B .[10,10√3]C .(10,10√3)D .(10,20)答案:D分析:作出图形,根据题意可得出关于a 的不等式,由此可解得a 的取值范围.如下图所示:因为△ABC 有两解,所以asinC =12a <c =10<a ,解得10<a <20.故选:D.8、如图,四边形ABCD 是平行四边形,则12AC ⃗⃗⃗⃗⃗⃑+12BD ⃗⃗⃗⃗⃗⃗⃑=( )A .AB ⃗⃗⃗⃗⃗⃑B .CD ⃗⃗⃗⃗⃗⃑C .CB ⃗⃗⃗⃗⃗⃑D .AD ⃗⃗⃗⃗⃗⃑答案:D分析:由平面向量的加减法法则进行计算.由题意得AC ⃗⃗⃗⃗⃗⃑=AB ⃗⃗⃗⃗⃗⃑+AD ⃗⃗⃗⃗⃗⃑,BD ⃗⃗⃗⃗⃗⃗⃑=AD ⃗⃗⃗⃗⃗⃑−AB⃗⃗⃗⃗⃗⃑,所以12AC ⃗⃗⃗⃗⃗⃑+12BD ⃗⃗⃗⃗⃗⃗⃑=12(AB ⃗⃗⃗⃗⃗⃑+AD ⃗⃗⃗⃗⃗⃑+AD ⃗⃗⃗⃗⃗⃑−AB ⃗⃗⃗⃗⃗⃑)=AD ⃗⃗⃗⃗⃗⃑. 故选:D.9、向量a ⃗,b ⃗⃗满足a ⃗=(1,√3),|b ⃗⃗|=1,|a ⃗+b ⃗⃗|=√3,则b ⃗⃗在a ⃗方向上的投影为( )A .-1B .−12C .12D .1 答案:B解析:根据题条件,先求出a ⃗⋅b⃗⃗,再由向量数量积的几何意义,即可求出结果. 因为向量a ⃗,b ⃗⃗满足a ⃗=(1,√3),|b ⃗⃗|=1,|a ⃗+b⃗⃗|=√3, 所以|a ⃗|2+2a ⃗⋅b ⃗⃗+|b ⃗⃗|2=3,即4+2a ⃗⋅b ⃗⃗+1=3,则a ⃗⋅b⃗⃗=−1, 所以b ⃗⃗在a ⃗方向上的投影为|b →|cos <a →,b →>=a →⋅b→|a →|=−12. 故选:B.10、如图,正六边形ABCDEF 的边长为2,动点M 从顶点B 出发,沿正六边形的边逆时针运动到顶点F ,若FD ⃗⃗⃗⃗⃗⃑⋅AM ⃗⃗⃗⃗⃗⃗⃑的最大值和最小值分别是m ,n ,则m +n =( )A .9B .10C .11D .12答案:D分析:连接AC ,根据正六边形的特征可得FD ⃗⃗⃗⃗⃗⃑=AC ⃗⃗⃗⃗⃗⃑,从而可得FD ⃗⃗⃗⃗⃗⃑⋅AM ⃗⃗⃗⃗⃗⃗⃑=AC ⃗⃗⃗⃗⃗⃑⋅AM ⃗⃗⃗⃗⃗⃗⃑=|AC ⃗⃗⃗⃗⃗⃑||AM ⃗⃗⃗⃗⃗⃗⃑|cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩,再根据当M 在BC 上运动时,|AM ⃗⃗⃗⃗⃗⃗⃑|与cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩均逐渐增大,当M 从D 移动到F 时,|AM ⃗⃗⃗⃗⃗⃗⃑|与cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩均逐渐减小,即可求得m ,n ,从而得出答案.解:连接AC ,在正六边形ABCDEF 中,FD ⃗⃗⃗⃗⃗⃑=AC⃗⃗⃗⃗⃗⃑,∴FD ⃗⃗⃗⃗⃗⃑⋅AM ⃗⃗⃗⃗⃗⃗⃑=AC ⃗⃗⃗⃗⃗⃑⋅AM ⃗⃗⃗⃗⃗⃗⃑=|AC ⃗⃗⃗⃗⃗⃑||AM ⃗⃗⃗⃗⃗⃗⃑|cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩,∵正六边形ABCDEF 的边长为2,∴|AC⃗⃗⃗⃗⃗⃑|=2√3, 因为当M 在BC 上运动时,|AM ⃗⃗⃗⃗⃗⃗⃑|与cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩均逐渐增大,当M 从D 移动到F 时,|AM ⃗⃗⃗⃗⃗⃗⃑|与cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩均逐渐减小,所以当M 在CD 上运动时,|AM ⃗⃗⃗⃗⃗⃗⃑|cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩取得最大值,为2√3,当M 移动到点F 时,|AM ⃗⃗⃗⃗⃗⃗⃑|cos⟨AC ⃗⃗⃗⃗⃗⃑,AM ⃗⃗⃗⃗⃗⃗⃑⟩取得最小值,为0.∴m =2√3×2√3=12,n =2√3×0=0,∴m +n =12.故选:D.小提示:填空题11、已知△ABC 中,AB =2,AC =1,AB ⃗⃗⃗⃗⃗⃑⋅AC ⃗⃗⃗⃗⃗⃑=1,O 为△ABC 所在平面内一点,且OA ⃗⃗⃗⃗⃗⃑+2OB ⃗⃗⃗⃗⃗⃑+3OC ⃗⃗⃗⃗⃗⃑=0⃗⃑,则AO⃗⃗⃗⃗⃗⃑⋅BC ⃗⃗⃗⃗⃗⃑的值为___________ 答案:−1分析:在OA ⃗⃗⃗⃗⃗⃑+2OB ⃗⃗⃗⃗⃗⃑+3OC ⃗⃗⃗⃗⃗⃑=0⃗⃑中,将OB ⃗⃗⃗⃗⃗⃑=OA ⃗⃗⃗⃗⃗⃑+AB ⃗⃗⃗⃗⃗⃑,OC ⃗⃗⃗⃗⃗⃑=OA ⃗⃗⃗⃗⃗⃑+AC ⃗⃗⃗⃗⃗⃑代入,用AB ⃗⃗⃗⃗⃗⃑与AC ⃗⃗⃗⃗⃗⃑表示AO ⃗⃗⃗⃗⃗⃑,可得AO⃗⃗⃗⃗⃗⃑=13AB ⃗⃗⃗⃗⃗⃑+12AC ⃗⃗⃗⃗⃗⃑,故AO ⃗⃗⃗⃗⃗⃑⋅BC ⃗⃗⃗⃗⃗⃑=(13AB ⃗⃗⃗⃗⃗⃑+12AC ⃗⃗⃗⃗⃗⃑)⋅(AC ⃗⃗⃗⃗⃗⃑−AB ⃗⃗⃗⃗⃗⃑),展开根据已知条件代入数据计算即可. ∵OA ⃗⃗⃗⃗⃗⃑+2OB ⃗⃗⃗⃗⃗⃑+3OC ⃗⃗⃗⃗⃗⃑=0⃗⃑,∴OA ⃗⃗⃗⃗⃗⃑+2(OA ⃗⃗⃗⃗⃗⃑+AB ⃗⃗⃗⃗⃗⃑)+3(OA ⃗⃗⃗⃗⃗⃑+AC ⃗⃗⃗⃗⃗⃑)=0⃗⃑,∴AO ⃗⃗⃗⃗⃗⃑=13AB ⃗⃗⃗⃗⃗⃑+12AC ⃗⃗⃗⃗⃗⃑, ∴AO ⃗⃗⃗⃗⃗⃑⋅BC ⃗⃗⃗⃗⃗⃑=(13AB ⃗⃗⃗⃗⃗⃑+12AC ⃗⃗⃗⃗⃗⃑)⋅(AC ⃗⃗⃗⃗⃗⃑−AB ⃗⃗⃗⃗⃗⃑)=12AC ⃗⃗⃗⃗⃗⃑2−13AB ⃗⃗⃗⃗⃗⃑2−16AB ⃗⃗⃗⃗⃗⃑⋅AC ⃗⃗⃗⃗⃗⃑=−1.所以答案是:−1.小提示:关键点点睛:解答本题的关键点在于将AO ⃗⃗⃗⃗⃗⃑用AB⃗⃗⃗⃗⃗⃑与AC ⃗⃗⃗⃗⃗⃑线性表示,将AO ⃗⃗⃗⃗⃗⃑⋅BC ⃗⃗⃗⃗⃗⃑转化为AB ⃗⃗⃗⃗⃗⃑与AC ⃗⃗⃗⃗⃗⃑之间的数量积运算问题来求解.12、若OA →=a →,OB →=b →,则∠AOB 平分线上的向量OM →可以表示为________.答案:λ(a →|a →|+b →|b →|),λ∈R分析:根据题意,以OA →|OA →|,OB →|OB →|为邻边作平行四边形OACB 则四边形为菱形,根据平面向量加法的平行四边形法则得OC →=OA→|OA →|+OB →|OB →|=a →|a →|+b →|b →|,由OM →,OC →共线,最后根据向量共线定理得OM →=λOC →,从而得出答案.解:∵ OA →=a →,OB →=b →,∴ OA→|OA →|=a→|a →|,OB →|OB →|=b →|b →|,∴以OA →|OA →|,OB →|OB →|为邻边作平行四边形OACB 则为菱形,∴OC 平分∠AOB ,∴根据向量加法的平行四边形法则可得:OC →=OA→|OA →|+OB→|OB →|=a →|a →|+b→|b →|,∵ OM →,OC →共线,∴由共线定理可得存在唯一的实数λ使得:OM →=λOC →=λ(a →|a →|+b →|b →|).所以答案是:λ(a →|a →|+b →|b →|),λ∈R .小提示:本题考查平面向量加法的平行四边形法则和向量共线定理,解题的关键是利用菱形的对角线平分对角这一重要性质.13、点A (−1,0),B(5,−4),AP⃗⃗⃗⃗⃗⃑=PB ⃗⃗⃗⃗⃗⃑,点P 的坐标为______. 答案:(2,−2)分析:设P(x,y),由已知条件,利用向量的坐标运算求解即可.由已知得,设P (x,y ),由已知得(x,y )−(−1,0)=(5,−4)−(x,y ),∴(x,y )=(2,−2),所以答案是:(2,−2).小提示:本题考查平面向量的坐标运算,属基础题.关键掌握向量的坐标等于终点的坐标减去起点的坐标.14、已知向量a ⃑、b ⃗⃗、c ⃑,且|a ⃑|=3,|b ⃗⃗|=5,|c ⃑|=1,a ⃑⋅b ⃗⃗=0,则|a ⃑+b ⃗⃗−c ⃑|的最小值为______.答案:√34−1##−1+√34分析:根据题意,建立直角坐标系,写出a ⃗、b ⃗⃗、a ⃗+b ⃗⃗坐标,求出c ⃑终点轨迹,数形结合即可求解.不妨设a ⃗=(3,0),b ⃗⃗=(0,5),a ⃗+b⃗⃗=(3,5), |c ⃑|=1,则c ⃑起点在原点,终点轨迹为单位圆x 2+y 2=1,∴当a ⃗+b ⃗⃗与c ⃑同向时,|a ⃑+b ⃗⃗−c ⃑|最小,为√32+52−1= √34−1.所以答案是:√34−1.15、已知a ⃑、b ⃗⃑是平面内两个互相垂直的单位向量,若c ⃑满足(a ⃑−c ⃑)⋅(b ⃗⃑−c ⃑)=0,则|c ⃑|的最大值为___________.答案:√2分析:首先根据数量积公式展开,再化简|c⃑|=√2cosα,利用三角函数的有界性求最值.(a⃗−c⃗)⋅(b⃗⃗−c⃗)=0⇔a⃑⋅b⃗⃑−(a⃑+b⃗⃑)⋅c⃑+c⃑2=0,∴|c⃗|2=(a⃗+b⃗⃗)⋅c⃗=|a⃗+b⃗⃗||c⃗|cosα=√2|c⃑|cosα,即|c⃑|=√2cosα,|c⃑|max=√2.所以答案是:√2解答题16、已知四边形ABCD是由△ABC与△ACD拼接而成的,且在△ABC中,2AB−BC=AC2+AB2−BC2AB.(1)求角B的大小;(2)若∠BAD=π3,∠ADC=5π6,AD=1,BC=2.求AB的长.答案:(1)B=π3 (2)AB=3分析:(1)由余弦定理结合2AB−BC=AC 2+AB2−BC2AB,即可求出角B的大小.(2)设AC=x,∠CAB=α,在△ABC中,由正弦定理可得√3=x sinα①,在△ADC中,由正弦定理可得x= 12sin(α−π6)②,联立①②,可得tanα=√32,在△ABC中,由正弦定理可求出AC,再由余弦定理即可求出AB的长.(1)∵2AB−BC=AC 2+AB2−BC2AB,∴整理可得,BC2+AB2﹣AC2=BC•AB,∴在△ABC中,由余弦定理可得cos B=BC2+AB2−AC22AB⋅BC =12,0<B<π,∴B=π3.(2)∵B=π3,∠BAD=π3,∠ADC=5π6,AD=1,BC=2,∴设AC=x,∠CAB=α,则在△ABC中,由正弦定理BCsin∠CAB =ACsinB,可得2sinα=xsinπ3,可得√3=x sinα,①在△ADC中,由正弦定理ACsinD =ADsin(π−∠D−∠DAC),可得xsin5π6=1sin[π6−(π3−α)],可得x=12sin(α−π6),②,∴联立①②,可得sinα=2√3sin(α−π6),可得tanα=√32,可得cosα=√11+tan2α=2√77,sinα=√217,∴在△ABC中,由正弦定理BCsinα=ACsinB,可得AC=2×sinπ3√217=√7,∵由余弦定理AC2=BC2+AB2﹣2AB•BC•cos B,可得7=4+AB2﹣2×2×AB×12,可得AB2﹣2AB﹣3=0,∴解得AB=3,(负值舍去).17、在锐角△ABC中,已知m⃗⃗⃑=(2sin(A+C),√3),n⃗⃑=(cos2B,2cos2B2−1),且m⃗⃗⃑//n⃗⃑.(1)求角B的大小;(2)若AC=1,求△ABC面积的最大值.答案:(1)π6(2)2+√34分析:(1)根据向量平行,结合二倍角正弦公式、降幂公式,化简整理,结合角B的范围,可求得答案;(2)根据(1)得角B,代入余弦定理,结合基本不等式,可得ac最大值,代入面积公式,即可得答案. (1)因为m⃗⃗⃑//n⃗⃑,所以2sin(A+C)(2cos2B2−1)=√3cos2B,因为A+B+C=π,所以sin(A+C)=sin(π−B)=sinB,所以2sinBcosB=sin2B=√3cos2B,所以tan2B=sin2Bcos2B=√3,因为锐角三角形,B∈(0,π2),所以2B∈(0,π),所以2B=π3,B=π6.(2)设角A、B、C所对的边为a,b,c,则AC=b=1,由余弦定理得cosB=a 2+c2−b22ac=√32,所以a2+c2−1=√3ac,即a2+c2=√3ac+1,又a2+c2≥2ac,所以√3ac+1≥2ac,解得ac≤2+√3,当且仅当a=c时等号成立,所以△ABC面积的最大值S max=12acsinB=12×(2+√3)×12=2+√34.18、已知向量a⃑=(1,1),b⃗⃑=(0,−2),在下列条件下分别求k的值:(1)a⃑+b⃗⃑与ka⃑−b⃗⃑平行;(2)a⃑+b⃗⃑与ka⃑−b⃗⃑的夹角为2π3.答案:(1)−1(2)−1±√3分析:(1)首先求出a⃑+b⃗⃑与ka⃑−b⃗⃑,再根据向量平行的坐标表示得到方程,解得即可;(2)首先利用向量数量积的坐标运算求出(a⃗+b⃗⃗)⋅(ka⃗−b⃗⃗),再根据平面向量数量积的定义得到方程,解得即可;(1)解:因为a⃑=(1,1),b⃗⃑=(0,−2),所以a⃗+b⃗⃗=(1,−1),ka⃗−b⃗⃗=(k,k+2),又a⃗+b⃗⃗与ka⃗−b⃗⃗平行,所以−k=k+2,解得k=−1;(2)解:因为a⃗+b⃗⃗=(1,−1),ka⃗−b⃗⃗=(k,k+2),所以(a⃗+b⃗⃗)⋅(ka⃗−b⃗⃗)=1×k+(−1)×(k+2)=−2,因为a⃗+b⃗⃗与ka⃗−b⃗⃗夹角为2π3,所以(a⃗+b⃗⃗)⋅(ka⃗−b⃗⃗)=|a⃗+b⃗⃗||a⃗−b⃗⃗|cos2π3,即−2=−√2×√k2+(k+2)2×12,解得k=−1±√3.19、在△ABC中,a,b,c分别是角A,B,C的对边,B=π3,a=3.(1)若A=π4,求b.(2)若______,求c的值及△ABC的面积.请从①b=√13,②sinC=2sinA,这两个条件中任选一个,将问题(2)补充完整,并作答.答案:(1)3√62;(2)选①c=4,S△ABC=3√3;选②c=6,S△ABC=9√32分析:(1)根据正弦定理计算即可得出结果;(2)利用余弦定理或正弦定理求出c的值,再结合三角形的面积公式计算即可.(1)B=π3,a=3,A=π4,由正弦定理,得bsinB=asinA,所以b=asinA ×sinB=√22√32=3√62;(2)选①:由余弦定理,得b2=a2+c2−2accosB,即13=c2+9−2×3c×12,整理,得c2−3c−4=0,由c>0,得c=4,所以S△ABC=12acsinB=12×3×4×√32=3√3;选②:因为sinC=2sinA,由正弦定理,得c=2a,所以c=6,所以S△ABC=12acsinB=12×6×3×√32=9√32.。

高中数学第六章平面向量及其应用经典大题例题(带答案)

高中数学第六章平面向量及其应用经典大题例题(带答案)

高中数学第六章平面向量及其应用经典大题例题单选题1、在△ABC 中,点D 在边AB 上,BD =2DA .记CA ⃗⃗⃗⃗⃗ =m →,CD⃗⃗⃗⃗⃗ =n →,则CB ⃗⃗⃗⃗⃗ =( ) A .3m →−2n →B .−2m →+3n →C .3m →+2n →D .2m →+3n →答案:B分析:根据几何条件以及平面向量的线性运算即可解出.因为点D 在边AB 上,BD =2DA ,所以BD ⃗⃗⃗⃗⃗⃗ =2DA ⃗⃗⃗⃗⃗ ,即CD ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ =2(CA ⃗⃗⃗⃗⃗ −CD⃗⃗⃗⃗⃗ ), 所以CB ⃗⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗⃗ −2CA ⃗⃗⃗⃗⃗ =3n ⃗ −2m ⃗⃗ =−2m →+3n →.故选:B .2、已知单位向量a →,b →,则下列说法正确的是( )A .a →=b →B .a →+b →=0→C .|a →|=|b →|D .a →//b →答案:C分析:利用向量的有关概念及单位向量的定义依次判断即得.对于A ,向量a →,b →为单位向量,向量a →,b →的方向不一定相同,A 错误;对于B ,向量a →,b →为单位向量,但向量a →, b →不一定为相反向量,B 错误;对于C ,向量a →,b →为单位向量,则|a →|=|b →|=1,C 正确;对于D ,向量a →,b →为单位向量,向量a →,b →的方向不一定相同或相反,即a →与b →不一定平行,D 错误. 故选:C.3、向量PA ⃗⃗⃗⃗⃗ =(k,12),PB ⃗⃗⃗⃗⃗ =(4,5),PC⃗⃗⃗⃗⃗ =(10,k).若A,B,C 三点共线,则k 的值为( ) A .−2B .1C .−2或11D .2或−11答案:C分析:求得BA ⃗⃗⃗⃗⃗ ,,利用向量共线的充要条件,可得关于k 的方程,求解即可. 解:由题可得:BA⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ −PB ⃗⃗⃗⃗⃗ =(k,12)−(4,5)=(k −4,7), CA u u u rCA⃗⃗⃗⃗⃗ =PA ⃗⃗⃗⃗⃗ −PC ⃗⃗⃗⃗⃗ =(k,12)−(10,k )=(k −10,12−k ). 因为A,B,C 三点共线,所以BA⃗⃗⃗⃗⃗ ∥CA ⃗⃗⃗⃗⃗ ,所以(k −4)(12−k )−7(k −10)=0,整理得k 2−9k −22=0,解得k =−2或k =11.故选:C.4、如图,在梯形ABCD 中,AB ∥DC 且AB =2DC ,点E 为线段BC 的靠近点C 的一个四等分点,点F 为线段AD的中点,与BF 交于点O ,且AO ⃗⃗⃗⃗⃗ =xAB⃗⃗⃗⃗⃗ +yBC ⃗⃗⃗⃗⃗ ,则x +y 的值为( )A .1B .57C .1417D .56答案:C分析:由向量的线性运算法则化简得到AO ⃗⃗⃗⃗⃗ ==(x −y 2)AB ⃗⃗⃗⃗⃗ +2yAF ⃗⃗⃗⃗⃗ 和BO ⃗⃗⃗⃗⃗ =(1−x)BA ⃗⃗⃗⃗⃗ +4y 3BE ⃗⃗⃗⃗⃗ ,结合B,O,F 三点共线和A,O,E 三点共线,得出2x +3y −2=0和3x −4y =0,联立方程组,即可求解.根据向量的线性运算法则,可得AO⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +yBC ⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +y(BA ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ) =xAB ⃗⃗⃗⃗⃗ −yAB ⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ =(x −y)AB ⃗⃗⃗⃗⃗ +y ⋅(AD ⃗⃗⃗⃗⃗ +DC⃗⃗⃗⃗⃗ ) =(x −y)AB ⃗⃗⃗⃗⃗ +y ⋅(2AF ⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ )=(x −y)AB ⃗⃗⃗⃗⃗ +2yAF ⃗⃗⃗⃗⃗ +12yAB ⃗⃗⃗⃗⃗ =(x −y 2)AB ⃗⃗⃗⃗⃗ +2yAF ⃗⃗⃗⃗⃗ , 因为B,O,F 三点共线,可得x −y 2+2y =1,即2x +3y −2=0;又由BO ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AO ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +xAB ⃗⃗⃗⃗⃗ +yBC ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ −xBA ⃗⃗⃗⃗⃗ +y ⋅43BE ⃗⃗⃗⃗⃗ =(1−x)BA ⃗⃗⃗⃗⃗ +4y 3BE ⃗⃗⃗⃗⃗ , 因为A,O,E 三点共线,可得1−x +4y 3=1,即3x −4y =0,联立方程组{2x +3y −2=03x −4y =0,解得x =817,y =617,所以x +y =1417. 故选:C.5、若|AB⃗⃗⃗⃗⃗ |=5,|AC ⃗⃗⃗⃗⃗ |=8,则|BC ⃗⃗⃗⃗⃗ |的取值范围是( ) A .[3,8]B .(3,8)C .[3,13]D .(3,13) AE答案:C分析:利用向量模的三角不等式可求得|BC⃗⃗⃗⃗⃗ |的取值范围. 因为|BC⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ |,所以,||AC ⃗⃗⃗⃗⃗ |−|AB ⃗⃗⃗⃗⃗ ||≤|BC ⃗⃗⃗⃗⃗ |≤|AC ⃗⃗⃗⃗⃗ |+|AB ⃗⃗⃗⃗⃗ |,即3≤|BC ⃗⃗⃗⃗⃗ |≤13. 故选:C.6、已知正三角形ABC 的边长为4,点P 在边BC 上,则AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ 的最小值为( ) A .2B .1C .−2D .−1答案:D分析:选基底,用基向量表示出所求,由二次函数知识可得.记|BP⃗⃗⃗⃗⃗ |=x ,x ∈[0,4] 因为AP⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ , 所以AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =BP ⃗⃗⃗⃗⃗ 2−BA ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =|BP ⃗⃗⃗⃗⃗ |2−2|BP ⃗⃗⃗⃗⃗ |=x 2−2x =(x −1)2−1≥−1. 故选:D7、若点M 是△ABC 所在平面内的一点,且满足3AM ⃗⃗⃗⃗⃗⃗ -AB⃗⃗⃗⃗⃗ -AC ⃗⃗⃗⃗⃗ =0→,则△ABM 与△ABC 的面积之比为( ) A .1∶2B .1∶3C .1∶4D .2∶5答案:B分析:由平面向量的加法结合已知可得M 为AD 的三等分点,然后由等高的三角形面积之比等于底边之比可得. 如图,D 为BC 边的中点,则AD ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ) 因为3AM⃗⃗⃗⃗⃗⃗ -AB ⃗⃗⃗⃗⃗ -AC ⃗⃗⃗⃗⃗ =0→ 所以3AM⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ =2AD ⃗⃗⃗⃗⃗ , 所以AM ⃗⃗⃗⃗⃗⃗ =23AD⃗⃗⃗⃗⃗ 所以S △ABM =23S △ABD =13S △ABC .故选:B8、如图,等腰梯形ABCD 中,AB =BC =CD =3AD ,点E 为线段CD 上靠近D 的三等分点,点F 为线段BC 的中点,则FE ⃗⃗⃗⃗⃗ =( )A .−1318AB ⃗⃗⃗⃗⃗ +518AC ⃗⃗⃗⃗⃗ B .−1318AB ⃗⃗⃗⃗⃗ +118AC ⃗⃗⃗⃗⃗ C .−1118AB ⃗⃗⃗⃗⃗ +49AC ⃗⃗⃗⃗⃗ D .−1118AB ⃗⃗⃗⃗⃗ +119AC⃗⃗⃗⃗⃗ 答案:B 分析:以AB⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 为基底,利用平面向量线性运算的相关运算化简即可. FE⃗⃗⃗⃗⃗ =FC ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗⃗ =12BC ⃗⃗⃗⃗⃗ +23CD ⃗⃗⃗⃗⃗ =12(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )+23(BA ⃗⃗⃗⃗⃗ +23CB ⃗⃗⃗⃗⃗ ) =12AC ⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗ −29AB ⃗⃗⃗⃗⃗ −49AC ⃗⃗⃗⃗⃗ =−1318AB ⃗⃗⃗⃗⃗ +118AC⃗⃗⃗⃗⃗ 故选:B多选题9、在△ABC 中,若(a 2+c 2−b 2)tanB =√3ac ,则角B 的值可以为( )A .π6B .π3C .2π3D .5π6答案:BC分析:利用余弦定理边化角可整理得到sinB ,结合B ∈(0,π)可得结果.∵(a 2+c 2−b 2)tanB =√3ac ,∴a 2+c 2−b 22ac ⋅tanB =cosB ⋅sinB cosB =sinB =√32, 又B ∈(0,π),∴B =π3或2π3.故选:BC.10、下列说法中正确的是( )A .平面向量的一个基底{e 1⃗⃗⃗ ,e 2⃗⃗⃗ }中,e 1⃗⃗⃗ ,e 2⃗⃗⃗ 一定都是非零向量.B .在平面向量基本定理中,若a =0⃗ ,则λ1=λ2=0.C .若单位向量e 1⃗⃗⃗ 、e 2⃗⃗⃗ 的夹角为2π3,则e 1⃗⃗⃗ 在e 2⃗⃗⃗ 方向上的投影向量是−12e 2⃗⃗⃗ .D .表示同一平面内所有向量的基底是唯一的.答案:ABC分析:由平面向量基本定理,依次判定即可选项A :作为基底的两个向量一定不共线,零向量与任意向量共线,因此e 1⃗⃗⃗ ,e 2⃗⃗⃗ 一定都是非零向量,故A 正确; 选项B :a =0⃗ =0⋅e 1⃗⃗⃗ +0⋅e 2⃗⃗⃗ ,由在同一基底下向量分解的唯一性,有λ1=λ2=0,故B 正确;选项C :e 1⃗⃗⃗ 在e 2⃗⃗⃗ 方向上的投影向量为:e 1⃗⃗⃗⃗ ⋅e 2⃗⃗⃗⃗ |e 2⃗⃗⃗⃗ |e 2⃗⃗⃗ =−12e 2⃗⃗⃗ ,故C 正确; 选项D :平面内任何两个不共线的向量都可作为基底,因此基底不是唯一的,故D 错误故选:ABC11、如图,B 是AC 的中点,BE⃗⃗⃗⃗⃗ =2OB ⃗⃗⃗⃗⃗ ,P 是平行四边形BCDE 内(含边界)的一点,且OP ⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOB⃗⃗⃗⃗⃗ (x,y ∈R ),则下列结论正确的为( )A .当x =0时,y ∈[2,3]B .当P 是线段CE 的中点时,x =−12,y =52C .若x +y 为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段D .x −y 的最大值为−1答案:BCD解析:利用向量共线的充要条件判断出A 错,C 对;利用向量的运算法则求出OP⃗⃗⃗⃗⃗ ,求出x ,y 判断出B 对,过P 作PM//AO ,交OE 于M ,作PN//OE ,交AO 的延长线于N ,则OP⃗⃗⃗⃗⃗ =ON ⃗⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ ,然后可判断出D 正确. 当x =0时,OP⃗⃗⃗⃗⃗ =yOB ⃗⃗⃗⃗⃗ ,则P 在线段BE 上,故1≤y ≤3,故A 错 当P 是线段CE 的中点时,OP ⃗⃗⃗⃗⃗ =OE ⃗⃗⃗⃗⃗ +EP ⃗⃗⃗⃗⃗ =3OB ⃗⃗⃗⃗⃗ +12(EB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ ) =3OB ⃗⃗⃗⃗⃗ +12(−2OB ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ )=−12OA ⃗⃗⃗⃗⃗ +52OB ⃗⃗⃗⃗⃗ ,故B 对 x +y 为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故C 对如图,过P 作PM//AO ,交OE 于M ,作PN//OE ,交AO 的延长线于N ,则:OP⃗⃗⃗⃗⃗ =ON ⃗⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ ;又OP⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOB ⃗⃗⃗⃗⃗ ;∴x ⩽0,y ⩾1; 由图形看出,当P 与B 重合时:OP ⃗⃗⃗⃗⃗ =0⋅OA ⃗⃗⃗⃗⃗ +1⋅OB⃗⃗⃗⃗⃗ ; 此时x 取最大值0,y 取最小值1;所以x −y 取最大值−1,故D 正确故选:BCD小提示:名师点评若OC⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOB ⃗⃗⃗⃗⃗ ,则A,B,C 三点共线⇔x +y =1. 12、下列说法正确的有( )A .若|a →+b →|=|b →|且b →≠0,则a →=0→B .设a →,b →是非零向量,若|a →+b →|=|a →−b →|,则a →⊥b →C .若a →b →=a →c →且a →≠0,则b →=c →D .设a →,b →是非零向量,若|a →+b →|=|a →|−|b →|,则存在实数λ,使得a →=λb → 答案:BD分析:A. 举反例说明该命题错误;B.若|a →+b →|=|a →−b →|,所以a →⋅b →=0,则a →⊥b →,所以该命题正确;C. 若a →b →=a →c →=0且a →≠0,则a →⊥b →,a →⊥c →,所以b →,c →不一定相等,所以该命题错误;D. 分析得a →与b →反向,因此存在实数λ,使得b →=λa →,所以该命题正确.A. 若a →=−2b →≠0→也满足已知,但是a →≠0→,所以该命题错误;B.若|a →+b →|=|a →−b →|,所以a →2+b →2+2a →⋅b →=a →2+b →2−2a →⋅b →,∴a →⋅b →=0,则a →⊥b →,所以该命题正确;C. 若a →b →=a →c →=0且a →≠0,则a →⊥b →,a →⊥c →,所以b →,c →不一定相等,所以该命题错误;D. 若|a →+b →|=|a →|−|b →|,则|a →|2+|b →|2+2a →b →=|a →|2+|b →|2−2|a →||b →|,得a →b →=−|a →||b →|,则a →,b →的夹角的余弦cosθ=−1,则a →与b →反向,因此存在实数λ,使得b →=λa →,所以该命题正确.故选:BD13、已知a ,b ,c 分别为△ABC 的三个内角A ,B ,C 的对边,∠C =45°,c =√2,a =x ,若满足条件的三角形有两个,则x 的值可能为( )A .1B .1.5C .1.8D .2答案:BC分析:利用正弦定理求得sinA =12x ,再根据三角形有两解的条件可得A ∈(45∘,135∘),且A ≠90∘,由此求出x 的范围即可得解.在△ABC 中,由正弦定理得,sinA =asinC c =∘√2=12x , 因满足条件的三角形有两个,则必有A ∈(45∘,135∘),且A ≠90∘,即√22<sinA <1, 于是得√22<12x <1,解得√2<x <2,显然x 可取1.5,1.8. 故选:BC填空题14、给出下列命题:①零向量没有确定的方向;②在正方体ABCD -A 1B 1C 1D 1中,AC ⃗⃗⃗⃗⃗ =A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ;③若向量a 与向量b ⃗ 的模相等,则a ,b⃗ 的方向相同或相反; ④在四边形ABCD 中,必有AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ . 其中正确命题的序号是________.答案:①②分析:根据零向量、相等向量、向量和及向量模等概念逐一判断.①正确;②正确,因为AC ⃗⃗⃗⃗⃗ 与A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ 的大小和方向均相同;③|a|=|b ⃗ |,不能确定其方向,所以a 与b ⃗ 的方向不能确定;④只有当四边形ABCD 是平行四边形时,才有AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ .综上可知,正确命题为①②. 故答案为:①②15、如图所示,在矩形ABCD 中,AB =√2,BC =2,点E 在边CD 上,且DE ⃗⃗⃗⃗⃗ =2EC ⃗⃗⃗⃗⃗ ,则AE ⃗⃗⃗⃗⃗ BE⃗⃗⃗⃗⃗ 的值是________. 答案:329 sin sin a c A C分析:由于向量的数量积可以进行坐标运算,所以将几何问题转化为代数问题,建立以A 为原点, AB 所在直线为x 轴的平面直角坐标系,分别写出A 、B 、E 的坐标,再通过向量的坐标运算即可求出向量的数量积.解析 以A 为原点,AB 所在直线为x 轴、AD 所在直线为y 轴建立如图所示平面直角坐标系.∵AB =√2,BC =2,∴A (0,0),B (√2,0),C (√2,2),D (0,2),∵点E 在边CD 上,且DE⃗⃗⃗⃗⃗ =2EC ⃗⃗⃗⃗⃗ , ∴E (2√23,2).∴AE ⃗⃗⃗⃗⃗ =(2√23,2),BE ⃗⃗⃗⃗⃗ =(−√23,2), ∴AE ⃗⃗⃗⃗⃗ BE ⃗⃗⃗⃗⃗ =−49+4=329. 16、设a →,b →为单位向量,且|a →+b →|=1,则|a →−b →|=______________.答案:√3分析:整理已知可得:|a +b ⃗ |=√(a +b ⃗ )2,再利用a ,b ⃗ 为单位向量即可求得2a ⋅b ⃗ =−1,对|a −b⃗ |变形可得:|a −b ⃗ |=√|a |2−2a ⋅b⃗ +|b ⃗ |2,问题得解. 因为a ,b ⃗ 为单位向量,所以|a |=|b⃗ |=1 所以|a +b ⃗ |=√(a +b ⃗ )2=√|a |2+2a ⋅b ⃗ +|b ⃗ |2=√2+2a ⋅b⃗ =1 解得:2a ⋅b⃗ =−1 所以|a −b ⃗ |=√(a −b ⃗ )2=√|a |2−2a ⋅b⃗ +|b ⃗ |2=√3 所以答案是:√3小提示:本题主要考查了向量模的计算公式及转化能力,属于中档题.解答题17、康平滕龙阁,位于康平县中央公园中心,建在有“敖包朝霞”之称的敖包山旧址上,是老百姓心中的祥瑞之地.如图,小明同学为测量滕龙阁的高度,在滕龙阁的正东方向找到一座建筑物AB,高为8米,在地面上的点M(B,M,D三点共线)测得楼顶A,滕龙阁顶部C的仰角分别为15°和60°,在楼顶A处测得阁顶部C的仰角为30°,试替小明求滕龙阁的高度?(精确到0.01米)答案:37.86米分析:在△ACM中,利用正弦定理求得CM,然后在Rt△CDM中,由CD=CMsin60°求解.解:由题意得,在Rt△ABM中,AM=ABsin15°,在△ACM中,∠CAM=30°+15°=45°,∠AMC=180°−15°−60°=105°,所以∠ACM=30°,由正弦定理AMsin∠ACM =CMsin∠CAM,得CM=sin∠CAMsin∠ACM ⋅AM=√2ABsin15°,又sin15°=sin(45°−30°)=√22×√32−√22×12=√6−√24,在Rt△CDM中,CD=CMsin60°=√6AB2sin15°=√62×√6−√24=24+8√3≈37.86.答:滕龙阁的高度约为37.86米.18、如图,在直角梯形OABC中,OA//CB,OA⊥OC,OA=2BC=2OC,M为AB上靠近B的三等分点,OM交AC于D,P为线段BC上的一个动点.(1)用OA ⃗⃗⃗⃗⃗ 和OC⃗⃗⃗⃗⃗ 表示OM ⃗⃗⃗⃗⃗⃗ ; (2)求OD DM ;(3)设OB⃗⃗⃗⃗⃗ =λCA ⃗⃗⃗⃗⃗ +μOP ⃗⃗⃗⃗⃗ ,求λ⋅μ的取值范围. 答案:(1)OM ⃗⃗⃗⃗⃗⃗ =23OA ⃗⃗⃗⃗⃗ +23OC ⃗⃗⃗⃗⃗ ;(2)3;(3)[0,34]. 分析:(1)根据给定条件及几何图形,利用平面向量的线性运算求解而得;(2)选定一组基向量,OD⃗⃗⃗⃗⃗⃗ 将由这一组基向量的唯一表示出而得解; (3)由动点P 设出CP ⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ (0≤x ≤12),结合平面向量基本定理,λ⋅μ建立为x 的函数求解. (1)依题意CB ⃗⃗⃗⃗⃗ =12OA ⃗⃗⃗⃗⃗ ,AM ⃗⃗⃗⃗⃗⃗ =23AB ⃗⃗⃗⃗⃗ , ∴AM ⃗⃗⃗⃗⃗⃗ =23(OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ )=23(OC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ )−23OA ⃗⃗⃗⃗⃗ =23OC ⃗⃗⃗⃗⃗ +13OA ⃗⃗⃗⃗⃗ −23OA ⃗⃗⃗⃗⃗ =23OC ⃗⃗⃗⃗⃗ −13OA ⃗⃗⃗⃗⃗ , ∴OM ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ =OA ⃗⃗⃗⃗⃗ +(23OC ⃗⃗⃗⃗⃗ −13OA ⃗⃗⃗⃗⃗ )=23OA ⃗⃗⃗⃗⃗ +23OC ⃗⃗⃗⃗⃗ ; (2)因OM 交AC 于D ,由(1)知OD ⃗⃗⃗⃗⃗⃗ =tOM ⃗⃗⃗⃗⃗⃗ =t(23OA ⃗⃗⃗⃗⃗ +23OC ⃗⃗⃗⃗⃗ )=OD ⃗⃗⃗⃗⃗⃗ =2t 3OA ⃗⃗⃗⃗⃗ +2t 3OC ⃗⃗⃗⃗⃗ , 由共起点的三向量终点共线的充要条件知,2t 3+2t 3=1,则t =34,OD ⃗⃗⃗⃗⃗⃗ =3DM ⃗⃗⃗⃗⃗⃗ ,|OD ⃗⃗⃗⃗⃗⃗||DM ⃗⃗⃗⃗⃗⃗⃗ |=3; (3)由已知OB ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ +12OA ⃗⃗⃗⃗⃗ , 因P 是线段BC 上动点,则令CP ⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ (0≤x ≤12), OB⃗⃗⃗⃗⃗ =λCA ⃗⃗⃗⃗⃗ +μOP ⃗⃗⃗⃗⃗ =λ(OA ⃗⃗⃗⃗⃗ −OC ⃗⃗⃗⃗⃗ )+μ(OC ⃗⃗⃗⃗⃗ +CP ⃗⃗⃗⃗⃗ )=(λ+μx)OA ⃗⃗⃗⃗⃗ +(μ−λ)OC ⃗⃗⃗⃗⃗ , 又OC ⃗⃗⃗⃗⃗ ,OA ⃗⃗⃗⃗⃗ 不共线,则有{μ−λ=1λ+μx =12⇒{λ=μ−1μ=32+2x, 0≤x ≤12⇒1≤x +1≤32⇒1≤μ≤32, λ⋅μ=μ(μ−1)=(μ−12)2−14在μ∈[1,32]上递增,所以μ=1,(λ⋅μ)min =0,μ=32,(λ⋅μ)max =34,故λ⋅μ的取值范围是[0,34].小提示:由不共线的两个向量为一组基底,用该基底把相关条件和结论表示成向量的形式,再通过向量的运算来解决.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档