大数定律及中心极限定理 应用题

合集下载

大数定律及中心极限定理应用题

大数定律及中心极限定理应用题

大数定律与中心极限定理 应用题1. 设各零件质量都是随机变量,且独立同分布,其数学期望为0.5kg ,标准差为 0.1kg, 问( 1)5000 只零件的总质量超过 2510kg 的概率是多少? (2)如果用一辆载重汽车运输这 5000 只零件,至少载重量是多少才能使不超重的概率大于 0.975?解 设第 i 只零件重为 X i , i1,2,...,500 ,则 EX i 0.5 , DX i 0.125 0 0设XX i ,则 X 是这些零件的总重量i1EX0.5 50002500 , DX0.125000 50a由中心极限定理X 2500~ N (0, 1)50(1) P(X2510) = P( X 2500 2510 2500 )50501 0 (1 0.9213=0.0787 2 ) =(2) 设 汽车载重量为 a 吨P( Xa) = P(X2500 a 2500 )0 (a 2500) 0.95505050查表得a2500 1.6450计算得 a 2511.59因此汽车载重量不能低于 2512 公斤 2. 有一批建筑房屋用的木柱,其中 80%的长度不小于 3m ,先从这批木柱中随机的取 100 根,求其中至少有 30 根短于 3m 的概率? 解设 X 是长度小于 3m 的木柱根数,则 X ~ b(100, 0.2)a由中心极限定理X ~ N (20, 16)P( X30) =P(X20 30 20)161610 (2.5) =1 0.9938 =0.00623. 一个食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一种蛋糕的价格是随机变量,它取 1 元, 1.2 元, 1.5 元的概率分别为 0.3, 0.2,0.5.若售出 300 只蛋糕,(1)求收入至少 400 元的概率 (2)售价为 1.2 元蛋糕售出多于 60 只的概率。

解 设第 i 只蛋糕的价格为 X i , i 1,2,...,300 ,则 X i 有分布律:X i1 1.2 1.5P0.30.20.5由此得E( X i ) 1.29E( X i 2 ) 1.713故 D( X i )EX i 2( EX i )20.0489300( 1) 设 X 是这一天的总收入,则 XX ii 1300EXEX i300 1.29i 1300DXDX i300 0.0489i 1a由中心极限定理X ~ N(300 1.29, 300 0.0489)P( X400) = P(X300 1.29 400 300 1.29)300 0.0489300 0.04891 0 (3.39) =1 0.9997 =0.0003( 2) 以 Y 记 300 只蛋糕中售价为 1.2 元的蛋糕只数,于是 Y ~ b(300,0.2)Y 300 0.2 a~ N ( 0,1)300 0.2 0.8P(Y 60) = PY 300 0.2 60 6010 (0) 0.53000.2 0.8484.设某种商品第 n 天的价格为 Yn ,令 Xn=Yn+1-Yn ,Xn 独立同分布, 且 Xn 期望是 0,方差是 2,若该商品第一天价格是 100,则第 19 天价格在 96 到 104 之间的概率是多少?解:X 1 Y 2 Y 1, X 2 Y 3 Y 2,X 3 Y 4 Y 3,X n Y n 1 Yn18所以X n Y19Y1Y19100n1181818E X n0 , D X n DX n36n 1n 1n 1由中心极限定理,P 96Y19104P Y19100418181818X n E X n4= P X n E X n4P n1n 166n 1n 1221=0.497235.( 10)一枚均匀硬币至少要抛多少次,才能使正面出现的频率与概率之间的差的绝对值不小于 0.05 的概率不超过 0.01?请分别用(1)切比雪夫不等式,与(2)中心极限定理给出估计。

《概率论与数理统计》典型例题 第四章 大数定律与中心极限定理

《概率论与数理统计》典型例题 第四章 大数定律与中心极限定理

= 0.15,
µn 为
5000
户中收视
该节目的户数,所以可应用棣莫弗-拉普拉斯中心极限定理,即二项分布以正态 分布为极限定理。
解 : 设 µn 为 5000 户 中 收 视 该 节 目 的 户 数 , 则 µn ~ B(n, p) , 其 中
n = 5000, p = 0.15 。 由棣莫弗-拉普拉斯中心极限定理, µn − np 近似服从 np(1− p)
显然需用到前一不等式,则只需算出 E(X + Y ) 与 D(X + Y ) 即可。
解:由于 E(X + Y ) = 0 ,
D( X + Y ) = DX + DY + 2Cov( X , Y ) = DX + DY + 2ρ XY DX DY = 1+ 4 + 2×1× 2× (−0.5) = 3 ,
( D )服从同一离散型分布。
分析:林德伯格-列维中心极限定理要求的条件是 X 1, X 2,", X n,"相互独
立、同分布、方差存在,这时,当 n 充分大时, Sn 才近似服从正态分布。 根据 条件分析选项即可。
解:显然选项 A 与 B 不能保证 X 1, X 2 , ", X n 同分布,可排除。 选项 C 给出了指数分布,此时独立同分布显然满足,而且由于是指数分布, 方差肯定存在,故满足定理条件。 选项 D 只给出其离散型的描述,此时独立同分布显然满足。 但却不能保证 方差一定存在,因此也应排除。 故选 C 。 注:本例重在考察中心极限定理的条件。
P{ X
− EX
≥ ε}≤
E[g( X − EX )] 。 g(ε )
分析:证明的结论形式与切比雪夫不等式非常相似,利用切比雪夫不等式的 证明思想试试看。

大数定律和中心极限定理习题和例题教案

大数定律和中心极限定理习题和例题教案
)
i
上的均匀分布,且对每个顾客是相互独立的,试问当n 时,n次服务时
间的算术平均值
1 n
n i 1
X i以概率1收敛于何值?
解:依题意,显然有,{X n}是一个独立同分布的随机变量序列,只要存在
有限的公共数学期望,则{X n}的算术平均值依概率收敛于其公共数学期
望,由于Xi服从[5,53]上的均匀分布,所以E[ Xi ] (53 5) / 2 29,i 1, 2, , n
由此得:
P{Y
85}
85 0.5 90
1
9
0.966.
二、给定 n 和概率,求 x
补充例4 有200台独立工作(工作的概率为0.7)的机床,
每台机床工作时需15kw电力. 问共需多少电力, 才可 有95%的可能性保证供电充足?
解:用 Xi=1表示第i台机床正常工作, 反之记为Xi=0.
解:用 Xn表示n 个调查对象中收看此节目的人数,则
Xn 服从 b(n, p) 分布,k 为Xn的实际取值。根据题意
P Xn / n p 0.05 2 0.05 n / p(1 p) 1 0.90
从中解得 0.05 n / p(1 p) 1.645
又由 p(1 p) 0.25 可解得 n 270.6 n = 271
又记Y=X1+X2+…+X200,则 E[Y]=140,Var[Y]=42.
设供电量为x, 供电充足即为15Y≤x,则从
P{15Y x}
中解得 x 2252.
x
/
15
0.5 42
140
0.95
三、给定 x 和概率,求 n
补充例5 用调查对象中的收看比例 k/n 作为某电视节

概率与数理统计第5章大数定律及中心极限定理习题及答案

概率与数理统计第5章大数定律及中心极限定理习题及答案

概率与数理统计第5章大数定律及中心极限定理习题及答案第一篇:概率与数理统计第5章大数定律及中心极限定理习题及答案第 5 章大数定律与中心极限定理一、填空题:1.设随机变量{ EMBED Equation.3 |E(ξ)=μ,方差,则由切比雪夫不等式有.2.设是n个相互独立同分布的随机变量,对于,写出所满足的切彼雪夫不等式,并估计.3.设随机变量相互独立且同分布, 而且有, , 令, 则对任意给定的, 由切比雪夫不等式直接可得.解:切比雪夫不等式指出:如果随机变量满足:与都存在, 则对任意给定的, 有 , 或者由于随机变量相互独立且同分布, 而且有所以4.设随机变量X满足:, 则由切比雪夫不等式, 有.解:切比雪夫不等式为:设随机变量X满足, 则对任意的, 有由此得5、设随机变量,则.6、设为相互独立的随机变量序列,且服从参数为的泊松分布,则.7、设表示n次独立重复试验中事件A出现的次数,是事件A在每次试验中出现的概率,则.8.设随机变量, 服从二项分布, 其中, 那么, 对于任一实数x, 有0.9.设为随机变量序列,为常数, 则依概率收敛于是指1 ,或 0。

10.设供电站电网有100盏电灯, 夜晚每盏灯开灯的概率皆为0.8.假设每盏灯开关是相互独立的, 若随机变量X为100盏灯中开着的灯数, 则由切比雪夫不等式估计, X落在75至85之间的概率不小于.解:, 于是二.计算题:1、在每次试验中,事件A发生的概率为0.5,利用切比雪夫不等式估计,在1000次独立试验中,事件A发生的次数在450至550次之间的概率.解:设表示1000次独立试验中事件A发生的次数,则2、一通信系统拥有50台相互独立起作用的交换机.在系统运行期间, 每台交换机能清晰接受信号的概率为0.90.系统正常工作时, 要求能清晰接受信号的交换机至少45台.求该通信系统能正常工作的概率.解:设X表示系统运行期间能清晰接受信号的交换机台数, 则由此 P(通信系统能正常工作)3、某微机系统有120个终端, 每个终端有5%的时间在使用, 若各终端使用与否是相互独立的, 试求有不少于10个终端在使用的概率.解:某时刻所使用的终端数7 由棣莫弗-拉普拉斯定理知4、某校共有4900个学生, 已知每天晚上每个学生到阅览室去学习的概率为0.1, 问阅览室要准备多少个座位, 才能以99%的概率保证每个去阅览室的学生都有座位.解:设去阅览室学习的人数为, 要准备k个座位.查分布表可得要准备539个座位,才能以99%的概率保证每个去阅览室学习的学生都有座位.5.随机地掷六颗骰子,试利用切比雪夫不等式估计:六颗骰子出现的点数总和不小于9且不超过33点的概率。

概率论与数理统计第五章大数定律与中心极限定理习题解答

概率论与数理统计第五章大数定律与中心极限定理习题解答

1.[一] 据以往经验某种电器元件的寿命服从均值为100小时的指数分布,现在随机的抽取16只,设它们的寿命是相互独立的,求这16只元件寿命总和大于1920小时的概率。

解:设第i 只寿命为X i ,(1≤i ≤16),故E (X i )=100,D (X i )=1002(l=1,2,…,16).依本章定理1知÷÷÷÷÷øöçççççèæ£-=÷÷÷÷÷øöçççççèæ´-£´-=£ååå===8.040016001001616001920100161600)1920(1616161i i i i i i X P X P X P.7881.0)8.0(=F =从而.2119.07881.01)1920(1)1920(161161=-=£-=>åå==i ii iXP XP3.[三] 计算机在进行加法时,对每个加数取整(取为最接近它的整数),设所有的取整误差是相互独立的,且它们都在(-0.5,0.5)上服从均匀分布,(1)若将1500个数相加,问误差总和的绝对值超过15的概率是多少? (2)几个数相加在一起使得误差总和的绝对值小于10的概率不小于0.90 解:(1)设取整误差为X i (L ,2,1=i ,1500),它们都在(-0.5, 0.5)上服从均匀分布。

于是: 025.05.0)(=+-==p X E i 12112)]5.0(5.0[)(2=--=i X D18.111251211500)(,0)(==´==i i X nD X nE þýüîí죣--=ïþïýüïîïíì£-=ïþïýüïîïíì>ååå===1515115115150011500115000i i i i i i X P X P X P ïïþïïýüïïîïïí죣--=å=18.111518.1118.1115115001i i X P1802.0]9099.01[2)]34.1(1[2)]34.1()34.1([1=-´=F -=-F -F -=8.某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的治愈率为0.8,医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言。

大数定律和中心极限定理例题与解析

大数定律和中心极限定理例题与解析
身高测量
在大量随机选取的人群中测量身高, 这些身高的平均值将接近正 态分布, 这也是中心极限定理的一个应用实例。
中心极限定理的应用
概率论与统计学
中心极限定理是概率论和统计学中的基本原理 之一, 用于研究随机变量的分布和统计推断。
金融领域
中心极限定理在金融领域中也有广泛应用, 例如在资 产定价、风险管理和投资组合优化等方面。
例题一解析
要点一
题目
一个班级有30名学生, 每个学生随机选择一个1-100之间的整 数。求这30个随机数的平均数大于50的概率。
要点二
解析
首先, 根据大数定律, 当试验次数足够多时, 随机数的算术平 均值趋近于期望值。在本题中, 每个随机数的期望值是50, 因 此30个随机数的平均数期望值是50。其次, 根据中心极限定 理, 当试验次数足够多时, 随机变量的算术平均值的分布趋近 于正态分布。因此, 这30个随机数的平均数大于50的概率可 以通过正态分布的概率密度函数计算得出。
大数定律的实例
抛硬币实验
如果我们抛硬币1000次,虽然单次抛 硬币的结果是随机的,但当我们计算 正面朝上的频率时,会发现这个频Βιβλιοθήκη 会逐渐趋近于50%。生日悖论
在一个有30人的房间里,存在一定概 率两个人生日相同,这个概率随着人 数的增加而趋近于100%。
大数定律的应用
概率论与统计学
大数定律是概率论和统计学中的 基本原理, 用于估计概率和预测未 来的随机事件。
例题三解析
题目
一个彩票公司发行了100万张彩票, 每张彩票都有一个独立 的随机数生成器生成的一个随机数。求至少有1张彩票的随 机数小于1的概率。
解析
首先, 根据大数定律, 当试验次数足够多时, 随机数的频率趋 近于概率。在本题中, 每张彩票的随机数小于1的概率是 1/100(即每张彩票生成的随机数小于1的概率是固定的)。 其次, 根据中心极限定理, 当试验次数足够多时, 随机变量的 独立同分布的随机变量和的分布趋近于正态分布。因此, 这 100万张彩票中至少有1张彩票的随机数小于1的概率可以 通过正态分布的概率密度函数计算得出。

5.第五章:大数定律与中心极限定理

5.第五章:大数定律与中心极限定理

5.第五章:⼤数定律与中⼼极限定理第五章练习题1.⼀复杂的系统由100个相互独⽴起作⽤的部件所组成,在整个运⾏期间每个部件损坏的概率为0.10,为了使整个系统起作⽤,⾄少必须有85个部件正常⼯作,求整个系统起作⽤的概率.2.⼀复杂的系统由n个相互独⽴起作⽤的部件所组成,每个部件的可靠性为0.90,且必须⾄少有80%的部件⼯作才能使整个系统正常⼯作,问n⾄少为多⼤时才能使系统的可靠性不低于0.95?3.对敌⼈的防御地段⽤炮⽕进⾏100次射击,每次射击的炮弹命中数的数学期望为2,均⽅差为1.5,求当射击100次时有180颗到220颗炮弹命中⽬标的概率的近似值.(已知(1.33)=0.9082, (1.5)=0.9332,(2)=0.9772).4.某种电⼦元件使⽤寿命服从λ=0.1(单位(⼩时)的指数分布.⼀个元件损坏后,第⼆个接着使⽤.求100个这类元件总计使⽤时间超过900⼩时的概率.5.设某车间有200台同型机床,⼯作时每台车床60%的时间在开动, 每台开动时耗电1千⽡.问应供给该车间多少千⽡电⼒才能有0.999的把握保证正常⽣产?6.⽤切⽐雪夫不等式确定,当掷⼀均匀铜币时,需投多少次,才能保证正⾯出现的频率在0.4与0.6之间的概率不⼩于90%?并⽤正态逼近计算同⼀问题。

7.某公司有200名员⼯参加⼀种资格证书考试,按往年经验,该考试通过率为0.8.试⽤中⼼极限定理计算这200名员⼯⾄少有150⼈通过考试的概率.8.欲测量两地之间的距离,限于测量⼯具,将其分成1200段进⾏测量.设每段测量误差(单位:千⽶)相互独⽴,且均服从区间(-0.5,0.5)上的均匀分布,试求总距离测量误差的绝对值不超过20千⽶的概率.(⽤中⼼极限定理)9.某宿舍有学⽣900⼈,每⼈在傍晚⼤约有10%的时间要占⽤⼀个⽔龙头,设每⼈需⽤⽔龙头与否是相互独⽴的,问该宿舍⾄少需要安装多少⽔龙头,才能以95%以上的概率保证⽤⽔需要.(已知(1.645) = 0.95, (1.28) = 0.90,(1.96)=0.975).10.已知⼀本书有500页,每⼀页的印刷错误的个数服从泊松分布P(0.2).各页有没有错误是相互独⽴的,求这本书的错误个数多于88个的概率.11.某保险公司多年的统计资料表明,在索赔户中被盗索赔户占20%,以X表⽰在随意抽查的100个索赔户中因被盗向保险公司索赔的户数.求被盗索赔户不⼩于14户且不多于30户的概率近似值.(利⽤棣莫弗--拉普拉斯定理近似计算.)12.某品牌家电三年内发⽣故障的概率为0.2,且各家电质量相互独⽴.某代理商发售了⼀批此品牌家电,三年到期时进⾏跟踪调查:(1)抽查了四个家电⽤户,求⾄多只有⼀台家电发⽣故障的概率;(2)抽查了100个家电⽤户,求发⽣故障的家电数不⼩于25的概率((2)利⽤棣莫弗--拉普拉斯定理近似计算.)证明题1. 利⽤中⼼极限定理证明:2.设随机变量X~f(x)=,其中n为正整数.证明:P{0<x<2(n+1)}≥如有侵权请联系告知删除,感谢你们的配合!。

4大数定理及中心极限定理典型题解

4大数定理及中心极限定理典型题解

第四章 大数定理与中心极限定理典型题解1.计算器在进行时,将每个加数舍入,最靠近它的整数,设所有舍入误差相互独立且在)5.0,5.0(-上服从均匀分布,将1500个数相加,问误差总和的绝对值超过15的概率是多少?解 设第k 个加数的舍入误差为),1500,,2,1( =k X k 已k X 在)5.0,5.0(-上服从均匀分布,故知121)(,0)(==k k X D X E .记∑==15001k k X X ,由中心极限定理,当n 充分 时有近似公式)(}121150001500{x x X P Φ≈≤⨯-,于是{15}1{15}1{1515}11[1[21]2(1.342)2[10.9099]0.1802.P x P x P X P >=-≤=--≤≤=-≤≤≈-Φ-Φ=-Φ=Φ=-= 即误差总和的绝对值超过15的概率近似地为1802.0.2.有一批建筑房屋用的木柱,其中%80的长度不小于m 3,现在从这批木柱中地取100根,求其中至少有30根短于m 3的概率. 解 以X 记被抽取的100根木柱长度短于m 3的根数,则)2.0,100(~b X .于是由中心极限定理得{30}{30}()1(2.5)10.99380.0062.P X P X P ≥=≤<∞=≤<=Φ∞-Φ=-Φ=-= 3.将一枚硬币投掷49次,(I )求至多出现28次正面的概率;(II )求出现20-25次正面的概率.解 以X 表示49次投掷中出现正面的次数,则有)21,49(~b X . (I )由中心极限定理得8413.0)1()212149214928(}28{=Φ=⨯⨯⨯-Φ≈≤X P ; (II )由中心极限定理得112549204919{2025}()()770.55570.09850.4572.P X -⨯-⨯≤≤≈Φ-Φ=Φ-Φ-=-= 4.某厂有同号机器100台,且独立工作,在一段时间内每台正常工作的概率为8.0.求正常工作的机器超过85台的概率.解 设ξ为100台中正常工作的机器数,则)8.0,100(~B ξ,且16 ,80====ξξD npq E np .由中心极限定理可得所求概率为080808580{85}1{085}1{}4441[(1.25)(20)]0.1056.P P P ξξξ--->=-≤≤=-≤≤≈-Φ-Φ-= 5.一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50kg ,标准差5kg .若用最大载重量5t 的汽车承运最多可以装多少箱才能保障不超载的概率大于0.977.解 设n 为每辆车所装的箱数,),,2,1(n i i =ε是装运的第i 箱的重量,且25,50==i i D E εε.n 箱的总重量 n εεεε+++= 21有n D n E 25,50==εε,由中心极限定理ε近似服从正态分布)25,50(n n N .现求使下面不等式成立的:n977.0)101000(}5505000550{}5000{>-Φ≈-≤-=≤nn n nn nP P εε 查正态分布表得 2101000>-n n,从而0199.98<n ,即最大可以装98箱.6.设一大批产品中一级品率为%10,现从中任取500件,这500件中一件级品的比例与%10之差的绝对值小于%2的概率.解 设ξ为所取500件中的一级品数,则)1.0,500(~B ξ且45 ,50==ξξD E由中心极限定理得{0.10.02}{5010}5002(1.49)10.8638.P P P ξξ-<=-<=<≈Φ-=7.设一袋味精的重量是随机变量,平均值100g,标准差2g .求100袋味精的重量超过10.05kg 的概率.解 设i i i 第)100,2,1( =ξ袋味精的重量,100袋的总重量10021ξξξξ+++= ,而4,100==i i D E ξξ,所以所求概率为{10050}1{010050}11[(2.5)(500)]10.993790.00621.P P P ξξ>=-≤≤=-≤≤≈-Φ-Φ-=-= 8.一本200页的书,每页上的错误数服从参数为0.1的泊松分布,求该书的错误数大于15个的概率.解 设ξ为该书的总错误数,则20=ξE ,20=ξD ,于是所求概率为{15}1{015}11[( 1.12)( 4.47)]0.8686.P P P ξξ>=-≤≤=-≤≤=-Φ--Φ-=9.某射手打靶,得10分,9分,8分,7分,6分的概率分别为0.5,0.3,0.1,0.05,0.05.现射击100次,求总分多于880分的概率.解 设ξ为100次射击的总分数,依题意,915,122.75E D ξξ==.根据中心极限定理得{880}1{0915}11( 3.16)0.9992.P P P ξξ>=-≤≤=-≤≤≈-Φ-=10.一生产过程的次品率为12%,随机地自这一生产过程生产的产品中取出120只,求次品不多余15只的概率.解 以120~(120,0.12)X X B 记只产品中的次品数,则.所需求的概率为{15}(0.17)0.5675.P X P ≤=≤≈Φ=11.某种难度很大的心脏手术成功率为0.9,对100个病人进行这种手术,以X 记手术成功的人数.求{8495}P X ≤≤.解 依题意有{8495}(1.67)(2)0.95250.977210.9297.P X ≤≤≈Φ-Φ=Φ-Φ-=+-=12.在一零件商店中,其结帐柜台替各顾客服务的时间(以分计)是相互独立的随机变量,均值为1.5,方差为1.求对100位顾客的总服务时间不多余2小时的概率.解 以(1,2,,100)i X i = 记对第i 位顾客的服务时间.按题设需求概率为1001001100 1.5{120}120150()(3)0.0013.10ii X P X P =-⨯≤=≤-≈Φ=Φ-=∑13.某种电子元件的寿命服从数学期望为2的指数分布,各元件的寿命相互独立,随机取100只元件,求这100只元件的寿命之和大于180的概率.解 设X 为100只元件的寿命之和,则()200,()400E X D X ==,则所求概率为{180)1{0180}11[(1)(10)]0.8413.P X P X >=-≤≤=-≤≤≈-Φ--Φ-=14.某工厂有200台同类型的机器,每台机的实际工作时间只占全部工作时间的75%,各台机器是否工作是相互独立的,求一时刻有144至160台机器正在工作的概率.解 设随机变量Y 表示任一时刻正在工作的机器的台数,则Y 服从二项分布(200,0.75)B .所以所求概率为{144160}(1.63)(0.98)0.7849.P Y ≤≤≈Φ-Φ=Φ-Φ-=15.在次品率为16的一大批产品中,任意抽取300件产品,利用中心极限定理计算抽取的产品中次品书在40~60之间的概率.解 设X 为300件产品中次品的件数,依题意知1250~(300,),()50,()66X B E X D X ==, 利用中心极限定理得(4060)(1.55)( 1.55)2(1.55)10.8788.P X P <<=<<≈Φ-Φ-=Φ-=。

大数定律及中心极限定理练习题

大数定律及中心极限定理练习题

第五章 大数定律及中心极限定理练习题1. 在每次试验中,事件A 发生的概率为0.5 ,利用切比雪夫不等式估计:在1000次独立试验中,事件A 发生的次数X 在600~400之间的概率.2. 每次射击中,命中目标的炮弹数的均值为2,方差为25.1,求在100次独立射击中有180发到220发炮弹命中目标的概率.3.设有30个同类型的电子器件3021,,,D D D ,若)30,,2,1( =i D i 的使用寿命服从参数为1.0=λ的指数分布,令T 为30个器件各自正常使用的总计时间,求}350{>T P .4.在天平上重复称量一件物品,设各次称量结果相互独立且服从正态分布2(,0.2)N μ, 若以n X 表示n 次称量结果的平均值,问n 至少取多大,使得 {||0.1}0.05n P X μ-≥<.5.由100个相互独立起作用的部件组成的一个系统在运行过程中,每个部件能正常工作的概率都为90% .为了使整个系统能正常运行,至少必须有85%的部件在正常工作,求整个系统能正常运行的概率.6.某单位设置的电话总机,共有200门电话分机,每门电话分机有5%的时间要用外线通话,假设各门分机是否使用外线通话是相互独立的,问总机至少要配置多少条外线,才能以90%的概率保证每门分机要使用外线时,有外线可供使用.7.计算机在进行加法运算时,对每个加数取整(取为最接近于它的整数). 设所有的取整误差相互独立且都服从区间)5.0,5.0(-上的均匀分布.(1) 求在1500个数相加时,误差总和的绝对值超过15的概率.(2) 欲使误差总和的绝对值小于10的概率不小于%90,最多能允许几个数相加?8.设某公路段过往车辆发生交通事故的概率为0.0001, 车辆间发生交通事故与否相互独立, 若在某个时间区间内恰有10万辆车辆通过, 试求在该时间内发生交通事故的次数不多于15次的概率的近似值..9.设某学校有1000名学生, 在某一时间区间内每个学生去某阅览室自修的概率是0.05, 且设每个学生去阅览室自修与否相互独立. 试问该阅览室至少应设多少座位才能以不低于0.95的概率保证每个来阅览室自修的学生均有座位?。

第四章大数定律与中心极限定理典型题

第四章大数定律与中心极限定理典型题

设一个学生无家长、有1名家长、2名家长来参加会议的概率分别为
0.05、0.8、0.15.若学校共有400名学生,各学生参加会议的家长人数
相互独立,且服从同一分布.求
(1)参加会议的家长人数超过450人的概率;
(2)有1名家长来参加会议的学生人数不多于340人的概率.
解:1用Sn表示参加会议的家长人数,X k (k 1, 2,
第四章 大数定律与中心极限定理典型例题
一、本章基本要求
1. 了解切比雪夫大数定律的条件与结论,了解依概率收敛 的概念;
2. 掌握伯努利大数定律、辛钦大数定律成立的条件和结论; 3. 掌握独立同分布的中心极限定理、棣莫弗-拉普拉斯中
心极限定理成立的条件和结论,并会用于近似计算有关 事件的概率。
二. 典型例题
解 设n表示所求的箱数并设X i (i 1, 2, , n)表示第i箱的重量,
则 X1, X 2,
,
X n
n
独立同分布,且
E(
X
i
)

50, D( X i
)

25,
由题意
所求概率为 P{ Xi 5000} 0.997, 由中心极限定理,有
n P{
i 1
i 1
Xi

5000}
的过路人数,i 1,2, 100,则 P X i k p 1 p k 1 , p1/3 k 1, 2,
E(Xi )

1 p
3,
D(
X
i
)

1
p p2
6.
p 1/ 3
p 1/ 3
100
因为X1, X 2 , , X100相互独立, X X k , E(X ) 300, D(X ) 600

概率论与数理统计第四章大数定理与中心极限定理习题(含答案)

概率论与数理统计第四章大数定理与中心极限定理习题(含答案)
(C) (D)
其中 为标准正态分布函数.
3.设 , ,其中 、 为常数,且 ,则 ( ).
; ;

4.设某地区成年男子的身高 ,现从该地区随机选出 名男子,则这 名男子身高平均值的方差为( ).
; ; ; .
二、填空题
1.已知离散型随机变量X服从参数为 的泊松分布,利用切比雪夫不等式估计概率
.
2.已知随机变量X存在数学期望 和方差 ,且数学期望 , ,利用切比雪夫不等式估计概率 .
; ; ; .
解:C
二、填空题
1.已知离散型随机变量X服从参数为 的泊松分布,利用切比雪夫不等式估计概率
.
解:由 知,
5.已知随机变量X存在数学期望 和方差 ,且数学期望 , ,利用切比雪夫不等式估计概率 .
解:
6.已知随机变量X的方差为4,则由切比雪夫不等式估计概率 .
解:
7.伯努利(Bernoulli)大数定理表明:当试验次数 很大时,随机事件 在这 次试验中发生的频率 与随机事件 的概率 有较大偏差的可能性很.
解:小。
三、计算题
1.投掷一枚均匀硬币1000次,试利用切比雪夫不等式估计出现正面次数在450次~550次之间的概率.
解:
2.已知连续型随机变量X服从区间 的均匀分布,试利用切比雪夫不等式估计事件 发生的概率.
解:
3.设随机变量 和 的数学期望分别是 和 ,方差分别是 和 ,而相关系数为 .
⑴ 求 及 ;
3.已知随机变量X的方差为4,则由切比雪夫不等式估计概率 .
4.伯努利(Bernoulli)大数定理表明:当试验次数 很大时,随机事件 在这 次试验中发生的频率 与随机事件 的概率 有较大偏差的可能性很.

概率论与数理统计+第五章+大数定律及中心极限定理+练习题

概率论与数理统计+第五章+大数定律及中心极限定理+练习题

滨州学院《概率论与数理统计》(公共课)练习题第五章 大数定律及中心极限定理一、填空题1.设某种电气元件不能承受超负荷试验的概率为0.05.现在对100个这样的元件进行超负荷试验,以X 表示不能承受试验而烧毁的元件数,则根据中心极限{}≈≤≤105X P .2.设试验成功的概率p=20%,现在将试验独立地重复进行100次,则试验成功的次数介于16和32次之间的概率Q ≈ .3.将一枚均匀对称的硬币接连掷10000次,则正面恰好出现5000次的概率≈α .4.将一枚色子重复掷n 次,则当∞→n 时,n 次掷出点数的算术平均值n X 依概率收敛于 .5.随机变量X 和Y 的数学期望分别为-2和2, 方差分别为1和4, 而相关系数为-0.5, 则根据切比雪夫不等式≤≥+)6|(|Y X P .6.已知随机变量X 的数学期望为10,方差DX 存在且1.0)4020(≤<<-X P ,则≥DX .7.设 ,n X X X ,,,21为独立同分布的随机变量序列,且),2,1( =i X i 服从参数为2的指数分布,则∞→n 当时,∑==n i i n X n Y 121依概率收敛于 . 8.设 ,n X X X ,,,21为独立同分布的随机变量序列,且),2,1( =i X i 服从参数为0>λ的泊松分布,若∑==ni i X n X 11,则对任意实数x ,有≈<)(x X P . 二、选择题1.设随机变量n X X X ,,,21 相互独立,n n X X X S +++= 21,则根据列维-林德伯格中心极限定理,当n 充分大时n S 近似服从正态分布,只要n X X X ,,,21 ( ).(A) 有相同期望和方差; (B) 服从同一离散型分布;(C) 服从同一指数分布; (D) 服从同一连续型分布.2.下列命题正确的是( ).(A) 由辛钦大数定律可以得出切比雪夫大数定律;(B) 由切比雪夫大数定律可以得出辛钦大数定律;(C) 由切比雪夫大数定律可以得出伯努利大数定律;(D) 由伯努利大数定律可以得出切比雪夫大数定律.3.设随机变量X 的方差为2, 则根据切贝雪夫不等式有估计{}≤≥-2||EX X P ( ).(A )21; (B )31; (C )41; (D )81. 4.设随机变量 ,n X X X ,,,21独立同分布,其分布函数为 ∞<<∞-+=x b x a x F ,arctan 1)(π,0≠b 则辛钦大数定律对此序列( ). (A )适用; (B )当常数a 和b 取适当数值十适用;(C )不适用; (D )无法判别.5.设随机变量n X X X ,,,21 相互独立, n n X X X S +++= 21, 则根据列维-林德伯格(Levy-Lindeberg)中心极限定理, 当n 充分大时, n S 近似服从正态分布, 只要nX X X ,,,21 ( ).(A)有相同的数学期望; (B)有相同的方差;(C)服从同一指数分布; (D)服从同一离散型分布.6.设 ,n X X X ,,,21为独立同分布的随机变量序列,且),2,1( =i X i 服从参数为1≠λ的指数分布,则( ).(A ))()(lim 1x x n n X P n i i n Φ=≤-∑=+∞→λ; (B ))()(lim 1x x nn X P n i i n Φ=≤-∑=+∞→;(C ))()(lim 1x x n X P n i i n Φ=≤-∑=+∞→λλ; (D ))()(lim 1x x n X P n i i n Φ=≤-∑=+∞→λλ. 三、解答题1.设n ν是n 次伯努利试验成功的次数,p(0<p<1)是每次试验成功的概率,n f n n ν=是n次独立重复试验成功的频率,设n 次独立重复试验中,成功的频率f n 对概率p 的绝对偏差不小于Δ的概率{}α=∆≥-p f n P . 试利用中心极限定理,(1) 根据∆和n 求α的近似值; (2) 根据α和n 估计∆的近似值; (3) 根据α和∆估计n .2.假设某单位交换台有n 部分机,k 条外线,每部分机呼叫外线的概率为p .利用中心极限定理,解下列问题:(1) 设n =200,k =30,p =0.12,求每部分机呼叫外线时能及时得到满足的概率α的近似值;(2) 设n =200,p =0.12,问为使每部分机呼叫外线时能及时得到满足的概率α≥95%,至少需要设置多少条外线?(3) k =30,p =0.12,问为使每部分机呼叫外线时能及时得到满足的概率α≥95%,最多可以容纳多少部分机?3.设n X X X ,,,21 是独立同分布随机变量,n X 是其算术平均值.考虑概率 {}αμ=∆≥-n X P ,其中μ=i EX ()n i .,2,1 =,()0>∆∆和α(0<α<1)是给定的实数.试利用中心极限定理,根据给定的,(1) ∆和n ,求α的近似值;(2) α和n ,求∆的近似值;(3) α和∆,估计n .4.某保险公司接受了10000电动自行车的保险,每辆每年的保费为12元.若车丢失,则车主得赔偿1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:(1) 亏损的概率α;(2) 一年获利润不少于40000元的概率β;(3) 一年获利润不少于60000元的概率γ.5.假设伯努利试验成功的概率为5%.利用中心极限定理估计,进行多少次试验才能以概率80%使成功的次数不少于5次.6.生产线组装每件产品的时间服从指数分布.统计资料表明,每件产品的平均组装时间为10分钟.假设各件产品的组装时间互不影响.试利用中心极限定理,(1) 求组装100件产品需要15到20小时的概率Q ;(2) 求以概率0.95在16个小时内最多可以组装产品的件数.7.将n 个观测数据相加时,首先对小数部分按“四舍五入”舍去小数位后化为整数.试利用中心极限定理估计,(1) 试当n =1500时求舍位误差之和的绝对值大于15的概率;(2) 估计数据个数n 满足何条件时,以不小于90%的概率,使舍位误差之和的绝对值小于10的数据个数n .8.利用列维-林德伯格定理,证明棣莫佛-拉普拉斯定理.9.设X 是任一非负(离散型或连续型)随机变量,已知X 的数学期望存在,而 0>ε是任意实数,证明不等式{}εεXX P ≤≥.10.设事件A 出现的概率为=p 0.5,试利用切比雪夫不等式,估计在1000次独立重复试验中事件A 出现的次数在450到550次之间的概率α.11.设随机变量X 的数学期望为μ,方差为2σ,(1)利用切比雪夫不等式估计:X 落在以μ为中心,σ3为半径的区间内的概率不小于多少?(2)如果已知),(~2σμN X ,对上述概率,你是否可得到更好的估计?12.利用切比雪夫不等式来确定,当抛掷一枚均匀硬币时,需抛多少次,才能保证正面出现的频率在0.4至0.6之间的概率不小于90%,并用正态逼近去估计同一问题. 13.设 ,n X X X ,,,21为独立同分布的随机变量序列,且 ,2,1,,2===i DX EX i i σμ,令∑=+=n i i n iX n n Y 1)1(2,试证明:μP n Y →. 14.设}{n X 为一列独立同分布的随机变量序列,其概率密度函数为⎩⎨⎧<≥=--ax a x e x f a x 0)()( 令},,,m in{21n n X X X M =,试证:a M Pn →.15.在一家保险公司里有10000人参加保险,每人每年付12元保险费,在一年内一个人死亡的概率为0.006,死亡时,其家属可向保险公司领取1000元的赔偿费.试求:(1)保险公司没有利润的概率为多大?(2)保险公司一年的利润不少于60000元的概率为多大?16.已知生男孩的概率近似地等于0.515,求在10000个婴孩中,男孩不多于女孩的概率.17.某药厂断言,该工厂生产的某种药品对于医治一种疑难的疾病的治愈率为0.8,某医院试用了这种药品进行治疗,该医院任意抽查了100个服用此药品的病人,如果其中多于75人治愈,医院就接受药厂的这一断言,否则就拒绝这一断言.问:(1)若实际上此药品对这种疾病的治愈率为0.8,那么,医院接受这一断言的概率是多少?(2)若实际上此药品对这种疾病的治愈率为0.7,那么,医院接受这一断言的概率是多少?18.一生产线生产的产品成箱包装, 每箱的重量是随机的, 假设每箱平均重50kg, 标准差为5kg . 若用最大载重量为5吨的汽车承运, 试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977.(977.0)2(=Φ).19.一家有800间客房的大宾馆的每间客房内装有一台2kW (千瓦)的空调机,若该宾馆的开房率为70%,试问应供应多少千瓦的电力才能以99%的概率保证有充足的电力开动空调机?20.设有30个电子器件,他们的使用寿命(单位:小时)3021,,,T T T 均服从平均寿命为10小时的指数分布,其使用情况是第一个损坏第二个立即使用,第二个损坏第三个立即使用等等. 令T 为30个器件使用的总计时间,求T 超过350小时的概率.。

大数定律和中心极限定理历年真题

大数定律和中心极限定理历年真题

大数定律和中心极限定理历年真题数学一:1(01,3分)设随机变量X 的方差为2,则根据切比雪夫不等式有估计≤≥-}2|)({|X E X P。

数学三:1(88,6分) 某保险公司多年的统计资料表明,在索赔中被盗索赔户占20%。

以X 表示在随机抽查的100个索赔户中因被盗向保险公司索赔的户数。

(1) 写出X 的概率分布; (2)利用棣美佛-拉普拉斯定理,求被盗索赔户不少于14户且不多于30户的概率的近似值。

[附表]Φ(x )是标准正态分布函数。

999.0994.0977.0933.0841.0692.0500.0)(0.35.20.25.10.15.00x x Φ2(89,3分)设X 为随机变量且2,σμ==DX EX 。

则由切比雪夫不等式,有≤≥-}3|{|σμX P。

3(96,6分)设n X X X ,,,21 是来自总体X 的简单随机样本。

已知)4,3,2,1(==k a EXk k,证明当n 充分大时,随机变量∑==n i i n X n Z 121近似服从正态分布,并指出其分布参数。

4(99,3分) 在天平上重复称量一重为a 的物品。

假设各次称量结果相互独立且服从正态分布n X a N n 表示若以).2.0,(2次称量结果的算术平均值,则为使95.0}1.0|{|≥<-a X P nn 的最小值应小于自然数。

5(01,3分)设随机变量X 和Y 的数学期望分别为-2和2,方差分别为1和4,而相关系数为-0.5,则根据切比雪夫不等式有≤≥+}6|{|Y X P.6(01,8分) 一生产线生产的产品成箱包装,每箱的重量是随机的。

假设每箱平均重50千克,标准差为5千克。

若用最大载重量为5吨的汽车承运,试利用中心极限定理说明每辆车最多可以装多少箱,才能保障不超载的概率大于0.977。

(Φ(2)=0.977,其中Φ(x )是标准正态分布函数。

)数学四:1(01,3分) 设随机变量X 和Y 的数学期望都是2,方差分别为1和4,而相关系数为0.5,则根据切比雪夫不等式有P {|X-Y |≥6}≤ 。

大数定律与中心极限定理习题

大数定律与中心极限定理习题

大数定律与中心极限定理习题第五章大数定律与中心极限定理习题 1.用切贝谢夫不等式估计下列各题的概率:(1) 废品率为0.03 ,1000个产品中废品多于20个且少于40个的概率。

(2) 200个新生婴儿中,男孩多于80个且少于120个的概率(假定生男孩和生女孩的概率均为佳0.5)。

2(用推论计算上题的概率。

X,X,?,XX12ni3(如果是n个相互独立,同分布的随机变量,E()=μ,n1X,X,iD(X),8ni,1iX(i=1,2,…,n),对于,写出所满足的切贝谢夫不等式,并估计P(X,,,4)。

4(一颗骰子连续掷4次,点数总和记为X,估计P{10,X,18}5.袋装茶叶用机器装袋,每袋的净重为随机变量,其期望值为本100g ,标准差为本10g ,一大盒内装200袋,求一盒茶叶净重大于20.5 kg 的改率。

6(用拉普拉斯定理的推论近似计算从一批废品率为0.05 的产品中,任取1000件,其中有20件废品的概率。

7(生产灯泡的合格率为0.6 ,求10000个灯泡中合格灯泡数在5800 ~6200 的概率。

8(从大批发芽率为0.9 的种子中随意抽取1000粒,试估计这1000粒种子发芽率不低于0.88 的概率。

9(某车间有同型号机床200部,每部开动的概率为0.7 ,假定各机床开关是独立的,开动时每部要消耗电能15 个单位。

问电厂最少要供应这个车间多少电能,才能以95%的概率保证不致因供电不足而影响生产。

10(一大批种蛋中,良种蛋占80% ,从中任取500枚,求其中良种蛋率未超过81% 的概率。

11(某商店负责供应某地区1000人商品。

某种商品在一段时间内每人需用一件的概率为0.6 ,假定在这一段时间各人购买与否彼此无关,问商店应预备多少件这种商品,才能以99.7%的概率保证不会脱销(假定该商品在某一段时间内每人最多可以买一件)。

12(一个复杂的系统,由100个相互独立起作用的部件所组成。

大数定律和中心极限定理例题与解析

大数定律和中心极限定理例题与解析

要点二
详细描述
中心极限定理是指无论随机变量的个体分布是什么,当样 本量足够大时,样本均值的分布近似正态分布。例如,从 一个总体中随机抽取的100个样本的均值应该接近总体的 均值,并且其分布近似正态分布。
主题总结与启示
• 总结词:大数定律和中心极限定理是概率论中的重要概念,它们揭示了随机现 象的规律性,对于理解和预测随机现象具有重要意义。
大数定律和中心极限定理例题与解 析
目 录
• 引言 • 大数定律例题 • 中心极限定理例题 • 解析与总结
01 引言
主题简介
主题概述
大数定律和中心极限定理是概率论中 的重要概念,它们在统计学、金融、 计算机科学等领域有着广泛的应用。
主题背景
大数定律和中心极限定理分别描述了 在大量数据和独立同分布的情况下, 随机变量的分布规律。
假设我们进行大量的抛硬币实验,每次实验的结果只有两种可能:正面朝上或反面 朝上。根据大数定律,当实验次数足够多时,正面朝上的频率趋近于50%,反面朝 上的频率也趋近于50%。
例题二:抽取彩票
总结词
在抽取大量彩票时,中奖概率趋近于预设的中奖率。
详细描述
假设一张彩票的中奖概率为1%,那么在抽取100张彩票时,根据大数定律,大 约有1张彩票中奖。随着抽取的彩票数量增加,中奖的彩票数量趋近于预设的中 奖率。
例题二:保险精算
总结词
保险精算是中心极限定理在保险业中的一个重要应用 ,用于计算保险费和赔偿金。
详细描述
保险精算是保险业中一项重要的工作,它涉及到如何 合理地计算保险费和赔偿金。在保险精算中,中心极 限定理常常被用来估计某个事件发生的概率。例如, 一个保险公司可能会根据中心极限定理来估计某个特 定人群在未来一年内发生特定事件的概率,从而制定 相应的保险费和赔偿金方案。通过中心极限定理,保 险公司可以更准确地预测风险,从而做出更合理的决 策。

《大数定律及中心极限定理》习题

《大数定律及中心极限定理》习题

大数定律及中心极限定理习题十五 大数定律及中心极限定理一、填空题1.随机变量ΛΛ,,,,21n X X X 相互独立,且它们服从参数为2的指数分布,则当∞→n 时, 211∑=ni i X n 依概率收敛于 。

2.随机变量ΛΛ,,,,21n X X X 相互独立,且它们服从参数为λ的泊松分布,则}{1lim x n n X P n i i n ≤-∑=∞→λλ= 。

3.设n Y 表示n 次独立重复试验中事件A 出现的次数,p 是事件A 在每次试验中出现的概率,则≈≤<}{b Y a P n 。

二、选择题1.设ΛΛ,,,,21n X X X 是相互独立的随机变量序列,n X 服从参数为n 的指数分布),2,1(Λ=n 。

则下列选项中不服从切比雪夫大数定律的随机变量序列是( )。

A 、 ΛΛ,,,,21n X X X B 、ΛΛ,,,2,2221n X n X XC 、 ΛΛ,1,,21,21n X nX X D 、ΛΛ,,,2,21n nX X X 2.设随机变量ΛΛ,,,,21n X X X 独立同分布,其分布函数为:)0(arctan 1)(≠+=b b x a x F π 则辛钦大数定律对此序列( )。

A 、适用B 、当常数a,b 取适当数值时适用C 、不适用D 、无法判断3.设n X X X ,,,21Λ是相互独立的随机变量,∑==n i i n XS 1,则根据独立同分布的中心极限定理,当n 充分大时,n S 近似服从正态分布,只要n X X X ,,,21Λ( )。

A 、有相同的数学期望B 、有相同的方差C 、服从同一指数分布D 、服从同一离散型分布三、设某工厂生产的零件的合格品率为90%。

1.如果每箱装100个零件,求其中合格品数不少于95个的概率;2.为了以0.99 的概率保证每箱中的合格品数不少于95个,每箱应装多少个零件?四、设各零件的重量都是随机变量,它们相互独立,且服从同一分布,其数学期望为0.5kg,均方差为0.1kg,问5000只零件的总重量超过2510kg的概率是多少?五、掷一均匀硬币时,需掷多少次才能保证正面出现的频率在0.4至0.6之间的概率不小于0.9。

大数定律与中心极限定理 定义与例题(精选)共32页PPT

大数定律与中心极限定理 定义与例题(精选)共32页PPT

21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
Байду номын сангаас
大数定律与中心极限定理 定义与例题 (精选)

6、黄金时代是在我们的前面,而不在 我们的 后面。

7、心急吃不了热汤圆。

8、你可以很有个性,但某些时候请收 敛。

9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。

10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大数定律与中心极限定理 应用题
1. 设各零件质量都是随机变量,且独立同分布,其数学期望为0.5kg ,标准差
为0.1kg, 问(1)5000只零件的总质量超过2510kg 的概率是多少?(2)如果用一辆载重汽车运输这5000只零件,至少载重量是多少才能使不超重的概率大于0.975?
解 设第i 只零件重为i X ,500,...,2,1=i ,则5.0=i EX ,21.0=i DX
设 ∑==500
1i i X X ,则X 是这些零件的总重量
250050005.0=⨯=EX ,5050001.02=⨯=DX
由中心极限定理 )1,0(~50
2500N X a - (1))2510(≥X P =)50
25002510502500(-≥-X P )2(10Φ-≈=9213.01-=0.0787
(2) 设 汽车载重量为a 吨
)(a X P ≤=)502500502500(-≤-a X P 95.0)50
2500(0≥-Φ≈a 查表得 64.150
2500≥-a 计算得 59.2511≥a
因此汽车载重量不能低于2512公斤
2. 有一批建筑房屋用的木柱,其中80%的长度不小于3m ,先从这批木柱中随
机的取100根,求其中至少有30根短于3m 的概率?
解 设X 是长度小于3m 的木柱根数,则)2.0,100(~b X
由中心极限定理 )16,20(~N X a
)30(≥X P =)16
20301620(-≥-X P )5.2(10Φ-≈=9938.01-=0.0062
3. 一个食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一种
蛋糕的价格是随机变量,它取1元,1.2元,1.5元的概率分别为0.3,0.2,0.5.若售出300只蛋糕,(1)求收入至少400元的概率 (2)售价为1.2元蛋糕售出多于60只的概率。

解 设第i 只蛋糕的价格为i X ,300,...,2,1=i ,则i X 有分布律:
由此得
29.1)(=i X E
713.1)(2=i X E
故 0489.0)()(22=-=i i i EX EX X D
(1) 设X 是这一天的总收入,则∑==300
1i i X X
29.1300300
1⨯==∑=i i EX EX
0489.0300300
1⨯==∑=i i DX DX
由中心极限定理 )0489.0300,29.1300(~⨯⨯N X a
)400(≥X P =)489.0030029.1300400489.0030029.1300(⨯⨯-≥⨯⨯-X P )39.3(10Φ-≈=9997.01-=0.0003
(2) 以Y 记300只蛋糕中售价为1.2元的蛋糕只数,于是)2.0,300(~b Y )1,0(~8
.02.03002.0300N Y a ⨯⨯⨯- )60(>Y P =5.0)0(14860608
.02.03002.03000=Φ-≈⎪⎭⎫ ⎝⎛->⨯⨯⨯-Y P 4.设某种商品第n 天的价格为Yn ,令Xn=Yn+1-Yn ,Xn 独立同分布,且Xn 期望是0,方差是2,若该商品第一天价格是100,则第19天价格在96到104之间的概率是多少? 解:
121X Y Y =-,
232X Y Y =-,
343X Y Y =-,
……
1n n n X Y Y +=-
所以
181********n n X Y Y Y ==-=-∑ 1810n n E X ==∑, 1818
11
36n n n n D X DX ====∑∑
由中心极限定理,
()()1919961041004P Y P Y <<=-< =1818114n n n n P X E X ==⎛⎫-< ⎪
⎝⎭∑∑181811466n n n n X E X P ==⎛⎫- ⎪ ⎪=< ⎪ ⎪⎝⎭
∑∑ 2213⎛⎫≈Φ- ⎪⎝⎭
=0.4972 5.(10)一枚均匀硬币至少要抛多少次,才能使正面出现的频率与概率之间的差的绝对值不小于0.05的概率不超过0.01?请分别用(1)切比雪夫不等式,与(2)中心极限定理给出估计。


设至少要抛n 次;=X “n 次抛硬币中出现正面的次数”,
则)5.0,(~n B X , n EX 5.0=,n DX 25.0=,正面出现的概率是5.0=p ; =n
X “n 次抛硬币中出现正面的频率”, 于是 5.0=n X E ,n
n X D 25.0= (1)由切比雪夫不等式
n n X
D
n X P 10005.005.05.02=≤⎪⎭⎫ ⎝⎛≥- 由
01.0100≤n
,得 10000≥n 即至少要抛10000次。

(2)由中心极限定理, )25.0,5.0(~n n N X a ,
)25.0,5.0(~n N n X a , )25.0,0(~5.0n N n X a -
所以 ⎪⎭⎫ ⎝⎛Φ-≈⎪⎭
⎫ ⎝⎛≥-n n X P /5.005.01205.05.00( =()
01.0)1.0120≤Φ-n (
得 995.0)1.00≤Φn (,查表 995.0)58.20=Φ(, 由于)0x (Φ单调增, 故58.21.0≥n ,解得 64.665≥n
因此至少要抛666次
6.根据经验,某宾馆电话预约的客户的实际入住率为80%,服务台共接受了2500个电话预约,请分别用(1)切比雪夫不等式,与(2)中心极限定理估计实际入住的人数在1950~2050之间的概率。

解 设随机变量=X “2500个电话预约的客户实际入住的人数”,
则 )8.0,2500(~B X ,2000=EX ,400=DX
(1)由切比雪夫不等式,得
())502000(20501950<-=<<X P X P 84.0250040015012=-=-
≥DX (2)由中心极限定理,得)400,2000(~N X a ,
())20
200020502020002020001950(20501950-<-<-=<<X P X P 1)5.2(2)5.2()5.2(000-Φ=-Φ-Φ≈=0.98758。

相关文档
最新文档