第五章中心极限定理(2)

合集下载

第五章 大数定律与中心极限定理

第五章  大数定律与中心极限定理

中心极限定理
独立随机变量和
设 {Xn} 为独立随机变量序列,记其和为
Yn = ∑Xi
i=1 n
讨论独立随机变量和的极限分布, 指出极限分布为正态分布.
13 July 2011
湖南大学
第五章 大数定律与中心极限定理
第18页 18页
独立同分布下的中心极限定理
林德贝格—勒维中心极限定理 设 {Xn} 为独立同分布随机变量序列,数学期 望为µ, 方差为 σ2>0,则当 n 充分大时,有
解: 设 X 表示命中的炮弹数, 则 X ~ b(500, 0.01)
(1) P( X = 5) = C ×0.015 ×0.99495 =0.17635
5 500
(2) 应用正态逼近: P(X=5) = P(4.5 < X < 5.5) = 0.1742
13 July 2011
5.5 − 5 4.5 − 5 ≈ Φ −Φ 4.95 4.95
第五章 大数定律与中心极限定理
第25页 25页
三、给定 y 和概率,求 n
例7 用调查对象中的收看比例 k/n 作为某电视节
目的收视率 p 的估计。 要有 90% 的把握,使k/n与p 的差异不大于0.05,问至少要调查多少对象?
解:用 Yn表示n 个调查对象中收看此节目的人数,则
P ( Yn / n − p < 0.05) ≈ 2Φ 0.05 n / p(1 − p) − 1 ≥ 0.90
湖南大学
湖南大学
第五章 大数定律与中心极限定理
第16页 16页
X 例 设 1, X2 ,L, Xn是独 立同 布 分 的随 变量 它们 机 , 都服 从 [a, b]上的 [ 均匀 布 f (x)是 a, b]上 连 函 , 分 , 的 续 数 证明 :

(完整版)大数定律和中心极限定理

(完整版)大数定律和中心极限定理

第五章 大数定律和中心极限定理一、内容提要(一)切贝谢夫不等式 1. 切贝谢夫不等式的内容设随机变量X 具有有限的数学期望E (X )和方差D (X ),则对任何正数ε,下列不等式成立。

(){}()(){}().1,22εεεεX D X E X P X D X E X P -≤-≤≥-2. 切贝谢夫不等式的意义(1)只要知道随机变量X 的数学期望和方差(不须知道分布律),利用切贝谢夫不等式,就能够对事件(){}ε≥-X E X 的概率做出估计,这是它的最大优点,今后在理论推导及实际应用中都常用到切贝谢夫不等式。

(2)不足之处为要计算(){}ε≥-X E X P 的值时,切贝谢夫不等式就无能为力,只有知道分布密度或分布函数才能解决。

另外,利用本不等式估值时精确性也不够。

(3)当X 的方差D (X )越小时,(){}ε≥-X E X P 的值也越小,表明X 与E (X )有较大“偏差”的可能性也较小,显示出D (X )确是刻画X 与E (X )偏差程度的一个量。

(二)依概率收敛如果对于任何ε>0,事件{}ε a X n -的概率当n →∞时,趋于1,即{}1lim =-∞→ε a X P n n ,则称随机变量序列X 1,X 2,…,X n ,…当n →∞时依概率收敛于α。

(三)大数定律 1. 大数定律的内容(1)大数定律的一般提法若X 1,X 2,…,X n ,…是随机变量序列,如果存在一个常数序列α1,…,αn ,…,对任意ε>0,恒有11lim 1=⎭⎬⎫⎩⎨⎧-∑=∞→ε n i n i n a X n P , 则称序列{X n }服从大数定律(或大数法则)。

(2)切贝谢夫大数定律设随机变量X 1,X 2,…,X n ,…相互独立,分别有数学期望E(X i )和方差D(X i ),且它们的方差有公共上界C ,即()().,,,2,1, n i C X D i =≤则对于任意的ε>0,恒有()111lim 11=⎭⎬⎫⎩⎨⎧-∑∑==∞→ε n i ni i i n X E n X n P 。

概率论与数理统计 中心极限定理

概率论与数理统计 中心极限定理
假定每个部件的称量误差 X ~ U (1,1) (单位:kg ),且
每个部件的称量误差相互独立,试求机床重量的总误差的
绝对值不超过 10 kg 的概率。
作业: 第115页,习题5-2,A组:2.

n
近似
Xi ~ N (n, n 2 ) 或
i 1
即对任意的 x,有
n
X i n 近似
i 1
~ N (0,1)
n
Hale Waihona Puke nlimP
i 1
n
X i n n

x ( x)



例 5.2.1 为了测定一台机床的质量,把它分解成 75 个部件来称量。
第五章 中心极限定理
中心极限定理解决的问题:
n
大量的随机变量的和 X i 的近似分布是什么? i 1
结论
n
一定条件下, X i 近似服从正态分布。 i 1
一 独立同分布中心极限定理(列维-林德贝格)
设随机变量序列 X1, X 2, , X n , 独立同分布,且数学
期望和方差存在:E(Xi ) , D(Xi ) 2 (i 1,2, , n)

第5章§2中心极限定理

第5章§2中心极限定理

n
的分布函数 F (对任意 满足 x) x
n
X k n k 1 lim Fn ( x) lim P x n n n
n


x
1 e 2

t2 2
dt Φ ( x )
第五章 大数定律与中心极限定理
§2
, 对于均值为 方差
中心极限定理
4/11
(n 1, 2, )

k 1
k 1
x F对任意 若 Z 的分布函数 满足 n ( x) n n nN (0,1) {Z n }的极限分布是否为 Xk k k 1 k 1 一般地,答案是否定的 ! lim Fn ( x) lim P n n n 2 k 取 X n 0 (n 2, 3, ), 则 k 1
O
拉普拉斯
1
2
3
4
5
6
7
8
9
10 11
k
第五章 大数定律与中心极限定理
§2
中心极限定理
7/11
高尔顿( Francis Galton,18221911) 英国人类 学家和气象学家
共15层小钉
-8 -7 -6 -5 -4 -3 -2 -1 O 1 2 3 4 5 6 7 8
x
记 则
Xk
1, 1,
t2 X1 1 1 Z (n Φ 1,( 2, ) n e 2 dt x) 2 1 x
E ( Z n ) 0, D( Zn ) 1 (n 1, 2, ) 部分和标准化 r.v
x
除非 服从正态分布,否则结论就不真 . X 1 n} X 则称 { 服从中心极限定理 第五章 大数定律与中心极限定理

第五章 大数定律与中心极限定理

第五章 大数定律与中心极限定理
独立同一分布,E ( X i ) =2, D( X i ) 2=1.69,n 100, 则由定理5.5知,命中目标炸弹总数X ,渐近服从正态分布:
X X i N(n,n ) N(200,169),所以,
2
100
P{180 X 220} P{1.54 X 200 1.54}
若要准确计算,应该用贝努里公式:
P 6800 X 7200
7199 k 6801

k C10000 0.7k 0.310000k
如果用切比雪夫不等式估计: E (X) np 10000 0.7 7000, D (X) npq 10000 0.7 0.3 2100, 2100 P 6800 X 7200 P X 7000 200 1 2 0.95. 200
二、4个大数定律(P117定义5.1-P120) 教学——我教你学或你教我学. 内容:1.大数定律的条件与结论; 2. 4个大数定律的关系. 了解:4大数定律的结论
定义5.1(P117)
上一页
下一页
返回
1.陪学定理5.1“切比雪夫大数定律”(P118)
相互独立
X
limP{| X E( X ) | } 1
第五章 大数定律与中心极限定理
第一节 第二节 大数定律 中心极限定理
大数定律主要含义: 在随机事件的大量重复出现中,往往呈现几乎 必然的规律,这个规律就是大数定律。通俗地说, 这个定理就是,在试验不变的条件下,重复试验多 次,随机事件的频率近似于它的概率。比如,我们 向上抛一枚硬币,硬币落下后哪一面朝上本来是偶 然的,但当我们上抛硬币的次数足够多后,达到上 万次甚至几十万几百万次以后,我们就会发现,硬 币每一面向上的次数约占总次数的二分之一。偶然 中包含着必然。 简单地说,大数定律就是“当试验次数足够多时,事 件发生的频率无穷接近于该事件发生的概率。

概率与数理统计 第五章-2-中心极限定理

概率与数理统计 第五章-2-中心极限定理

14 14
2
/ 10
1
P
X
n 14 0.2
0
1 (0) 0.5.
例2 计算机在进行数字计算时,遵从四 舍五入原则。为简单计,现在对小数点后面
第一位进行舍入运算,则舍入误差X可以认 为服从[-0.5 , 0.5]上的均匀分布。若独立进 行了100次数字计算,求平均误差落在区间
3 20
在这里,我们只介绍其中两个最基本 的结论。
1. 当n无限增大时,独立同分布随机变量“之 和”的极限分布是正态分布;
2. 当n 很大时,二项分布可用正态分布近似。
为方便,我们研究 n 个随机变量之和标 准化的随机变量
n
n
Xk E( Xk )
Yn k 1
k 1 n
D( Xk )
k 1
的极限分布。
(3) (3) 0.9973
2. 二项分布的极限分布
定理2.2 (棣莫佛——拉普拉斯定理):
设随机变量X1, X2, …, Xn, … 相互独立,
并且都 服从参数为 p 的两点分布(0<p<1) ,则
对任意 x∈(-∞,+∞),有 E(Xi ) p.
n
lim
P
i 1
Xi
np
x
n
i1
i1
lim
P
i
1
Xi
n
x
x
1
-t2
e 2 dt
(x) ,
n n
- 2
其中Φ(x)是标准正态分布N(0, 1)的分布函数。
n
lim
P
i 1
Xi
n
x
x
n n-1Fra bibliotek- t2

5-2 中心极限定理

5-2 中心极限定理

t2 − 2
定理表明, 很大, 是一个定值时( 定理表明,当n很大,0<p<1是一个定值时(或 很大 是一个定值时 者说, 也不太小时),二项变量 者说,np(1-p)也不太小时),二项变量 ηn 的分布 也不太小时),二项 近似为正态分布 N(np,np(1-p)). 即
ηn ~ N(np, np(1 − p))
求满足 P(X≤x)≥0.999
千瓦, (由于每台车床在开工时需电力1千瓦,x 由于每台车床在开工时需电力 千瓦 台工作所需电力即x千瓦 千瓦.) 台工作所需电力即 千瓦 )
由棣莫佛-拉普拉斯极限定理 由棣莫佛 拉普拉斯极限定理
X − np 近似N(0,1), 近似 np(1− p)
这里 np=120, np(1-p)=48
从中解得x≥141.5, 从中解得
即所求 x=142.(千瓦 千瓦) 千瓦
也就是说, 应供应142 千瓦电力就能以 也就是说 应供应 99.9%的概率保证该车间不会因供电不 的概率保证该车间不会因供电不 足而影响生产. 足而影响生产
对于一个学生而言, 例4 对于一个学生而言 来参加家长会的家长人 数是一个随机变量. 设一个学生无家长、 名家长 名家长、 数是一个随机变量 设一个学生无家长、1名家长、 2名家长来参加会议的概率分别为 名家长来参加会议的概率分别为0.05,0.8,0.15. 名家长来参加会议的概率分别为 , , 若学校共有400名学生 设各学生参加会议的家长 名学生, 若学校共有 名学生 数相互独立, 且服从同一分布. 数相互独立 且服从同一分布 (1) 求参加会议的 超过450的概率 (2) 求有 名家长来参加 的概率; 求有1名家长来参加 家长数 X 超过 的概率 会议的学生数不多于340的概率 的概率. 会议的学生数不多于 的概率 解 (1) 以 X k ( k = 1, 2,⋯, 400) 记

数学概率-姜-5章-2-中心极限定理

数学概率-姜-5章-2-中心极限定理
f g 0
1
h
2 3 x
例:20个0-1分布的和的分布
几个(0,1)上均匀分布的和的分布 X1 ~f(x)
X1 +X2~g(x)
X1 +X2+X3~ h(x)
概率论
大量相互独立的随机变量,其均值(或者和) 的分布以正态分布为极限。意思就是当满足某些 条件的时候,比如Sample Size比较大,采样次数 趋于无穷大的时候,就越接近正态分布。而这个 定理amazing的地方在于,无论是什么分布的随机 变量,都满足这个定理。
例3 对于一个学生而言, 来参加家长会的家长人数 是一个随机变量, 设一个学生无家长、1名家长、 2名家长来参加会议的概率分别为 0.05, 0.8, 0.15. 若学校共有 400 名学生, 设各学生参加会议的家长 数相互独立,且服从同一分布.
概率论
(1)求参加会议的家长数X 超过450的概率; (2)求有1名家长来参加会议的学生数不多340的概率.

t2 2
近似地
定理表明,当n很大时,ηn
~ N np, np(1 p) .
概率论

由第四章知识知可将ηn分解成为n个相互独立、
服从同一(0 1)分布的诸随机变量 X 1 , X 2 , X n之和, n 即有 ηn X k
k 1
其中X k ( k 1, 2,, n)的分布律为 P X k i p i (1 p )1 i , i 0,1 由于E ( X k ) p, D( X k ) p(1 p) k 1,2,, n),
概率论
自从高斯指出测量误差服从正态 分布之后,人们发现,正态分布在 自然界中极为常见.
高斯
如果一个随机变量是由大量相互独立的随机因 素的综合影响所造成,而每一个别因素对这种综合 影响中所起的作用不大. 则这种随机变量一般都服 从或近似服从正态分布. 现在我们就来研究独立随机变量之和所特有 的规律性问题. 当n无限增大时,这个和的极限分布是什么呢?

《概率论与数理统计》课件第五章大数定律及中心极限定理

《概率论与数理统计》课件第五章大数定律及中心极限定理
有极其重要的地位?
4.大样本统计推断的理论基础
是什么?
大数定律中心极限定理
随机现象中平均结果的稳定性
大数定律的客观背景
大量抛掷硬币正面出现频率
字母使用频率
生产过程中的废品率
§5.1 大数定律
背景:1. 频率稳定性2. 大量测量结果算术平均值的稳定性
回顾
随机现象的主要研究方法
概率分布
01
证:_x001A__x001B__x001B_,_x001A__x001B__x001B_,⋯, _x001A__x001B__x001B_, ⋯相互独立同分布,则_x001A__x001B__x001B__x001B_,_x001A__x001B__x001B__x001B_, ⋯,_x001A__x001B__x001B__x001B_, ⋯也相互独立同分布,由辛钦大数定律得证.
第五章 大数定律及中心极限定理
§5.1 大数定律§5.2 中心极限定理
要点:用切比雪夫不等式估算概率独立同分布,用中心极限定理计算对于二项分布,当n很大时,计算
本章要解决的问题
1.为何能以某事件发生的频率
作为该事件的概率的估计?
2.为何能以样本均值作为总体
期望的估计?
3.为何正态分布在概率论中占
解:(1)设X表示一年内死亡的人数,则~(, ),其中=,=.%. 设Y表示保险公司一年的利润,=×−.需要求的是_x001A_<_x001B_.
由中心极限定理
_x001A_<_x001B_=_x001A_×−<_x001B_ =_x001A_>_x001B_=−_x001A_≤_x001B_
且,
由中心极限定理
解:设为第i个螺丝钉的重量, 相互独立同分布. 于是,一盒螺丝钉的重量为

第五章 大数定律与中心极限定理

第五章 大数定律与中心极限定理

( ) = ∑ X − nµ n ⋅σ D (∑ X )
n n i =1 i
lim FYn ( x) = lim P{Yn ≤ x} = Φ ( x) ,
n→∞ n →∞
(5.6)
其中 Φ ( x) 为标准正态分布函数. 由列维-林德贝格中心极限定理可得计算有关独立同分布随机变量和 的事件概率的近似 .......... 公式:
X ~ B(3000,0.001) ,E(X)=np=3,D(X)=np(1-p)=2.997.
由德莫佛-拉普拉斯中心极限定理得保险公司一年获利不小于 10000 元的概率为
P{10000 ≤ 30000 − 2000 X ≤ 30000} = P{0 ≤ X ≤ 10}
10 − 3 0−3 ≈ Φ − Φ 2.997 2.997
n x − nµ x − nµ P ∑ X i ≤ x = P Yn ≤ ≈ Φ . i =1 n ⋅σ n ⋅σ
{
}
(5.7)
例 1 设一加法器同时收到 20 个噪声电压 Vk ( k = 1,2, " ,20) ,它们是相互独立的随机变量, 且都服从区间(0,10)上的均匀分布,试求 P ∑ Vk > 105 .
第2 页 共6 页
概率论与数理统计
第五章 大数定律 与中心极限定理
定理 3 (辛钦大数定律) 设随机变量 X 1 , X 2 , " , X n , " 相互独立,服从同一分布且存在 相同的期望 E(Xi)=μ(i=1,2,…),则对任意正数ε有
1 n lim P X i − µ < ε = 1. ∑ n→∞ = 1 i n §5.2 中心极限定理

02-5.2中心极限定理

02-5.2中心极限定理

第五章大数定律和中心极限定理第二节中心极限定理【学习目标】1、了解中心极限定理产生的背景、条件和意义;2、理解和掌握两个中心极限定理的条件和结论、计算方法、应用及近似计算.【学习重点】要求了解几个主要大数定律的条件和结论,并会用于判断(包括数理统计中参数估计量的一致性)和计算。

掌握几个主要的中心极限定理,并会利用中心极限定理求简单的独立同分布变量和的近似分布,以及应用题中概率的近似计算。

在上述极限定理基础上,了解频率稳定性的含义和根据,以及正态分布的特别重要性。

【学习难点】1、理解两个中心极限定理的条件和结论;2、掌握两个中心极限定理的应用和计算.【学习任务清单】一、课前导学1、让学生在了解大数定律的基础上,了解中心极限定理产生的背景.2、如何理解中心极限定理产生的条件和怎样掌握中心极限定理的应用?二、学习视频第二十八讲中心极限定理视频1:二中心极限定理产生的背景和定义1.1 中心极限定理产生的背景(0分23秒)在自然界很多随机变量的分布都服从或者近似服从正态分布.1.2 举例:步枪射击问题来介绍中心极限定理的背景(2分19秒)例题1:步枪射击问题(一个变量由很多微小的误差和的影响引起).1.3 给出中心极限定理的定义(8分55秒)视频2:服从中心极限定理的条件2.1提出问题:服从中心极限定理的条件是什么呢?(0分20秒)给出一个例子说明,随机变量只具有独立性、存在均值和方差是不够的。

视频3:独立同分布中心极限定理3.1独立同分布中心极限定理(0分10秒)在视频2的疑惑中,提出满足中心极限定理的一个条件:独立同分布中心极限定理。

视频4:棣莫弗—拉普拉斯中心极限定理4.1 给出棣莫弗—拉普拉斯中心极限定理的结论(0分24秒)它是独立同分布中心极限定理的一个特例4.2 对棣莫弗—拉普拉斯中心极限定理的证明(2分33秒)在二项分布的背景下利用独立同分布中心极限定理证明结论。

视频5:中心极限定理的意义视频6:中心极限定理的应用6.1:二项分布和正态分布的关系(0分40秒)离散分布(二项分布)和连续分布(正态分布)之间的关系6.2:从例题上理解二项分布和正态分布的关系(1分32秒)6.3:高尔顿板试验(4分57秒)高尔顿板试验最后落下的小球会呈现中间高两头低的形状对高尔顿板试验的解释(6分40秒)利用中心极限定理对实验结果进行解释视频7:利用中心极限定理进行近似计算7.1 中心极限定理对概率的近似计算非常有用(0分2秒)7.2 例题1:电话交换机问题(0分27秒)三、随堂测试(见慕课每一讲最后一节)四、讨论区和慕课堂上在线提问交流五、线下辅助教学1、课后作业2、QQ群在线答疑。

第五章 大数定律和中心极限定理

第五章  大数定律和中心极限定理

第五章 大数定律和中心极限定理内 容 提 要1、切贝雪夫不等式设随机变量X 的数学期望μ=)(X E ,方差2)(σ=X D ,则对任意正数ε,有不等式22}{εσεμ≤≥-X P 或221}{εσεμ-><-X P 成立.2、大数定律(1)切贝雪夫大数定理:设 ,,,,21n X X X 是相互独立的随机变量序列,数学期望)(i X E 和方差)(i X D 都存在,且C X D i <)(),2,1( =i ,则对任意给定的0>ε,有1}|)]([1{|lim 1=<-∑=∞→εni i i n X E X n P . (2)贝努利大数定理:设A n 是n 次重复独立试验中事件A 发生的次数,p 是事件A 在一次试验中发生的概率,则对于任意给定的0>ε,有1}|{|lim =<-∞→εp nn P An . 贝努利大数定理给出了当n 很大时,A 发生的频率A n A /依概率收敛于A 的概率,证明了频率的稳定性.3、中心极限定律(1)独立同分布中心极限定理:设 ,,,,21n X X X 是独立同分布的随机变量序列,有有限的数学期望和方差,μ=)(i X E ,),2,1(0)(2=≠=i X D i σ.则对任意实数x ,随机变量σμσμn n Xn XY ni ini in ∑∑==-=-=11)(的分布函数)(x F n 满足⎰∞--∞→∞→=≤=xtn n n n dt e x Y P x F 2/221}{lim )(lim π.(2)李雅普诺夫定理:设 ,,,,21n X X X 是不同分布且相互独立的随机变量,它们分别有数学期望和方差:i i X E μ=)(,),2,1(0)(2=≠=i X D i i σ .记 ∑==ni inB 122σ,若存在正数δ,,使得当∞→n 时,有0}{1122→-∑=++ni ii nX E Bδδμ, 则随机变量nni ini ini i ni i ni in B X X D X E XZ ∑∑∑∑∑=====-=-=11111)()(μ的分布函数)(x F n 对于任意的x ,满足⎰∑∑∞--==∞→∞→=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤-=x t n ni i n i i n n n dt e x B X x F 2/11221lim )(lim πμ.当n 很大时,),(~),1,0(~12.1.∑∑==ni n i ni in B N XN Z μ.(3)德莫佛—拉普拉斯定理:设随机变量),2,1( =n n η服从参数为)10(,<<p p n 的二项分布,则对于任意的x ,恒有⎰∞--∞→=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≤--x t n n dt e x p np np P 2/221)1(lim πη.疑 难 分 析1、依概率收敛的意义是什么?依概率收敛即依概率1收敛.随机变量序列}{n x 依概率收敛于a ,说明对于任给的0>ε,当n 很大时,事件“ε<-a x n ”的概率接近于 1.但正因为是概率,所以不排除小概率事件“ε<-a x n ”发生.依概率收敛是不确定现象中关于收敛的一种说法. 2、大数定律在概率论中有何意义?大数定律给出了在试验次数很大时频率和平均值的稳定性.从理论上肯定了用算术平均值代替均值,用频率代替概率的合理性,它既验证了概率论中一些假设的合理性,又为数理统计中用样本推断总体提供了理论依据.所以说,大数定律是概率论中最重要的基本定律. 3、中心极限定理有何实际意义?许多随机变量本身并不属于正态分布,但它们的极限分布是正态分布.中心极限定理阐明了在什么条件下,原来不属于正态分布的一些随机变量其总和分布渐进地服从正态分布.为我们利用正态分布来解决这类随机变量的问题提供了理论依据. 4、大数定律与中心极限定理有何异同?相同点:都是通过极限理论来研究概率问题,研究对象都是随机变量序列,解决的都是概率论中的基本问题,因而在概率论中有重要意义.不同点:大数定律研究当 时,概率或平均值的极限,而中心极限定理则研究随机变量总和的分布的极限.例 题 解 析【例1】设每次试验中某事件A 发生的概率为0.8,请用切贝雪夫不等式估计:n 需要多大,才能使得在n 次重复独立试验中事件A 发生的频率在0.79~0.81之间的概率至少为0.95? 分析:根据切贝雪夫不等式进行估计,须记住不等式.解: 设X 表示n 次重复独立试验中事件A 出现的次数,则)8.0,(~n B X ,A 出现的频率为n n X D n X E nX16.02.08.0)(,8.0)(,=⨯==, 220001.016.01)01.0()(1}01.08.0{81.079.0n n n X D n n X P n X P -=-≥<-=⎭⎬⎫⎩⎨⎧<< n16001-= 由题意得 95.016001≥-n,32000≥n .可见 做32000次重复独立试验中可使事件A 发生的频率在0.79~0.81之间的概率至少为0.95.【例2】证明:(马尔柯夫定理)如果随机变量序列 ,,,,21n X X X ,满足0)(1lim 12=∑=∞→n k k n X D n ,则对任给0>ε,有1)(11lim 11=⎭⎬⎫⎩⎨⎧<-∑∑==∞→εn k k n k k n X E n X n P .证明: )(1)1(),(1)1(12111∑∑∑∑======nk k n k k n k k n k k X D n X n D X E n X n E ,由切贝雪夫不等式,得22111)(1)(11lim εεn X D X E n X n P nk k nk k n k k n ∑∑∑===∞→-≥⎭⎬⎫⎩⎨⎧<-,根据题设条件,当∞→n 时, 1)(11lim 11≥⎭⎬⎫⎩⎨⎧<-∑∑==∞→εnk k n k k n X E n X n P ,但概率小于等于1,故马尔柯夫定理成立.【例3】一本书共有100万个印刷符号.排版时每个符号被排错的概率为0.0001,校对时每个排版错误被改正的概率为0.9,求校对后错误不多于15个的概率.分析:根据题意构造一个独立同分布的随机变量序列,具有有限的数学期望和方差,然后建立一个标准化的随机变量,应用中心极限定理求得结果.解:设随机变量⎩⎨⎧=.,0,1 其它 错个印刷符号校对后仍印 第n X n 则)1(≥n X n 是独立同分布随机变量序列,有5101.00001.0}1{-=⨯===n X P p .作)10(,61==∑=n XY nk Kn ,n Y 为校对后错误总数.按中心极限定理(德—拉定理),有)58.1(]))101(1010/[5(15}15{553Φ≈-Φ=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧-≤-=≤--npq np npq np Y P Y P n n9495.0=.第六章 数理统计的基本概念内 容 提 要1、总体与样本在数理统计中,将研究对象的全体称为总体;组成总体的每个元素称为个体. 从总体中抽取的一部分个体,称为总体的一个样本;样本中个体的个数称为样本的容量. 从分布函数为)(x F 的随机变量X 中随机地抽取的相互独立的n 个随机变量,具有与总体相同的分布,则n X X X ,,,21 称为从总体X 得到的容量为n 的随机样本.一次具体的抽取记录n x x x ,,,21 是随机变量n X X X ,,,21 的一个观察值,也用来表示这些随机变量.2、统计量设n X X X ,,,21 是总体X 的一个样本,则不含未知参数的样本的连续函数),,,(21n X X X f 称为统计量.统计量也是一个随机变量,常见的统计量有(1)样本均值 ∑==ni i X n X 11;(2)样本方差 ][11)(11122122∑∑==--=--=ni i n i i X n X n X X n S ; (3)样本标准差 2S S =;(4)样本k 阶原点矩 ,2,1,11==∑=k X n A n i ki k ;(5)样本k 阶中心矩 ,2,1,)(11=-=∑=k X X n B kn i i k .2、经验分布函数设n x x x ,,,21 是总体X 的一组观察值将它们按大小顺序排列为:**2*1n x x x ≤≤≤ ,称它为顺序统计量.则称⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<=+**1**2*1*1,1,,1,0)(nk k n x x x x x nk x x x n x x x F 为经验分布函数(或样本分布函数).3、一些常用统计量的分布(1)2χ分布设)1,0(~N X ,n X X X ,,,21 是X 的一个样本,则统计量∑==ni iX122χ服从自由度为n 的2χ分布,记作)(~22n χχ.(2)t 分布设)1,0(~N X ,)(~2n Y χ,且Y X ,相互独立,则随机变量nY X t /=服从自由度为n 的t 分布,记作)(~n t t .t 分布又称为学生分布.(3)F 分布设)(~12n X χ,)(~22n Y χ,且Y X ,相互独立,则随机变量21//n Y n X F =服从自由度为),(21n n 的F 分布,记作),(~21n n F F .4、正态总体统计量的分布设),(~2σμN X ,n X X X ,,,21 是X 的一个样本,则 (1)样本均值X 服从正态分布,有),(~2nN X σμ或)1,0(~/2N nX U σμ-=;(2)样本方差)1(~)1(222--n S n χσ;(3)统计量)1(~/--n t nS X μ.设),(~),,(~222211σμσμN Y N X ,1,,,21n X X X 是X 的一个样本, 2,,,21n Y Y Y 是Y 的一个样本,两者相互独立.则(1)统计量)1,0(~//)()(22212121N n n Y X σσμμ+---;(2)当21σσ=时,统计量)2(~/2/1)()(212121-+⋅+---n n t S n n Y X wμμ,其中2)1()1(21222211-+-+-=n n S n S n S w ;(3)统计量 )1,1(~//2122222121--n n F S S σσ; (4)统计量),(~/)(/)(2112221222112121n n F n n yxn j jn i i⋅--∑∑==σμσμ.疑 难 分 析1、为什么要引进统计量?为什么统计量中不能含有未知参数?引进统计量的目的是为了将杂乱无序的样本值归结为一个便于进行统计推断和研究分析的形式,集中样本所含信息,使之更易揭示问题实质.如果统计量中仍含有未知参数,就无法依靠样本观测值求出未知参数的估计值,因而就失去利用统计量估计未知参数的意义. 2、什么是自由度?所谓自由度,通常是指不受任何约束,可以自由变动的变量的个数.在数理统计中,自由度是对随机变量的二次型(或称为二次统计量)而言的.因为一个含有n 个变量的二次型),,2,1,,(11n j i a a X X aji ij n i nj j i ij==∑∑==的秩是指对称矩阵n n ij a A ⨯=)(的秩,它的大小反映n 个变量中能自由变动的无约束变量的多少.我们所说的自由度,就是二次型的秩.例 题 解 析【例1】设)5,2,1)(,(~2=i N X i i σμ,(1)521,,,μμμ 不全等;(2)521μμμ=== .问:521,,,X X X 是否为简单随机样本?分析:相互独立且与总体同分布的样本是简单随机样本,由此进行验证.解:(1) 由于)5,2,1)(,(~2=i N X i i σμ,且521,,,μμμ 不全等,所以521,,,X X X 不是同分布,因此521,,,X X X 不是简单随机样本.(2)由于521μμμ=== ,那么521,,,X X X 服从相同的分布,但不知道521,,,X X X 是否相互独立,因此521,,,X X X 不一定是简单随机样本.【例2】设),(~2σμN X ,n X X X ,,,21 是取自总体的简单随机样本,X 为样本均值,2n S 为样本二阶中心矩,2S 为样本方差,问下列统计量(1)22σn nS ,(2)1/--n S X n μ,(3)212)(σμ∑=-ni i X 各服从什么分布?分析:利用已知统计量的分布进行分析.解:(1)由于)1(~)1(222--n S n χσ,又有21221)(1S nn X X n S n i i n-=-=∑=22)1(S n nS n-=,因此)1(~222-n nS nχσ;(2)由于)1(~/--n t nS X μ,又有1-=n S nS n ,因此)1(~1/---n t n S X n μ;(3)由),,2,1)(,(~2n i N X i =σμ得:),,2,1)(1,0(~n i N X i =-σμ,由2χ分布的定义得:)(~)(2212n Xni iχσμ∑=-.【例3】设总体服从参数为λ的指数分布,分布密度为⎩⎨⎧≤>=-0,00,);(x x e x p x λλλ求X D X E ,和2ES .分析:利用已知指数分布的期望、方差和它们的性质进行计算.解:由于),,2,1(/1,/12n i DX EX i i ===λλ,所以λ1)(1)1(11===∑∑==n i i n i i X E n X n E X E ;21211)(1)1(λn X D nX n D X D ni i n i i ===∑∑==; 221212)1(111)(11])(11[λλ-=⋅-=-=--=∑∑==n n n n X D n X X n E ES n i i n i i .【例4】设总体)4,(~μN X ,n X X X ,,,21 是取自总体的简单随机样本,X 为样本均值.问样本容量n 取多大时有:(1)1.0)(2≤-μX E ;(2)95.0}1.0{≥≤-μX P .解:(1)要使1.0/4/)()()(2≤===-n n X D X D X E μ,即有40≥n ,故取40=n .(2)由中心极限定理,要使)05.0(}4/1.0)(/{}1.0{n n X D X P X P Φ≈≤-=≤-μμ95.01)05.0(2)05.0(≥-Φ=-Φ-n n ,即有64.1536,96.105.0,975.0)05.0(≥≥≥Φn n n ,故取1537=n .。

概率论与数理统计第5章-大数定律和中心极限定理

概率论与数理统计第5章-大数定律和中心极限定理

DX } 1
(2
DX DX
)2

3 4

例 1.2 设随机变量 X ~ P(9) ,试根据切比雪夫不等式 估计概率 P{X 19}. 解 由于 X ~ P(9) ,所以 EX DX 9 ,且
P{X 9 10} P{X 1} 0 , 故有 P{X 19} P{X 9 10}
P{ X 9 10} 9 0.09 . 102
例 1.3 设随机变量 X ,Y 独立同分布,且 D(X ) 2 ,
试根据切比雪夫不等式估计概率 P{ X Y 2} .
解 由于 X ,Y 独立同分布,所以 E( X Y ) 0 ,且
D(X Y ) DX DY 4
lim
n
FYn
(
x)

(
x)

1
2
x

e
t2 2
dt

x

(,
)


【注 1】定理 2.1 称为列维—林德伯格中心极限定理,也 称为独立同分布随机变量序列的中心极限定理.
【注 2】由定理 2.1 表明,当 n 充分大时, FYn (x) (x) ,
近似
n
近似
即得Yn ~ N (0,1) ,从而有 Xi ~ N (n, n 2 ) .
P{ X Y 2} 1 D(X Y ) 1 ,
22
2
二、大数定律(了解) 1.相关概念
定义 1.1 设有随机变量序列 X1, X 2 ,L , X n ,L ,如果
存在常数 a ,使得对任意的 0 ,有
lim P{
n
Xn
a
}1,

概率论-第5章 大数定律及中心极限定理

概率论-第5章 大数定律及中心极限定理

§1 大数定律
一、问题的引入
生产过程中的 字母使用频率 废品率 启示:从实践中人们发现大量测量值的算术平均值 有稳定性.
大量抛掷硬币 正面出现频率
§1 大数定律
一、问题的引入
大数定律的概念 概率论中用来阐明大量随机现象平均结果的 稳定性的一系列定理,称为大数定律(law of large number)
§2 中心极限定理
即考虑随机变量X k (k 1, n)的和 X k的标准化变量
k 1 n
Yn
X
k 1
n
k
E ( X k )
k 1 n
n
D ( X k )
2
说明每一个随机变量都有相同的数学期望。
§1 大数定律
检验是否具有相同的有限方差?

Xn P
2
( na ) 1 2 2n
2 n
2
0 1 1 2 n
2
( na ) 1 2 2n
2
1 2 a , E ( X ) 2( na ) 2 2n 2 ) [ E ( X n )]2 a 2 . D( X n ) E ( X n
使得当 x a y b 时,
g( x , y ) g(a , b)பைடு நூலகம் ,
§1 大数定律
于是 { g( X n , Yn ) g(a, b) }
{ X n a Yn b }
X n a Yn b , 2 2
§2 中心极限定理
自从高斯指出测量误差服从正态分布之后,人 们发现,正态分布在自然界中极为常见.
如果一个随机变量是由大量相互独立的随机因 素的综合影响所造成,而每一个别因素对这种综合 影响中所起的作用不大. 则这种随机变量一般都服 从或近似服从正态分布. 现在我们就来研究独立随机变量之和所特有 的规律性问题.

5.2中心极限定理

5.2中心极限定理

E ( X ) np 1000 0.05 50 ,
D( X ) np(1 p) 50 0.95 47.5 ,
由D-L中心极限定理, X ~ N (50, 47.5) ,
P{40 X 60} Φ(
60 50 47.5
) Φ(
40 50 47.5
第五章
1
在数学中大家都注意到这样的现象:有时候一个 有限的和很难求, 但一经取极限由有限过渡到无限, 则问题反而好办. 例如, 若对某一x,要计算和
x2 x3 xn Sn ( x ) 1 x , 2! 3! n!
则 当 n 很 大 时 , 很 难 求 S n ( x ) , 而一经取极限,则有
, 解 设一年内死亡的人数为X,则 X ~ B(10000 0.006) ,
由D-L中心极限定理, X ~ N (60, 60 0.994) ,
(1) P{10000X 1200000 P{ X 120} }
P{
X 60 59.64

120 60 59.64
} 1 (
简单的结果
lim S n ( x ) e .
x n
x 利 用 这 个 结 果 ,当 n 很 大 时 ,可 以 把 e 作 为 S n ( x )
的近似值.
2
在 概 率 论 中 也 存 在 类 似 的 情 况 :如 果 X 1 , X 2 ,, X n 是 一 些 随 机 变 量 , 则 X1 X 2 X n 的 分 布 一 般 很 复 杂 ,因 而 自 然 会 问 :能 否 利 用 极 限 的 方 法作 近 似 计 算 ?
}
(2) (1) 0.8185 .

中心极限定理

中心极限定理
i
160
32 1 ( 1.77) (1.77) 0.96
1.77}
即至少有150名员工通过这种资格考试的概率 为0.96.
例4. 甲、乙两个剧院在竞争1000名观众.假设每 个观众完全随意地选择一个剧院,且观众选择剧 院是彼此独立的,问每个剧院应设多少个座位,才 能保证因缺少座位而使观众离去的概率小于 1%?
X
i 1 n
n
np(1-p)=250.995
i
np
np (1 p )
3 np } np (1 p )
5 5 i 1 P{ } 25 0.995 25 0.995 25 0.995 (1) ( 1) 2 (1) 1 0.6826
现在我们就来研究独立随机变量之和所 特有的规律性问题. 当n无限增大时,这个和的极限分布是 什么呢?
在什么条件下极限分布会是正态的呢?
由于无穷个随机变量之和可能趋于∞, 故我们不研究n个随机变量之和本身而考虑 它的标准化的随机变量
Yn
X
k 1
n
k
E ( X k )
k 1 n
n
Var ( X k )
这一讲我们介绍了中心极限定理 中心极限定理是概率论中最著名的结果 之一,它不仅提供了计算独立随机变量之和 的近似概率的简单方法,而且有助于解释为 什么很多自然群体的经验频率呈现出钟形曲 线这一值得注意的事实. 在后面的课程中,我们还将经常用到中心 极限定理.
复习 这一章的内容为切比雪夫不等式,大数定理和 中心极限定理,要了解各定理的内容与思想, 会利用切比雪夫不等式和中心极限定理估计和 近似计算一些事件的概率
i
X
25

第五章大数定律及中心极限定理

第五章大数定律及中心极限定理
n
那么我们就称随机变量序列{Yn,nZ+}依概率收 P 敛到随机变量Y ,记为 Yn Y.
依概率收敛的本质是Yn对Y的绝对偏差小于任一给 定量的可能性将随着n的增大而增大.

特当Y为退化分布时,即P{Y=a}=1,则称序列依概 P 率收敛于a,即 Yn a
如果把极限放到绝对值上,即差值的极限小于任意正数的概率为1则称 为几乎处处收敛
9/41
§5.1 大数定律

依概率收敛包含了依分布收敛,反之不成 立,依分布收敛是弱收敛 所谓“弱大数定律”,是指上述收敛为依 概率收敛(in probability), 所谓“强大数定律”,是指上述收敛为 “几乎必然收敛”(almost surely/with probability one)
10/41


大量试验后事件发生的频率nA/n稳定于一个常数,即概 率 大量试验的算术平均值稳定于数学期望


大数定律就是以确切的数学形式表达了大量重复 出现的随机现象的统计规律性

即频率的稳定性和算术平均值的稳定性
2/41
§5.1 大数定律
弱大数定理 1(契比雪夫定理的特殊情况) 设随机变量X1, X2,..., Xn,...相互独立, 且具有相同 的数学期望和方差: E(Xk)=m, D(Xk)=s2(k=1,2,...), 作 前n个随机变量的算术平均值


§5.1 大数定律
上述定理中要求随机变量X1,X2,...的方差存在. 但这些随机变量服从相同分布的场合, 并不需要这 一要求, 我们有以下的定理.
弱大数定理(辛钦定理)
设随机变量X1,X2,...,Xn,...相互独立, 服从同一 分布, 且具有数学期望E(Xk)=μ (k=1,2,...), 则对于任 意正数, 有

第五章 大数定律与中心极限定理

第五章 大数定律与中心极限定理

应用该定理时,需要找出独立同分布的随机变量序 应用该定理时 意 (2)应用该定理时 需要找出独立同分布的随机变量序 列以及它们的期望和方差,再应用正态分布的有关计 列以及它们的期望和方差 再应用正态分布的有关计 算方法. 算方法
该定理表明,只要 n 比较大,随机变量 该定理表明, 比较大,
Yn − nµ nσ
1 n limP ∑Xi − µ < ε =1 n→∞ n i=1
这一定理使我们关于算术平均值的法则有了理论依据。 这一定理使我们关于算术平均值的法则有了理论依据。 在不变的条件下重复测量n 假设要测量某一物理量 µ,在不变的条件下重复测量 是不完全相同的, 次,得到的观测值 x1 , x2 ,L, xn 是不完全相同的,这些 数据可以看作是有相同期望和方差的n个随机变量 数据可以看作是有相同期望和方差的 个随机变量 X 1 , X 2 ,L, X n 的试验数据。 的试验数据。
m = 0,1,2,...,n
定理(列维 林德贝格定理(i.i.d下中心极限定理 林德贝格定理(i.i.d下中心极限定理) 定理(列维—林德贝格定理(i.i.d下中心极限定理)) 为独立同分布序列, μ,方差 设X1,X2,…,X n,…为独立同分布序列,期望μ,方差 ,X 为独立同分布序列 期望μ, 则当n充分大时, σ2>0, 则当n充分大时,
∑X 近似服从N(nµ , nσ
所以
i=1 i
n
2
)
∑X − nµ
i=1 i
n

近 服 N(0,1) 似 从
limP{ i=1
n→∞
∑X − nµ
i
n

≤ x} =Φ(x)

(1)一般地 只要 比较大 就可应用以上定理 一般地,只要 比较大,就可应用以上定理 一般地 只要n比较大 就可应用以上定理;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7
林德贝格定理—勒维 (i.i.d下中心极限定理)强调
X1,X2,…,X n,…为独立同分布序列,期望μ ,方差 σ 2>0, 那么当n充分大时,
X 近似服从 N (n , n
所以
i 1 i
n
2
)
X
i 1
n
i
n
近似服从 N (0,1)
n
n
注 意
lim { i 1
X
n
16
• 进一步的研究表明:Liapunov中心极限定理还 不是这类问题的最一般结果。历史上,人们在 长达两个世纪的时间里,曾专注于所谓“独立 和的分布函数向正态分布收敛的最普遍条件”, 以至于有关这部分问题的研究成了那个时期概 率论研究的中心课题,中心极限定理便是因此 而得名。 • 现在,这个问题可以说从某种意义上讲已经得 到了最后的解决。1922年,Lindeberg提出了一 个充分条件(Lindeberg条件);1935年, Feller进一步指出,在某种情形下,这个条件也 是必要的,这样就明确了向正态分布收敛的充 要条件。但本书中我们不展开相关问题的具体 讨论。
i 1 n
显然这种估计方法太保守, 我们可以考虑用概率论的方法重新进行估计。 因为: 0.5 105 E z i 0 , D z i 3
10
此时可以假定 z i 相互独立,且 n 10000较大, 所以应用 Lindeberg -Levy 中心极限定理有: n z i n n i 1 P z i k n P k k n i 1

x
e
t2 2
dt 恒成立,
4
n n X i ~ N E X i , D X i , i 1 i 1 i 1 所以,概率论中论证随机变量和的极限分布是 正态分布的一系列定理统称为中心极限定理; (2)中心极限定理的结论描述的总是分布函数序列 Fn ( x) PYn x收敛于标准正态分布的情况; (3)不同的中心极限定理研究了分布函数序列 Fn ( x) PYn x不同的收敛条件。
n
5
几个常见的中心极限定理。
定理 5.3.1 设随机变量 X 1 , X 2 , , X n , 相互独立, 服从同一分布,且具有数学期望和方差: E ( X k ) , D( X k ) 2 0 , (k 1,2, ) ,
n X k E X k k 1 k 1 记 Yn n D X k k 1 则恒成立
n
lim P n x
1 2

x

e
t2 2
dt
19
这个定理便是 Bernoulli 试验场合下的中心极限定理。 关于这一古典结果在各种场合下的推广, 构成了我们所研究的一系列中心极限定理。
上述定理的结果表明:二项分布的极限分布是正态分布。 因此,当 n 充分大时,若随机变量 n A ~ B(n, p) , 则近似地有: n A ~ N np, np(1 p) , 于是我们可以利用正态分布近似地计算形如 Pa n A b 的概率。 事实上,若记 np , np(1 p) 2 ,则有 Pa n A b
3
12
例.用机器包装味精,每袋味精净重为随机变量,期望值为100
克,标准差为10克,一箱内装200袋味精,求一箱味精净重大 于20500克的概率?
解: 设一箱味精净重为X,箱中第i袋味精净重为Xi,(i=1,2,…,200)
则 且 X1,X2,…,X200独立同分布, EXi=100, DXi=102=100,
X Xi
i 1
200
由独立同分布的中心极限定理得:
X近似服从正态分布,且EX=∑EXi=200EXi=20000, DX=200DXi=20000, 所求为P(X>20500)= 1-P(X≤20500)
1 (

20500 20000 20000
) 1 ( 3.54 )
n
X
k 1
n
k
n
n

2 定理 5.3.1 称为林德贝格——勒维(Lindeberg-Levy) 中心极限定理,也称为独立同分布的中心极限定理。 证明略。
n
lim PYn x
1

x
e
t2 2
dt
(5.3.1)
6
• Lindeberg-Levy中心极限定理有着非常广 泛的应用。在实际问题中,只要足够大, 便可以把独立同分布的随机变量之和当 作是正态随机变量来处理。 • 这种做法在数理统计中使用得非常普遍, 当处理大样本问题时,它将作为一个非 常重要的工具。
X
i 1
n
i
D ( X i )
i 1
2 , B n k2 , k 1
n
若存在 0 ,使得当 n 时, 1 n 2 E X k k 0 ,则恒成立 2 Bn k 1


x
2 定理 5.3.2 称为李雅普诺夫(Liapunov)中心极限定理。 证明略。

b
a
e
2 2
d
20
在这里,顺便澄清一个概念。在前面章节的讨论中, 我们曾学习过二项分布的泊松逼近。 当时,泊松分布虽然是作为二项分布的极限分布而引入的, n 但极限过程是: np , n 而现在所说的“二项分布的极限分布是正态分布” n 这一结论涉及的极限过程是: p是常数 。
15
定理含义分析
• 从理论上揭示了正态分布的形成机制:如果某一 个量的变化是由大量微小的、相互独立的随机因 素综合作用的结果,而且这些随机因素中没有任 何一个是起主导作用的,那么,这个量就是一个 服从正态分布的随机变量,至少它近似地服从正 态分布。这种机制在经济问题中是常见的,当我 们对一些经济问题进行定量分析时,往往假定在 主要因素的影响之外,其它各种因素的影响可以 用一个服从正态分布的随机变量来表示,其根据 即在于此。

k
1 2
k
e
x2 2
dx (k ) (k ) 2 (k ) 1
11
题解续
当 k 3 时有: P 0.866 103 99.7% 即我们能以 99.7%的概率断言:
1 0.866 10 。这个结果只是前面上限估计的 。 60 • 历史上,误差分析是概率论的重要生长点之一。19世纪 初,德国数学家Gauss正是在研究测量误差时引进了正 态分布并发展了具有广泛应用的最小二乘法,至今这仍 是概率论与生产实际具有广泛联系的领域之一。
上节主要内容回顾 1.大数定律的含义。 2.引理 3.定理 5.2.1 4.定理5.2.2 5.定理5.2.3 6.定理应用
1
§5.3 中心极限定理
• 自从德国数学家Gauss指出测量误差服从正态分 布之后,人们发现,正态分布在自然界中极为常 见。例如炮弹的弹着点服从正态分布,人的许多 生理特征诸如身高、体重等也服从正态分布。 • 观察表明,如果一个量是由大量相互独立的随机 因素综合作用的结果,而每一个随机因素在总的 结果中所起的作用又非常微小。 • 则这个量通常都服从或近似服从正态分布。由此 产生了有关中心极限定理的研究。
17
定理5.3.3
定理 5.3.3 若 n A 是随机变量序列,且 n A ~ B(n, p) , n A np ,则恒成立 (n 1,2,) ,记 n np(1 p)
n
2 定理 5.3.3 称为德莫佛 拉普拉斯 (De Moivre-Laplace)中心极限定理。


9
解 记 S xi , T y i ,
i 1 i 1 n
n
n
则 S T x i y i xi y i z i
i 1 i 1 i 1 i 1
n
n
n
就是我们要估计的总误差。
若以传统的方法估计:因为 z i 0.5 10 5 , 所以得: i z i n 0.5 105 0.05 ,
lim P n x
1

x
e
t2 2
dt
(5.3.3)
18
证 因为 n A ~ B(n, p) ,所以 n A 表示 n 重 Bernoulli 试验中事件 A 出现的次数。定义
1, 第k次试验出现A Xk 0, 否则 则有 n A X 1 X 2 X n 。由于 X 1 , X 2 ,, X n , 相互独立,
n
lim PZ n x
1

e
t2 2
dt
(5.3.2)
14
上述定理表明:在相当广泛的情形下, 无论随机变量 X k 服从怎样的分布, 只要 n 充分大,那么它们的和 就近似地服从正态分布。 这就是为什么正态分布是 实际问题中最常见的一种分布, 以及为什么正态分布在概率论中 占有非常重要地位的一个基本原因;
P k 1 a np np(1 p ) 1 2 n A np np(1 p ) e
x2 2

k2 np(1 p ) b np 1 2
t 2
k 2 k1

k2
k1
dx
都服从 0 1 分布,且有 E X k p, D X k p(1 p) , ( ) 因为 n n n X k E X k X k n n np k 1 k 1 k 1 A Yn n n np(1 p) n D X k k 1 所以应用 Lindeberg-levy 中心极限定理有:
相关文档
最新文档