纳米氧化锌的制备方法
纳米氧化锌的制备、表面改性及应用
纳米氧化锌的制备、表面改性及应用【摘要】纳米氧化锌是一种具有广泛应用前景的材料,其在光电器件、生物医药和环境保护领域均有重要应用。
本文将首先介绍纳米氧化锌的制备方法和表面改性技术,然后探讨其在光电器件中的应用和在生物医药领域中的潜力,最后讨论其在环境保护中的作用。
通过对这些方面的探讨,可以更好地了解纳米氧化锌在不同领域的应用和价值,同时也展望了其未来在科学研究和工程应用中的发展方向和趋势。
纳米氧化锌的研究不仅可以促进材料科学的发展,还有望为解决当下社会面临的环境和健康问题提供新的解决方案。
【关键词】纳米氧化锌、制备、表面改性、应用、光电器件、生物医药、环境保护、应用前景、研究展望1. 引言1.1 纳米氧化锌的研究背景纳米氧化锌是一种重要的纳米材料,在过去几十年里受到了广泛的研究。
纳米氧化锌具有较大的比表面积、优异的光学、电学性能和良好的化学稳定性,因此被广泛应用于各个领域。
纳米氧化锌的研究背景主要包括以下几个方面:纳米氧化锌的独特性能和结构使其成为一种优异的光电材料,能够广泛应用于光电器件、传感器等领域;纳米氧化锌具有良好的生物相容性和生物活性,在生物医药领域具有很高的应用价值;纳米氧化锌还具有良好的光催化性能和抗菌性能,在环境保护领域也具有广阔的应用前景。
对纳米氧化锌的研究具有重要的意义,能够推动材料科学和应用领域的发展。
1.2 纳米氧化锌的研究意义纳米氧化锌具有优异的光电性能,具有较高的光吸收率和导电性,使其在光电器件领域有着广泛的应用前景。
利用纳米氧化锌可以制备高效的太阳能电池、光电探测器等器件,提高器件的性能和稳定性。
纳米氧化锌具有良好的生物相容性和生物活性,被广泛应用于生物医药领域。
纳米氧化锌可以作为药物载体,具有控释和靶向释放的功能,可以用于治疗肿瘤、炎症等疾病,也可以用于生物成像和诊断。
纳米氧化锌还具有良好的催化活性和光催化性能,被广泛应用于环境保护领域。
纳米氧化锌可以用于水处理、空气净化等领域,去除有害物质和污染物,净化环境,保护生态。
纳米氧化锌的制备方法
纳米氧化锌的制备方法纳米氧化锌是一种具有广泛应用前景的纳米材料,在催化、光催化、光电子器件、生物医学和涂料等领域有着重要的应用价值。
本文将介绍几种常见的纳米氧化锌的制备方法,包括溶胶-凝胶法、热分解法、水热法和气相沉积法。
溶胶-凝胶法是一种常用的制备纳米氧化锌的方法。
其步骤如下:首先,将适量的锌盐溶解在溶剂中,例如乙醇、甲醇或水。
然后,加入适量的碱溶液用于调节pH值。
溶液中的锌离子和碱离子反应生成锌氢氧盐沉淀。
接下来,在适当的温度下,将沉淀进行热处理。
最后,通过分散剂和超声处理将沉淀分散成纳米颗粒。
该方法制备的纳米氧化锌具有粒径均匀、可控性强、纯度高等优点。
热分解法是一种制备纳米氧化锌的简单、经济的方法。
该方法以有机锌化合物或无机锌化合物为前驱体,通过热分解反应生成纳米氧化锌。
常见的有机锌化合物包括锌醋酸盐、锌乙酸盐等,无机锌化合物包括氯化锌、硝酸锌等。
首先,将前驱体在有机溶剂中溶解,然后通过热解、煅烧等方法将前驱体转化为氧化锌纳米颗粒。
该方法制备的纳米氧化锌具有晶体结构好、粒径可调节等优点。
水热法是一种常用的制备纳米氧化锌的方法。
其步骤如下:首先,将适量的锌盐和氢氧化物溶解在水中,形成混合溶液。
然后,将混合溶液加入到压力容器中,在一定的温度和压力下进行加热反应。
反应完成后,通过离心和洗涤的方式将沉淀分离,然后经过干燥处理得到纳米氧化锌。
该方法制备的纳米氧化锌具有粒径小、分散性好等优点。
气相沉积法是一种常用的制备纳米氧化锌的方法。
其步骤如下:首先,将适量的氧化锌前驱体溶解在有机溶剂中,形成溶液。
然后,将溶液填充到化学气相沉积设备中,并通过控制沉积温度、气体流量和时间等参数,使溶液中的前驱体在载气的作用下分解生成纳米氧化锌。
最后,通过对晶粒尺寸和形貌进行表征,得到纳米氧化锌的相关信息。
该方法制备的纳米氧化锌具有晶粒尺寸均匀、形貌可调节等优点。
综上所述,溶胶-凝胶法、热分解法、水热法和气相沉积法是几种常见的制备纳米氧化锌的方法。
纳米氧化锌的制备方法
纳米氧化锌的制备方法1。
方法步骤为:(1)氧化锌溶液配制:将氧化锌置入自身重量5~10倍、40℃~75℃的去离子水中,搅拌均匀制成氧化锌溶液;(2)充气反应:向氧化锌溶液通入CO₂气体,同时搅拌,加热升温到85℃~90℃,保温240~450分钟,然后停止通入CO₂气体和加热;(3)除水粉碎:将反应后的溶液滤除水后所得物在400℃以下温度进行烘干,然后粉碎;(4)焙烧:将粉碎物粉碎后再置于250℃~600℃环境下焙烧后获得纳米氧化锌。
2.化学法2。
1 固相法(1)碳酸锌法利用硫酸锌制得前驱物碳酸锌,在200℃烘1h,得纳米氧化锌初产品:经去离子水、无水乙醇洗涤,过滤,干燥可得纳米氧化锌产品.(2)氢氧化锌法利用硝酸锌制得前驱氢氧化锌,在600℃保持2h,高温热分解得纳米氧化锌。
2.2液相法(1)直接沉淀法在可溶性锌盐中加入沉淀剂后,当溶液离子的溶度积超过沉淀化合物的溶度积时,即有沉淀从溶液中析出。
沉淀经热解得纳米氧化锌。
常见的沉淀剂为氨水、碳酸铵、和草酸铵。
不同的沉淀剂,其反应生成的沉淀产物也不同,故其分解的温度也不同.此法操作简单易行,对设备要求不高,成本较低,但粒度分布较宽,分散性差,洗涤原溶液中阴离子较困难。
3。
溶胶—凝胶法实验原料和制备工艺醋酸锌,柠檬酸三铵,无水乙醇,保护胶,乳化剂,蒸馏水。
以醋酸锌为原料,柠檬酸三铵为改性剂,配置一定浓度的醋酸锌溶液,搅拌均匀后,置于恒温水槽中,在搅拌加热的条件下,均匀的加入无水乙醇,2h后醋酸锌完全溶解,生成氢氧化锌沉淀,然后加入适量的胶溶剂氨水,氢氧化锌沉淀消失,从而形成氢氧化锌溶胶,静止后变为氢氧化锌湿凝胶,将干燥后的氢氧化锌干凝胶置于马弗炉中煅烧之后,得到白色的纳米氧化锌粉末。
溶胶-凝胶法制备纳米氧化锌
目录1.选题的意义2.实验目的3.实验的方法手段4.可能获得的结果5.可能存在的问题和难题6.纳米氧化锌的应用7.发展前景8.参考文献溶胶-凝胶法制备纳米氧化锌一:选题的意义纳米氧化锌(ZnO)是一种面向21世纪的新型高功能精细无机产品,作为一种新型多功能无机材料,在很多领域有着广阔的应用前景,尤其是在与人类生存和健康密切相关的光催化降解有机物污染和抗菌方面有着独特的优势。
其粒子尺寸在1~100nm之间。
由于颗粒尺寸细微化,纳米氧化锌能产生其本体块状材料所不具有的表面效应、体积效应、量子尺寸效应和宏观量子隧道效应等,在磁、光、电、敏感等方面具有一些特殊性能。
纳米氧化锌主要应用在橡胶、油漆、涂料、印染、玻璃、医药、化妆品和电子等工业,作为抗菌添加剂、防晒剂、光催化剂、气体传感器、图像记录材料、吸波材料、导电材料、压电材料、橡胶添加剂等。
因为纳米氧化锌的优越的性能,它在我们社会生产以及日常生活中起着越来越突出的作用,并对社会发展和社会进步有着不可忽视的意义。
本文结合国内有关溶胶-凝胶法制备纳米氧化锌方面的研究论文,设计了一种以醋酸锌为前驱物,草酸为络合剂,柠檬酸三铵为表面改性剂,无水乙醇、去离子水为溶剂,用溶胶--凝胶法制备纳米氧化锌的最优工艺过程,介绍、分析了溶胶--凝胶法制备纳米氧化锌的原理、工艺以及影响氧化锌粉体粒度、形貌及分散性的因素。
并介绍了纳米氧化锌的应用与发展前景。
二:实验目的1:了解溶胶—凝胶法制备纳米氧化锌的过程方法2:了解纳米氧化锌的优越性能及实际应用已知:氧化锌,俗称锌白,分子式为ZnO。
纳米氧化锌为白色或微黄色晶体粉末,属六方晶系纤锌矿结构,晶格常数为a=3.24×10-10m,c=5.19×10-10m,为两性氧化物,密度为5.68g/cm3,熔点为1975℃,溶于酸和碱金属氢氧化物、氨水、碳酸铵和氧化铵溶液,难溶于水和乙醇,无味,无毒,无臭,在空气中易吸收二氧化碳和水。
浅析纳米氧化锌的制备及应用现状
质中,与基料没有结合力,易造成界面 缺陷,导致材料的性能下降。
故表面改性在纳米氧化锌的应用过 程中起着至关重要的作用。表面改性是
指采用物理、化学、机械等方法,来处 理纳米颗粒表面有目的地改变纳米颗粒 表面的物理化学性质,以满足其不同应 用领域的需求。[1]
2. 纳米氧化锌的制备方法概述
制备纳米氧化锌主要有三种方法: 纳米微粒。
有效的方法。
直接沉淀法所得到的产品粒径分
优点:对环境和人的毒害很小;反
布比较窄、分散性也很好,所以工业 应先驱体易得,成本低,制品晶粒结
化被大为看好。
晶完好、无团聚、分散性好。[1]
优点:设备要求低、工艺主要是通过制备两种微
缺点:后处理时,除去沉淀剂阴离 乳液:含盐离子乳液和含沉淀剂乳液,
在不同的条件下,氧化锌晶体呈现 出三种类型:纤锌矿结构、岩盐型结构 和闪锌矿结构。在常温常压条件下,六 方纤锌矿结构形式的氧化锌晶体的热力 学最为稳定,故研究该结构对于调控该 晶体生长具有重要意义。
纤锌矿结构的氧化锌晶体模型示意图
中国粉体工业 2018 No.5 11
纳米氧化锌的高表面能,使其处于 热力学非稳定状态,极易聚集成团,从 而会影响颗粒的应用效果;表面亲水疏 油,呈强极性,难于均匀分散在有机介
1. 纳米氧化锌概述
纳米氧化锌作为一种新型多功能无 机材料,粒子尺寸介于 1 ~ 100nm,由 于其比表面积大,表面活性较大,故呈 现出表面效应、体积效应、量子隧道效 应等特性。纳米氧化锌热稳定性和化学 稳定性较好,具有无毒、非迁移性、低
介质常数、高透光率、光催化性能、荧 光性、压电性、吸收和散射紫外线的能 力等特点,使其作为半导体、压电材料、 催化材料、紫外屏蔽等材料,在陶瓷、 纺织、化妆品、电子、建材、环境等行 业中得到广泛的应用与研究。[1]
纳米氧化锌的制备实验报告
纳米ZnO2的制备实验报告班级:应091-4组号:第九组指导老师:翁永根老师成员:任晓洁 2邵凯 2孙希静 2【实验目的】1.了解纳米氧化锌的基本性质及主要应用2.通过本实验掌握纳米氧化锌的制备方法3.对于纳米氧化锌的常见产品掌握制备原理和方法,并学会制备简易产品。
4.通过本实验复习并掌握EDTA溶液的配制和标定,掌握配位滴定的原理,方法,基准物质的选择依据以及指示剂的选择和pH的控制。
5.掌握基础常用的缓冲溶液的配制方法和原理。
6.加深对实验技能的掌握及提高查阅文献资料的能力。
【实验原理】1. 超细氧化锌是一种近年来发展的新型高功能无机产品,晶体为六方结构,其颗粒大小约在1~100纳米。
纳米氧化锌由于颗粒小、比表面积大而具有许多其表面电子结构和晶体结构发生变化,产生了宏观物体所不具有的特殊的性质,呈现表面效应、体积效应、量子尺寸效应和宏观隧道效应以及高透明度、高分散性等特点。
近年来发现它在催化、光学、磁学、力学等方面展现出许多特殊功能,使在陶瓷、化工、电子、光学、生物、医药等许多领域有重要的应用价值,具有普通氧化锌所无法比较的特殊性和用途。
纳米氧化锌在纺织领域可用于紫外光遮蔽材料、抗菌剂、荧光材料、光催化材料等。
纳米氧化锌一系列的优异性和十分诱人的应用前景。
2. 纳米氧化锌的制备方法主要有:水热法,均相沉淀法,溶胶一凝胶法,微乳液法,直接沉淀法3. 本工艺是将锌焙砂(主要成份是ZnO,主要伴生元素及杂质为铁,铜,铅,镍,铬,镍,此外,还含有其它微量杂质,因而用锌焙砂直接酸浸湿法生产活性氧化锌,必须利用合理的酸浸及除杂工艺,分离铅,脱铁、锰,除钙、镁等重金属)与硫酸反应,生产出粗制硫酸锌,加高锰酸钾、锌粉等,经过提纯得到精制硫酸锌溶液后,再经碳化母液沉淀,制得碱式碳酸锌,最后经烘干,煅烧制成活性氧化锌成品。
4. 氧化锌含量的测定采用配位滴定法测定,用NH3-NH4Cl缓冲溶液控制溶液pH≈10,以铬黑T为指示剂,用EDTA标准溶液进行滴定,其主要反应如下:在氨性溶液中:Zn2++4NH3⇋Zn(NH3)42+加入EBT(铬黑T)时:Zn(NH3)42++EBT(蓝色)⇋Zn-EBT(酒红色)+4NH3滴定开始-计量点前:Zn(NH3)42++EDTA⇋Zn-EDTA+4NH3计量点时:Zn-EBT(酒红色)+EDTA⇋Zn-EDTA+EBT(蓝色)5.活性ZnO的应用:因为活性ZnO具有抗菌,除臭以及除异味等多种作用,本实验制备系列产品,看是否具有除异味的功效,在活性氧化锌中掺杂一定量的银,对常见皮肤病有一定的治疗功效,制备治疗脚气的产品。
纳米氧化锌材料的制备
纳米氧化锌材料的制备纳米氧化锌材料近年来受到广泛关注,因其在光电、催化、生物、传感等领域具有重要应用前景。
本文将介绍纳米氧化锌材料的制备方法,包括溶液法、固相法、气相法等,同时讨论不同制备方法对纳米氧化锌材料的形貌、结构、性质等方面的影响。
一、溶液法制备纳米氧化锌材料溶液法是一种较为常见的纳米材料制备方法,其操作简单、成本相对较低。
在溶液法中,常用的制备纳米氧化锌材料的方法包括沉积-沉淀法、水热法、溶胶-凝胶法等。
下面将逐一介绍这些方法。
1. 沉积-沉淀法:该方法主要是通过沉积-沉淀过程制备纳米氧化锌材料。
首先将锌盐(如氯化锌、硫酸锌等)按一定比例溶解于溶剂中,然后加入碱液或沉淀剂,生成氧化锌沉淀。
最后通过离心、洗涤和干燥等步骤得到纳米氧化锌材料。
该方法制备的纳米氧化锌材料通常具有较大的比表面积和较好的分散性。
2. 水热法:水热法是一种在高温高压条件下制备纳米氧化锌材料的方法。
将锌盐和碱液混合后,加入反应容器中,在高温水热条件下反应一定时间后,即可得到纳米氧化锌材料。
水热法制备的纳米氧化锌材料形貌较为均一,具有较高的结晶度和比表面积。
3. 溶胶-凝胶法:溶胶-凝胶法是一种溶胶和凝胶形成的过程,通过溶胶状态和凝胶状态发生的变化来制备纳米氧化锌材料。
在该方法中,首先通过将锌盐在溶剂中溶解制备溶胶,然后加入适量的沉淀剂或表面活性剂,形成凝胶。
最后通过干燥或煅烧处理得到纳米氧化锌材料。
溶胶-凝胶法制备的纳米氧化锌材料通常具有较好的孔隙结构和较高的比表面积。
二、固相法制备纳米氧化锌材料固相法是一种通过在固相反应中制备纳米氧化锌材料的方法。
常见的固相法包括热分解法、高能球磨法等。
1. 热分解法:热分解法是一种通过在高温下使固态反应发生,从而制备纳米氧化锌材料的方法。
该方法在惰性气氛中将锌源与氧源加热,其反应过程中生成气体或溶于惰性气氛中从而得到纳米氧化锌材料。
热分解法制备的纳米氧化锌材料形貌较为均一,可以调控成不同形状的颗粒。
溶胶凝胶法制备纳米氧化锌新工艺
如需进一步优化制备过程中的关键参数,提高产物的质量;还需要研究和开 发更高效、环保的溶剂体系;同时需要深入研究纳米材料的结构与其性能的关系, 以便实现对纳米材料性能的精确调控。
五、总结
溶胶凝胶法作为一种温和、环保的制备技术,在制备纳米氧化锌过程中展现 出显著的优势。通过对制备过程的精细控制,不仅可以获得高纯度、粒径小且分 布窄的纳米氧化锌,还可以实现大规模生产。这为纳米氧化锌在太阳能电池、光 催化等领域的广泛应用提供了可能。尽管溶胶凝胶法制备纳米氧化锌仍面临一些 挑战,但随着技术的不断进步和研究的深入开展,我们有理由相信这一新工艺将 在未来的材料科学领域中发挥更大的作用。
溶胶凝胶法制备纳米氧化锌新工艺
目录
01 一、溶胶凝胶法的基 本原理
02
二、纳米氧化锌的制 备过程
03 三、溶胶凝胶法制备 纳米氧化锌的优势
04 四、应用前景与挑战
05 五、总结
06 参考内容
溶胶凝胶法是一种广泛应用于材料科学和化学领域的制备技术,其具有制备 过程相对温和、产品纯度高、粒径小且分布窄等优点。近年来,采用溶胶凝胶法 制备纳米氧化锌作为一种高效、环保的新工艺,受到了科研人员和产业界的广泛。
2、调节剂的种类和加入量:调节剂可以调节溶液的pH值、粘度等性质,从 而影响纳米氧化锌的形貌和尺寸。例如,加入适量的氢氧化钠可以调节溶液的pH 值,促进氢氧化锌的形成;而加入适量的氨水则可以抑制氢氧化锌的生长,获得 更细小的纳米氧化锌。
3、热处理过程:热处理过程是溶胶凝胶法制备纳米氧化锌的重要环节之一。 通过控制热处理温度和时间,可以进一步调整纳米氧化锌的结构和性能。例如, 高温热处理可以促进纳米氧化锌的晶格发育,提高其结晶度;而低温热处理则可 以抑制晶格发育,获得具有非晶结构的纳米氧化锌。
氧化锌制备方法
将0.005 mol·L-1的NaOH乙醇溶液缓慢滴加到含有0.005 mol·L-1的Zn(NO3)2·6H2O乙醇溶液中.将混合溶液转移至高压反应釜中, 在130℃下反应12 h, 将反应产物经二次去离子水、乙醇等洗涤后, 在130 摄氏度下干燥,即可获得纯ZnO纳米棒.在ZnCl2 溶液(0.20 mol/L) 中加入一定量的SDS, 搅拌下于65 ℃将Na2CO3 溶液滴加到该溶液中(120 滴/min, n(Na2CO3)/n(ZnCl2) = 2),恒温反应0.5 h.将反应液倒入聚四氟乙烯罐中, 在150~160 ℃进行水热反应12 h, 自然冷却后离心分离, 用去离子水洗涤到无水Cl−离子, 再用无水乙醇洗涤2~3 次, 50 ℃真空干燥2 h, 300 ℃焙烧3 h, 即制得ZnO 纳米管.将0.1 L0.1 mo l/ L二水合醋酸锌的乙醇溶液置于带冷凝管和干燥管的0.5 L 圆底烧瓶中, 在80 ℃搅拌3 h, 不断收集冷凝物, 最后可获得0.04 L 中间物和0.06 L 冷凝物.将中间物迅速用冷的绝对乙醇稀释至0.1 L, 冷至室温, 得0.1 mol/ L 中间产物.氨水沉淀法制备纳米氧化锌在水——乙醇介质中用氨水沉淀法制备出了纳米Zn(OH)2和ZnO材料, 讨论了介质组成对沉淀产物ZnO微粒的粒径范围及形貌的影响, 并研究出由Zn(OH)2分解为纳米ZnO的最佳干燥脱水条件为200℃、2h。
表明本方法不需高温处理就可得到颗粒均匀且分布窄的ZnO纳米材料, 粒径可达17~6nm。
一、试剂与仪器主要原料为氯化锌、无水乙醇、氨水等, 均为分析纯试剂。
仪器为微型滴定管、磁力搅拌器、恒温干燥烘箱。
二、试验方法以水——乙醇为溶剂, 其中醇的体积含量分别为0%(去离子水)、20%、60%、100%。
将氯化锌、氨水配制成不同浓度的溶液(不同浓度是多少?)。
溶胶-凝胶法制备纳米氧化锌
溶胶-凝胶法制备纳米氧化锌摘要:纳米氧化锌是一种新型高功能精细无机材料,在光电器件、化工、医药等众多方面有着广泛的应用。
本文结合国内有关溶胶-凝胶法制备纳米氧化锌方面的研究论文,设计了一种以醋酸锌为前驱物,草酸为络合剂,柠檬酸三铵为表面改性剂,无水乙醇、去离子水为溶剂,用溶胶--凝胶法制备纳米氧化锌的最优工艺过程,介绍、分析了溶胶--凝胶法制备纳米氧化锌的原理、工艺以及影响氧化锌粉体粒度、形貌及分散性的因素。
关键词:溶胶-凝胶法纳米氧化锌工艺影响因素1 引言氧化锌,俗称锌白,分子式为ZnO。
纳米氧化锌为白色或微黄色晶体粉末,属六方晶系纤锌矿结构,晶格常数为a=3.24×10-10m,c=5.19×10-10m,为两性氧化物,密度为5.68g/cm3,熔点为1975℃,溶于酸和碱金属氢氧化物、氨水、碳酸铵和氧化铵溶液,难溶于水和乙醇,无味,无毒,无臭,在空气中易吸收二氧化碳和水。
纳米氧化锌是一种新型高功能精细无机粉料,其粒子尺寸在1~100nm之间。
由于颗粒尺寸细微化,纳米氧化锌能产生其本体块状材料所不具有的表面效应、体积效应、量子尺寸效应和宏观量子隧道效应等,在磁、光、电、敏感等方面具有一些特殊性能。
纳米氧化锌主要应用在橡胶、油漆、涂料、印染、玻璃、医药、化妆品和电子等工业,作为抗菌添加剂、防晒剂、光催化剂、气体传感器、图像记录材料、吸波材料、导电材料、压电材料、橡胶添加剂等[1]。
目前,纳米氧化锌的制备方法有很多,如沉淀法、微乳液法、溶胶- 凝胶法等,而溶胶--凝胶法因其制备均匀度高、纯度高及反应温度低、易于控制等优点,吸引了诸多的关注。
2 设计原理和反应原理1.设计原理:溶胶--凝胶法制备纳米氧化锌。
溶胶--凝胶法是将金属有机或无机化合物经过溶液水解、溶胶、凝胶而固化,再经热处理而形成氧化物或其他化合物粉体的方法,其过程是:用液体化学试剂或溶胶为反应物,在液相中均匀混合并进行反应,生成稳定且无沉淀的溶胶体系。
纳米氧化锌(水热法)
水热法制备氧化锌及其光催化性能研究
一、实验药品:硝酸锌、氢氧化钠、无水乙醇、十六烷基三甲基溴化铵
二、实验仪器:恒温加热磁力搅拌器、电热鼓风干燥箱、自镇流荧光高压汞灯、
722s可见光光度计
三、制备方法:
将4.507 g硝酸锌、2.5 g氢氧化钠和1.104 gCTAB在磁力搅拌下加入水溶液中
磁力搅拌2 h,溶液混合均匀后转移80 mL聚四氟乙烯内衬的高压反应釜中(填充比为70%),放入鼓风干燥箱中,在140℃下晶化2 h,待高压反应釜自然冷却后,用无水乙醇洗涤、离心分离,然后干燥即可得到白色ZnO。
四、因素考察:
(1) 摩尔比(OH-/ Zn):2:1、3:1、4:1、5:1、6:1
(2) 表面活性剂的添加量(mol/L):0、0.025、0.05、0.075、0.100、0.125
(3) 晶化时间:2 h、4 h、6 h、8 h、10 h
(4) 晶化温度:80 ℃、100 ℃、120 ℃、140 ℃、160 ℃
五、光催化降解实验
称取0.04 g的ZnO粒子,加入到150 mL、4 mg/L的罗丹明B溶液中,以450 W 高压汞灯为光源,采用722s型可见分光光度计测定罗丹明B溶液的吸光度。
其中,罗丹明B溶液最大吸收波长为554 nm,脱色率D=[(A0-A)/A0]×100%,A0 为光照前试样的吸光度,A为光照时间为t时试样的吸光度。
沉淀法合成纳米氧化锌
实验一均匀沉淀法制备纳米ZnO粉体
一、实验目的
熟悉均匀沉淀法制备纳米ZnO粉体的方法。
二、实验原理
均匀沉淀法是利用某一化学反应使溶液中的构晶离子由溶液中缓慢地、均匀地释放出来。
所加入的沉淀剂不直接与被沉淀组分发生反应,而是通过化学反应使沉淀剂在整个溶液中均匀地、缓慢地析出。
该法得到的粒子粒径分布较窄,分散性好,工业化放大被看好。
以硝酸锌为原料,尿素为沉淀剂制备纳米ZnO的反应方程式如下:
尿素分解反应
沉淀反应
热处理
三、实验仪器和药品
1.仪器
磁力搅拌器、电子天平、电热鼓风干燥箱、马沸炉、离心机、烧杯、玻璃棒、量筒、坩埚、烧瓶、球形冷凝管,胶管等
2.药品
硝酸锌、尿素、蒸馏水
四、实验步骤
1、按硝酸锌浓度0.1mol/L、尿素浓度0.4mol/L配置250mL混合溶液。
其中硝酸锌称取19.9g,尿素12g溶于蒸馏水中,总体积调为250mL,装入圆底烧瓶中。
2、将上述圆底烧瓶放入95℃的恒温水浴中,装置回流管,搅拌保温5h;
3、将所得溶液冷却后,放入离心机中离心分离,用蒸馏水洗涤2-3次;
4、再将所得沉淀放入烘箱干燥24~48h,烘箱温度保持60℃左右;
5、最后,将干燥后的样品放入马沸炉中煅烧4h,温度为450℃。
6、用紫外分光光度计检测其光催化效果。
五、思考题
1、均相沉淀法的原理?
2、用尿素作为沉淀剂与硝酸锌制备氧化锌粉末的原理?。
纳米氧化锌的物理制备方法
纳米氧化锌的物理制备方法
纳米氧化锌的物理制备方法主要包括以下几种:
1. 机械化学合成:通过球磨机对原料进行机械化学活化,合成前驱体粉末,再经过热处理得到纳米氧化锌。
这种方法可以生成直径在10~40nm范围内的氧化锌纳米颗粒。
2. 脉冲激光沉积(PLD):这是一种薄膜生长技术,利用激光照射使靶材烧蚀,烧蚀物最终沉积到衬底形成薄膜。
此法能制备与靶材成分一致的化合物薄膜。
3. 磁控溅射:通过高能粒子轰击靶材表面,使得靶材表面的原子或分子被溅射出来,并在衬底表面沉积形成薄膜。
4. 喷雾热解:将原料溶液通过喷雾嘴喷洒成雾状,在高温下进行热解,生成氧化锌纳米颗粒。
5. 等离子体合成:利用等离子体的高温和高活性,使得气体中的分子发生化学反应,生成氧化锌纳米颗粒。
6. 分子束外延(MBE):通过控制分子束的流量和能量,在衬底表面外延生长氧化锌薄膜。
这些方法各有特点,可以根据具体需求选择合适的方法来制备纳米氧化锌。
纳米氧化锌的制备及应用
纳米氧化锌的制备及应用
纳米氧化锌(ZnO)是一种重要的二维非金属半导体纳米材料,可应用于传感器、光电子器件、非线性光学器件、荧光粉及生物传感器,既可有很好的特性又可在大量生产中实现实际应用。
根据结构形态而定,纳米颗粒形状可分为板条状、线形、长针形、螺旋状、柱状等几种形状。
纳米氧化锌的制备常用的方法包括溶胶—凝胶法和溶胶—冻胶法,这些方法的共同优点是快速,成本低廉,两种获得的结果也比较可靠。
纳米氧化锌在功能材料上应用极为广泛,最突出的应用应该是其生物感应性和光催化的功能。
除此之外,它还可用于光有源器件、电机磁体及水净化行业。
纳米氧化锌还能释放出氧离子,并生成臭氧气体,同时能快速杀灭有害物质馒头,有助于保持室内空气某洁净,也可有效杀灭室内各种有害生物及耐热再生造纸领域的各种有害物质。
纳米氧化锌作为一种功能材料,越来越受到人们的关注和重视,制备出来的 ZnO具有锐利的照明和特殊物理化学功能,它可以用于传感器、光电子器件、非线性光学器件、荧光粉及生物传感器等广泛领域。
但是,由于其制备条件较复杂,而且ZnO相对较容易污染,这也成为ZnO纳米技术发展的瓶颈所在,需要进一步改善。
纳米氧化锌的制备实验报告
纳米氧化锌的制备实验报告一、实验目的1.学习纳米氧化锌的制备方法和过程;2.了解纳米氧化锌的物理化学特性;3.掌握实验室制备纳米氧化锌的方法和操作流程。
二、实验原理纳米氧化锌制备方法有多种,包括气体扩散法、热分解法、湿化学法、微乳法、流动注射法、溶胶-凝胶法等。
本实验采用的是化学共沉淀法,即将氧化锌溶液和硝酸钠溶液在适当温度下混合,并加入胶体保护剂,沉淀后用乙醇洗涤并干燥,即可得到纳米氧化锌粉末。
三、实验步骤1.准备工作:取一定量纯净的硝酸钠和氧化锌分别溶于去离子水中,制备成1mol/L的溶液。
2.混合溶液:将10ml氧化锌和10ml硝酸钠溶液分别加入50ml的去离子水中,加热到70℃,搅拌均匀。
3.加入保护剂:将1ml乙醇溶于0.1g聚乙烯吡咯烷酮中,加入上述混合液中并搅拌均匀。
4.沉淀:将上述混合溶液在95℃下搅拌加热3小时,待其冷却后,可以观察到白色的沉淀物。
5.洗涤:用乙醇进行反复洗涤,以去除沉淀物中的杂质。
6.干燥:将洗涤后的沉淀物放在烤箱中,烘干至恒温100℃,即可得到纳米氧化锌粉末。
四、实验结果1.显微镜下观察:从显微镜图片可以看到,制备出来的纳米氧化锌颗粒大小在20-50nm之间,颗粒呈现为球形或椭球形。
2.XRD分析:对纳米氧化锌进行XRD分析,得到的峰位分布与标准氧化锌相同,证明制备出的纳米氧化锌具有良好的结晶性。
3.红外光谱分析:对纳米氧化锌进行红外光谱分析,发现出现了氧化锌晶体结构的特征峰,在1097cm-1和475cm-1处分别出现了O-H和O-Zn-O的伸缩振动峰。
本实验使用化学共沉淀法制备出了具有良好结晶性和均匀粒径的纳米氧化锌粉末。
通过XRD和红外光谱分析,证明了制备出的样品纯度较高,结晶完整,符合预期结果。
六、实验感想通过本次实验,我对纳米材料的制备方法、物理化学特性和实验操作流程有了更清晰的认识。
实验过程中需要精细操作,注重每一步的流程控制和注意事项,否则会影响到结果的准确性。
实验室纳米氧化锌的制备方法
纳米氧化锌的制备方法
石先平
一.实验仪器
蒸发皿、胶头滴管、马弗炉、烧杯(100ml)量筒、玻璃棒、恒温水浴锅、三口烧瓶、分液漏斗、铁架台,橡皮塞、橡皮管、抽滤机、坩埚。
二.实验药品
硝酸锌、尿素、稀硝酸、去离子水、稀盐酸、碳酸氢钠、无水乙醇、氨水、硫酸锌、氢氧化钠、无水碳酸钠、七水合硫酸锌、烘干箱。
三.实验步骤
1.制备氧化锌
将硝酸锌和一定量的尿素放在坩埚里面充分研磨,然后倒入蒸发皿,加入一定量的的稀硝酸溶解,搅拌均匀后放入马弗炉中。
实验中,反应体系在研磨、搅拌时有淡淡的氨气味,表明在燃烧反应前有少量的尿素分解,放出氨气。
放入马弗炉后,在600℃下溶液迅速沸腾,蒸干后很快燃烧,放出大量黑黄色烟尘,有浓烈的
氨气味,反应化学方程式为:
燃烧前:CO(NH2)2+H2O=2NH3+CO2
燃烧后:ZN(NO3)2+CO(NH2)2+3O2=ZnO+4NO2+CO2+2H2O
2.制备纳米氧化锌
(1)氧化锌溶液的配置:将上一步制得的氧化锌取适量放入
100ml烧杯中,加入8倍氧化锌重量、60℃的去离子水,搅
拌均匀制成氧化锌溶液。
(2)充气反应:利用碳酸氢钠与稀盐酸反应生成的二氧化碳通入氧化锌溶液中,同时搅拌,用恒温水浴锅加热升温到
85℃~90℃,保温300分钟,然后停止通入二氧化碳气体
和加热。
(3)除水粉碎:将反应后的溶液用抽滤机进行抽滤,然后将所得物放在烘箱(400℃以下)中进行烘干,然后粉碎。
(4)焙烧:将粉碎物粉碎后用坩埚盛装,然后置于马弗炉(400℃)中焙烧,最终获得纳米氧化性。
纳米氧化锌的制备方法
纳米氧化锌的制备方法纳米氧化锌是一种具有广泛应用前景的纳米材料,可以用于光电子器件、生物医学材料、催化剂等领域。
下面将介绍几种制备纳米氧化锌的方法。
1. 水热法制备纳米氧化锌水热法是一种常用的制备纳米氧化锌的方法。
首先,将适量的锌盐(如硫酸锌、氯化锌)和适量的碱(如氢氧化钠、氨水)溶解在水中,得到适当浓度的锌溶液。
然后将此溶液倒入高压釜中,在适当的温度和时间条件下进行水热反应。
反应过程中,控制温度和时间可以调节所得纳米氧化锌的粒径大小。
反应完成后,用离心或其它分离技术将沉淀分离出来,并用纯水洗涤多次,最后在适当的温度下烘干即可。
2. 气相法制备纳米氧化锌气相法是一种高温下制备纳米氧化锌的方法。
常见的气相法包括热蒸发法、沉积法和氧化还原法。
其中,热蒸发法通常将金属锌通过热源加热,蒸发到气相中,然后将蒸发出的锌气与氧气或水蒸气反应生成氧化锌纳米颗粒。
沉积法则是通过将氧化锌前驱体溶解在有机溶剂中,然后通过溶剂蒸发或喷雾法将溶液中的氧化锌沉积在基底上。
氧化还原法是将金属锌与氧气或水蒸气反应生成氧化锌纳米颗粒。
3. 溶胶-凝胶法制备纳米氧化锌溶胶-凝胶法是一种将溶液中的前驱体通过水解和聚合反应形成氧化物凝胶的方法。
具体制备过程包括以下几步:首先,将适量的锌盐在溶剂中溶解,得到锌溶液。
然后添加适量的水解剂和保护剂,使得锌盐分解产生氢氧化键,并形成胶体溶液。
接着,胶体溶液经过酸碱调节,凝胶形成。
最后,将凝胶经过干燥和热处理,得到纳米氧化锌粉末。
4. 其他方法此外,还有一些其它方法可以制备纳米氧化锌,如溶剂热法、微乳液法、物理气相沉积法等。
这些方法也可以得到不同形貌和尺寸的纳米氧化锌材料。
总的来说,纳米氧化锌的制备方法多种多样,可以通过水热法、气相法、溶胶-凝胶法等不同的工艺进行制备。
每种方法都有其特点和适用范围,可以根据具体需求选择合适的制备方法。
纳米氧化锌的制备过程中需要控制反应条件,如温度、时间、pH值等,以获得所需的纳米颗粒大小和形貌。
纳米氧化锌的制备
颗粒大小为 100nm以下
实验结论
❖ 通过加热氯化锌和碳酸钠的研磨产物可以 得到纳米氧化锌粉体
❖ 纳米氧化锌的颗粒大小随加热温度的减小 而减小;在一定范围内随加热时长的增大 而减小;加热过程伴随NaCl可使氧化锌颗 粒变小
d = kλ /(β cosθ ) 可根据缝宽计算得到 ZnO颗粒大小
样品序号
加热温度/℃ 加热时间/h 加热前过滤 计算值/nm
1
1000
1
2
1000
3
3
1000
5
4
800
3
5
1100
3
6
1000
3
否
98.5
否
89.5
否
67.8
否
95.0
否
84.3
110.7
计算结果说明:1、在相同的加热时间下,随着温度的上升颗粒大小呈现减小的 趋势,但是大小变化此时不明显。
❖ 分别在800℃*、1000℃以及1100℃下加热 3h所得样品
❖ 在加热前过滤和加热后过滤所得样品(加 热条件均为1000℃下加热3h)
❖ 对所有这些样品进行XRD分析,对其中的 两个样品(*号标记)进行了SEM实验。
XRD测量结果
❖ 通过右图,利用布拉 格公式可确定样品为 纯度很高的ZnO
❖ 利用谢勒公式
❖ 实验目的:制备纳米氧化锌并研究实验条 件对结果的影响
❖ 实验方法:ZnCl2+Na2CO3=ZnCO3+2NaCl; ZnCO3=ZnO+CO2↑
❖ 测量方法:XRD(X光多晶衍射)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米氧化锌的制备方法
1.方法步骤为:
(1)氧化锌溶液配制:将氧化锌置入自身重量5~10倍、40℃~75℃的去离子水中,搅拌均匀制成氧化锌溶液;(2)充气反应:向氧化锌溶液通入CO₂气体,同时搅拌,加热升温到85℃~90℃,保温240~450分钟,然后停止通入CO₂气体和加热;(3)除水粉碎:将反应后的溶液滤除水后所得物在400℃以下温度进行烘干,然后粉碎;(4)焙烧:将粉碎物粉碎后再置于250℃~600℃环境下焙烧后获得纳米氧化锌。
2.化学法
2.1 固相法
(1)碳酸锌法
利用硫酸锌制得前驱物碳酸锌,在200℃烘1h,得纳米氧化锌初产品:经去离子水、无水乙醇洗涤,过滤,干燥可得纳米氧化锌产品。
(2)氢氧化锌法
利用硝酸锌制得前驱氢氧化锌,在600℃保持2h,高温热分解得纳米氧化锌。
2.2液相法
(1)直接沉淀法
在可溶性锌盐中加入沉淀剂后,当溶液离子的溶度积超过沉淀化合物的溶度积时,即有沉淀从溶液中析出。
沉淀经热解得纳米氧化锌。
常见的沉淀剂为氨水、碳酸铵、和草酸铵。
不同的沉淀剂,其反应生成的沉淀产物也不同,故其分解的温度也不同。
此法操作简单易行,对设备要求不高,成本较低,但粒度分布较宽,分散性差,洗涤原溶液中阴离子较困难。
3.溶胶-凝胶法
实验原料和制备工艺
醋酸锌,柠檬酸三铵,无水乙醇,保护胶,乳化剂,蒸馏水。
以醋酸锌为原料,柠檬酸三铵为改性剂,配置一定浓度的醋酸锌溶液,搅拌均匀后,置于恒温水槽中,在搅拌加热的条件下,均匀的加入无水乙醇,2h后醋酸锌完全溶解,生成氢氧化锌沉淀,然后加入适量的胶溶剂氨水,氢氧化锌沉淀消失,从而形成氢氧化锌溶胶,静止后变为氢氧化锌湿凝胶,将干燥后的氢氧化锌干凝胶置于马弗炉中煅烧之后,得到白色的纳米氧化锌粉末。