机械测试技术 第四章 振动测试系统PPT
合集下载
机械振动测量
v dy Acos( t )
dt
a dv 2 A sin(t )
dt
➢ 简谐振动的位移、速度、加速度的振动形式和振动频率 都是一样的,只是三者的相位和幅值不同。
➢ 由此可得,任何一个简谐振动都可以三者中的任意一个 量与时间关系来表征。
10
二、振动的测试内容及测量方法
测试的内容包括两方面:
[1 ( / n )2 ]2 (2 / n )2
zm
( / n )2 xm [1 ( / n )2 ]2 (2 / n )2
传感器输出的辐值和相 位角均与ω/ωn和ζ有
关。
tan 1
2 ( / n ) 1 ( / n )2
惯性系统阻尼比; 惯性系统的固有角频率。 17
一、绝对式测振传感器原理
11
三、振动测试系统的构成
➢ 被测对象在激振力的作用下产生受迫振动,测振传感器测出振动力学参量, 通过振动分析(时域中的相关技术,频域中的功率谱分析)以及计算机数 字处理技术,检测出有用的信息。
➢ 工程上,振动的测试主要讨论的是系统的传输特性,尤其是频率响应特性。 通过测试的数据,推估出系统的动态特性参数。
则顶杆不能满足跟随条件,与被测物体之间发生撞击。
因此,传感器使用范围与被测最大位移和频率有关。 28
三、测振传感器的选择
主要涉及:频率特性、量程范围和灵敏度。 (1) 不同类型的传感器测量范围不同,只有在恰当的频率测
量范围内.传感器才能正确反映被测物休的振动规律。
据前分析: ➢ 低频振动场合,加速度幅值不大,通常选择振动位移的
21
一、绝对式测振传感器原理
3、测振动加速度
测振传感器的振动参数是加速度时,有:
A( )a
dt
a dv 2 A sin(t )
dt
➢ 简谐振动的位移、速度、加速度的振动形式和振动频率 都是一样的,只是三者的相位和幅值不同。
➢ 由此可得,任何一个简谐振动都可以三者中的任意一个 量与时间关系来表征。
10
二、振动的测试内容及测量方法
测试的内容包括两方面:
[1 ( / n )2 ]2 (2 / n )2
zm
( / n )2 xm [1 ( / n )2 ]2 (2 / n )2
传感器输出的辐值和相 位角均与ω/ωn和ζ有
关。
tan 1
2 ( / n ) 1 ( / n )2
惯性系统阻尼比; 惯性系统的固有角频率。 17
一、绝对式测振传感器原理
11
三、振动测试系统的构成
➢ 被测对象在激振力的作用下产生受迫振动,测振传感器测出振动力学参量, 通过振动分析(时域中的相关技术,频域中的功率谱分析)以及计算机数 字处理技术,检测出有用的信息。
➢ 工程上,振动的测试主要讨论的是系统的传输特性,尤其是频率响应特性。 通过测试的数据,推估出系统的动态特性参数。
则顶杆不能满足跟随条件,与被测物体之间发生撞击。
因此,传感器使用范围与被测最大位移和频率有关。 28
三、测振传感器的选择
主要涉及:频率特性、量程范围和灵敏度。 (1) 不同类型的传感器测量范围不同,只有在恰当的频率测
量范围内.传感器才能正确反映被测物休的振动规律。
据前分析: ➢ 低频振动场合,加速度幅值不大,通常选择振动位移的
21
一、绝对式测振传感器原理
3、测振动加速度
测振传感器的振动参数是加速度时,有:
A( )a
机械工程测试技术基础教学PPT
测量的基础知识
#2022
*
测量的基础知识
基本量和导出量 基本量: 长度、质量、时间、温度、电流、发 光强度、物质的量 导出量:由基本量按一定函数关系来定义的
*
测量的基础知识
3、基准与标准
基准:用来保存、复现计量单位的计量器具,是最高准确度的计量器具。 国家基准、副基准和工作基准 计量标准:用于检定工作计量器具的计量器具 工作计量器具是指用于现场测量而不用检定工作的计量器具。
物质所固有,客观存在或运动状态的特征 非物质,不具有能量,传输依靠物质和能量
*
四、测试技术的内容
测试技术的内容 测量原理:实现测量所依据的物理、化 学、生物等现象及有关定律。 测量方法:分为直接或间接测量、接触 或非接触测量、破坏或非破坏测量 测量系统 数据处理
*
测试过程:首先利用酒精(敏感元件)检测出被测对象温度变化并将其转换成自身体积的变化(热胀冷缩),然后经过等截面的中空玻璃管(中间变换器)再转换成高度的变化(分析处理),最后由外面的刻度线显示出测试结果(显示、记录)并提供给观察者或输入后续的控制系统。
*
教材、参考书与课时安排 教材 机械工程测试技术基础(第3版) 熊诗波 黄长艺编著 机械工业出版社 测试技术与信号处理 郭迎福,焦锋,李曼主编 中国矿业大学出版社 课时安排 授课 :36学时 实验 :4学时
教材、参考书与课时安排
*
教学目的和要求 测试技术是工科院校机械类各专业本科生一门重要的技术基础课,内容包括传感器、测量电路、测试系统的特性,信号分析与数据处理 。 通过本课程的学习: 掌握传感器的原理、特点及应用,常用测试系统和测量电路以及信号分析的基本原理和分析方法。为后续课程打好基础。
领域:工业、农业、航天、军事等
#2022
*
测量的基础知识
基本量和导出量 基本量: 长度、质量、时间、温度、电流、发 光强度、物质的量 导出量:由基本量按一定函数关系来定义的
*
测量的基础知识
3、基准与标准
基准:用来保存、复现计量单位的计量器具,是最高准确度的计量器具。 国家基准、副基准和工作基准 计量标准:用于检定工作计量器具的计量器具 工作计量器具是指用于现场测量而不用检定工作的计量器具。
物质所固有,客观存在或运动状态的特征 非物质,不具有能量,传输依靠物质和能量
*
四、测试技术的内容
测试技术的内容 测量原理:实现测量所依据的物理、化 学、生物等现象及有关定律。 测量方法:分为直接或间接测量、接触 或非接触测量、破坏或非破坏测量 测量系统 数据处理
*
测试过程:首先利用酒精(敏感元件)检测出被测对象温度变化并将其转换成自身体积的变化(热胀冷缩),然后经过等截面的中空玻璃管(中间变换器)再转换成高度的变化(分析处理),最后由外面的刻度线显示出测试结果(显示、记录)并提供给观察者或输入后续的控制系统。
*
教材、参考书与课时安排 教材 机械工程测试技术基础(第3版) 熊诗波 黄长艺编著 机械工业出版社 测试技术与信号处理 郭迎福,焦锋,李曼主编 中国矿业大学出版社 课时安排 授课 :36学时 实验 :4学时
教材、参考书与课时安排
*
教学目的和要求 测试技术是工科院校机械类各专业本科生一门重要的技术基础课,内容包括传感器、测量电路、测试系统的特性,信号分析与数据处理 。 通过本课程的学习: 掌握传感器的原理、特点及应用,常用测试系统和测量电路以及信号分析的基本原理和分析方法。为后续课程打好基础。
领域:工业、农业、航天、军事等
振动力学教程PPT课件
动的叠加-----------谐波分析
•
2、非周期:利用傅立叶积分作谐波分析
• δ函数又称为单位脉冲函数-----它的性质、应用
示成一系列简谐振
第22页/共35页
第一节:简谐振动及其表示方法
•一、简谐振动的表示方法
• (一)正弦函数表示
2、A、ω、Φ ------简谐振动三要素
第23页/共35页
第24页/共35页
船舶的模态分析和强度分析,飞行器的结构振动和声疲劳分析等。
3) 在土木建筑、地质工程中:建筑、桥梁等结构物的模态分析,地震
引起结构物的动态响应,爆破技术的研究等。
4) 在医学、生物工程中:脑电波、心电波、脉搏波动等的信号处理等。
第12页/共35页
2途径:
1)从具体的工程对象提炼出力学模型 2)建立数学模型------应用力学知识建立所研究问题的数学模型 3)对数学模型进行分析和计算,求出请确、近似或数值解。 4) 比较------将计算结果与工程问题的实际现象或实验研究的测试结果进行 比较,考察理论结果是否解决该工程问题,如不能解决而数学模型及求解均无错 误,则需要修改力学模型重复上述过程。
第9页/共35页
5 随机振动
20世纪50年代,航空和航天工程的发展对振动力学提出了更高 的要求,确定性的力学模型无法处理包含随机因素的工程问题----如大气湍流引起的飞机颤振、喷气噪音导致飞行器表面结构 的声疲劳、火箭运载工具有效负荷的可靠性等。工程的需要迫使 人们用概率统计的方法研究承受非确定性载荷的机械系统和结构 的响应、稳定性和可靠性等, 从而 形成了随机振动这一振动力 学的重要组成部分。 在工程问题中振动信号的采集和处理是随机振动理论应用的前提, 由于计算机的迅速发展和快速第1傅0页/立共35叶页 变换算法的出现,随机振动
机械工程测试技术课件整理版
机械工程测试技术课件 整理版
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 机 械 工 程 测 试 系 统
组成
05 机 械 工 程 测 试 技 术 实例分析
02 机 械 工 程 测 试 技 术 概述
04 机 械 工 程 测 试 技 术 原理
06 机 械 工 程 测 试 技 术 发展趋势与展望
压力测试原理
压力测试的定义:通过施加压力来 检测机械设备的性能和稳定性
压力测试的方法:包括静态压力测 试和动态压力测试
添加标题
添加标题
添加标题
添加标题
压力测试的目的:确保机械设备在 正常工作条件下能够承受压力避免 故障和损坏
压力域
流量测试原理
传感器是机械工程测试系统 的重要组成部分
传感器的种类繁多包括温度 传感器、压力传感器、流量
传感器等
传感器的性能直接影响测试 系统的精度和稳定性
信号处理装置
功能:对采集到的信号进行处理和分析 组成:包括信号放大器、滤波器、/D转换器等 工作原理:将模拟信号转换为数字信号并进行滤波、放大等处理 应用:广泛应用于各种机械工程测试系统中如振动测试、噪声测试等
新型传感器技术发展与应用
传感器技术发展 趋势:智能化、 微型化、集成化
新型传感器技术 应用领域:汽车 电子、医疗电子、 工业自动化等
新型传感器技术 特点:高精度、 高灵敏度、高可 靠性
新型传感器技术发 展趋势:无线传感 器网络、物联网、 大数据分析等
虚拟仪器技术在机械工程测试中的应用与展望
虚拟仪器技术:利用计算机软件和硬件模拟真实仪器的功能 应用领域:机械工程测试、控制系统设计、数据分析等 发展趋势:智能化、网络化、集成化 展望:未来将更加广泛应用于机械工程测试提高测试效率和准确性
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 机 械 工 程 测 试 系 统
组成
05 机 械 工 程 测 试 技 术 实例分析
02 机 械 工 程 测 试 技 术 概述
04 机 械 工 程 测 试 技 术 原理
06 机 械 工 程 测 试 技 术 发展趋势与展望
压力测试原理
压力测试的定义:通过施加压力来 检测机械设备的性能和稳定性
压力测试的方法:包括静态压力测 试和动态压力测试
添加标题
添加标题
添加标题
添加标题
压力测试的目的:确保机械设备在 正常工作条件下能够承受压力避免 故障和损坏
压力域
流量测试原理
传感器是机械工程测试系统 的重要组成部分
传感器的种类繁多包括温度 传感器、压力传感器、流量
传感器等
传感器的性能直接影响测试 系统的精度和稳定性
信号处理装置
功能:对采集到的信号进行处理和分析 组成:包括信号放大器、滤波器、/D转换器等 工作原理:将模拟信号转换为数字信号并进行滤波、放大等处理 应用:广泛应用于各种机械工程测试系统中如振动测试、噪声测试等
新型传感器技术发展与应用
传感器技术发展 趋势:智能化、 微型化、集成化
新型传感器技术 应用领域:汽车 电子、医疗电子、 工业自动化等
新型传感器技术 特点:高精度、 高灵敏度、高可 靠性
新型传感器技术发 展趋势:无线传感 器网络、物联网、 大数据分析等
虚拟仪器技术在机械工程测试中的应用与展望
虚拟仪器技术:利用计算机软件和硬件模拟真实仪器的功能 应用领域:机械工程测试、控制系统设计、数据分析等 发展趋势:智能化、网络化、集成化 展望:未来将更加广泛应用于机械工程测试提高测试效率和准确性
《振动分析基础》课件
车辆的振动分析
总结词
车辆的振动分析是研究车辆动态特性和提高乘坐舒适性的重要手段,主要关注车辆的平顺性和稳定性 。
详细描述
通过对车辆进行振动测试和分析,可以评估车辆在不同路况下的平顺性和稳定性,优化车辆悬挂系统 和轮胎设计,提高车辆的乘坐舒适性和行驶安全性。同时,还可以研究车辆的动态特性,为车辆的主 动和半主动控制提供依据。
05
振动分析案例研究
机械设备的振动分析
总结词
机械设备的振动分析是振动分析中应用最广泛的一类,通过对机械设备振动特 性的研究,可以预测和解决设备运行中的问题,提高设备稳定性和可靠性。
详细描述
机械设备的振动分析主要研究设备的振动特性、振动源、传递路径和振动对设 备性能的影响。通过测量和分析设备的振动数据,可以识别出设备的故障模式 、预测设备寿命,优化设备设计和改进设备维护策略。
振动分析的重要性
振动分析在工程领域中具有重要意义 ,如机械设备的故障诊断、结构安全 评估、噪声控制等。
VS
通过振动分析,可以深入了解物体的 动态特性,为优化设计、提高产品质 量和可靠性提供依据。
振动分析的应用领域
机械制造
振动分析用于检测机械设备的 工作状态,预防故障发生,提
高生产效率。
航空航天
振动分析用于评估飞行器的结 构安全性,优化设计,降低噪 音和振动对乘客的影响。
THANKS
感谢观看
混合控制技术
混合控制技术是指结合主动和被动控制技术的优点,以提高减振效果的 控制技术。
混合控制技术可以同时使用主动和被动元件,通过主动元件提供反向振 动来抵消原始振动,同时利用被动元件提供额外的阻尼和隔振效果。
混合控制技术可以综合主动和被动控制技术的优点,提高减振效果,但 需要设计合理的控制系统和元件参数,成本也相对较高。
《机械工程测试技术基础(第4版)》基本课件第4章
第4章 常用传感器与敏感元件
目录
4.1 常用传感器分类 4.2 机械式传感器及仪器 4.3 电阻式、电容式与电感式传感器 4.4 磁电式、压电式与热电式传感器 4.5 光电传感器
目录
4.6 光纤传感器 4.7 半导体传感器 4.8 红外测试系统 4.9 激光测试传感器 4.10 传感器的选用原则
物性型传感器是依靠敏感元件材料本身物理性质的变化来实现信号变换的。例 如,水银温度计是利用了水银的热胀冷缩性质;压力测力计利用的是石英晶体的压电 效应等。
结构型传感器则是依靠传感器结构参数的变化而实现信号转变的。例如,电容 式传感器依靠极板间距离变化引起电容量的变化;电感式传感器依靠衔铁位移引起 自感或互感的变化。
弹性元件具有蠕变、弹性后效等现象。材料的蠕变与承载时间、载荷大 小、环境温度等因素有关。而弹性后效则与材料应力-松弛和内阻尼等因素 有关。这些现象最终都会影响到输出与输入的线性关系。因此,应用弹性元 件时,应从结构设计、材料选择和处理工艺等方面采取有效措施来改善上述 诸现象产生的影响。
4.2 机械式传感器及仪器
近年来,在自动检测、自动控制技术中广泛应用的微型探测开关亦被 看作机械式传感器。这种开关能把物体的运动、位置或尺寸变化,转换为 接通、断开信号。图4-4表示这种开关中的一种。它由两个簧片组成,在 常态下处于断开状态。当它与磁性块接近时,簧片被磁化而接合,成为接通 状态。只有当钢制工件通过簧片和电磁铁之间时,簧片才会被磁化而接合, 从而表达了有一件工件通过。这类开关,可用于探测物体有无、位置、尺 寸、运动状态等。
工程测量中通常把直接作用于被测量,并能按一定方式将其转换成同种或别种 量值输出的器件,称为传感器。
传感器是测试系统的一部分,其作用类似于人类的感觉器官。它把被测量,如力、 位移、温度等物理量转换为易测信号或易传输信号,传送给测试系统的调理环节。 因而也可以把传感器理解为能将被测量转换为与之对应的,易检测、易传输或易处 理信号的装置。直接受被测量作用的元件称为传感பைடு நூலகம்的敏感元件。
目录
4.1 常用传感器分类 4.2 机械式传感器及仪器 4.3 电阻式、电容式与电感式传感器 4.4 磁电式、压电式与热电式传感器 4.5 光电传感器
目录
4.6 光纤传感器 4.7 半导体传感器 4.8 红外测试系统 4.9 激光测试传感器 4.10 传感器的选用原则
物性型传感器是依靠敏感元件材料本身物理性质的变化来实现信号变换的。例 如,水银温度计是利用了水银的热胀冷缩性质;压力测力计利用的是石英晶体的压电 效应等。
结构型传感器则是依靠传感器结构参数的变化而实现信号转变的。例如,电容 式传感器依靠极板间距离变化引起电容量的变化;电感式传感器依靠衔铁位移引起 自感或互感的变化。
弹性元件具有蠕变、弹性后效等现象。材料的蠕变与承载时间、载荷大 小、环境温度等因素有关。而弹性后效则与材料应力-松弛和内阻尼等因素 有关。这些现象最终都会影响到输出与输入的线性关系。因此,应用弹性元 件时,应从结构设计、材料选择和处理工艺等方面采取有效措施来改善上述 诸现象产生的影响。
4.2 机械式传感器及仪器
近年来,在自动检测、自动控制技术中广泛应用的微型探测开关亦被 看作机械式传感器。这种开关能把物体的运动、位置或尺寸变化,转换为 接通、断开信号。图4-4表示这种开关中的一种。它由两个簧片组成,在 常态下处于断开状态。当它与磁性块接近时,簧片被磁化而接合,成为接通 状态。只有当钢制工件通过簧片和电磁铁之间时,簧片才会被磁化而接合, 从而表达了有一件工件通过。这类开关,可用于探测物体有无、位置、尺 寸、运动状态等。
工程测量中通常把直接作用于被测量,并能按一定方式将其转换成同种或别种 量值输出的器件,称为传感器。
传感器是测试系统的一部分,其作用类似于人类的感觉器官。它把被测量,如力、 位移、温度等物理量转换为易测信号或易传输信号,传送给测试系统的调理环节。 因而也可以把传感器理解为能将被测量转换为与之对应的,易检测、易传输或易处 理信号的装置。直接受被测量作用的元件称为传感பைடு நூலகம்的敏感元件。
振动测试分析技术 ppt课件
形式:绝对、相对 定位:标记 环境:温度、湿度、方向等
ppt课件
36
§ 3.3振动测试方案
3 测试位置(监测点)
电涡流位移传感器测量轴振动的示意图
ppt课件
37
§ 3.3 振动测试方案
3 测试位置(监测点)
ppt课件
38
§ 3.3 振动测试方案
3 测试位置(监测点)
ppt课件
39
§ 3.3 振动测试方案
23ppt课件32振动测试的仪器设备传感器的安装24ppt课件32振动测试的仪器设备传感器的安装表31测量典型设备时振动传感器的安装法25ppt课件32振动测试的仪器设备2数据采集器频谱分析仪26ppt课件32振动测试的仪器设备2数据采集器频谱分析仪27ppt课件32振动测试的仪器设备2数据采集器频谱分析仪28ppt课件32振动测试的仪器设备2数据采集器频谱分析仪29ppt课件32振动测试的仪器设备22数据采集器频谱分析仪图39数据采集器的工作过程30ppt课件32振动测试的仪器设备22数据采集器频谱分析仪功能参数
表3-2 水电部汽轮机发电机组振动标准(轴承振幅允许值)
转速/rpm
标准/mm
优
良 合格
1500 3000
30
50
70
20
30
50
ppt课件
45
§ 3.2 振动测试方案
5 振动评定标准:
绝对法 (1)以轴承振动位移峰峰值作评定标准:
表3-3 机电部离心风机和压缩机振动标准
标准
转速 / (rmin1)
振动测试的基本参数:幅值、频率和相位
✓ 幅值 幅值是振动强度大小的标志,它可以用不同 的方法表示,如单峰值、有效值、峰—峰值等;
ppt课件
36
§ 3.3振动测试方案
3 测试位置(监测点)
电涡流位移传感器测量轴振动的示意图
ppt课件
37
§ 3.3 振动测试方案
3 测试位置(监测点)
ppt课件
38
§ 3.3 振动测试方案
3 测试位置(监测点)
ppt课件
39
§ 3.3 振动测试方案
23ppt课件32振动测试的仪器设备传感器的安装24ppt课件32振动测试的仪器设备传感器的安装表31测量典型设备时振动传感器的安装法25ppt课件32振动测试的仪器设备2数据采集器频谱分析仪26ppt课件32振动测试的仪器设备2数据采集器频谱分析仪27ppt课件32振动测试的仪器设备2数据采集器频谱分析仪28ppt课件32振动测试的仪器设备2数据采集器频谱分析仪29ppt课件32振动测试的仪器设备22数据采集器频谱分析仪图39数据采集器的工作过程30ppt课件32振动测试的仪器设备22数据采集器频谱分析仪功能参数
表3-2 水电部汽轮机发电机组振动标准(轴承振幅允许值)
转速/rpm
标准/mm
优
良 合格
1500 3000
30
50
70
20
30
50
ppt课件
45
§ 3.2 振动测试方案
5 振动评定标准:
绝对法 (1)以轴承振动位移峰峰值作评定标准:
表3-3 机电部离心风机和压缩机振动标准
标准
转速 / (rmin1)
振动测试的基本参数:幅值、频率和相位
✓ 幅值 幅值是振动强度大小的标志,它可以用不同 的方法表示,如单峰值、有效值、峰—峰值等;
振动测量原理 ppt课件
A zz0 1m m 1 n
1
(5.7)
(n//n)242
Varc12 tg(( // nn))22
(5.8)
其幅频特性曲线和相频特性曲线分别如图5-6和图
5-5所示。
图 5.6由载体运动引起的速度响应图
5.7由载体运动引起的加速度响应
(3)z01相对于载体的振动加速度,此时相当于测振仪 处于加速度计的工作状态下。此时幅频特性和相 频特性分别为:
振动测量原理
5.1 振动和振动测量系统 5.2 振动参量的测量 5.3 机械阻抗测量 5.4 振动信号的频谱分析
振动是工程技术和日常生活中常见的物理 现象,在大多数情况下,振动是有害的,它对 仪器设备的精度,寿命和可靠性都会产生影响。 当然,振动也有可以被利用的一面,如输送、 清洗、磨削、监测等。
作在过谐振区。 对于加速度计来说,其工作条件为<<1,即
工作在亚谐振区。 对于速度计来说频特性和相频特性都有 较大的影响。
对位移计和加速度计而言,当取值在0.6~0.8 范围内时,幅频特性曲线有最宽广而平坦的曲线 段,此时,相频特性曲线在很宽的范围内也几乎 是直线。
Adzz01m m 1[1(/(n)2/] 2n)2 (2/ n)2 (5.5)
d
arctg2(/n) 1(/n)2
(5.6)
其幅频特性曲线曲线如图5.4所示。
图5.4 由载体运动引起的位移响应
(2)z01相对于载体振动速度 ,此时相当于测振仪处于
速度计的工作状态下。此时幅频特性和相频特性
分别为:
名称
原理
优缺点及应用
电测法
将被测对象的振动量转换 成电量,然后用电量测试 仪器进行测量
灵敏度高,频率范围及动态、线性范围 宽,便于分析和遥测,但易受电磁场干 扰。是目前最广泛采用的方法
《振动分析基础》课件
主动控制和被动控制的应用实例
主动控制应用实例
在桥梁、高层建筑等大型结构中,采用主动控制技术抑制地震、风等引起的振动;在精 密仪器中,采用主动控制技术抑制微小振动,提高测量精度。
被动控制应用实例
在汽车和航空器中,采用被动控制技术降低振动和噪音;在电子设备中,采用被动控制 技术吸收电磁干扰,提高设备性能。
REPORTING
振动分析的基本概念和原理
频率
单位时间内振动的次数。
阻尼
振动系统内部或外部阻力使振 幅逐渐减小的性质。
振幅
振动物体离开平衡位置的最大 距离。
周期
完成一次振动所需的时间。
共振
当策动力的频率与物体的固有 频率相等时,振幅急剧增大的 现象。
PART 02
振动分析的基本理论
单自由度系统的振动分析
自由振动分析
环境工程中的振动分析应用
总结词
环境保护、噪声控制
详细描述
在环境工程中,振动分析被应用于环境保护和噪声控制等领域。通过分析环境中的振动信号,工程师可以了解噪 声的来源和传播途径,制定有效的噪声控制措施,从而改善环境质量,保护人们的健康和生活质量。
2023-2026
END
THANKS
感谢观看
KEEP VIEW
PART 05
振动分析的工程应用
机械工程中的振动分析应用
要点一
总结词
要点二
详细描述
广泛应用、提高效率和性能
在机械工程中,振动分析被广泛应用于各种设备和机器的 设计、优化和故障诊断。通过分析振动数据,工程师可以 了解设备的运行状态,预测潜在的故障,从而提高设备的 效率和性能,延长使用寿命。
航空航天工程中的振动分析应用
机械工程测试技术ppt
测试系统为线性系统
线性系统及其主要性质
叠加原理 比例特性
微分特性
积分特性 频率保持性
测试装置的静态特性
线性度
灵敏度
回程误差
输出变化量与输入变化量之比称为灵敏度
S y x
当灵敏度为定值就是线性系统
串联环节
n
S Si i 1
测试装置的动态特性
传递函数
H (s) Y(S) X (S)
输出的拉氏变换与输入拉氏变换之比为系统传递函数H(S)
电阻、电容、与电感式传感器
电阻应变式传感器
电阻应变式传感器分为金属电阻应变片式与半导体应变片式两类 .
工作原理 优点
缺点
金属丝电阻应变片与半导体应变片的主要区别在于: 前者利用导体形变引起的电阻的变化,后者利用半 导体电阻率变化引起的电阻的变化。
电容式传感器
电容式传感器可以分成三种类型:极距变化型(变 δ)、面积变化型(变A)和介质变化型(变ε)。
信息 信号
• 信息的定义:事物运动的状态和方式 • 信息的基本性质 1.可识别 通过各种探测与检测手段识别 2.可以转换 可从一种形态转换成另一种形态
如:语言、文字、图象、图表,电信号,电压电流 3.可以存贮
如:计算机,内外存贮器,磁盘,光盘,录音带 4.可以传输
如:电视,电话,手机
信号:传输信息的载体 信息蕴变磁阻式)和互感型两大类
工作原理
优点
缺点
差动变气隙型:提高灵敏度,改善非线性
磁电、压电与热电式传感器
磁电式传感器
被测量
电量
它把被测物理量的变化转变为感应电动势。
RC
Z0
CC e~
RL uL
d或 dt
线性系统及其主要性质
叠加原理 比例特性
微分特性
积分特性 频率保持性
测试装置的静态特性
线性度
灵敏度
回程误差
输出变化量与输入变化量之比称为灵敏度
S y x
当灵敏度为定值就是线性系统
串联环节
n
S Si i 1
测试装置的动态特性
传递函数
H (s) Y(S) X (S)
输出的拉氏变换与输入拉氏变换之比为系统传递函数H(S)
电阻、电容、与电感式传感器
电阻应变式传感器
电阻应变式传感器分为金属电阻应变片式与半导体应变片式两类 .
工作原理 优点
缺点
金属丝电阻应变片与半导体应变片的主要区别在于: 前者利用导体形变引起的电阻的变化,后者利用半 导体电阻率变化引起的电阻的变化。
电容式传感器
电容式传感器可以分成三种类型:极距变化型(变 δ)、面积变化型(变A)和介质变化型(变ε)。
信息 信号
• 信息的定义:事物运动的状态和方式 • 信息的基本性质 1.可识别 通过各种探测与检测手段识别 2.可以转换 可从一种形态转换成另一种形态
如:语言、文字、图象、图表,电信号,电压电流 3.可以存贮
如:计算机,内外存贮器,磁盘,光盘,录音带 4.可以传输
如:电视,电话,手机
信号:传输信息的载体 信息蕴变磁阻式)和互感型两大类
工作原理
优点
缺点
差动变气隙型:提高灵敏度,改善非线性
磁电、压电与热电式传感器
磁电式传感器
被测量
电量
它把被测物理量的变化转变为感应电动势。
RC
Z0
CC e~
RL uL
d或 dt
《振动测量原理》PPT模板课件
(1)机械阻抗与机械导纳 机械阻抗与机械导纳的一般定义为:
机械阻抗 机械导纳
(Z)=
激励 响应
(F ) (R)
(5.23)
(M)= 响应 ( F ) = 1 (5.24)
激励 ( R )
Z
机械系统的激励一般是力,系统的响应
可用位移、速度和加速度来表达,故机械阻抗 和机械导纳又各有三种形式。位移阻抗又称为 动刚度,位移导纳称为动柔度,速度阻抗称 为机械阻抗,速度导纳简称导纳,加速度阻 抗又称为视在质量,加速度导纳又称为机械 惯性。
aarc1t2g( // nn)2
(5.10)
其幅频特性曲线和相频特性曲线分别如图5.7和
图5.5所示。
从图5.4~图5.7可以看出: ① 测振仪在不同工作状态下,其有效工作区域是不
相同的。 在位移计状态下,其工作条件为>>1,即工
作在过谐振区。 对于加速度计来说,其工作条件为<<1,即
工作在亚谐振区。 对于速度计来说,则要求其工作在=1,即谐
设载体的运作为谐振动,即:
则式(5.3)可写成:
z1(t)z1msint,
m dd 2z20t1 cdd0z1 tk0z1 m 2z1msin t(5.4)
考虑这样几种情形下的响应特性:
(1)z01相对于载体的振动位移z1 ,此时相当于
测振仪处于位移计工作状态下。此时幅频特性 和相频特性分别为:
Adzz01m m 1[1(/(n)2/] 2n)2 (2/ n)2 (5.5)
一定的统计规律性。可分为平稳随机振动和非 平稳随机振动。平稳随机振动又包括各态历经 的平稳随机振动和非各态历经的平稳随机振动。
一般来说,仪器设备的振动信号中既包含 有确定性的振动,又包含有随机振动,但对于 一个线性振动系统来说,振动信号可用谱分析 技术化作许多谐振动的叠加。因此简谐振动是 最基本也是最简单的振动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
4.1 振动的基础知识
振动系统力学模型三要素:质量、弹性和阻尼 振动三要素(信号三要素)—— 幅值、频率、相位
• 幅值:振动强度大小的标志。表示方法:单峰值、有效值、
平均值等。 • 频率:周期的倒数。通过频谱分析可以确定主要频率成分 及其幅值大小,从而可以寻找振源,采取措施。 • 相位:振动信号的相位信息十分重要。
速度共振频率
v
n
加速度共振频率 a n 122
注意:在有阻尼的情况下,只有速度共振时,测得的速 度共振频率才是系统的无阻尼固有频率。
传感器以通有高频交流电流的线圈为主要测量元件。当载 流线圈靠近被测导体试件的表面时,穿过导体的磁通量随时间 变化,在导体表面感应出电涡流。电涡流产生的磁通量又穿过 线圈,由此引起线圈自感或线圈阻抗的变化。当被测位移量发 生变化时,使线圈与金属板的距离发生变化,从而导致线圈阻 抗的变化,通过测量电路转化为电压输出。
工作原理——电磁感应原理
(1)磁电式相对速度传感器
18
测杆的跟随条件 弹簧的预压缩量:
x m 2x
k
m
即: x ( ) 2 x
m
n
( f )2x
f
m
n
相对式传感器只能在一定的频率和振幅范围内工作。
19
4.2.4 涡流式位移传感器
属于非接触式传感器 工作原理:利用金属体在交变磁场中的涡电流效应。
A a()d X 2 0 x11 X 1 X • 01 2n 2[1 (/
1 n)2]2 [2(
/
n)2]
d2t
12
13
惯性式加速度传感器的正确响应条件:
(1)
/n1 ,一般取
/n(13
~
1) 5
,
即 n (3~5),此时,A()接近于
一条水平直线。
(2)选择适当阻尼,可该善 n的共振峰处
1
振动测试包括:
测量工作机械或结构在工作状态下存在的振动,如振动 的位移、速度、加速度、频率和相位等。
(1)了解被测对象的振动状态 (2)评定等级 (3)寻找振源 (4)进行监测、分析、诊断和预测
对机械设备或结构上加某种激励,测量其受迫振动。 获得被测对象的振动力学参量或动态性能,如固有频率、 阻尼、相位和模态等。
(1) /n1,一般取 /n(3~5),即传感器惯
性系统的固有频率远低于被测振动下限频率,此时,A()
接近于一条水平直线,不产生振幅畸变。
(2)选择适当阻尼,可抑制/n 1 处的共振峰,
使幅频特性平坦部分扩展,从而扩大下限频率,最佳
阻尼 0.6~0.7
11
3、惯性式加速度传感器的正确响应条件
惯性式加速度传感器质量块的相对位移与被测振动 的加速度成正比,因而可用质量块的位移量来反映被测振 动加速度的大小。加速度传感器幅频特性为:
质量块的力学表达式为:
mdd2x2t0 cdd0xt1k0x10
x 01
x0
x1
x0 x01x1
6
md2(xd02 1 tx1)cdd0xt1k0x1 0 mdd 2x20t1 cdd0xt1 k0x1 md d2x 21 t m 2 X 0 ( s 1 ) c0 s ( s 1 ) X k0 ( X s 1 ) m 2 X 1 ( s s )
的幅频特性,以扩大测量上限频率,一般取
1
14
共振频率31KHz
压电式加速度传感器的幅频特性曲线
压电式加速度传感器的固定方法
共振频率2KHz
共振频率7件
惯性式速度传感器质量块的相对位移与被测振动的速 度成正比,因而可用质量块的位移量来反映被测振动速度 的大小。速度传感器幅频特性为:
频谱分析法等。 李萨如图形比较法 基本原理:两个相互垂直、频率相等的简谐振动信号合成
后的振动图形可由一椭圆方程表示。 频谱分析法:
用快速傅里叶变换(FFT)的方法,将振动的时域信号变 换为频域中的频谱,从而从频谱的谱线测得振动频率。
24
25
2)同频简谐振动相位差的测量 线性扫描法、椭圆法、相位计直接测量法、频谱分析法
A v()X d0 1 1 xX X 1• 0 1 n 2[1 (/ n)2 ]2 [2 (/ n)2]
dt
16
要使惯性式速度传感器的输出量能正确地反映被 测振动的速度,则必须满足如下条件:
/n 1
由于惯性式速度传感器的有用频率范围十分 小,因此,在工程实践中很少使用。
17
4.2.3 磁电式速度传感器
7
H(s)X X01(1(ss))m2smc2ssk
s j
H()m2mj2ck
n
k m
c
2 km
H() n
2
2 2 j2n
8
( )2
H() 1(
n
)2
j2
n
n
( )2
A()
n
[1( )2]2 [2 ]2
n
n
2
()
arctan 1
(
n )2
n
9
10
2、惯性式位移传感器的正确响应条件
(1)振幅的测量 机械振动测量中,有时不需要测量振动信号的时间历程
曲线,而只需要测量振动信号的幅值,即振动位移、速度和 加速度信号的有效值,有时也包括峰值的测量。
机械工程中最常采用压电式加速度计和磁电式 速度计作为测振传感器来测量机械振动。
22
23
(2)振动频率和相位的测量 1)简谐振动频率的测量 简谐振动频率的测量方法有李萨如图形比较法、直读法、
20
特点
• 结构简单
• 线性度好 • 灵敏度高 • 频率范围宽(0~10kHz) • 抗干扰能力强 • 不受油污等介质影响 • 非接触测量
应用
• 测量静态位移
• 测量汽轮机、压缩机、 电机等旋转轴系的振动、 轴向位移、转速等
• 工况监测与故障诊断 中应用甚广。
21
4.3 振动测试系统
4.3.1 振动测试基本方法
3
4.2 测振传感器
4.2.1 压电式加速度传感器
中心安装压缩型
环形剪切型
三角剪切型
4
1、惯性式传感器的力学模型
压电式加速度传感 器属于惯性式(绝对式) 测振传感器,可简化为右 图所示的力学模型。
x 01
x0
x1
5
假设:
传感器输入: 被测振动件的振动位移为x1 传感器输出:
质量块相对于壳体的相 对位移为x01
等
26
(3)机械系统固有频率的测量 固有频率 机械系统作自由振动时的振动频率,与系统本身的质量
(或转动惯量)、刚度有关。
k/m n
共振频率 在系统作受迫激励振动过程中,当激振频率达到某一特 定值时,振动量的振幅值达到极大值的现象称为共振。共振 时的激励频率就称为共振频率。
27
位移共振频率
r n 122
4.1 振动的基础知识
振动系统力学模型三要素:质量、弹性和阻尼 振动三要素(信号三要素)—— 幅值、频率、相位
• 幅值:振动强度大小的标志。表示方法:单峰值、有效值、
平均值等。 • 频率:周期的倒数。通过频谱分析可以确定主要频率成分 及其幅值大小,从而可以寻找振源,采取措施。 • 相位:振动信号的相位信息十分重要。
速度共振频率
v
n
加速度共振频率 a n 122
注意:在有阻尼的情况下,只有速度共振时,测得的速 度共振频率才是系统的无阻尼固有频率。
传感器以通有高频交流电流的线圈为主要测量元件。当载 流线圈靠近被测导体试件的表面时,穿过导体的磁通量随时间 变化,在导体表面感应出电涡流。电涡流产生的磁通量又穿过 线圈,由此引起线圈自感或线圈阻抗的变化。当被测位移量发 生变化时,使线圈与金属板的距离发生变化,从而导致线圈阻 抗的变化,通过测量电路转化为电压输出。
工作原理——电磁感应原理
(1)磁电式相对速度传感器
18
测杆的跟随条件 弹簧的预压缩量:
x m 2x
k
m
即: x ( ) 2 x
m
n
( f )2x
f
m
n
相对式传感器只能在一定的频率和振幅范围内工作。
19
4.2.4 涡流式位移传感器
属于非接触式传感器 工作原理:利用金属体在交变磁场中的涡电流效应。
A a()d X 2 0 x11 X 1 X • 01 2n 2[1 (/
1 n)2]2 [2(
/
n)2]
d2t
12
13
惯性式加速度传感器的正确响应条件:
(1)
/n1 ,一般取
/n(13
~
1) 5
,
即 n (3~5),此时,A()接近于
一条水平直线。
(2)选择适当阻尼,可该善 n的共振峰处
1
振动测试包括:
测量工作机械或结构在工作状态下存在的振动,如振动 的位移、速度、加速度、频率和相位等。
(1)了解被测对象的振动状态 (2)评定等级 (3)寻找振源 (4)进行监测、分析、诊断和预测
对机械设备或结构上加某种激励,测量其受迫振动。 获得被测对象的振动力学参量或动态性能,如固有频率、 阻尼、相位和模态等。
(1) /n1,一般取 /n(3~5),即传感器惯
性系统的固有频率远低于被测振动下限频率,此时,A()
接近于一条水平直线,不产生振幅畸变。
(2)选择适当阻尼,可抑制/n 1 处的共振峰,
使幅频特性平坦部分扩展,从而扩大下限频率,最佳
阻尼 0.6~0.7
11
3、惯性式加速度传感器的正确响应条件
惯性式加速度传感器质量块的相对位移与被测振动 的加速度成正比,因而可用质量块的位移量来反映被测振 动加速度的大小。加速度传感器幅频特性为:
质量块的力学表达式为:
mdd2x2t0 cdd0xt1k0x10
x 01
x0
x1
x0 x01x1
6
md2(xd02 1 tx1)cdd0xt1k0x1 0 mdd 2x20t1 cdd0xt1 k0x1 md d2x 21 t m 2 X 0 ( s 1 ) c0 s ( s 1 ) X k0 ( X s 1 ) m 2 X 1 ( s s )
的幅频特性,以扩大测量上限频率,一般取
1
14
共振频率31KHz
压电式加速度传感器的幅频特性曲线
压电式加速度传感器的固定方法
共振频率2KHz
共振频率7件
惯性式速度传感器质量块的相对位移与被测振动的速 度成正比,因而可用质量块的位移量来反映被测振动速度 的大小。速度传感器幅频特性为:
频谱分析法等。 李萨如图形比较法 基本原理:两个相互垂直、频率相等的简谐振动信号合成
后的振动图形可由一椭圆方程表示。 频谱分析法:
用快速傅里叶变换(FFT)的方法,将振动的时域信号变 换为频域中的频谱,从而从频谱的谱线测得振动频率。
24
25
2)同频简谐振动相位差的测量 线性扫描法、椭圆法、相位计直接测量法、频谱分析法
A v()X d0 1 1 xX X 1• 0 1 n 2[1 (/ n)2 ]2 [2 (/ n)2]
dt
16
要使惯性式速度传感器的输出量能正确地反映被 测振动的速度,则必须满足如下条件:
/n 1
由于惯性式速度传感器的有用频率范围十分 小,因此,在工程实践中很少使用。
17
4.2.3 磁电式速度传感器
7
H(s)X X01(1(ss))m2smc2ssk
s j
H()m2mj2ck
n
k m
c
2 km
H() n
2
2 2 j2n
8
( )2
H() 1(
n
)2
j2
n
n
( )2
A()
n
[1( )2]2 [2 ]2
n
n
2
()
arctan 1
(
n )2
n
9
10
2、惯性式位移传感器的正确响应条件
(1)振幅的测量 机械振动测量中,有时不需要测量振动信号的时间历程
曲线,而只需要测量振动信号的幅值,即振动位移、速度和 加速度信号的有效值,有时也包括峰值的测量。
机械工程中最常采用压电式加速度计和磁电式 速度计作为测振传感器来测量机械振动。
22
23
(2)振动频率和相位的测量 1)简谐振动频率的测量 简谐振动频率的测量方法有李萨如图形比较法、直读法、
20
特点
• 结构简单
• 线性度好 • 灵敏度高 • 频率范围宽(0~10kHz) • 抗干扰能力强 • 不受油污等介质影响 • 非接触测量
应用
• 测量静态位移
• 测量汽轮机、压缩机、 电机等旋转轴系的振动、 轴向位移、转速等
• 工况监测与故障诊断 中应用甚广。
21
4.3 振动测试系统
4.3.1 振动测试基本方法
3
4.2 测振传感器
4.2.1 压电式加速度传感器
中心安装压缩型
环形剪切型
三角剪切型
4
1、惯性式传感器的力学模型
压电式加速度传感 器属于惯性式(绝对式) 测振传感器,可简化为右 图所示的力学模型。
x 01
x0
x1
5
假设:
传感器输入: 被测振动件的振动位移为x1 传感器输出:
质量块相对于壳体的相 对位移为x01
等
26
(3)机械系统固有频率的测量 固有频率 机械系统作自由振动时的振动频率,与系统本身的质量
(或转动惯量)、刚度有关。
k/m n
共振频率 在系统作受迫激励振动过程中,当激振频率达到某一特 定值时,振动量的振幅值达到极大值的现象称为共振。共振 时的激励频率就称为共振频率。
27
位移共振频率
r n 122