元素对合金的影响

合集下载

合金元素在铝合金中的作用

合金元素在铝合金中的作用

合金元素在铝合金中的作用铝合金是一种优良的轻金属材料,广泛应用于汽车、航空航天、建筑等领域。

为了进一步改善铝合金的性能,常常添加一定比例的合金元素。

合金元素的添加可显著提高铝合金的强度、硬度、耐热性和耐腐蚀性,同时还可以改善其加工加工性能和耐磨性能。

下面将详细介绍各种合金元素在铝合金中的作用。

1.硅(Si)硅是最常用的合金元素之一,其添加能够显著提高铝合金的抗拉强度和屈服强度,同时降低膨胀系数。

硅还有助于改善铝合金的液态流动性,提高铸造性能和可压性。

因此,硅在铝合金中的含量通常在0.2~1.5%之间。

2.铜(Cu)铜是一种重要的合金元素,在铝合金中的含量通常为2~10%。

添加铜可显著提高铝合金的抗拉强度、疲劳强度和抗磨损性能。

此外,铜还能够改善铝合金的导电性和导热性,提高对高温场合的耐腐蚀性。

3.锰(Mn)锰是一种常见的合金元素,其主要作用是增加铝合金的强度。

锰在铝合金中的含量通常在0.1~1.0%之间。

适量添加锰能够显著提高铝合金的硬度和强度,同时还能提高铝合金的热处理响应性,使其能够通过热处理来进一步改善性能。

4.镁(Mg)镁是一种重要的合金元素,其在铝合金中的含量通常在0.5~7.5%之间。

添加镁可显著提高铝合金的强度、硬度和耐腐蚀性。

此外,镁还能够提高铝合金的塑性和可焊性,改善耐热性。

镁铝合金是一种重要的铝合金系列,其具有优异的强度和耐腐蚀性能,被广泛应用于航空航天等领域。

5.锌(Zn)锌是一种重要的合金元素,其主要作用是提高铝合金的强度和耐腐蚀性。

锌在铝合金中的含量通常为0.2~12%。

适量添加锌能够显著提高铝合金的强度和耐热性,同时还能降低合金的膨胀系数,提高铝合金的切削性能。

综上所述,合金元素在铝合金中起到了至关重要的作用。

添加适量的合金元素能够显著提高铝合金的强度、硬度、耐热性和耐腐蚀性,同时还能改善其加工性能和耐磨性能。

合理选择和控制合金元素的含量,可以根据不同的使用要求来定制铝合金材料,满足各种工业领域对材料性能的要求。

影响铝合金性能的八大金属元素

影响铝合金性能的八大金属元素

影响铝合金性能的八大金属元素铝合金是由铝与其他金属元素按一定比例混合制成的合金材料。

其性能主要取决于所添加的金属元素的类型和含量。

下面将介绍影响铝合金性能的八大金属元素。

1.硅(Si):硅是铝合金中最常见的合金元素之一,能显著提高铝合金的强度和硬度。

硅的含量一般为0.2%~1.5%。

增加硅含量可以显著提高铝合金的热强度和抗高温蠕变性能,但过高的硅含量会降低铝合金的冷加工性能。

2.铜(Cu):铜是一种强化剂,可以提高铝合金的强度和耐腐蚀性能。

铜的含量一般为0.1%~5.0%。

添加适量的铜可以提高铝合金的强度和韧性,但过高的铜含量会导致铝合金过于脆化。

3.锰(Mn):锰是一种强化剂,可以提高铝合金的强度和硬度。

锰的含量一般为0.1%~1.5%。

增加锰含量可以提高铝合金的屈服强度和耐热性能。

4.锌(Zn):锌是一种强化剂,可以提高铝合金的强度和耐腐蚀性能。

锌的含量一般为0.1%~3.0%。

适量的锌可以显著提高铝合金的强度和耐热性能,但过高的锌含量会导致铝合金脆化和降低抗氧化性能。

5.镍(Ni):镍是一种强化剂,可以提高铝合金的强度、韧性和耐腐蚀性能。

镍的含量一般为0.1%~3.0%。

适量的镍可以显著提高铝合金的抗拉强度和硬度,同时提高抗腐蚀性能。

6.钛(Ti):钛是一种强化剂,可以提高铝合金的强度和耐高温性能。

钛的含量一般为0.02%~0.2%。

适量的钛可以显著提高铝合金的抗拉强度和硬度,同时提高耐高温、耐热疲劳性能。

7.硼(B):硼是一种强化剂,可以提高铝合金的强度和硬度。

硼的含量一般为0.002%~0.02%。

适量的硼可以显著提高铝合金的抗拉强度,降低变形温度,改善冷加工性能。

8.钒(V):钒是一种强化剂,可以提高铝合金的强度和耐热性能。

钒的含量一般为0.05%~0.2%。

适量的钒可以显著提高铝合金的屈服强度和耐热性能,但过高的钒含量会导致铝合金脆化。

除了上述八大金属元素外,还有其他一些金属元素如铁、锡、锆等也可以用作铝合金的合金元素,它们的添加可以对铝合金的性能产生不同的影响。

微量合金元素对铜合金组织的影响

微量合金元素对铜合金组织的影响

微量合金元素对铜合金组织的影响
1.磷(P):磷是一种常见的微量合金元素,对纯铜和铜合金都有很大的影响。

磷的加入可以提高铜合金的强度和硬度,同
时还能够提高铜合金的耐腐蚀性能。

磷与铜形成的磷化铜溶解
度很低,可以细化铜合金的晶粒结构,从而提高合金的强度。

2.锡(Sn):锡是一种广泛应用于铜合金中的微量合金元素。

锡的加入可以提高铜合金的耐蚀性,尤其是在海水中具有良好
的抗腐蚀性能。

此外,锡还能够改善铜合金的润滑性能和耐磨
性能。

锡与铜形成的固溶体可以使铜合金晶粒细化,进而提高
合金的强度和硬度。

3.硼(B):硼是一种强过渡元素,对铜合金具有很强的固溶强化作用。

硼的加入可以显著提高铜合金的强度和硬度,并且
还能够改善其耐腐蚀性能。

硼与铜形成的固溶体具有高的固溶度,可以细化铜合金的晶粒结构,从而提高合金的强度。

4.锌(Zn):锌是一种常见的微量合金元素,通常与铜形成
黄铜合金。

锌的加入可以显著提高铜合金的强度和硬度,并且
还可以改善合金的耐磨性能和耐腐蚀性能。

锌与铜形成的固溶
体可以细化铜合金的晶粒结构,并且还可以改变合金的相变温
度和熔点。

微量元素对铝合金性能的影响

微量元素对铝合金性能的影响

微量元素对铝合金性能的影响一、硅(Si)是改善流动性能的主要成份。

从共晶到过共晶都能得到最好的流动性。

但结晶析出的硅(Si)易形成硬点,使切削性变差,所以一般都不让它超过共晶点。

另外,硅(Si)可改善抗拉强度、硬度、切削性以及高温时强度,而使延伸率降低。

在铝合金中固溶进铜(Cu),机械性能可以提高,切削性变好。

不过,耐蚀性降低,容易发生热间裂痕。

作为杂质的铜(Cu)也是这样。

二、镁(Mg):铝镁合金的耐蚀性最好,因此ADC5、ADC6是耐蚀性合金,它的凝固范围很大,所以有热脆性,铸件易产生裂纹,难以铸造。

作为杂质的镁(Mg),在AL-Cu-Si这种材料中,Mg2Si会使铸件变脆,所以一般标准在0.3%以内。

三、铁(Fe)杂质的铁(Fe)会生成FeAl3的针状结晶,由于压铸是急冷,所以析出的晶体很细,不能说是有害成份。

含量低于0.7%则有不易脱模的现象,所以含铁(Fe)0.8~1.0%反而好压铸。

含有大量的铁(Fe),会生成金属化合物,形成硬点。

并且含铁(Fe)量过1.2%时,降低合金流动性,损害铸件的品质,缩短压铸设备中金属组件的寿命。

四、镍(Ni)和铜(Cu)一样,有增加抗拉强度和硬度的倾向,对耐蚀性影响很大。

想要改善高温强度耐热性,有时就加入镍(Ni),但在耐蚀性及热导性方面有降低的影响五、锰(Mn)能改善含铜(Cu),含硅(Si)合金的高温强度。

若超过一定限度,易生成Al-Si-Fe-P+Mn四元化合物,容易形成硬点以及降低导热性。

锰(Mn)能阻止铝合金的再结晶过程,提高再结晶温度,并能显着细化再结晶晶粒。

再结晶晶粒的细化主要是通过MnAl6化合物弥散质点对再结晶晶粒长大起阻碍作用。

MnAl6的另一作用是能溶解杂质铁(Fe),形成(Fe,Mn)Al6减小铁的有害影响。

锰(Mn)是铝合金的重要元素,可以单独加入Al-Mn二元合金,更多的是和其他合金元素一同加入,因此大多铝合金中均含有锰(Mn)。

常见元素对金属材料性能的影响

常见元素对金属材料性能的影响

常见元素对金属材料性能的影响金属材料是一类广泛应用于工程领域的材料,其性能和用途在很大程度上取决于其组成元素的种类和含量。

不同元素的添加可以显著改变金属材料的性能特点。

以下是一些常见元素对金属材料性能的影响:1.碳:碳是铁和钢的主要合金元素。

通过调节碳的含量,可以改变金属材料的硬度、强度和可塑性。

高碳含量可以提高材料的硬度和强度,但会降低其可塑性。

低碳含量可以增加材料的可塑性,但会减少其硬度和强度。

另外,碳也可以通过形成碳化物颗粒来改善金属的耐磨性能。

2.硅:硅常用于铸造和铸铁材料中。

添加硅可以提高铁的硬度和强度,同时降低其可塑性。

此外,硅还可以提高铸铁材料的耐磨性能和耐腐蚀性能。

3.锰:锰常用于合金钢中。

添加锰可以提高钢的强度和韧性,并改善其耐磨性能。

锰还可以提高钢的抗冲击性能和耐腐蚀性能。

4.铬:铬常用于不锈钢中。

添加铬可以增加钢材的耐腐蚀性能。

当铬含量达到一定水平时,钢材可以形成一层致密的铬氧化物表面层,防止进一步的氧化和腐蚀。

5.镍:镍常用于合金钢和不锈钢中。

添加镍可以提高合金钢的强度、硬度和耐腐蚀性能。

此外,镍还可以使不锈钢具有良好的韧性和延展性。

6.钼:钼常用于高强度钢和高温合金中。

添加钼可以显著提高钢材的强度、硬度和耐腐蚀性能。

此外,钼也可以提高金属材料的耐高温性能和抗蠕变性能。

7.铜:铜常用于青铜和黄铜等合金中。

添加铜可以提高材料的导电性和导热性,同时可以改善耐腐蚀性能。

铜还可以增加合金的可塑性和延展性。

8.铝:铝常用于铝合金中。

添加铝可以显著提高材料的强度和硬度,同时降低其密度。

铝合金具有良好的耐腐蚀性能和热膨胀性能。

除了以上列举的元素外,还有许多其他元素可以对金属材料性能产生影响,如钛、锆、钒、钢等。

不同元素的添加和合金化可以根据具体需要来调整金属材料的性能,以满足不同工程应用的要求。

通过合理的元素选择和合金设计,可以获得具有特定性能的金属材料,以满足不同领域的需求。

各元素对铝合金性能影响

各元素对铝合金性能影响

各元素对铝合金性能影响铝合金的性能受多种因素的影响,包括合金元素的类型、含量和分布状态。

以下是各种元素对铝合金性能的影响。

1.硅:硅是最常用的铝合金元素之一、它能够增加铝的强度和刚性,但会降低铝的可塑性。

硅还有利于形成均匀细小的析出相,从而提高合金的硬度和耐磨性。

合金中硅的含量一般在2%以下。

2.铜:铜是一种强化元素,对铝合金的强度有显著影响。

它还能提高抗热裂纹性能和耐腐蚀性。

但较高的铜含量会降低铝合金的可塑性,增加其热应力和脆性。

3.锌:锌是一种强化元素,对铝合金的强度和耐蚀性有重要作用。

锌含量的增加可以提高合金的强度,但也会降低其塑性。

锌还能提高铝合金的热稳定性和耐磨性。

4.锰:锰是一种常用的合金元素,具有铸造性好和延展性佳的特点。

锰的存在可以提高铝合金的强度、硬度和可焊性。

合金中锰的含量一般在1%以下。

5.镁:镁是添入铝合金的常用元素之一、镁能够显著提高铝合金的强度,并且对合金具有良好的成形加工性能。

镁的添加还能促进铝合金的析出硬化,提高耐热性和耐蚀性。

镁含量的增加会增加铝合金的脆性。

6.钛:钛是一种残余元素,往往以杂质的形式存在于铝合金中。

钛几乎不会改变铝合金的机械性能,但可能会降低其可塑性和韧性。

因此,钛含量应尽量控制在较低的水平。

7.铬:铬是一种常用的合金元素,对铝合金的耐蚀性和耐磨性有重要影响。

铬含量的增加可以提高合金的耐腐蚀性,尤其是对氧化介质的耐蚀性。

合金中铬的含量一般在0.05-1%之间。

除了以上所述的元素,铝合金中可能还含有其他元素,如锆、镧、稀土元素等。

这些元素的加入可以进一步改善铝合金的性能,例如提高其耐高温性能、抗氧化性能和耐腐蚀性能。

然而,每个元素的性能影响都是复杂的,不同元素的相互作用也会产生复杂的效应。

因此,为了获得理想的铝合金性能,需要根据具体的应用要求和工艺条件综合考虑各种元素的含量和分布状态。

Y、Zr、Mo元素对Fe-Ni-Cr基合金组织和性能的影响

Y、Zr、Mo元素对Fe-Ni-Cr基合金组织和性能的影响

Y、Zr、Mo元素对Fe-Ni-Cr基合金组织和性能的影响Y、Zr、Mo元素对Fe-Ni-Cr基合金组织和性能的影响摘要:Fe-Ni-Cr基合金是一种重要的高温结构材料,广泛应用于航空、航天、能源等领域。

本文主要研究元素Y、Zr、Mo对Fe-Ni-Cr基合金组织和性能的影响。

通过熔炼、铸态合金热处理以及力学性能测试等方法对合金进行了分析和测试。

研究结果表明,Y、Zr、Mo元素的添加能够显著改善Fe-Ni-Cr 基合金的组织和性能,提高其高温的力学性能和抗氧化性能,有望在高温条件下得到广泛应用。

关键词:Fe-Ni-Cr基合金;Y、Zr、Mo元素;组织;性能;高温一、介绍Fe-Ni-Cr基合金是一种重要的高温结构材料,具有优良的高温强度、抗氧化性能、耐腐蚀性能和机械性能等特点,在航空、航天、能源等领域得到广泛应用。

然而,由于其基体的共析相和渗碳的生成,使得合金在高温条件下易出现变形和开裂等问题,限制了其应用范围。

近年来,研究人员发现通过添加适量的Y、Zr、Mo元素可以改善Fe-Ni-Cr基合金的组织和性能,提高其高温下的范式性能。

本文将对Y、Zr、Mo元素对Fe-Ni-Cr基合金组织和性能的影响进行研究,以期为合金的改性和应用提供一定的理论依据。

二、Y、Zr、Mo元素的添加及热处理1. 实验材料本研究选取了Fe-Ni-Cr基合金作为实验材料,并分别添加了Y、Zr和Mo元素。

合金的化学成分如表1所示。

表1 Fe-Ni-Cr-Y-Zr-Mo合金化学成分(质量分数,%)元素 Fe Ni Cr Y Zr Mo质量分数余量 18 16 0.5 0.5 0.52. 合金熔炼和铸态合金处理首先,将Fe、Ni、Cr、Y、Zr、Mo等元素按照所需比例放入高频感应炉中进行熔炼,得到均匀的合金液。

然后,将合金液倒入预先加热好的铸模中,在室温下静置冷却,得到铸态合金。

3. 合金热处理将铸态合金置于高温炉中进行固溶处理和时效处理。

各元素对铝合金性能影响

各元素对铝合金性能影响

各元素对铝合金性能影响铝合金是由铝与其他元素(如铜、镁、锰、硅等)合金化而成的材料。

不同元素的加入会对铝合金的性能产生不同的影响。

以下将对各元素对铝合金性能的影响进行详细讨论。

1. 铜(Cu):铜是常用的合金元素之一,加入适量的铜可以显著提高铝合金的强度和硬度。

铜的溶解能力较小,容易形成均匀分布的预cipitate ,增强铝合金的固溶强化效果。

然而,过多的铜会降低铝合金的塑性和热变形能力。

2.镁(Mg):镁是常用的合金元素之一,它可以显著提高铝合金的强度和韧性。

镁具有良好的固溶强化效果,通过形成Mg2Al3等固溶体粒子,增加了铝合金的强度。

同时,镁在冷变形时会细化晶粒,提高抗应力腐蚀开撕性能。

然而,过多的镁会导致铝合金的可焊性和耐热性下降。

3.锰(Mn):锰的主要作用是固溶强化铝合金。

适量的锰可以提高铝合金的强度和硬度,提高耐热性能。

锰也能够抑制晶粒长大,细化晶粒,提高抗应力腐蚀性能。

然而,过量的锰会导致铝合金的塑性下降。

4.硅(Si):硅是常用的合金元素之一,它可以显著提高铝合金的强度和耐蚀性。

硅可以形成硅铝溶液,在晶界处形成硬度较高的细小Si粒子,抑制晶粒长大。

硅还能提高铝合金的耐磨性和耐蚀性能。

然而,过多的硅会导致铝合金的塑性下降。

5.锌(Zn):锌的加入可以显著提高铝合金的强度和硬度。

锌可以溶解在铝中并形成固溶体,提高铝合金的强度和硬度。

锌还能提高铝合金的耐腐蚀性能。

然而,过多的锌会降低铝合金的塑性。

6.铁(Fe):铁的加入可以显著提高铝合金的强度和硬度。

同时,铁还能提高铝合金的耐氧化性能。

然而,过多的铁会降低铝合金的韧性和塑性。

7.锡(Sn):锡的加入可以提高铝合金的强度和硬度。

锡能够与铝形成固溶体,增强铝合金的固溶强化效果。

然而,过多的锡会降低铝合金的塑性和热变形能力。

8.钛(Ti):钛的加入可以显著提高铝合金的强度和硬度。

钛能够形成稳定的钛化合物,如TiAl3等,通过固溶强化提高合金的强度和硬度。

各元素对铝合金性能影响

各元素对铝合金性能影响

各元素对铝合金性能影响铝合金是一种广泛应用于工业制造领域的材料,其性能可以通过控制合金元素的添加来调整和优化。

下面我将详细介绍各元素对铝合金性能的影响。

1.硅(Si):硅是一种常见的合金元素,通常以硅铝合金的形式添加到铝合金中。

硅的添加可以显著提高铝合金的强度和硬度,并提高耐磨损性能。

此外,硅还可以改善铝合金的耐高温性能和抗热膨胀性能。

2.铜(Cu):铜是另一种常见的合金元素,通常以铜铝合金的形式添加到铝合金中。

铜的添加可以显著提高铝合金的强度和硬度,同时还可以提高抗腐蚀性能和导热性能。

然而,高铜含量的铝合金会降低其可焊性。

3.锌(Zn):锌通常以铝锌合金的形式添加到铝合金中。

锌的添加可以提高铝合金的强度和硬度,并改善抗热膨胀性能。

然而,高锌含量的铝合金会降低其可靠性并降低抗腐蚀性能。

4.镁(Mg):镁通常以镁铝合金的形式添加到铝合金中。

镁的添加可以显著提高铝合金的强度和耐腐蚀性能。

此外,镁还可以显著提高铝合金的可焊性和热处理可塑性。

5.锡(Sn):锡通常以铝锡合金的形式添加到铝合金中。

锡的添加可以改善铝合金的耐磨性和腐蚀性能,并提高硬度和强度。

然而,过多的锡含量会降低铝合金的可塑性和可靠性。

6.锰(Mn):锰通常以锰铝合金的形式添加到铝合金中。

锰的添加可以显著提高铝合金的强度和硬度,并增加其耐热性能。

此外,锰还可以提高铝合金的抗腐蚀性能。

7.钛(Ti):钛通常以钛铝合金的形式添加到铝合金中。

钛的添加可以显著提高铝合金的强度和硬度,并改善其耐热性能和抗腐蚀性能。

然而,过多的钛含量会降低铝合金的可塑性。

除了以上元素外,还有其他一些微量元素对铝合金的性能也有一定影响,例如锶、锶钛等。

这些微量元素的添加可以显著改善铝合金的细晶化效果,并提高铝合金的强度、硬度和耐磨性。

总的来说,不同合金元素的添加可以改善铝合金的不同性能,如强度、硬度、耐腐蚀性能、耐磨性能等。

合理控制合金元素的添加量和比例可以根据具体要求调整铝合金的性能,使其适用于不同的工业应用。

Mg、Si元素对Al—Mg—Si合金性能影响探讨

Mg、Si元素对Al—Mg—Si合金性能影响探讨

Mg、Si元素对Al—Mg—Si合金性能影响探讨文章研究了Mg、Si元素对Al-Mg-Si合金性能影响,重点分析Mg/Si对Al-Mg-Si合金导线在时效过程中导电率及显微硬度的影响。

利用示差扫描量热法(DSC)及透射电子显微镜(TEM)方法分析,探索镁硅比对Al-Mg-Si合金导线性能影响的内在机理。

标签:Al-Mg-Si合金;镁硅比;Mg5Si6;时效;导电率;硬度引言自从1898年美国正式使用纯铝线做架空绞线和1921年出现Aldrey铝合金以来,铝作为导体在电气工业中被大量应用。

铝合金克服了纯铝绞线的强度底、蠕变性、耐热性能差等缺点,使导电用铝合金发展更为迅速。

铝合金芯铝绞线(ACAR)在北美的美国、加拿大等国得以大量应用。

为实现可持续发展,履行国企社会责任,国网公司近年来积极推进“新材料、新技术和新工艺”应用,建设环境友好和资源节约型电网。

节能导线作为输电线路最有效的节能降耗措施正在逐步推广,其中导电率52.5%高强度铝合金及导电率58.5%IACS中强度铝合金在高压、超高压、特高压输等输电线路工程中得以广泛使用。

近年来铝合金产品也得以迅速批量应用,其中高强度铝合金的导电率52.5%、53%IACS两个等级,中强度铝合金的导电率58.5%IACS,与国外先进技术相比还有一定的提升空间。

虽然我国铝合金制造水平得以发展迅速,但受研发仪器、研发能力的限制,在电工材料用铝合金的技术一直未有较明显的突破,公司与澳大利亚莫纳什大学合作,对合金导电性能的提升做相关技术研究。

1 合金强化原理铝镁硅系合金导线是一种可热处理强化型铝合金导线,在人工时效过程中析出强化是其主要的强化手段之一。

在人工时效过程中,主要发生点缺陷的消失、固溶原子脱溶、析出相的形核长大以及位错回复现象。

固溶原子对铝合金导线导电率的影响要远大于析出相的影响,因此铝镁硅系合金导线的时效过程是导电率不断升高的过程。

固溶态Al-Mg-Si合金杆在时效过程中依次析出GP区、β” (Mg5Si6)、β’及β相(Mg2Si),其中β”相呈针状并与基体存在共格关系,时效硬化效应最明显,是峰时效时的产物,随着时效时间的进一步延长,由于新相的产生及长大,新的析出相逐渐失去了与基体的共格关系,时效硬化效应下降,进入过时效阶段。

各元素对钛合金的影响

各元素对钛合金的影响

各元素对钛合金的影响(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classicarticles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!钛合金作为一种重要的结构材料,广泛应用于航空航天、汽车制造、医疗器械等领域。

元素对合金的影响

元素对合金的影响
②碳化物形成元素,如锰、铬、钨、钼等。这类元素一部分以原子状态进入固溶体中,另一部分形成置换式合金渗碳体,如(Fe,Mn)3C、(Fe,Cr)3C等,如果含量超过一定限度(除锰以外),又将形成各自的碳化物,如(Fe,Cr)7C3、(Fe,W)6C等。
③ 不形成碳化物元素,如硅、铝、铜、镍、钴等。这类元素一般以原子状态存在于奥氏体、铁素体等固溶体中。合金元素中一些比较活泼的元素,如铝、锰、硅、钛、锆等,极易和钢中的氧和氮化合,形成稳定的氧化物和氮化物,一般以夹杂物的形态存在于钢中。锰、锆等元素也和硫形成硫化物夹杂。钢中含有足够数量的镍、钛、铝、钼等元素时能形成不同类型的金属间化合物。有的合金元素如铜、铅等,如果含量超过它在钢中的溶解度,则以较纯的金属相存在。 钢的性能取决于钢的相组成,相的成分和结构,各种相在钢中所占的体积组分和彼此相对的分布状态。
[编辑本段]合金钢的分类
一般分类
合金钢种类很多,通常按合金元素含量多少分为低合金钢(含量<5%),中合金钢(含量5%~10%),高合金钢(含量>10%);按质量分为优质合金钢、特质合金钢;按特性和用途又分为合金结构钢、不锈钢、耐酸钢、耐磨钢、耐热钢、合金工具钢、滚动轴承钢、合金弹簧钢和特殊性能钢(如软磁钢、永磁钢、无磁钢)等。 在钢中除含铁、碳和少量不可避免的硅、锰、磷、硫元素以外,还含有一定量的合金元素,钢中的合金元素有硅、锰、钼、镍、硌、矾、钛、铌、硼、铅、稀土等其中的一种或几种,这种钢叫合金钢。各国的合金钢系统,随各自的资源情况、生产和使用条件不同而不同,国外以往曾发展镍、硌钢系统,我国则发现以硅、锰、钒、钛、铌、硼、铅、稀土为主的合金钢系统 合金钢在钢的总产量中约占百分之十几,一般是在电炉中冶炼的按用途可以把合金钢分为8大类,它们是:合金结构钢、弹簧钢、轴承钢、合金工具钢、高速工具钢、不锈钢、耐热不起皮钢,电工用硅钢。 调质钢 1.中碳型合金钢,合金元素含量较低;2.强度较高;3.用于高温螺栓、螺母材料等。 弹簧钢 1含碳量比调质钢高;2经调质处理,强度较高 抗疲劳强度较高;3用于弹簧材料。 滚动轴承钢 1高碳型合金钢,合金含量较高;2具有高而均匀的硬度和耐磨性;3用于滚动轴承。 合金工具钢 量具钢 1高碳型合金钢,合金元素含量较低;2具有高的硬度和耐磨性,机加工性能好,稳定性好;3用于量具材料。 特殊性能钢 不锈钢 1低碳高合金钢;2抗腐蚀性好;3用于抗腐蚀、部分可做耐热材料。 耐热钢 1低碳高合金钢;2耐热性能好;3用于耐热材料、部分可做抗腐蚀材料。 低温钢 1低碳合金钢,根据耐低温程度合金元素有高有低;2抗低温性好;3用于低温材料(专用钢为镍钢)。

各种元素在铝合金中的作用

各种元素在铝合金中的作用

各种元素在铝合金中的作用铝合金是一种由铝与其他金属或非金属元素组成的合金。

它具有轻量、高强度、优良的导电性和导热性,因此被广泛应用于各个领域。

各种元素在铝合金中起到的作用不同,下面将对常见元素的作用进行详细介绍。

1.铜(Cu):铜是铝合金中添加的常见元素之一、铜的添加可以提高铝合金的强度和硬度,增加对热处理的响应,从而改善其机械性能。

此外,铜还能够改善合金的耐腐蚀性能和抗热裂纹性能。

2.锰(Mn):锰是铝合金中的一种重要添加元素。

锰的加入可以提高铝合金的强度和硬度,并提高其耐腐蚀性能。

锰的含量也可以对铝合金的晶粒尺寸和晶格结构产生影响,进而影响合金的机械性能。

3.铁(Fe):铁是铝合金的一个常见杂质元素,并且通常以氧化铁的形式存在。

铁的存在会降低铝合金的塑性和延展性,同时也会降低其耐腐蚀性能。

因此,在铝合金的生产过程中需要尽量控制铁的含量。

4.硅(Si):硅是铝合金中的一种常见添加元素。

硅的加入可以提高铝合金的流动性和耐热性,有助于改善合金的铸造性能。

硅还可以形成硅化物相,提高合金的强度和硬度。

5.镁(Mg):镁是铝合金中使用较多的添加元素之一、镁的加入可以显著提高铝合金的强度和硬度,同时还可以增加其耐蚀性和切削性能。

镁与铝形成的亚稳相可以进一步提高合金的强度,同时还可以细化合金的晶粒。

6.锡(Sn):锡是铝合金中常用的添加元素之一、锡的加入可以提高铝合金的强度和硬度,同时还能够改善合金的加工性能和耐腐蚀性能。

锡还可以与铝形成一些相互溶解的化合物,进一步提升合金的性能。

7.锶(Sr):锶是一种常用的铸造处理剂,被广泛应用于铝合金的铸造过程中。

锶的加入可以促进合金的均匀晶粒结构形成,提高铸件的质量和性能。

8.钛(Ti):钛是一种常见的添加元素,广泛应用于铝合金中。

钛的加入可以提高合金的抗热裂纹性能和耐蚀性能,同时还能够降低合金的软化温度,提高其热稳定性。

除了上述常见的元素之外,其他的元素如锌、铅、镍、锗等也可以在铝合金中加入,以达到不同的材料性能要求。

各种元素在铝合金中的作用

各种元素在铝合金中的作用

各种元素在铝合金中的作用1.合金元素影响铜元素铝铜合金富铝部分548时,铜在铝中的最大溶解度为 5.65%,温度降到302时,铜的溶解度为0.45%。

铜是重要的合金元素,有一定的固溶强化效果,此外时效析出的CuAl2有着明显的时效强化效果。

铝合金中铜含量通常在2.5% ~ 5%,铜含量在4%~6.8%时强化效果最好,所以大部分硬铝合金的含铜量处于这范围。

铝铜合金中可以含有较少的硅、镁、锰、铬、锌、铁等元素。

硅元素Al—Si合金系富铝部分在共晶温度577 时,硅在固溶体中的最大溶解度为1.65%。

尽管溶解度随温度降低而减少,介这类合金一般是不能热处理强化的。

铝硅合金具有极好的铸造性能和抗蚀性。

若镁和硅同时加入铝中形成铝镁硅系合金,强化相为MgSi。

镁和硅的质量比为1.73:1。

设计Al-Mg-Si系合金成分时,基体上按此比例配置镁和硅的含量。

有的Al-Mg-Si合金,为了提高强度,加入适量的铜,同时加入适量的铬以抵消铜对抗蚀性的不利影响。

Al-Mg2Si合金系合金平衡相图富铝部分Mg2Si 在铝中的最大溶解度为1.85%,且随温度的降低而减速小。

变形铝合金中,硅单独加入铝中只限于焊接材料,硅加入铝中亦有一定的强化作用。

镁元素Al-Mg合金系平衡相图富铝部分尽管溶解度曲线表明,镁在铝中的溶解度随温度下降而大大地变小,但是在大部分工业用变形铝合金中,镁的含量均小于6%,而硅含量也低,这类合金是不能热处理强化的,但是可焊性良好,抗蚀性也好,并有中等强度。

镁对铝的强化是明显的,每增加1%镁,抗拉强度大约升高瞻远34MPa。

如果加入1%以下的锰,可能补充强化作用。

因此加锰后可降低镁含量,同时可降低热裂倾向,另外锰还可以使Mg5Al8化合物均匀沉淀,改善抗蚀性和焊接性能。

锰元素Al-Mn合金系平平衡相图部分在共晶温度658时,锰在固溶体中的最大溶解度为1.82%。

合金强度随溶解度增加不断增加,锰含量为0.8%时,延伸率达最大值。

各元素在合金钢中的作用

各元素在合金钢中的作用

各元素在合金钢中的作用合金钢由铁和其他元素组成,这些元素对合金钢的性能具有重要的影响。

在合金钢中,各元素的作用可以分为强化作用、抗腐蚀作用、抗磨损作用以及调节作用等。

强化作用是合金钢中各元素最重要的作用之一、添加一些合适的合金元素可以显著提高合金钢的强度、硬度和耐久性。

以下是一些常见的强化元素及其作用:1.碳(C):铁与碳的组合形成了最常见的钢。

碳可以增加钢的硬度和强度,并改善耐磨性。

高碳钢通常用于制造刀具和弹簧等需要高硬度和强度的产品。

2.硅(Si):硅可以有效地提高钢的强度和硬度,并有助于控制钢的晶粒尺寸。

硅还可以降低钢的热脆性。

3.锰(Mn):锰可以提高钢的韧性、硬度和强度,同时促进晶粒细化。

锰还有助于降低钢的热脆性。

4.铬(Cr):铬是一种常用的合金元素,可以提高钢的硬度、耐磨性和抗腐蚀性。

铬能够形成一层致密的氧化膜,称为“氧化铬膜”,有效地防止钢的进一步氧化和腐蚀。

5.钼(Mo):钼可以提高钢的强度、硬度和耐切削性能。

钼还可以提高钢的耐高温性能和抗腐蚀性。

6.钛(Ti):钛可以阻碍钢中的晶粒生长,从而细化钢的晶粒结构。

钛还可以提高钢的强度和耐腐蚀性。

抗腐蚀作用是另一个重要的元素作用。

以下是在合金钢中常用的抗腐蚀元素及其作用:1.镍(Ni):镍能够提高钢的耐腐蚀性。

镍在钢中的溶解度很高,能够有效地阻止钢的腐蚀。

2.钼:前面已经提到,钼可以提高钢的抗腐蚀性能,特别是在酸性和氯化物环境中。

3.铜(Cu):铜可以提供钢的抗腐蚀性能,特别是在含有硫酸和盐酸等化学物质的环境中。

抗磨损作用是另一个重要的元素作用。

以下是在合金钢中常用的抗磨损元素及其作用:1.钼:钼可以提高钢的耐磨性能,特别是在高温和高压力条件下。

2.钽(Ta):钽可以提高钢的抗磨损性能和耐高温性能。

3.铌(Nb)和钛:铌和钛可以用于合金钢中,以提高其耐磨性和耐热性。

最后,元素还可以用于调节合金钢的特性。

以下是一些常用的调节元素及其作用:1.硼(B):硼可以提高钢的硬度和强度,并有助于钢的热处理和淬火过程。

合金里面元素价态

合金里面元素价态

合金里面元素价态合金是由两种或两种以上的金属元素组成的固态材料。

合金的价态对于其性质和用途具有重要影响。

本文将围绕合金中元素的价态展开,介绍不同元素的价态对合金的影响。

一、铁的价态铁是合金中最常见的元素之一,其价态对合金的性质和用途有着重要影响。

最常见的铁的价态有两种:+2和+3。

在+2价态下,铁具有良好的可塑性和韧性,适用于制造锻件和冷加工件。

而在+3价态下,铁的硬度和强度增加,适用于制造高强度结构件和耐磨件。

因此,在设计合金时,需要根据具体要求选择合适的铁的价态。

二、铝的价态铝是一种轻质金属,常见的价态有+3和+1。

在+3价态下,铝具有较高的强度和硬度,适用于制造航空航天和汽车等领域的结构件。

而在+1价态下,铝的导电性和导热性增强,适用于电子器件和导热材料。

铝合金是应用广泛的合金之一,通过调节铝的价态可以获得不同性能的合金材料。

三、钛的价态钛是一种轻质高强度金属,常见的价态有+4和+3。

在+4价态下,钛具有较高的强度和耐腐蚀性,适用于航空航天和化工等领域的高强度结构件。

而在+3价态下,钛的可塑性和韧性增加,适用于制造钛合金管材和钛合金板材等产品。

钛合金具有优异的性能和广泛的应用前景,其价态调控是实现特定性能合金的关键。

四、镍的价态镍是一种耐腐蚀金属,常见的价态有+2和+3。

在+2价态下,镍具有良好的塑性和可焊性,适用于制造化工设备和电子器件等。

而在+3价态下,镍的硬度增加,适用于制造高强度和耐磨的合金材料。

镍合金是一种重要的高温合金,通过调节镍的价态可以获得不同的高温性能。

五、钢中的碳的价态钢是铁与碳的合金,碳的价态对钢的性能有着重要影响。

碳的价态主要有两种:+2和-4。

在+2价态下,碳与铁形成固溶体,增加钢的硬度和强度,适用于制造高强度结构件。

而在-4价态下,碳与铁形成的化合物使钢变脆,适用于制造耐磨件和切削工具。

因此,在设计钢材时,需要根据具体要求选择合适的碳的价态。

合金中元素的价态对合金的性质和用途有着重要影响。

合金中元素偏析带来的危害

合金中元素偏析带来的危害

合金中元素偏析带来的危害在金属材料的生产和加工过程中,合金元素偏析是一个常见的问题。

合金元素偏析指的是合金中各元素在合金内部的不均匀分布,这通常会导致合金性能的降低,甚至可能引发一系列的工程问题。

下面,我们将深入探讨合金元素偏析带来的危害。

1. 力学性能下降合金元素偏析会导致合金的力学性能下降。

由于合金元素在合金内部的分布不均,会导致合金的强度、韧性、耐磨性等性能指标下降。

这不仅会影响到产品的使用寿命,还可能引发安全问题。

例如,航空航天、汽车、石油化工等领域使用的关键部件,如果存在合金元素偏析,可能会导致部件过早疲劳或断裂,严重时甚至可能引发重大事故。

2. 耐腐蚀性能降低合金元素偏析也会影响合金的耐腐蚀性能。

在某些高腐蚀性的环境中,如果合金元素偏析严重,可能会导致某些部位迅速腐蚀,从而大大缩短了材料的使用寿命。

这对于那些需要在恶劣环境下工作的设备和部件来说,是一个非常严重的问题。

3. 热处理困难在热处理过程中,如果合金元素偏析严重,可能会使得热处理过程变得困难或者效果不佳。

这不仅会影响到材料的最终性能,还可能使得生产过程变得复杂和不可控。

4. 生产成本增加为了解决合金元素偏析带来的问题,往往需要进行额外的处理和检测。

这不仅增加了生产成本,还可能影响到生产效率。

对于企业来说,这无疑是一个巨大的挑战。

综上所述,合金中元素偏析带来的危害是多方面的,从材料性能的降低到生产成本的增加都有涉及。

因此,在金属材料的生产和加工过程中,必须采取有效的措施来防止和控制合金元素偏析的产生。

这包括优化生产工艺、加强质量控制、采用先进的检测手段等措施。

只有这样,才能确保金属材料的质量和性能,满足各种工程应用的需求。

优化生产工艺为了防止合金元素偏析的产生,可以对生产工艺进行优化。

例如,采用适当的熔炼和浇注技术,控制合金元素的混合和分布。

此外,可以采用多次熔炼和浇注的方法,以进一步改善合金的元素分布。

这些措施可以有效地减少合金元素偏析的产生,从而提高材料的性能。

稀土元素对高温合金强度的影响

稀土元素对高温合金强度的影响

稀土元素对高温合金强度的影响稀土元素这玩意儿,听起来是不是有点神秘?其实啊,它们在高温合金强度这方面可有着大作用呢!先给您讲讲啥是高温合金。

就说咱常见的飞机发动机吧,那里面的零件在工作的时候,温度高得吓人,普通材料根本扛不住。

这时候高温合金就登场了,它能在高温环境下依然保持良好的性能。

而稀土元素就像是高温合金的“超级助手”。

就拿我之前在实验室里的一次观察来说,那真是让我印象深刻。

当时我们正在研究一种含有稀土元素钇(Y)的高温合金。

在显微镜下,我仔细地观察着它的微观结构,那一个个细小的晶粒排列得整整齐齐,就像是训练有素的士兵方阵。

当我们对这种合金进行拉伸测试时,发现它的强度比不含钇的合金高出了一大截。

稀土元素为啥能有这么大的能耐呢?这是因为它们能够细化晶粒。

您想想,晶粒变得细小而且均匀了,就像是把一大块土地划分成了很多小块的农田,每一块都能被精心耕种,这样整体的质量和稳定性不就提高了嘛。

再比如说稀土元素铈(Ce),它能净化合金中的杂质。

就好像是在一个大班级里,把那些调皮捣蛋、影响秩序的“坏学生”给清理出去,留下的都是听话认真的“好学生”,整个班级的氛围和成绩自然就好了。

还有啊,稀土元素镧(La)能增强合金的抗氧化性能。

高温环境下,就像在烈日炎炎的沙漠中行走,很容易被“晒坏”。

但有了镧的保护,就像是给高温合金穿上了一层防晒衣,让它不容易受到氧化的侵害,从而保持良好的强度。

不过呢,稀土元素的加入也不是越多越好。

这就好比做菜放盐,放少了没味道,放多了齁得慌。

如果稀土元素加得太多,反而可能会产生一些不利的影响,比如导致合金的韧性下降。

所以啊,在利用稀土元素来提高高温合金强度的时候,科研人员就像是一位经验丰富的大厨,要精准地掌握好“用量”,才能烹饪出一道美味的“强度大餐”。

总的来说,稀土元素对于高温合金强度的影响是多方面的,而且非常重要。

未来,随着研究的不断深入,相信稀土元素会在高温合金领域发挥出更加神奇的作用,为我们的科技发展做出更大的贡献!就像当初我在实验室里看到的那个含有钇的高温合金一样,给人带来满满的惊喜和期待。

元素对合金的影响

元素对合金的影响

元素对合金的影响元素对合金的影响主要合金元素合金钢的主要合金元素有硅、锰、铬、镍、钼、钨、钒、钛、铌、锆、钴、铝、铜、硼、稀土等。

其中钒、钛、铌、锆等在钢中是强碳化物形成元素,只要有足够的碳,在适当条件下,就能形成各自的碳化物,当缺碳或在高温条件下,则以原子状态进入固溶体中;锰、铬、钨、钼为碳化物形成元素,其中一部分以原子状态进入固溶体中,另一部分形成置换式合金渗碳体;铝、铜、镍、钴、硅等是不形成碳化物元素,一般以原子状态存在于固溶体中。

[编辑本段]合金钢的分类一般分类合金钢种类很多,通常按合金元素含量多少分为低合金钢(含量<5%),中合金钢(含量5%~10%),高合金钢(含量>10%);按质量分为优质合金钢、特质合金钢;按特性和用途又分为合金结构钢、不锈钢、耐酸钢、耐磨钢、耐热钢、合金工具钢、滚动轴承钢、合金弹簧钢和特殊性能钢(如软磁钢、永磁钢、无磁钢)等。

在钢中除含铁、碳和少量不可避免的硅、锰、磷、硫元素以外,还含有一定量的合金元素,钢中的合金元素有硅、锰、钼、镍、硌、矾、钛、铌、硼、铅、稀土等其中的一种或几种,这种钢叫合金钢。

各国的合金钢系统,随各自的资源情况、生产和使用条件不同而不同,国外以往曾发展镍、硌钢系统,我国则发现以硅、锰、钒、钛、铌、硼、铅、稀土为主的合金钢系统合金钢在钢的总产量中约占百分之十几,一般是在电炉中冶炼的按用途可以把合金钢分为8大类,它们是:合金结构钢、弹簧钢、轴承钢、合金工具钢、高速工具钢、不锈钢、耐热不起皮钢,电工用硅钢。

调质钢1.中碳型合金钢,合金元素含量较低;2.强度较高;3.用于高温螺栓、螺母材料等。

弹簧钢1含碳量比调质钢高; 2经调质处理,强度较高抗疲劳强度较高;3用于弹簧材料。

滚动轴承钢1高碳型合金钢,合金含量较高;2具有高而均匀的硬度和耐磨性;3用于滚动轴承。

合金工具钢量具钢1高碳型合金钢,合金元素含量较低;2具有高的硬度和耐磨性,机加工性能好,稳定性好;3用于量具材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Байду номын сангаас10、钒(V)
:钒是钢的优良脱氧剂。钢中加0.5%的钒可细化组织晶粒,提高强度和韧性。钒与碳形成的碳化物,在高温高压下可提高
抗氢腐蚀能力。
11、钨(W):钨熔点高,比重大,是贵生的合金元素。钨与碳形成碳化钨有很高的硬度和耐磨性。在工具钢加钨,可显著提高红硬性和热强性,作切削工具及锻模具用。
合金钢合金元素在钢中的作用
1、碳(C):钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲合金结构钢击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般
不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈
[编辑本段]合金钢的分类
一般分类
合金钢种类很多,通常按合金元素含量多少分为低合金钢(含量<5%),中合金钢(含量5%~10%),高合金钢(含量>10%);按质量分为优质合金钢、特质合金钢;按特性和用途又分为合金结构钢、不锈钢、耐酸钢、耐磨钢、耐热钢、合金工具钢、滚动轴承钢、合金弹簧钢和特殊性能钢(如软磁钢、永磁钢、无磁钢)等。 在钢中除含铁、碳和少量不可避免的硅、锰、磷、硫元素以外,还含有一定量的合金元素,钢中的合金元素有硅、锰、钼、镍、硌、矾、钛、铌、硼、铅、稀土等其中的一种或几种,这种钢叫合金钢。各国的合金钢系统,随各自的资源情况、生产和使用条件不同而不同,国外以往曾发展镍、硌钢系统,我国则发现以硅、锰、钒、钛、铌、硼、铅、稀土为主的合金钢系统 合金钢在钢的总产量中约占百分之十几,一般是在电炉中冶炼的按用途可以把合金钢分为8大类,它们是:合金结构钢、弹簧钢、轴承钢、合金工具钢、高速工具钢、不锈钢、耐热不起皮钢,电工用硅钢。 调质钢 1.中碳型合金钢,合金元素含量较低;2.强度较高;3.用于高温螺栓、螺母材料等。 弹簧钢 1含碳量比调质钢高;2经调质处理,强度较高 抗疲劳强度较高;3用于弹簧材料。 滚动轴承钢 1高碳型合金钢,合金含量较高;2具有高而均匀的硬度和耐磨性;3用于滚动轴承。 合金工具钢 量具钢 1高碳型合金钢,合金元素含量较低;2具有高的硬度和耐磨性,机加工性能好,稳定性好;3用于量具材料。 特殊性能钢 不锈钢 1低碳高合金钢;2抗腐蚀性好;3用于抗腐蚀、部分可做耐热材料。 耐热钢 1低碳高合金钢;2耐热性能好;3用于耐热材料、部分可做抗腐蚀材料。 低温钢 1低碳合金钢,根据耐低温程度合金元素有高有低;2抗低温性好;3用于低温材料(专用钢为镍钢)。
6、铬(Cr):在结构钢和工具钢中,铬能显著提高强度、硬度和耐磨性,但同时降低塑性和韧性。铬又能提高钢的抗氧化性和耐腐蚀性,因而是不锈钢,耐热钢的重要合金元素。
7、镍(Ni):镍能提高钢的强度,而又保持良好的塑性和韧性。镍对酸碱有较高的耐腐蚀能力,在高温下有防锈和耐热能力。但由于镍是较稀缺的资源,故应尽量采用其他合金元素代用镍铬钢。
主要合金元素
合金钢的主要合金元素有硅、锰、铬、镍、钼、钨、钒、钛、铌、锆、钴、铝、铜、硼、稀土等。其中钒、钛、铌、锆等在钢中是强碳化物形成元素,只要有足够的碳,在适当条件下,就能形成各自的碳化物,当缺碳或在高温条件下,则以原子状态进入固溶体中;锰、铬、钨、钼为碳化物形成元素,其中一部分以原子状态进入固溶体中,另一部分形成置换式合金渗碳体;铝、铜、镍、钴、硅等是不形成碳化物元素,一般以原子状态存在于固溶体中。
3、锰(Mn):在炼钢过程中,锰是良好的脱氧剂和脱硫剂,一般钢中含锰0.30-0.50%。在碳素钢中加入0.70%以上时就算“锰钢”,较一般钢量的钢不但有足够的韧性,且有较高的强度和硬度,提高钢的淬性,改善钢的热加工性能,如16Mn钢比A3屈服点高40%。含锰11-14%的钢有极高的耐磨性,用于挖土机铲斗,球磨机衬板等。锰量增高,减弱钢的抗腐蚀能力,降低焊接性能。
②碳化物形成元素,如锰、铬、钨、钼等。这类元素一部分以原子状态进入固溶体中,另一部分形成置换式合金渗碳体,如(Fe,Mn)3C、(Fe,Cr)3C等,如果含量超过一定限度(除锰以外),又将形成各自的碳化物,如(Fe,Cr)7C3、(Fe,W)6C等。
③ 不形成碳化物元素,如硅、铝、铜、镍、钴等。这类元素一般以原子状态存在于奥氏体、铁素体等固溶体中。合金元素中一些比较活泼的元素,如铝、锰、硅、钛、锆等,极易和钢中的氧和氮化合,形成稳定的氧化物和氮化物,一般以夹杂物的形态存在于钢中。锰、锆等元素也和硫形成硫化物夹杂。钢中含有足够数量的镍、钛、铝、钼等元素时能形成不同类型的金属间化合物。有的合金元素如铜、铅等,如果含量超过它在钢中的溶解度,则以较纯的金属相存在。 钢的性能取决于钢的相组成,相的成分和结构,各种相在钢中所占的体积组分和彼此相对的分布状态。
8、 钼(Mo):钼能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力(长期在高温下受到应力,发生变形,称蠕变)。结构钢中加入钼,能提高机械性能。 还可以抑制合金钢由于火而引起的脆性。在工具钢中可提高红性。
9、钛(Ti):钛是钢中强脱氧剂。它能使钢的内部组织致密,细化晶粒力;降低时效敏感性和冷脆性。改善焊接性能。在铬18镍9奥氏体不锈钢中加入适当的钛,可避免晶间腐蚀。
碳化物形成元素(如钒、钛、铬、钼、钨)如果含量较多,将使奥氏体向珠光体的转变显著推迟,但对奥氏体向贝氏体的转变的推迟并不显著,因而使这两种转变的等温转变曲线从“鼻子”处分离,而形成两个 C形。当这类元素增加到一定程度时,在这两个转变区域的中间还将出现过冷奥氏体的亚稳定区。合金元素对马氏体转变温度Ms (起始转变温度)和Mn (终了转变温度)的影响也很显著,大部分元素均使Ms和Mn点降低,其中以碳的影响最大,其次为锰、钒、铬等;但钴和铝则使Ms和Mn点升高。 对钢的晶粒度和淬透性的影响 影响奥氏体晶粒度的因素很多。钢的脱氧和合金化情况均与“奥氏体本质晶粒度”有关。一般来说,一些不形成碳化物的元素,如镍、硅、铜、钴等,阻止奥氏体晶粒长大的作用较弱,而锰、磷则有促进晶粒长大的倾向。碳化物形成元素如钨、钼、铬等,对阻止奥氏体晶粒长大起中等作用。强碳化物形成元素如钒、钛、铌、锆等,强烈地阻止奥氏体晶粒长大,起细化晶粒作用。铝虽然属于不形成碳化物元素,但却是细化晶粒和控制晶粒开始粗化温度的最常用的元素。 钢的淬透性(见淬火)高低主要取决于化学成分和晶粒度。除钴和铝等元素外,大部分合金元素溶入固溶体后都不同程度地抑制过冷奥氏体向珠光体和贝氏体的相变,增加获得马氏体组织的数量,即提高钢的淬透性。一些碳化物形成元素,如钒、钛、锆、钨等,如果形成碳化物而固定了钢中的碳,反而会降低淬透性,易使晶粒粗化的元素如锰,能提高淬透性;使晶粒细化的元素如铝,则降低淬透性。硼是显著影响淬透性的元素,合金钢中即使只含十万分之一的硼,也能显著提高钢的淬透性。但硼的这种影响仅对低、中碳钢有效,对高碳钢完全无效。 对钢的力学性能和回火性能的影响 钢的性能取决于铁的固溶体和碳化物各自性能以及它们相对分布的状态。合金元素对钢的力学性能的影响也与此有关。固溶于铁素体中的合金元素,起固溶强化作用,使强度和硬度提高,但同时使韧性和塑性相对地降低。其中以磷和硅的固溶强化作用最显著,而硅对韧性的影响也最严重。少量的锰、铬或镍,反而对铁素体的韧性有一定提高。 调质钢的韧性-脆性转变温度是评价力学性能的一项重要指
4、磷(P):在一般情况下,磷是钢中有害元素,增加钢的冷脆性,使焊接性能变坏,降低塑性,使冷弯性能变坏。因此通常要求钢中含磷量小于0.045%,优质钢要求更低些。
5、硫(S):硫在通常情况下也是有害元素。使钢产生热脆性,降低钢的延展性和韧性,在锻造和轧制时造成裂纹。硫对焊接性能也不利,降低耐腐蚀性。所以通常要求硫含量小于0.055%,优质钢要求小于0.040%。在钢中加入0.08-0.20%的硫,可以改善切削加工性,通常称易切削钢。
分解的作用,但各类元素所起的作用有所不同。不形成碳化物的(如硅、磷、镍、铜)和少量的碳化物形成元素(如钒、钛、钼、钨),对奥氏体到向珠光体的转
变和向贝氏体的转变的影响差异不大,因而使转变曲线向右推移。
合金元素是通过影响上述因素而起作用的。对钢的相变点的影响 主要是改变钢中相变点的位置,大致可以归纳为以下三个方面:
①改变相变点温度。一般来说,扩大γ相(奥氏体)区的元素,如锰、镍、碳、氮、铜、锌等,使A3点温度降低,A4点温度升高;相反,缩小γ相区的元素,如锆、硼、硅、磷、钛、钒、钼、钨、铌等,则使A3点温度升高,A4点温度降低。惟有钴使A3和A4点温度均升高。铬的作用比较特殊,含铬量小于7%时使A3点温度降低,大于7%时则使A3点温度提高。
对钢加热和冷却时相变的影响 钢加热时的主要固态相变是非奥氏体相向奥氏体相的转变,即奥氏体化的过程。整个过程都和碳的扩散有关。合金元素中,非碳化物形成元素如镍、钴等,降低碳在奥氏体中的激活能,增加奥氏形成的速度;而强碳化物形成元素如钒、钛、钨等,强烈妨碍碳在钢中的扩散,显著减慢奥氏体化的过程。钢冷却时的相变是指过冷奥氏体的分解,包括珠光体转变(共析分解)、贝氏体相变及马氏体相变。由于钢中大都存在几种合金元素的相互作用,致使对钢冷却时相变的影响也复杂得多。仅举合金元素对过冷奥氏体等温转变曲线的影响为例,大多数合金元素,除钴和铝外,均起减缓奥氏体等温
17、氮(N):氮能提高钢的强度,低温韧性和焊接性,增加时效敏感性。
18、稀土(Xt):稀土元素是指元素周期表中原子序数为57-71的15个镧系元素。这些元素都是金属,但他们的氧化物很象“土”,所以习惯上称稀土。钢中加入稀土,可以改变钢中夹杂物的组成、形态、分布和性质,从而改善了钢的各种性能,如韧性、焊接性,冷加工性能。在犁铧钢中加入稀土,可提高耐磨性。
14、铜(Cu):武钢用大冶矿石所炼的钢,往往含有铜。铜能提高强度和韧性,特别是大气腐蚀性能。缺点是在热加工时容易产生热脆,铜含量超过0.5%塑性显著降低。当铜含量小于0.50%对焊接性无影响。
15、铝(Al):铝是钢中常用的脱氧剂。钢中加入少量的铝,可细化晶粒,提高冲击韧性,如作深冲薄板的08Al钢。铝还具有抗氧化性和抗腐蚀性能,铝与铬、硅合用,可显著提高钢的高温不起皮性能和耐高温腐蚀的能力。铝的缺点是影响钢的热加工性能、焊接性能和切削加工性能。 16、硼(B):钢中加入微量的硼就可改善钢的致密性和热轧性能,提高强度。
相关文档
最新文档