【高中数学解题技巧】高中数学解题思维训练ppt.
高二数学选修课件时类比推理
的联系和相似的性质,如对数运算法则、指数方程的解法等。
03
三角函数与反三角函数的类比
三角函数和反三角函数是数学中的重要内容,它们之间有着相似的性质
和图像特征,如周期性、振幅、相位等概念。
03 类比推理在解题中应用举 例
选择题中应用
题目类型识别
通过类比推理,识别题目类型,从而 选择相应的解题方法。例如,对于与 已知题目类似的题目,可以借鉴已知 题目的解题思路和方法。
误区三
机械类比。将不同领域的对象进 行简单的机械类比,忽略它们之 间的内在联系和逻辑关系,导致 推理结果不合理。避免方法:在 类比时注重逻辑性和内在联系, 确保类比的逻辑性和科学性。
拓展延伸:类比推理在其他学科中应用
物理学中的应用
化学中的应用
通过类比已知物理现象和规律,发现新的 物理现象和规律;借助类比推理解决复杂 的物理问题。
判断
在识别出相似关系后,需要进一步判断这种相似关系是否足 以支持类比推理的结论。这需要对相似关系的本质和程度进 行深入分析,以确定类比推理的可行性和可靠性。
相似性与差异性分析
相似性分析
在类比推理中,相似性分析是关键步骤之一。它涉及对两个或多个对象的共同特征和属性进行比较和 归纳,以确定它们之间的相似程度。相似性分析有助于我们找到对象之间的内在联系和规律。
误区警示及避免方法
误区一
过度泛化。将不同领域的对象进 行类比时,容易忽略它们之间的 本质差异,导致错误的推理结果 。避免方法:在类比前深入分析 对象的本质属性和特征,确保类 比的合理性。
误区二
忽视细节。在类比过程中,容易 忽略一些重要的细节差异,导致 推理结果不准确。避免方法:在 类比时关注细节,特别是那些可 能对推理结果产生重要影响的细 节。
浅谈高中数学解题技巧
浅谈高中数学解题技巧邱㊀进(江苏省泰州市姜堰区蒋垛中学㊀225500)摘㊀要:随着新课改的落实ꎬ对于高中数学提出了更高的教学要求ꎬ更加重视提高学生的集体思考能力ꎬ全面提高高中生的数学综合素质.高中数学知识既多又复杂ꎬ因此ꎬ这对老师在数学解题技巧上的教授提出了全新的挑战.想要让学生掌握正确的解题方法ꎬ取得理想的数学成绩ꎬ老师应该要深入的研究高中数学教材ꎬ总结解题的技巧.本文对高中数学的解题方法与技巧进行了研究ꎬ希望给数学老师在解题方面的教学提供思路.关键词:高中数学ꎻ解题方法ꎻ解题技巧中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2021)18-0027-02收稿日期:2021-03-25作者简介:邱进(1981.2-)ꎬ男ꎬ江苏省泰州人ꎬ本科ꎬ中学一级教师ꎬ从事高中数学教学研究.㊀㊀高中数学的学习难度比较大ꎬ要求学生在学习的过程中ꎬ具备较强的逻辑思维能力和分析能力.老师在教学的过程中ꎬ如果采用单一的教学方法ꎬ将不利于培养学生解题的能力ꎬ数学老师的专业素养主要体现在对于学生解题能力的培养上ꎬ老师在日常教学中ꎬ在对例题进行讲解时ꎬ要注重对于解题方式的分析和教授ꎬ让学生在实例学习中掌握正确的解题技巧.㊀㊀一㊁高中数学难题分析由于传统教育理念影响ꎬ老师在展开教学活动中ꎬ通常以自身为主体ꎬ对学生展开灌输填鸭式的教育方式ꎬ导致学生对于老师的依赖性比较大ꎬ独立思考的能力比较弱.但是ꎬ随着教育教学的改革ꎬ数学题的出题思维也在不断的革新和变化ꎬ对于学生来说ꎬ应该要能够做到灵活的运用数学知识ꎬ并且ꎬ结合自身的实际情况ꎬ探索出适合的解题技巧.部分高中生在解答数学难题时ꎬ依然沿用初中阶段的定势思维来进行解读ꎬ在实际的解题过程中困难重重ꎬ解题的速度和正确性不高ꎬ因此也挫伤了大部分学生在解题方面的积极性ꎬ影响了学生解题的自信心.出现这种现象的根本原因是因为ꎬ初中阶段和高中阶段在数学解题上有明显的逻辑差异ꎬ高中的数学题在解题上更加注重对于知识点的综合运用ꎬ而且需要学生具备更高的思维能力.但是部分高中生并没有意识到这一点ꎬ所以解题思维模式上也没有进行转换ꎬ在解题时就遇到了问题.就老师方面来说ꎬ由于高中应试考试压力影响ꎬ老师需要在有限的教学时间内完成更多的教学任务ꎬ因此老师教学任务非常沉重ꎬ既要备学情ꎬ又要备教材ꎬ所以为了完成教学任务ꎬ老师只能利用题海战术来提高学生的学习能力ꎬ但是这种训练方式ꎬ不仅不能达到原本提高学生解题水平的目的ꎬ还会影响到学生对于数学学习的兴趣ꎬ让学生对于数学解题产生厌烦和恐惧的心理.㊀㊀二㊁高中数学审题技巧进行有效解答的前提ꎬ是要能够学会正确的审题ꎬ能够在审题中获得足够的解题条件ꎬ从而提高解题的速度和准确性.1.分析题干内容题干中描述的内容是解题的基本条件ꎬ它指明了解题的大致方向ꎬ因此想要正确的进行解题ꎬ就必须要对题干的内容进行仔细的研究和分析ꎬ挖掘出隐藏在题干中的潜在条件ꎬ通过条件之间的转化来简化解题的程序ꎬ从而提高解题的效率ꎬ并且保证解题的准确性.比如ꎬ已知a2+(b-2)a+b-1=0的两个根为a1和a2ꎬ而点A(a1ꎬa2)在圆a2+c2=4ꎬ求b.通过审题得知ꎬa在圆a2+c2=4ꎬ表明A坐标在圆a2+c2=4方程上ꎬ又(a1ꎬa2)为方程两个根ꎬ则a12+(b-2)a1+b-1=0ꎬa22+72Copyright©博看网 . All Rights Reserved.(b-2)a2+b-1=0.通过阅读题能够获得以上信息ꎬ如果只是依照题干中的表面条件来进行求解ꎬ将无从下手ꎬ但是这道题解题的关键在于挖掘出题干中的潜在条件ꎬ通过隐藏解题条件来更好的实现调节的目标.2.关联分析以上例为例ꎬ在阅读的过程中挖掘出了潜在的条件ꎬ但是对于解题仍然还显得不够ꎬ这个过程当中ꎬ应该针对已知条件和求解的目标ꎬ进行关联式的分析ꎬ从而获得解题的突破口.需要注意强调的是ꎬ在解题时要具备推理意识和反思意识ꎬ同时通过各种解题方法ꎬ如草图法ꎬ运算分析法来找到解题的关键点ꎬ从而简化题干的内容.a2+(b-2)a+b-1=0为一元二次方程ꎬ在关联分析时ꎬ加入f(a)=a2+(b-2)a+b-1ꎬ(a1ꎬ0)(a2ꎬ0)就是焦点ꎬ轴对称分布ꎬ得出a1+a2=2-b.3.梳理解题思路对于高中数学的解题思路来说ꎬ学生应该要能够做到对于题干进行有效的分析ꎬ能够将求解的目标和内容进行联系.将数学的定义和性质进行灵活的运用ꎬ要求学生要梳理解题的思路ꎬ将课本中的理论知识与解题过程的各要素进行匹配ꎬ从而实现多条件的求解目标.比如上题分析得出a12+(b-2)a1+b-1=0ꎬa22+(b-2)a2+b-1=0ꎬa1+a2=2-bꎬ然后利用三二元次方程求解得出答案.㊀㊀三㊁数学解决方法1.转换法所谓转换法ꎬ就是转变原有的数学解题思路ꎬ从而获得解决的方法.在用这一方法后ꎬ能够将原本复杂的条件简单化ꎬ将抽象的知识具体化ꎬ对于学生来说ꎬ能够有效的提高解题的效率和准确性ꎬ树立起解题的自信心.比如函数m=nx2-x-n(n>0ꎬnʂ1)ꎻm=x+nꎬ通过做图看出ꎬ两个函数有一个焦点ꎬ区间在0<n<1ꎬ但是这题目中的立意不符.因此可以反推出交点的数量为2ꎬ其对应的区间为n>1ꎬ这就和提干相吻合了.2.求证法求证法比较适合用于高中数学解题ꎬ过程就是通过逆向思维的能力进行推理ꎬ最终发现结论与数学的定理之间相背离得知ꎬ原命题的合理性ꎬ从而能够完成解题.对于高中生来说ꎬ一般都习惯使用正面的思维方式来进行解题ꎬ但是这一方法并不适合于所有的题目ꎬ有些题目在运用反向求证的方法之后ꎬ反而能够快速的解题.比如在某学校有630人ꎬ抽取每个年级30%的学生ꎬ通过题干已经条件ꎬ计算出实际调查学生数量为189人ꎬ如果命题不成立ꎬ则要假设推理ꎬ指导获取到与题目之间冲突的部分ꎬ凭此来求解.3.换元法高中数学的题目ꎬ一般都不会以单一的形式出现ꎬ学生如果仅仅是从整式进行解题ꎬ反而会花费过多的时间ꎬ而且也不能保证其结果的正确性ꎬ对于这类整合式的数学题目的解答ꎬ学生可以采用换元的方法来进行解题ꎬ通过用变量来替换表达的方式ꎬ最后ꎬ再通过替换的变量来实现正确解题.换元法在所有解决方法中实用性是最高的ꎬ因此老师应该指导学生熟练掌握换原的解决方式ꎬ提高解题的速度和正确性ꎬ这对于学生在今后的数学解答也能够有明显的促进作用.4.排除法排除法也是高中数学解题中比较常用的方法之一ꎬ这种类型的方法大多运用与选择题的题型当中ꎬ通过排除选项的方式来找到正确的答案.比如不等式ab2+2ab-4<2b2+4b恒成立ꎬ则m的范围是(㊀㊀).A.(-2ꎬ2)㊀㊀㊀B.(-ɕꎬ-1)ɣ(2+ɕ)C.(-ɕꎬ2)D.(-2ꎬ2)当a=2时ꎬ则-4<0ꎬ这与题目立意一致ꎬ故而A选项和B选项排除.当a=-2时ꎬ则(a+1)2ȡ0不恒成立ꎬ因此排除选项Cꎬ得出正确答案为D.数学作为高中阶段的重点学科ꎬ是高考的科目ꎬ也是教学的重点ꎬ因此为了让学生能够在高考中取得理想的成绩ꎬ老师应该让学生掌握正确的解题技巧ꎬ提高解题的速度和正确率ꎬ进而确保在高考中获得比较高的数学成绩.数学是一门对于逻辑性和抽象思维能力要求比较高的学科ꎬ高中数学由于知识点多且深ꎬ因此在解题的过程中ꎬ对于学生的要求更高.学生除了要夯实的理论基础之外ꎬ还要能够灵活的运用数学知识进行正确的解题.老师要让学生学会根据不同的题目选择合适的解题方法与技巧ꎬ才能显著提高答题的正确率.㊀㊀参考文献:[1]张美玲.高中数学解题方法及技巧探究[J].学周刊ꎬ2017(2):151-152.[2]王坤.例谈基于问题解决的高中数学复习[J].数学通报ꎬ2017ꎬ56(7):46-49.[责任编辑:李㊀璟]82Copyright©博看网 . All Rights Reserved.。
高中数学思维训练
高中数学思维训练高中数学思维训练第一篇教师可以依据定理推导的难度,针对学生的原有基础确定哪些推导可以学生自己独立完成,哪些可以由师生共同完成,哪些可以直接教师推导。
对于可以师生共同完成的定理教学环节可采纳“提出问题-小组商量-展示-师生沟通-形成数学结论-课后稳固〞这个模式。
这种思维训练的模式是让学生以小组为单位商量构建思维框架。
通过学生商量推导数学定理展示本组结论,然后由师生共同沟通展示内容是否正确。
不管是学生和学生之间的沟通、还是师生之间的沟通都是一个很好的探究过程,可以相互质疑,指出推导不严谨之处,学生在此沟通过程就会渐渐形成严谨的思维。
这种思维训练的方式可以让学生感受到一种学习上的成就感,他们将会更有动力去主动探究新的数学学问。
高中数学思维训练第二篇在高中数学教学之中,首先需要学生有肯定的数学理论基础学问。
许多数学原理是在旧学问的基础之上推导出来的。
要训练学生的数学思维其实就是训练学生在旧学问原理上推出新学问的能力,想象力是一种不行缺少的能力。
在数学教学中应当根据数学教材的潜在因素来创设肯定的数学情境的,这是学生的一个想象的材料,启发学生的创造性的思维。
我们还应当指导学生把握一些基本的数学解题方法例如类比法、归纳法等,在教学解题的过程之中,重视“精〞不在乎“多〞。
教师要留意让学生积累解题的经验,捕捉学生别出心裁的数学想法,违背常规的解答,标新立异的构思。
例如题目里面出现条件,我们可以联想到韦达定理相关学问。
又如已知均为正实数,满足关系式,又为不小于的自然数,求证:由条件联想到勾股定理,可构成直角三角形的三边,进一步联想到三角函数的定义,从而得到解题的思路。
高中数学思维训练第三篇古人说:“学起于思,思源于疑。
〞学习兴趣和求知欲望往往是由疑问引起的。
在教学过程中,课堂提问是引起学生思索的重要方法,通过提问使学生思维有明确的方向,在思维活动中分析解决问题,培育思维能力,因此在课堂教学中要细心设计问题,以提问的形式把问题引发出来,使学生快速进入紧急的思维状态。
浅谈高中数学中思维能力的培养方法
浅谈高中数学中思维能力的培养方法【摘要】在高中数学学习中,培养思维能力至关重要。
逻辑思维能力的培养可以帮助学生建立正确的数学思维模式,提高问题解决能力。
加强抽象思维能力可以帮助学生把握数学概念和方法,更好地理解数学知识。
锻炼数学建模能力可以让学生在实际问题中运用数学知识解决复杂情况,提高实践能力。
拓展思维边界可以让学生从不同角度思考问题,开拓思维空间。
通过以上方法的综合运用,可以全面提升高中学生的数学思维能力,为他们将来的学习和工作打下坚实基础。
在未来,随着教育的不断改革和发展,相信高中数学中思维能力的培养方法也将得到进一步完善和深化。
【关键词】高中数学、思维能力、培养方法、逻辑思维、问题解决能力、抽象思维、数学建模、拓展思维、总结、展望1. 引言1.1 背景介绍高中数学作为学生学习的重要科目之一,具有培养学生思维能力的重要作用。
数学是一门需要逻辑思维的学科,通过学习数学可以让学生培养自己的逻辑思维能力,提高问题解决能力,加强抽象思维能力等。
而在高中数学中,培养学生的思维能力往往是较为重要的目标之一。
1.2 意义分析高中数学中思维能力的培养具有非常重要的意义。
数学是一门抽象的学科,需要学生具备良好的逻辑思维能力才能够理解和掌握其中的知识。
通过培养高中生的逻辑思维能力,不仅可以提高他们在数学学习中的表现,更能够提升其在其他学科中的学习能力。
数学问题常常具有一定的难度和复杂性,需要学生具备较强的问题解决能力才能够有效应对。
通过在高中阶段培养学生的问题解决能力,可以为他们未来的学习和工作打下坚实的基础。
数学在很大程度上是一门抽象的学科,需要学生具备较强的抽象思维能力才能够深入理解其中的内涵。
通过加强高中学生的抽象思维能力,可以促进他们在数学领域的深度思考和创新能力的培养。
高中数学中思维能力的培养不仅对学生的数学学习有着重要的意义,更能够促进其全面发展和未来的成功。
2. 正文2.1 培养逻辑思维能力培养逻辑思维能力是高中数学教育中非常重要的一环。
精品 2014-2015年 高中数学解题思维策略
x2 y2 x2
3 2 1 9 x 3 x ( x 3) 2 , 2 2 2
当 x 3 时, x 2 y 2 取最大值,最大值为
9 2
这种解法由于忽略了 y 2 0 这一条件,致使计算结果出现错误。因此,要 注意审题,不仅能从表面形式上发现特点,而且还能从已知条件中发现其隐蔽 条件,既要注意主要的已知条件, 又要注意次要条件,这样,才能正确地解题,提高思维的变通性。 有些问题的观察要从相应的图像着手。
1 1 1 1 . 1 2 2 3 3 4 n(n 1)
这些分数相加,通分很困难,但每项都是两相邻自然数的积的倒数,且
1 1 1 1 1 1 1 1 1 ,因此,原式等于 1 问题 1 n(n 1) n n 1 2 2 3 n n 1 n 1
这个方程指明两个数的和为 2 , 这两个数的积为 3 。 由此联想到韦达定理,
x 、 y 是一元二次方程 t 2 2t 3 0 的两个根, x 1 x 3 所以 或 .可见,联想可使问题变得简单。 y 3 y 1
1
高中数学
(3)善于将问题进行转化 数学家 G . 波利亚在《怎样解题》中说过:数学解题是命题的连续变换。 可见,解题过程是通过问题的转化才能完成的。转化是解数学题的一种十分重 要的思维方法。 那么怎样转化呢?概括地讲, 就是把复杂问题转化成简单问题, 把抽象问题转化成具体问题,把未知问题转化成已知问题。在解题时,观察具 体特征,联想有关问题之后,就要寻求转化关系。 1 1 1 1 例如,已知 , (abc 0, a b c 0) , a b c abc 求证 a 、 b 、 c 三数中必有两个互为相反数。 恰当的转化使问题变得熟悉、简单。要证的结论,可以转化为:
高中数学思维训练(一)
高中数学思维训练(一)
介绍
本文档旨在为高中生提供一些数学思维训练的方法和技巧,帮助他们提升数学解题能力和思维逻辑能力。
数学思维训练的重要性
数学思维是解决数学问题的核心能力,也是提高数学成绩的关键。
通过系统的思维训练,可以帮助学生培养逻辑思维、分析问题和解决问题的能力。
数学思维训练方法
1. 培养观察力和想象力
观察力和想象力是数学思维的基础。
通过观察和想象,学生可以更好地理解数学概念和问题。
可以通过观察数学图形、模型,并进行想象、预测、猜测等活动来锻炼观察力和想象力。
2. 善于归纳和总结
学生在解决数学问题时,应该善于归纳和总结经验和规律。
可以通过总结相同类型问题的解题方法,抓住问题的本质,形成解题思路和方法。
3. 提升逻辑推理能力
逻辑推理是解决数学问题的核心环节。
学生应该通过训练提高逻辑推理能力,包括推理演绎、逆向思维、证明推理等。
可以通过解决逻辑题、数学证明题等来锻炼逻辑推理能力。
4. 培养解决问题的耐心和毅力
解决数学问题需要耐心和毅力,尤其是遇到难题时更需要有持之以恒的精神。
学生应该培养解决问题的耐心和毅力,通过解决一些挑战性的问题来提高解决问题的能力。
总结
数学思维训练是提高高中数学成绩和解决数学问题的关键。
通过培养观察力、想象力、归纳总结能力和逻辑推理能力,以及提升解决问题的耐心和毅力,学生可以有效提高数学思维能力,取得优异的成绩。
*以上内容仅供参考,具体训练方法和策略可根据实际情况进行调整。
*。
人教A版高中同步学考数学选修1精品课件 第二章 习题课——抛物线的综合问题
= (-4) + 2,
2 = ,
消去 y,整理得,
k2x2+(-8k2+4k-1)x+16k2-16k+4=0.
因为 A(4,2),B(xB,yB)是上述方程的解,
由方程组
16 2 -16+4
所以 4·xB=
2
4 2 -4+1
,得 xB=
2
,
课堂篇探究学习
探究一
探究二
探究三
消去
y
可得
x
1 2
2 = 4,
12
于是 y1y2=
4
22
( 1 2 )2
4
16
· =
=1,即 y1y2 为定值.
课堂篇探究学习
探究一
探究二
探究三
思维辨析
当堂检测
利用抛物线的定义解决计算问题
例1已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)
到焦点的距离等于5,求抛物线的方程和m的值.
(
16
答案:2 2
课前篇自主预习
【做一做5】 已知抛物线x2=4y,经过其焦点F的直线与抛物线相交
于A(x1,y1),B(x2,y2)两点,求证:y1y2为定值.
证明:抛物线x2=4y的焦点F(0,1),
由题易知直线AB的斜率存在,设其为k,则直线AB的方程为y-1=kx.
由
-1 = ,
2-4kx-4=0,由根与系数的关系可得 x x =-4,
课堂篇探究学习
探究一
探究二
探究三
思维辨析
当堂检测
(2)设 A(x3,y3),B(x4,y4),由抛物线的定义,
高中数学解题思维训练 PPT课件 图文
(1) 概念模糊
概念是数学理论体系中十分重要的组成部分。它是构成判断、推理的要素。因 此必须弄清概念,搞清概念的内涵和外延,为判断和推理奠定基础。概念不 清就容易陷入思维混乱,产生错误。
(2) 判断错误
判断是对思维对象的性质、关系、状态、存在等情况有所断定的一种思维形式。 数学中的判断通常称为命题。在数学中,如果概念不清,很容易导致判断错 误。例如,“函数是一个减函数”就是一个错误判断。
(1)善于观察
做一道数学题,大致上有:审题、想题、解题三大段 。
& 在审题时要细心观察。
解数学题首先要弄清题意。即:正确地感知题目中出现 的主要概念,分清什么是已知,什么是求(证)。
& 在想题时要重视“特殊”的已知条件。
在探索解题思路时,往往会感到有些“特殊”的已知条 件用不上,因而思路也找不出来。有时虽然思路找出来 了,但如果注意到了已知条件中的某些“特殊性”,往 往可以发现有更为简便的思路存在。
因而,怎样解题,解题的速度 如何,取决于能否由观察到的特征, 灵活运用有关知识,作出相应的联 想,找到突破口,不断深入。
(3)善于进行问题转化
数学家波利亚在《怎样解题》中说过,
数学解题是命题的连续变换。可见解题过 程是通过问题的转化才能完成的。转化是 解数学题的一种十分重要的思维方法。
G
那么,怎样转化呢?概括讲,就是把
2.思维训练:
(1)观察能力的训练 虽然观察看起来是一种表面现象,但 它是认识事物内部规律的基础。所以, 必须重视观察能力的训练,使学生不 但能用常规方法解题,而且能根据题 目的具体特征,采用特殊方法来解题。
数学中,同一素材的题目,常常可以有不同 的表现形式;条件与结论(或问题)之间,也存 在着多种联系方式。因此,恰当构造辅助元素, 有助于改变题目的形式,沟通条件与结论(或条 件与问题)的内在联系,把陌生题转化为熟悉题。
解几最值求有妙法,构造函数多方出击-高考数学一题多解
解几最值求有妙法,构造函数多方出击一、攻关方略与圆锥曲线有关的最值或范围问题大都是综合性问题,解法灵活,技巧性强,涉及代数函数、三角函数、平面几何等方面的知识,求最值常见的解法有几何法和代数法两种,若题目的条件和结论能明显体现几何特征及意义,如与圆锥曲线的定义相关或涉及过焦点的弦长、焦半径、焦点三角形等,则考虑利用图形性质来解决;若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,圆锥曲线中的最值问题的载体是直线与圆锥曲线的关系,特别是相交所引出的图形的最值问题,大致可分为两类:①涉及距离、面积的最值以及与之相关的一些问题;②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时求解与之有关的一些问题.本讲重点放在用目标函数法求最值的策略.建立目标函数解与圆锥曲线有关的最值问题是一种常规方法,其关键是选取适当的变量建立目标函数,然后运用求函数最值的方法确定最值.运用目标函数法解此类题的难点体现在两个方面:①如何建立目标函数.关键要把相关图形的特点吃透,变量可以是直线的斜截、截距、曲线上的动点坐标、变动的线段等等,通常所得到的解析式的形式不会太简单,对下一步的求解会带来困难.②对所求得的目标函数如何求其最值,常常需要进行再次构造为常见函数并运用相应的解题策略解之,比如转化为二次函数或三角函数的最值问题,然后利用配方法、基本不等式、函数的单调性或三角函数的有界性等,尤其是对复杂函数解析式的再构造,其方法并非唯一,不同的构造必有多种不同的解法,或繁或简,通过解题经验的积累,尽可能找到最为巧妙的构造,得到最为简捷的解法,真可谓:解几最值求有妙法,构造函数多方出击.思维发散或繁或简,纵横联结枝繁叶茂.【典例】已知点()0,2A -,圆2222:1x y E a b +=(0a b >>F 是椭圆E的右焦点,直线AF O 为坐标原点.(1)求E 的方程;(2)设过点A 的直线l 与椭圆E 相交于P ,Q 两点,当OPQ △的面积最大时,求l 的方程.解题策略解析几何是用代数方法研究几何问题的一门数学学科,代数方法当然离不开比较复杂的计算,高考命题特别提出“多考想,少考算”,突出考查学生分析推理、转化的数学逻辑思维能力,如何在解析几何中避免繁杂、冗长的计算,即简化计算,也就成了处理这类问题的难点与关键,解析几何题目中常用的简化运算的技巧有:圆锥曲线的概念、条件等价转化、以形助数、设而不求以及通过构造以巧妙的方法减少运算量等,本例第(1)问,根据已知条件,利用基本量求椭圆方程;第(2)问,先建立OPQ △面积的函数表达式,再求最值,其中函数变量的选取尤为重要,不同的解析式有不同的求最值的方法.策略一由弦长公式求PQ ,由点到直线距离公式求d ,由12=⋅S PQ d 得解析式,换元法转化为用基本不等式求最值和l 的方程策略二由POQ AOQ AOP S S S =-△△△得函数解析式再进一步求解策略三利用坐标法求解析式再进一步求解(1)解:设(c,0)F ,由条件知,23c =,得c =又2c a =,∴2a =,2221b a c =-=,故E 的方程为2214x y +=.(2)解法一当l x ⊥轴时,不合题意,故设:2l y kx =-,()11,P x y 、()22,Q x y ,将2y kx =-代入椭圆方程,整理得()224116120k x kx +-+=.则()()222(16)48411643k k k ∆=-+=-当0∆>,即234k >时由弦长公式得12||PQ x =-==.又由点到直线的距离公式得点O 到直线l的距离d =∴OPQ △的面积221||24141S PQ k k d ===++⨯.t =,244144t S t t t ==++.则2243k t =+且0t >,当4t t =,即2t =时,OPQ △2=,解得2k =.故所求直线l的方程为2y =-或2y =-.解法二设直线:2l y kx =-交椭圆E 于()11,P x y ,()22,Q x y .且P 在线段AQ 上.由222,440y kx x y =-⎧⎨+-=⎩得()224116120k x kx +-+=,1221641k x x k +=+,1221241x x k =+.由0∆>得234k ≥.则21122POQ AOQ AOP S S S x x =-=⨯-==△△△同解法一得所求直线l 的方程为2y =-或2y =-.解法三设l 的方程为2y kx =-,与椭圆方程联立得222,44,y kx x y =-⎧⎨+=⎩消去y 整理得()224116120k x kx +-+=.则1221641k x x k +=+,1221241x x k =+,且由0∆>,得234k >.设点P 、Q 的坐标分别为()11,x y ,()22,x y .点O 的坐标为(0,0),用坐标法求OPQ △的面积S 可表示为11221112001x y S x y =.即()()1221122112112222S x y x y x kx x kx x x =-=---=-⎡⎤⎣⎦241k k ==+.同解法一得所求直线l 的方程为2y =-或2y =-.【点评】运用目标函数法解此类题的难点体现在两个方面:①如何建立目标函数.关键要把相关图形的特点吃透,变量可以是直线的斜截、截距、曲线上的动点坐标、变动的线段等等,通常所得到的解析式的形式不会太简单,对下一步的求解会带来困难.②对所求得的目标函数如何求其最值,常常需要进行再次构造为常见函数并运用相应的解题策略解之,【针对训练】1.已知椭圆的方程为22143x y +=,1F ,2F 分别为椭圆的左、右焦点,线段PQ 是椭圆上过点2F 的弦,则1PFQ △内切圆面积的最大值为______.2.已知抛物线2:4C y x =上一点()4,4M -,A ,B 是抛物线C 上的两动点,且0MA MB ⋅= ,则点M 到直线AB 距离的最大值是______.(2021全国乙卷理11)3.设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是()A .,12⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .2⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦(2021全国新高考Ⅰ卷5)4.已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为()A .13B .12C .9D .65.已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2.(1)求C 的方程;(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值.6.已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB 面积的最大值.(2022·浙江)7.如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(1)若116=p ,求抛物线2C 的焦点坐标;(2)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.(2022·浙江)8.如图,已知F 是抛物线()220y px p =>的焦点,M 是抛物线的准线与x 轴的交点,且2MF =,(1)求抛物线的方程;(2)设过点F 的直线交抛物线与A 、B 两点,斜率为2的直线l 与直线,,MA MB AB ,x 轴依次交于点P ,Q ,R ,N ,且2RN PN QN =⋅,求直线l 在x 轴上截距的范围.(2019年高考数学浙江卷第21题)9.如图所示,已知点()1,0F 为抛物线22y px =(0p >)的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧,记AFG 、CQG 的面积分别为1S ,2S.(1)求p 的值及抛物线的准线方程;(2)求的12S S 最小值及此时点G 的坐标.10.如图,已知抛物线2x y =.点A 1139-2424B ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,,,,抛物线上的点P (x,y )13-x 22⎛⎫ ⎪⎝⎭<<,过点B 作直线AP 的垂线,垂足为Q(I)求直线AP斜率的取值范围;PA PQ的最大值(II)求·参考答案:1.9π16【分析】()111142PF Q S PF QF PQ r r =++⋅=△,∴14PF Q S r =△,解法一:112PF Q S PQ d =⋅ ,点1F 到直线PQ 的距离为d .由弦长公式和点到直线距离公式,求最大值.解法二:1121212PF Q S F F y y =- ,由弦长公式和基本不等式求最大值.【详解】解法一如图所示,1PFQ △的()111142PF Q S PF QF PQ r r =++⋅=△,∴14PF Q S r =△.当直线PQ 的斜率不存在时,易得||3PQ =,此时1121||32PF Q S F F PQ =⋅⋅=△,∴34r =;当直线PQ 的斜率为k 时,直线PQ 的方程为(1)y k x =-.将(1)y k x =-代入22143x y +=,并整理得:()22224384120k x k x k +-+-=.设()11,P x y 、()22,Q x y ,则2122843k x x k +=+,212241243k x x k -=+.||PQ ==()2212143k k +==+.∵点1F 到直线PQ 的距离d =.则12112|||243PF Qd k S PQ k ==⋅+△,则()()()()222222222211124331PFQ k k k k S k k k ++⎛⎫== ⎪⎡⎤⎝⎭+++⎣⎦△,设21u k =+,2v k =,则122112(3)96PF Q S uv u v u v v u⎛⎫== ⎪+⎝⎭⨯++△,且2211u k v k +=>,设(1)u t t v=>,设1()96f t t t =++,则21()9f t t '=-,当1t >时,()0f t '>,∴96(1)16u v f v u ⋅++>=,则1212116PF Q S ⎛⎫ ⎪⎝<⎭△,∴13PF Q S <△,∴34r <.综上,当直线PQ 垂直于x 轴时,1PFQ △的内切圆半径r 取得最大值34,∴1PFQ △的内切圆面积的最大值为9π16.解法二显然直线PQ 的斜率不为0,故可设其方程为1x my =+,将1x my =+代入22143x y+=,并整理得()2234690m y my ++-=,设()11,P x y ,()22,Q x y ,则122634m y y m +=-+,122934y y m =-+,∴1121221234PF Q S F F y y m =-===+△121,令1t ≥.设1()3f t t t =+,则21()3f t t'=-,则当1t >时,()0f t '>[]1,+∞,∴(1)4f =≥(当0m =时等号成立),∴1PF Q S △的最大值为3.此时1344PF Q S r ==△,即r 的最大值为34.∴1PFQ △的内切圆面积的最大值为9π16.故答案为:9π162.【分析】解法一:首先利用坐标表示直线MA ,MB 和直线AB 的斜率,并利用坐标表示1MA MB k k ⋅=-,代入直线AB 的方程,化简求直线所过定点,利用几何法表示点M 到直线AB距离的最大值;解法二:利用1MA MB k k ⋅=-得()()12124324y y y y y x +-++=,利用换元得直线AB 的方程为44320x ty t -+-=,列出点到直线距离公式d ==关系求函数最大值;解法三:首先设直线AB 的方程为x ky b =+,与抛物线方程联立,并利用韦达定理表示0MA MB ⋅=,得22123616164b b k k -+=-+,化简后表示,k b 的关系,可求得定点坐标,再利用两点距离表示点到直线距离的最大值.【详解】解法一:如图所示,设()11,A x y ,()22,B x y ,则直线MA 的斜率为()()()11111144444444MA y y k x y y y ++===-+--.同理可得直线MB 的斜率为244MB k y =-.直线AB 的斜率为12122212121244AB y y y y k y y x x y y --===--+.由1244144MA MB k y y k =⨯=---⋅,得()1212432y y y y -+=-.又直线AB 的方程为()11124y y x x y y -=-+,故()12124y y y y y x +-=.∴()()12124324y y y y y x +-++=.即()12(4)4(8)y y y x +-=-,∴直线AB 过定点()8,4P .点M 到直线AB距离的最大值为||MP ==解法二:同解法一得()()12124324y y y y y x +-++=.令12y y t +=,则直线AB 的方程为44320x ty t -+-=.点M 到直线AB的距离d ==令2t s -=,则有d =,当10s =-时等号成立,即点M 到直线AB距离的最大值为解法三:设直线AB 的方程为x ky b =+,211,4y A y ⎛⎫⎪⎝⎭,222,4y B y ⎛⎫ ⎪⎝⎭.由24x ky by x=+⎧⎨=⎩,得2440y ky b --=.∴()2160k b ∆=+>,124y y k +=,124y y b =-.∴0MA MB ⋅= ,即2212124,44,4044y y y y ⎛⎫⎛⎫-+⋅-+= ⎪ ⎪⎝⎭⎝⎭,∴()()22212121212122432016y y y y y y y y y y ⎡⎤-+-++++=⎣⎦.①把121244y y ky y b+=⎧⎨=-⎩代入(1)式整理得22123616164b b k k -+=-+.即22(6)(42)b k -=-,∴48b k =-+或44b k =+.当44b k =+时,直线AB 的方程为(4)4x k y =++,恒过点(4,4)-M ,不符合题意;当48b k =-+时,直线AB 的方程为(4)8x k y =-+,恒过点()8,4P ,符合题意.∴点M 到直线AB的距离的最大值是||MP =故答案为:3.C【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可.【详解】设()00,P x y ,由()0,B b ,因为2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即22b c ≥时,22max 4PB b =,即max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即0e <≤当32b b c->-,即22b c <时,42222max b PB a b c =++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立.故选:C .【点睛】本题解题关键是如何求出PB 的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.4.C【分析】法一:根据椭圆定义得到1226MF MF a +==,结合基本不等式进行求解;法二:设出()00,M x y ,使用焦半径结合033x -≤≤进行求解.【详解】法一:由题意,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立).法二:设()00,M x y ,033x -≤≤,由焦半径公式可得:1002003,3MF a ex MF a ex =+=+=-=-,故21200053399MF MF x x ⎛⎫⎛⎫⋅=+⋅=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,因为033x -≤≤,所以2009x ≤≤,当200x =,即00x =时,12MF MF ⋅取得最大值,最大值为9.故选:C .5.(1)24y x =(2)13【分析】(1)由抛物线焦点与准线的距离即可得解;(2)设()00,Q x y ,由平面向量的知识可得()00109,10P x y -,代入抛物线方程,进而可得20025910y x +=,可得点Q 的轨迹,再由斜率公式及基本不等式即可得解.【详解】(1)抛物线2:2(0)C y px p =>的焦点,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,由题意,该抛物线焦点到准线的距离为222p p p ⎛⎫--== ⎪⎝⎭,所以该抛物线的方程为24y x =;(2)设()00,Q x y ,则()00999,9PQ QF x y ==--,所以()00109,10P x y -,由P 在抛物线上可得()()200104109y x =-,即20025910y x +=,据此整理可得点Q 的轨迹方程为229525=-y x ,所以直线OQ 的斜率000220001025925910OQ y y y k y x y ===++,当00y =时,0OQ k =;当00y ≠时,0010925OQ k y y =+,当00y >时,因为0092530y y +≥=,此时103OQ k <≤,当且仅当00925y y =,即035y =时,等号成立;当00y <时,0OQ k <;综上,直线OQ 的斜率的最大值为13.6.(1)2p =(2)()max = PAB S 【分析】(1)方法一利用两点间距离公式求得FN 关于圆M 上的点()00,N x y 的坐标的表达式,进一步转化为关于0y 的表达式,利用二次函数的性质得到最小值,进而求得p 的值;方法二,利用圆的性质,F 与圆22:(4)1M x y ++=上点的距离的最小值,简洁明快,为最优解;(2)方法一设点()11,A x y 、()22,B x y 、()00,P x y ,利用导数求得两切线方程,由切点弦方程思想得到直线AB 的坐标满足方程00220x x y y --=,然手与抛物线方程联立,由韦达定理可得1202x x x +=,1204x x y =,利用弦长公式求得AB 的长,进而得到面积关于()00,P x y 坐标的表达式,利用圆的方程转化得到关于0y 的二次函数最值问题;方法二,同方法一得到1202x x x +=,1204x x y =,过P 作y 轴的平行线交AB 于Q ,则2000,2⎛⎫- ⎪⎝⎭x Q x y .由121||2PAB S PQ x x =⋅- 求得面积关于()00,P x y 坐标的表达式,并利用三角函数换元求得面积最大值,方法灵活,计算简洁,为最优解;方法三直接设直线:AB l y kx b =+,联立直线AB 和抛物线方程,利用韦达定理判别式得到20k b +>,且12124,4x x k x x b +==-.利用点P 在圆M 上,求得,k b 的关系,然后利用导数求得两切线方程,解方程组求得P 的坐标(2,)P k b -,进而利用弦长公式和点到直线距离公式求得面积关于b 的函数表达式,然后利用二次函数的性质求得最大值;【详解】(1)[方法一]:利用二次函数性质求最小值由题意知,0,2p F ⎛⎫ ⎪⎝⎭,设圆M 上的点()00,N x y ,则()22041++=x y .所以()()22001453=-+-≤≤-x y y .从而有||=FN =因为053y -≤≤-,所以当03y =-时,min ||4==FN .又0p >,解之得2p =,因此2p =.[方法二]【最优解】:利用圆的几何意义求最小值抛物线C 的焦点为0,2p F ⎛⎫ ⎪⎝⎭,42pFM =+,所以,F 与圆22:(4)1M x y ++=上点的距离的最小值为4142p+-=,解得2p =;(2)[方法一]:切点弦方程+韦达定义判别式求弦长求面积法抛物线C 的方程为24x y =,即24x y =,对该函数求导得=2xy ',设点()11,A x y 、()22,B x y 、()00,P x y ,直线PA 的方程为()1112x y y x x -=-,即112x xy y =-,即11220x x y y --=,同理可知,直线PB 的方程为22220x x y y --=,由于点P 为这两条直线的公共点,则10102020220220x x y y x x y y --=⎧⎨--=⎩,所以,点A 、B 的坐标满足方程00220x x y y --=,所以,直线AB 的方程为00220x x y y --=,联立0022204x x y y x y --=⎧⎪⎨=⎪⎩,可得200240x x x y -+=,由韦达定理可得1202x x x +=,1204x x y =,所以,AB ==,点P 到直线AB的距离为d =,所以,()3220011422PABS AB d x y =⋅=-△,()()2222000000041441215621x y y y y y y -=-+-=---=-++ ,由已知可得053y -≤≤-,所以,当05y =-时,PAB的面积取最大值321202⨯=[方法二]【最优解】:切点弦法+分割转化求面积+三角换元求最值同方法一得到1201202,4+==x x x x x y .过P 作y 轴的平行线交AB 于Q ,则2000,2⎛⎫- ⎪⎝⎭x Q x y.()32221200001111||242222⎛⎫=⋅-=-=- ⎪⎝⎭PABS PQ x x x y x y .P 点在圆M 上,则00cos ,4sin ,x y αα=⎧⎨=-+⎩()()333222222001114cos 4sin 16(sin 2)21222ααα⎡⎤=-=-+=-++⎣⎦ PABS x y .故当sin 1α=-时PAB 的面积最大,最大值为[方法三]:直接设直线AB 方程法设切点A ,B 的坐标分别为211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭.设:AB l y kx b =+,联立AB l 和抛物线C 的方程得2,4,y kx b x y =+⎧⎨=⎩整理得2440x kx b --=.判别式2Δ16160=+>k b ,即20k b +>,且12124,4x x k x x b +==-.抛物线C 的方程为24x y =,即24x y =,有2x y '=.则()2111:42-=-PA x x l y x x ,整理得21124x x y x =⋅-,同理可得222:24=⋅-PB x x l y x .联立方程211222,24,24x x y x x xy x ⎧=⋅-⎪⎪⎨⎪=⋅-⎪⎩可得点P 的坐标为1212,24x x x x P +⎛⎫ ⎪⎝⎭,即(2,)P k b -.将点P 的坐标代入圆M 的方程,得22(2)(4)1+-+=k b ,整理得221(4)4b k --=.由弦长公式得12||=-=AB x=点P 到直线AB的距离为d =所以21||222==+== PABS AB d k b=其中[5,3]=-∈--P y b ,即[3,5]∈b .当5b =时,()max = PAB S 7.(1)1(,0)32(2)max p 【分析】(1)根据抛物线的焦点坐标公式求解即可;(2)设直线:l x y m λ=+,与椭圆联立,结合韦达定理得到中点M 的坐标,代入抛物线,再将直线与抛物线联立,结合韦达定理用参数表示点A 坐标,再将椭圆与抛物线联立得到点A 坐标,结合均值不等式,分析即得解.【详解】(1)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(2)由题意,直线l 的斜率不为0,设()()()112200,,,,,,:A x y B x y M x y l x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩,1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++,由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++,又22222()220y pxy p y m y p y pm x y m λλλ⎧=⇒=+⇒--=⎨=+⎩,012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142,22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒=-+222221822228162p p p m p p p λλλλλ+⇒-++⋅=++≥+,18p ≥,21160p ≤,p ≤所以,p,此时A .8.(1)24y x=(2)(,7[7(1,)-∞---++∞ .【分析】(1)根据2MF =,求p ,再求抛物线方程;(2)方法一:主要是用()()1122,,,A x y B x y 坐标表示直线,MA MB ,利用弦长公式将线段长度关系转为纵坐标关系,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围;方法二:利用焦点弦的性质求得直线,MA MB 的斜率之和为0,再利用线段长度关系即为纵坐标关系,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围.方法三:利用点,A B 在抛物线上,巧妙设点坐标,借助于焦点弦的性质求得点,A B 横坐标的关系,这样有助于减少变元,再将所求构建出函数关系式,再利用换元法等把复杂函数的范围问题转化为常见函数的范围.【详解】(1)因为2MF =,故2p =,故抛物线的方程为:24y x =.(2)[方法一]:通式通法设:1AB x ty =+,()()1122,,,A x y B x y ,(),0N n ,所以直线:2yl x n =+,由题设可得1n ≠且12t ≠.由214x ty y x=+⎧⎨=⎩可得2440y ty --=,故12124,4y y y y t =-+=,因为2RN PN QN =⋅,故2R P Q ⎫=⎪⎪⎭,故2R P Q y y y =⋅.又()11:11y MA y x x =++,由()11112y y x x y x n⎧=+⎪+⎪⎨⎪=+⎪⎩可得()1112122P n y y x y +=+-,同理()2222122Q n y y x y +=+-,由12x ty yx n =+⎧⎪⎨=+⎪⎩可得()2121R n y t -=-,所以()()()2212211212121=212222n n y n y t x y x y -++⎡⎤⨯⎢⎥-+-+-⎣⎦,整理得到()()()2212221112112222y y n t n x y x y -⎛⎫=- ⎪++-+-⎝⎭,()22221214212222t y y y y -=⎛⎫⎛⎫+-+- ⎪⎪⎝⎭⎝⎭()()()()2222222121212112214212134+++2+442t t t y y y y y y y y y y y y --==+--⨯-+故()222134121n t n t ++⎛⎫= ⎪-⎝⎭-,令21s t =-,则12s t +=且0s ≠,故()22222234242411331+444421t s s s s s s t +++⎛⎫==+=++≥ ⎪⎝⎭-,故213141n n n ⎧+⎛⎫≥⎪ ⎪-⎨⎝⎭⎪≠⎩即214101n n n ⎧++≥⎨≠⎩,解得7n ≤--71n -+≤<或1n >.故直线l 在x 轴上的截距的范围为7n ≤--71n -+<或1n >.[方法二]:利用焦点弦性质设直线AB 的方程为11x k y =+,直线MA 的方程为21x k y =-,直线MB 的方程为31x k y =-,直线l 的方程为221212,,,,,(,0)244y y y x m A y B y N m ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,由题设可得1m ≠且112k ≠.由121,4x k y y x=+⎧⎨=⎩得21440y k y --=,所以121124,4y y k y y +==-.因为2112231121114,44y y y k k y y y +==+=+,12121223111212110444y y y y y y k k k k y y y y ++∴+=++++=-=,()21221212231121212111111441642y y y y y y k k k y y y y y y +⎛⎫⎛⎫=++=+⋅+-=-- ⎪⎪⎝⎭⎝⎭.由21,2x k y y x m =-⎧⎪⎨=+⎪⎩得2112p m y k +=-.同理3112Q m y k +=-.由11,2x k y y x m =+⎧⎪⎨=+⎪⎩得1112R m y k -=-.因为2||||||RN PN QN =⋅,所以2R P Q y y y -⋅=即222211231(1)(1)13112422m m m k k k k ⎛⎫ ⎪-++== ⎪⎛⎫⎛⎫ ⎪-+--- ⎪⎪⎝⎭⎝⎭⎝⎭.故22121314112k m m k ++⎛⎫= ⎪-⎝⎭⎛⎫- ⎪⎝⎭.令112t k =-,则222221111113311244m t t m t t t t +++⎛⎫⎛⎫==++=++≥ ⎪ ⎪-⎝⎭⎝⎭.所以210,1410,m m m -≠⎧⎨++≥⎩,解得7m ≤--71m -+≤<或1m>.故直线l 在x轴上的截距的范围为(,7[7)(1,)-∞---++∞ .[方法三]最优解设()()22,2(0),,2A a a a B b b >,由,,A F B 三点共线得22222221b a ab a a b a -==-+-,即1ab =-.所以直线MA 的方程为22(1)1a y x a =++,直线MB 的方程为2222(1)(1)11b ay x x b a -=+=+++,直线AB 的方程为22(1)1ay x a =--.设直线l 的方程为2(2)y x m m =+≠-,则222(2)(2)(2),,,1112P Q R N m a m a m a my y y x a a a a a a ----====--+++--.所以()()2222222222(2)(2)||||||11m a m a RN PN QN aa aa +-=⋅⇔=--+-.故()()2222222222221112(1)2140,2133111a a a m t t t a m t t a a a a ⎛⎫-- ⎪--+--+⎛⎫⎡⎤⎝⎭====∈ ⎪⎢⎥-++⎝⎭⎣⎦⎛⎫+-+- ⎪⎝⎭(其中1t a a =-∈R ).所以(,14[14)m ∈-∞-++∞ ,且2m ≠-,因此直线l 在x轴上的截距为(,7[7(1,)2m-∈-∞---++∞ .9.(1)2p =,=1x -(2)最小值为1(2,0).【分析】(1)根据焦点坐标求解p ,再根据准线方程公式求解即可;(2)直线AB 的方程为(1)y k x =-,与抛物线联立,得到关于y 的韦达定理,用坐标表示12S S ,求得取得最小值时t 的值,再由()()22212312311312G x x x x y y y =++=++,结合韦达定理,求解即可.【详解】(1)由题意得12p=,即2p =,∴抛物线的准线方程为=1x -.(2)设()11,A x y ,()22,B x y ,()33,,C x y 不妨设12y y >,又Q 在点F 的右侧,故1230y y y >>>,又直线AB 的方程为(1)y k x =-.联立2(1)4y k x y x =-⎧⎨=⎩,得2440y y k --=,∴124y y =-.1112AGB AGB AF y S S S AB y y ==-△△,3231AGC AGC CQ y S S S CA y y -==-+△△,由G 为ABC 的重心,有AGB AGC S S =△△,且1230y y y ++=.故2424211311121111122422421231212121121224242416S y y y y y y y y y y y S y y y y y y y y y y y y y -++---=⋅=⋅===---+---.令12S n S =,21y t =,则222416t t n t -=-,即2(2)4160n t t n --+=.①当2n =时,122S S =,此时8t =;②当2n ≠时,二次方程至少有一个正根,故0∆≥,解得22n ≥,若方程有两个非正根,此时12124021602x x n n x x n ⎧+=≤⎪⎪-⎨⎪=≥⎪-⎩,不等式组无解,故22n +≥,即12min1S S ⎛⎫=+ ⎪⎝⎭8t =+.()()()222222123123121211131212G x x x x y y y y y y y ⎡⎤=++=++=+++⎣⎦()22121216y y y y =++.而218y t ==+2221168y y ==-,故G 点坐标为(2,0).10.(I )(-1,1);(II )2716.【详解】(Ⅰ)设直线AP 的斜率为k ,2114122x k x x -==-+,因为1322x -<<,所以直线AP 斜率的取值范围是(1,1)-.(Ⅱ)联立直线AP 与BQ 的方程110,24930,42kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩解得点Q 的横坐标是22432(1)Q k k x k -++=+.因为|PA12x +1)k +,|PQ|=2)Q x x -=-,所以3(1)(1)k k PA PQ ⋅--+=.令3()(1)(1)f k k k =--+,因为2'()(42)(1)f k k k =--+,所以f (k )在区间1(1,2-上单调递增,1(,1)2上单调递减,因此当k =12时,||||PA PQ ⋅取得最大值2716.【点睛】本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力,通过表达||PA 与||PQ 的长度,通过函数3()(1)(1)f k k k =--+求解||||PA PQ ⋅的最大值.。
说题(有关高中一道数学题的说题) PPT课件 图文
(y轴、偶函数)
拓 展
抽象函数对称性
2.函数y=f (x)定义域为R,满足
f (a x) f (b x)则函数图象
特例关:于点
a
2
b
,
0对称
1)若f (a x) f (ax),则?对称中心a,0
拓 展
2)若f (2ax) f (x),则对称中心a,0
fx = cosx
4 5 6 x
4 5 6
( 2014湖 南 , 理 9) 已 知 函 数 f(x)sin ( x-)
2
且3 0
f(x)dx0, 则 函 数 的 一 条 对 称 轴
A.x
5 6
B.x 7
12
C.x
3
D.x 6
高 考
0
, 4
B.
4
, 2
变 式
C. 2
,3 4
D. 34
,
抽象函数对称性
1.函数y=f (x)定义域为R,满足 f (a x) f (b x)则函数图象
关于x= a b 对称 特例: 2 1)若f (a x) f (a x),则对称轴为x a 2)若f (2a x) f (x),则对称轴为x a 3)若f (x) f (x),则对称轴为x 0
高中数学解题方法及步骤
高中数学解题方法及步骤【摘要】高中数学解题方法及步骤对学生提高数学成绩至关重要。
了解题目要求和条件是解题的基础,帮助确定解题思路。
选择合适的解题方法需要根据题目特点和个人能力来决定。
然后,运用适当的数学知识进行推导和计算,确保解题过程正确无误。
接着,检查答案的合理性可避免因计算错误导致答案不准确。
总结解题方法和步骤有助于将解题经验进行归纳和总结,提高解题效率。
掌握高中数学解题方法和步骤是提高数学成绩的关键,通过实践不断提升解题能力,使高中数学题变得更容易。
学生应努力掌握高中数学解题方法及步骤,不断提升自己的解题能力。
【关键词】高中数学、解题方法、步骤、题目要求、条件、数学知识、推导、计算、合理性、总结、成绩提高、实践、能力提升、容易。
1. 引言1.1 介绍高中数学解题方法的重要性在高中数学学习过程中,解题方法是至关重要的一环。
掌握正确的解题方法不仅可以帮助我们更快更准确地解答数学题目,还能提高我们的解题效率和成绩。
高中数学题目通常较为复杂,需要我们运用各种知识和技巧来解决。
学会合理有效地运用解题方法是十分必要的。
解题方法的重要性体现在以下几个方面:解题方法可以帮助我们理清题目的逻辑关系,准确理解题目要求,从而有针对性地进行解答。
选择合适的解题方法可以节省时间,避免走弯路或错误的方向。
运用正确的解题方法可以提高我们对数学知识的理解和运用能力,加深对知识点的记忆和理解。
通过掌握解题方法,我们可以在解题过程中培养逻辑思维和分析问题的能力,为将来的学习和工作打下良好基础。
高中数学解题方法的重要性不言而喻。
只有通过不断练习和总结,我们才能掌握各种解题技巧,提高解题效率,取得更好的成绩。
希望通过本文的介绍和分析,读者能有所收获,加强对高中数学解题方法的认识和掌握。
2. 正文2.1 了解题目要求和条件在解题过程中,首先要明确题目中所要求解的问题以及给出的条件。
了解题目要求和条件是解题的第一步,也是非常关键的一步。
核心素养下高中数学教学中的思维训练
核心素养下高中数学教学中的思维训练摘要:随着教育改革不断深化,高中教师应该认识到传统的教育观念已经不能再满足学生的发展需求,在数学教育教学中,应该更积极的培养学生的数学核心素养,更好的激发学生的数学思维,引导学生学会用数学视角思考问题,用数学知识解决问题,创设更加有效的数学课堂。
基于此,本文就核心素养下高中数学教学中如何开展思维训练进行探究。
关键词:核心素养;高中数学;思维训练前言:在当前的数学教学中,部分教师重视学生的成绩,一味使用题海战术,导致学生的思维固化,甚至对数学学习失去兴趣,导致学生不能主动学习数学。
高中数学教师应该通过数学教学培养学生的数学核心素养,提升学生的思维能力,更好的引导学生进行数学学习,在数学教学中促进学生进行思维训练。
1.思维训练在高中数学教学中的重要性思维训练是一种教育概念,与认知教育具有一定的差异性。
高中数学教师在进行思维训练时,应该明确思维训练的重要性。
思维训练多将人的情感当成发展的领域,通过教育,影响受教育者的情感,使其产生共鸣,引导受教育者逐渐形成正确的思想。
数学教师在课堂教学中,应该给予学生一定的思维训练,更好的通过语言、形象感染与行为影响,培养学生的数学思维,调动学生思维的活跃度,更好的增强学生对抽象概念的领悟力,提升学生的逻辑思维,更好的明确学生的学习目标,为学生的领略数学的魅力做铺垫。
基于此,高中数学教师开展数学训练能够更好的培养学生的数学思维,帮助学生了解数学的内在规律,调动学生进行数学学习的兴趣,符合素质教育的要求,促进学生的全面发展。
教师在高中数学教学中进行思维训练具有其必然性。
1.克服传统的思维封闭状态,培养学生广阔的思维空间在传统的教育观念的驱使下,部分高中数学教师过于看重考试成绩,将教材当做中心,以分数为方向,只想通过课堂教学提升学生的考试成绩。
重视知识目标,在课堂上教师讲解的时间过长,不给学生独立思考的时间和机会,学生基本上是被调动的接受教师灌输的理论知识。
如何提高高中数学成绩.pptx
制定解题计划
根据问题的特点和要求,制定 合理的解题计划。
规范解答过程
按照解题计划逐步解答,注意 逻辑性和规范性。
05
学习心态与习惯
保持积极心态
树立信心
相信自己具备学好数学的能力,不受一时的挫折影响。
正面思考
将困难视为挑战,积极寻找解决问题的方法,而非逃避。
根据学习进度和效果,适时调整学习 计划,重点攻克薄弱环节。
安排时间表
将学习时间合理分配到各个章节和知 识点,确保每个部分都有足够的时间 学习和练习。
做好课堂笔记
记录重点
在课堂上认真听讲,并记录老师 强调的重点、难点和易错点,以
便课后复习。
整理笔记
课后及时整理课堂笔记,将知识 点进行归纳总结,形成清晰的知
识框架。
补充笔记
在做题和复习过程中,不断补充 和完善笔记,增加实例和解题方
法。
定期复习与总结
定期复习
每隔一段时间,如每周或每月,对所学知识进行 复习,巩固记忆和理解。
总结归纳
对学过的知识进行总结归纳,形成知识体系,把 握数学概念之间的联系。
查漏补缺
在复习过程中发现薄弱环节,有针对性地进行补 充学习和练习。
整理错题
02
将易错题和难题整理成册,定期回顾和复习。
反思总结
03
分析学习过程中的不足,总结经验教训,不断改进学习方法。
THANKS
谢谢您的观看
培养兴趣
发现数学的趣味性和应用价值,激发内在的学习动力。
培养良好的学习习惯
1 2
制定计划
合理安排学习时间,设定明确的学习目标和计划 。
课前预习
高中数学解题思路与技巧
《高中数学解题思维与思想》一、高中数学解题思维策略第一讲 数学思维的变通性一、概念数学问题千变万化,要想既快又准的解题,总用一套固定的方案是行不通的,必须具有思维的变通性——善于根据题设的相关知识,提出灵活的设想和解题方案。
根据数学思维变通性的主要体现,本讲将着重进行以下几个方面的训练: (1)善于观察心理学告诉我们:感觉和知觉是认识事物的最初级形式,而观察则是知觉的高级状态,是一种有目的、有计划、比较持久的知觉。
观察是认识事物最基本的途径,它是了解问题、发现问题和解决问题的前提。
任何一道数学题,都包含一定的数学条件和关系。
要想解决它,就必须依据题目的具体特征,对题目进行深入的、细致的、透彻的观察,然后认真思考,透过表面现象看其本质,这样才能确定解题思路,找到解题方法。
例如,求和)1(1431321211+++⋅+⋅+⋅n n . 这些分数相加,通分很困难,但每项都是两相邻自然数的积的倒数,且111)1(1+-=+n n n n ,因此,原式等于1111113121211+-=+-++-+-n n n 问题很快就解决了。
(2)善于联想联想是问题转化的桥梁。
稍具难度的问题和基础知识的联系,都是不明显的、间接的、复杂的。
因此,解题的方法怎样、速度如何,取决于能否由观察到的特征,灵活运用有关知识,做出相应的联想,将问题打开缺口,不断深入。
例如,解方程组⎩⎨⎧-==+32xy y x .这个方程指明两个数的和为2,这两个数的积为3-。
由此联想到韦达定理,x 、y 是一元二次方程0322=--t t 的两个根,所以⎩⎨⎧=-=31y x 或⎩⎨⎧-==13y x .可见,联想可使问题变得简单。
(3)善于将问题进行转化数学家G . 波利亚在《怎样解题》中说过:数学解题是命题的连续变换。
可见,解题过程是通过问题的转化才能完成的。
转化是解数学题的一种十分重要的思维方法。
那么怎样转化呢?概括地讲,就是把复杂问题转化成简单问题,把抽象问题转化成具体问题,把未知问题转化成已知问题。
高中数学思维训练,提升逻辑思维能力(高中数学思维训练)
1. 高中数学是学生学习中的重要科目之一,其重要性不言而喻。
高中数学的学习不仅需要掌握知识点,更需要通过思维训练来提升逻辑思维能力。
2. 数学思维是一种独特的思考方式,它强调通过逻辑推理和分析问题,以及采用创新和创造性的思考方式来找到解决方案。
3. 在高中数学中,除了需要掌握基本的数学概念和公式,还需要掌握各种解题技巧,这些技巧可以通过数学思维训练来加深理解和提高运用能力。
4. 数学思维训练可以通过多种方法实现。
例如,阅读数学题目时,可以先把题目中的关键信息提取出来,再运用逻辑思维分析问题,最后得出答案。
这样的练习可以提高学生分析问题和解决问题的能力。
5. 另外,学生还可以通过参加数学竞赛来锻炼数学思维。
数学竞赛需要参赛者在规定时间内解决一系列难题。
这种竞赛不仅能够培养学生的数学思维和逻辑思维,还可以让学生在竞争中不断进步。
6. 数学思维训练的最终目的是让学生掌握数学的基本知识和解题技巧,提高逻辑思维能力,并应用到实际生活和工作中。
例如,在日常生活中,我们需要计算购买商品的总价或者规划自己的生活开支,这些都需要运用到数学思维。
7. 总之,高中数学思维训练对于提高逻辑思维能力非常重要。
通过数学思维训练,学生可以更系统地理解和应用数学知识,同时也能够培养学生的创造性思维和解决问题的能力。
高中数学解题思维能力的训练与培养
高中数学解题思维能力的训练与培养【摘要】发展学生的解题思维能力,只有通过掌握知识、技能的过程来发展学生的思维品质才符合素质教育的基本要求。
数学知识可能在将来会遗忘,但解题思维的培养会影响学生的一生,解题思维的培养是数学教育的价值得以真正实现的理想途径。
【关键词】解题;思维能力;训练新课改下新课程标准强调“知识结构”与“学习过程”,目的在于发展学生的解题思维能力,只有通过掌握知识、技能的过程来发展学生的思维品质才符合素质教育的基本要求。
数学知识可能在将来会遗忘,但解题思维的培养会影响学生的一生,解题思维的培养是数学教育的价值得以真正实现的理想途径。
因此做好学生解题思维的培养,使学生的解题思维得到更好的发展势在必行。
1通过培养“发散思维”来提高解题思维灵活性在数学教学中比较重视集中思维的训练,而相对忽视了发散思维的培养。
发散思维是理解教材、灵活运用知识所必须的,也是迎接信息时代、适应未来生活所应具备的能力。
1.1引导学生对问题的解法进行发散。
在教学过程中,用多种方法,从各个不同角度和不同途径去寻求问题的答案,用一题多解来培养学生思维过程的灵活性。
此题答案有误。
因为⑴,⑵式的等号不能同时成立,所以⑶式等号不能取。
但事实上推导过程无误,只不过扩大了x+y的范围。
此种推导在选择题时,其选择项若是6,8,12,16,当可排除6,8,12得16。
此法作为例子强调使用重要不等式时等号成立条件的必不可少。
法2,1的妙用(在区间内有一个极值点,此极值必为最值)通过一题多解引导学生归纳证明三角恒等式的基本方法:(1)统一函数种类;(2)统一角度;(3)统一运算。
一题多解可以拓宽思路,增强知识间联系,学会多角度思考解题的方法和灵活的思维方式。
1.2引导学生对问题的结论进行发散。
对结论的发散是指确定了已知条件后没有现成的结论.让学生自己尽可能多地探究寻找有关结论,并进行求解。
例如:在学习完等差、等比数列,求数列的通项公式中,可以先进行复习巩固再进行变式探索<例2>当数列{an}中满足a1=2,an+1=an+3(n1),求数列通项公式当数列{an}中满足a1=2,an+1=3an(n1),求数列通项公式变式1数列{an}满足a1=2,an+1=2an+3(n∈N*),求通项公式思考:数列{an}满足:首项为a1,an+1=Pan+q,(n∈N*,P,q 为非零常数),求通项公式变式2数列{an}满足a1=2,an+1=2an+2n,(n∈N* ),求通项公式思考:数列{an}满足a1=2,an+1=3an+2n ,(n∈N* ),求通项公式以上题目直观看,都是由地推公式求通项公式的问题,实际上难度是逐级增加的,练习中的两道基础题直接判断数列为等差等比数列,代入通项公式,或利用叠加、叠乘求通项公式。
高中数学教学中的思维训练
高中数学教学中的思维训练作者:苏龙来源:《中学课程辅导·教学研究》2017年第29期摘要:在新课改下,对于数学思维训练的课堂教学,就要大力推进素质教育,着力点是培养学生创新意识和创新能力。
关键词:数学教学;维训练数学是一门综合性较强的学科,数学教学必须重视数学思维方法的渗透以提高学生多种思维能力,使学生“学而不死”活学活用,全面发展。
新的《高中数学课程标准》的基本理念中提出:注重提高学生的数学思维能力,这是数学教育的基本目标之一。
著名数学教育家说:相对于具体的数学知识内容而言,思维训练显然更为重要的。
从而我们就应帮助学生学会数学的思维,作为数学德育的重要目标之一。
学生在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程。
这些过程是数学思维能力的具体体现,有助于学生对客观事物中蕴涵的数学模式进行思考和判断。
这就要求教师在教学中关注学生思维能力的训练。
一、激发兴趣,培养思维的积极性兴趣是非智力因素的核心,在教学中根据学生的实际情况,通过挖掘教材中的兴趣因素,运用直观教学手段或设疑、布谜、创设悬念等灵活多变的方法来激发学生学习数学的兴趣。
比如以学生感兴趣,又有一定的趣味性、挑战性的数学问题入手,迅速集中学生的注意力,并且显得十分生动、有魅力。
学生的兴趣异常浓厚,有利于启发学生的思维,培养他们思维的积极性。
二、解后反思,训练思维的严密性思维品质的一个重要特征是思维逻辑严谨,过程有条理,思维结果正确,即思维具有严密性。
在教学中有计划、有目的地剖析“典型错解”引导学生发现错误,找出错因,可以培养学生严格审视事物的习惯,做到思维过程严谨,结论准确无误,从而提高思维的严密性。
三、一题多法,训练思维的发散性发散性思维是根据已有信息,从不同角度、不同方面思维,从多方面寻求多样性答案的一种展开性的思维方式。
教师在教学中,有意对同一个问题,尽可能采用不同的方法求解,常能取到拓广思路,加大思维空间的效果,这是训练思维发散能力的常用手段。
高中数学总复习-解题方法
思维方法²类比法类比是通过两个(或两类)对象的比较,找出它们在某一方面(特征、属性和关系)的类似点,从而把其中一对象的其他有关性质,移植到另一对象中去.因此,类比推理是从特殊到特殊的思维方法.在解析几何中,类比法是编制新命题、发现新定理以及开拓解题思路的重要方法.解析几何的研究对象是直线、圆和圆锥曲线,因此,在圆、椭圆、双曲线、抛物线之间相互类比,是类比推理的主要内容.例1对圆x2+y2=r2,由直径上的圆周角是直角出发,可得:若AB是⊙O的直径,M是⊙O上一点(异于A、是否有类似的结论?标分别为(x1,y1)、(-x1,-y1),又设点M(x0,y0)是这个椭圆上一点,且x0≠±x1,则以上两式相减,得于是①、②两式就是椭圆、双曲线与圆类似的结论.【解说】(1)与圆类似,连结圆锥曲线上两点的线段叫做圆锥曲线的弦,过有心曲线(椭圆、双曲线)中心的弦叫做有心曲线的直径;(2)因为抛物线不是有心曲线,所以抛物线没有与圆的这个性质相类似的结论.<a<b)类似的命题是什么?【分析】由习题1.1第5题,我们知道了椭圆这个命题的证明方法,用类似的方法,我们来寻找双曲线的有关命题.比较两个标准方由①+②,得于是,我们得到与椭圆类似的正确命题:习题1.41.对圆x2+y2=r2,由过弦AB(非直径)中点M的直径垂直于此(a>0,b>0)类似的结果是什么?并证明你的结论.<1),一直线顺次与它们相交于A、B、C、D四点,则|AB|=|CD|.双曲线类似的命题是什么?并加以证明.习题1.4答案或提示1.若AB是椭圆、双曲线的弦(非直径),M是AB的中点,则对一直线顺次与它们相交于A、B、C、D四点,则|AB|=|CD|.思维方法²求异思维所谓求异思维是一种不依常规、寻求变异、从多方面探索答案的思维形式.求异思维又叫发散思维,它具有不落俗套、标新立异、不拘一格的特点.因此,用求异思维解题有利于培养思维的多向性、灵活性和独特性.在平面解析几何中,培养学生的求异思维能力,要注意以下几个方面.(一)变换思维方向解证解析几何习题,常常会出现“思路自然、运算麻烦”的局面,甚至会到“山穷水尽疑无路”的地步.这时,若能变换思维角度,多方位思考,多渠道辟径,就会超过思维障碍,呈现“柳暗花明又一村”的美景.例1 已知点A(1,-1)、B(7,2),以A为圆心、8为半径作⊙A,以B为圆心,6为半径作⊙B,求这两个圆外公切线交点P的坐标.【分析】如图1-4.解本题的自然思路是,先求出两条外公切线的方程,再解方程求出交点坐标.但这种解法是入手容易出手难,由于运算量过大,使思维陷入困境.如果能换一个角度思考,联想到公切径之比),那么便可用线段定比分点公式,使问题获得巧解.【解】如图1-4,设M、N是一条外公切线与两个圆的切点,连结AB、BP,则A、B、P三点共线,再连结AM、BN,则AM⊥MP、BN⊥MP.∴ BN∥AM.设点P的坐标为(x,y),则由线段定比分点公式,得故点P的坐标为(25,11).例2 如图1-5,直线y=kx+b与圆x2+y2=1交于B、C两点,与双曲线x2-y2=1交于A、D两点,若B、C恰好是线段AD的三等分点,求k与b的值.【分析】如图1-5,解本题的自然思路是,由|AB|=|BC|=|CD|入手,先计算出|AB|、|BC|、|CD|(即用k、b表示),然后解方程组求得k、b的值.但由于线段AB、CD的端点不在同一曲线上,从而上述解法运算相当麻烦.如果变换思考角度,由|AB|=|CD|出发,可得线段BC与AD的中点重合,进而可用韦达定理,列出k、b的一个关系式,再【解】如图1-5,把y=kx+b代入x2-y2=1中,整理,得(1+k2)x2+2bkx+b2-1=0 ①从而由韦达定理,得把y=kx+b代入x2-y2=1中,整理,得(1-k2)x2-2bkx-(b2+1)=0 ②∵ |AB|=|CD|,∴ AD与BC的中点重点.解之,得k=0或b=0.当k=0时,方程①化为x2=1-b2,(二)一题多解在解析几何中,进行一题多解训练是培养求异思维能力的一种极好形式.例3 已知直线l过坐标原点,抛物线C的顶点在原点,焦点在x轴正半轴上,若点A(-1,0)和点B(0,8)关于l的对称点都在C上,求直线l和抛物线C 的方程.(1994年全国高考理科试题)【分析1】设直线l的方程为y=kx,抛物线C的方程为y2=2px(p>0),先求出A、B关于l对称的点A′、B′的坐标(用k表示),再代入抛物线C的方程中,可得k、p的方程组,最后解方程组即可.【解法1】如图1-6.由已知可设抛物线C的方程为y2=2px(p>0).由于直线l不与两坐标轴重合,故可设l的方程为y=kx(k≠0).①设A′、B′分别是A、B关于l的对称点,则由 A′A⊥l可得直线AA′的方程为将①、②联立,解得线段AA′的中点M的坐标为分别把A′、B′的坐标代入抛物线C的方程中,得由③÷④,消去p,整理,得k2-k-1=0.⑤又由④知k>0.⑥【分析2】如图1-7,设直线l的倾斜角为α,则l的斜率为用α的三角函数表示点A′、B′的坐标,再把这些坐标用k表示,以下同解法1.l的斜率为k.∵ |OA′|=|OA|=1,|OB′|=|OB|=8,∠xOA′=-(π-2α),∴由三角函数的定义,得A′的坐标为x A=|OA′|cos∠xOA′=-cos2α,y A=|OA′|sin∠xOA′=-sin2α以下同解法1,从略.又|OB′|=8,|OA′|=1,从而此题可设极坐标方程去解.【解法3】如图1-7,以O为极点,Ox为极轴建立极坐标系,把x=ρcos θ代入方程y2=2px(p>0)中,得抛物线的坐标方程为由已知可设点B′的极坐标为(8,α)、A′的极坐标为(1,∵直线l平分∠BOB′,=8,OA′⊥OB′列出p、t1、t2的方程组,进而去求解.∵ |OA′|=|OA|=1,|OB′|=|OB|=8,又由OA′⊥OB′,得k OA²k OB=-1,【分析5】如图1-7,由于|OA′|=1,|OB′|=8,∠A′【解法5】如图1-7.把直角坐标系视为复平面,设点A′得点B′对应的复数为(x1+y1i)8i=-8y1+8x1i.∴点A′、B′的坐标为(x1,y1)、(-8y1,8x1).把它们分别代入抛物线C的方程y2=2px(p>0)中,得即k OA'=-2,又|OA′|=1,以下同解法4,从略.【分析6】本题也可以把抛物线的参数方程与复数法结合起来去解.数乘法的几何意义,得由复数相等的条件,得消去p,解得t2=2.从而B′的坐标为(8p,4p).∵线段BB′的中点C的坐标为(4p,2p+4),【分析7】在解法5中,利用复数乘法的几何意义,发现了A′、B′坐标之间的关系式,从而获得简解.如图1-8,点B′与点A′的坐标关系也可用平面几何法得到.【解法7】如图1-8,作A′C⊥Ox于C,B′D⊥Ox于D.设A′、B′的坐标分别为(x1,y1)、(x2,y2).∵∠B′OD+∠A′OC=90°,∴ Rt△A′CO∽Rt△ODB′.又|OA′|=1,|OB′|=8,∴ |OD|=8|A′C|,|B′D|=8|OC|.于是x2=-8y1,y2=8x1.以下同解法5,从略.【解说】本例给出了七种解法.解法1是本题的一般解法,它的关键是求点A、B关于l的对称点的坐标.解法2是三角法,它法3是极坐标法,巧妙利用了A′、B′的特殊位置.解法4是利用抛物线的参数方程去解的.解法5和解法7是从寻找A′、B′的坐标关系式入手的,分别用复数法和相似形法获解.解法6把参数法与复数法结合起来,体现了思维的灵活性.总之,本例运用了解析几何的多种方法,是对学生进行求异思维训练的极好例题.(三)逆向思维在人们的思维活动中,如果把A→B的思维过程看作正向思维的话,那么就把与之相反的思维过程B→A叫做逆向思维.在平常的学习中,人们习惯于正向思维,而不善长逆向思维.因此,为了培养思维的多向性和灵活性,就必须加强逆向思维训练.在解题遇到困难时,若能灵活地进行逆向思维,往往出奇制胜,获得巧解.在解析几何中,培养学生逆向思维能力,要注意逆用解析式的几何意义、逆用曲线与方程的概念和逆用圆锥曲线的定义.例4 设a、b是两个实数,A={(x,y)|x=n,y=na+b,n∈Z},B={(x,y)|x=m,y=3(m2+5),m∈Z},C={(x,y)|x2+y2≤144}是平面xOy内的点焦,讨论是否存在a和b,使得:(1)A∩B≠ ;(2)(a,b)∈C.(1985年全国高考理科试题)【解】由已知可得,a、b是否存在等价于混合组以上二式的几何意义是:如图1-9,在平面aO′b中,na+b=3(n2+5)是直线,a2+b2≤144是圆面(即圆x2+y2=144的边界及其内部).因此,这个混合组有解的充要条件是直线na+b=3(n2+5)与圆a2+b2=144有公共点,即圆心O′(0,0)到这条直线的距离d≤12.即(n2+5)2≤16(n2+1),∴ n4-6n2+9≤0,即(n2-3)2≤0.又(n2-3)2≥0,∴ n2=3.这与n是整数矛盾.故满足题中两个条件的实数a、b不存在.【解说】这种解法中,把混合组翻译成几何语言(直线和圆面是否有公共点)就是解析法的逆向思维.教学实践表明,学生普遍认为这种解法难想,其实,“难就难在逆向思维”,普遍认为这种解法巧妙,其实,“巧就巧在逆向思维”.习题1.21.已知圆C1:(x+1)2+(y-2)2=4与圆C2:(x-3)2+(y-4)2=25,求它们外公切线交点P的坐标.2.已知直线l过点P(1,4),求它在两坐标轴正向截距之和最小时的方程.(要求至少5种解法)(要求至少4种证法).(1992年全国高考理科试题)4.长度为3的线段AB的两端点在抛物线y2=x上移动,记线段AB的中点为M,求点M到y轴的最短距离,并求此时点M的坐标.(要求至少4种解法).(1987年全国高考理科试题)5.已知2a+3b=5,求证:直线ax+by-5=0必过一个定点.7.已知三个集合M={(x,y)|y2=x+1},S={(x,y)|4x2+2x-2y+5=0},P={(x,y)|y=ax+m},问是否存在正整数a、m使得(M∪S)∩P=φ?(其中φ表示空集)习题1.2答案或提示3.证法1:设A、B的坐标分别为(x1,y1)和(x2,y2),|PA|=r,则圆P的方程为(x-x0)2+y2=r2,与椭圆方程联立,消去y,得把A、B的坐标代入椭圆方程中,后把所)、(ρ2,θ2),点P的坐标为(t,0),则t=x0+c.由|PA|=|PB|,可得5.逆用点在直线的概念,得定点为(2,3).6.在直角坐标系中,由已知两个等式可知,直线ax+by=c过点重合的条件,可证得结论.也无实数解.故a=1,m=2.思维方法²分析综合法综合法、分析法和分析综合法是平面解析几何中论证命题的基本方法.从已知条件出发,运用学过的定义、公式、定理进行一步步地正确推理,最后证得结论,这种论证命题的思维方法叫做综合法.从命题的结论入手,寻找使这个结论成立的充分条件,一直追溯到已知条件为止,这种论证命题的思维方法叫做分析法.把分析法与综合法结合起来去论证命题的思维方法叫做分析综合法,它是从一个命题的两头向中间“挤”,因此容易发现证题的突破口,收到事半功倍的效果.例1 设A、B、C是双曲线xy=1上的三点,求证:△ABC的垂心H必在此双曲线上.【分析】如图1-1,设H的坐标为(x0,y0),要证H在此双曲线上,即证x0y0=1.而H是两条高AH与BH的交点,因此需求直线AH、BH的方程,进而从所得方程组中设法推出x0y0=1.【证明】如图1-1,由已知可设A、B、C的坐标分别为(α,设点H的坐标为(x0,y0),则由①式左乘②式右及①式右乘②式左,得化简可得x0y0(α-β)=α-β.∵α≠β,∴x0y0=1.故H点必在双曲线xy=1上.【解说】本证法的思考过程中,从分析法入手,得出证点H在双曲线xy=1上就是证x0y0=1.这为综合法证明此题指明了目标.在用综合法证明的过程中,牢牢抓住这个目标,去寻找x0、y0的关系式,用式子①与②相乘,巧妙地消去参数α、β、γ,得到x0y0=1.从而避免了解方程的麻烦,提高了解题速度.例2 在直角坐标系xOy中,已知A1(x1,y1)、A2(x2,y2)是单位圆x2+y2=1内任两点,设点P(x,y)是以线段A1A2为直径的圆上任一点,求证:x2+y2<2.【分析】欲证x2+y2<2,由于A1、A2是圆x2+y2=1内两点,坐标的关系式,又点P在以A1A2为直径的圆上,故可从PA1⊥PA2入手去证.【证明】当P是直径A1A2的端点时,结论显然成立.当P不是直径A1A2的端点时,如图1-2,连结PA1、PA2,则PA1⊥PA2,即x2+y2-(x1+x2)x-(y1+y2)²y+x1x2+y1y2=0,∴ x2+y2=(x1+x2)x+(y1+y2)y-x1x2-y1y2.又由A1、A2是圆x2+y2=1内两点,得故x2+y2<2.【解说】乍看,本题难以下手.但用分析综合法,把被证结论转例3 已知P是椭圆b2x2+a2y2=a2b2(a>b>0)上任一点,F1、F2是左、右两个焦点,∠PF1F2=α,∠PF2F1=β,e是离心率,求证:由合分比定理,得只需证①如图1-3,在△PF1F2中,由正弦定理,得∵ |PF1|+|PF2|=2a,|F1F2|=2c,由和差化积公式和倍角公式,得即①式成立.故原结论成立.【解说】本例的上述证法就是分析综合法.它从被证结论入手,把它转化为证①式成立,这个过程是分析法.然后,从已知条件出发,运用解析几何、三角知识推得①式,这个过程是综合法.习题1.1用分析综合法证明下列各题:1.已知a、b、c满足3(a2+b2)=4c2(c≠0),求证:直线ax+by+c=0与圆x2+y2=1有两个不同的交点.B、B′是此椭圆的短轴的两个端点,BM与B′M分别交x轴于K、N两点.求证:|ON|²|OK|=a2.4.设F1、F2是双曲线x2-y2=a2(a>0)的两个焦点,P为该双习题1.1答案或提示1.欲证直线与圆有两个不同的交点,只需证圆心O到直线的距离<a.又点P既在椭圆上,又在圆x2+y2-ax=0上,由此可得(b2-a2)3.欲证|OK|²|ON|=a2,需要求出K、N两点的横坐标,从而只需求出直线BM、B′M的方程.思维方法²数形结合观点解析几何是数形结合的科学,其显著特点是用代数的方法研究几何图形的性质,从而把代数、几何、三角熔为一炉.解题时,要贯穿数形结合的观点,不但要注意把图形数字化和把数式图形化,而且还要留心观察图形的特点,发掘题目中的隐含条件,充分利用图形的几何性质,把数与形有机地结合在一起,去探索问题的最佳解法.例1 过圆M:(x-1)2+(y-1)2=1外一点P向此圆作两条切线,当这两切线互相垂直时,求动点P的轨迹方程.【分析】本题一般用参数法去解,但运算量大且有一定的技巧,不易求解.如果运用数形结合的观点,仔细观察图形的性质,不难发现动点P是正方形PT1MT2的顶点,因此|PM|是定值,立得简捷解法如下.【解】如图1-10,设切点为T1、T2,连结MT1、MT2、PM,则MT1⊥T1P,MT2⊥PT2,又T1P⊥PT2,且|PT1|=|PT2|,那么MT2PT1设动点P(x,y),则(x-1)2+(y-1)2=2,这就是所求的轨迹方程.的对称点为Q,点P绕圆心C依逆时针方向旋转120°后到达点R,求线段RQ长度的最大值和最小值.α),然后求出点Q、R的坐标,最后用两点间距离公式,求出|RQ|的最值.但这种解法运算量较大,还易出错.观察图1-11,在△PRQ中,欲求|RQ|,因A是PQ的中点,易想起三角形的中位线,从而取PR的中点B,连结BA,则|RQ|=2|AB|.又求|QR|的最值,转化为求点A与所作圆上点的距离的最值.过C、A作直线,交所作圆于B1、B2两点,则由平面几何知,|AB|的最大值为x<2},求a的值集.【分析与解】本题如果用纯代数法,着眼于求出集合A,就相当麻烦.如果用数形结合的观点看待已知不等式,从“形”的角度去考虑可得下列简捷解法:为半径的半圆(如图1-12),而y=(a-1)x是过原点的直线束.问题转化为:求半圆在动直线上方且0<x<2时,a的值集.易得a-1≥1,即a≥2.故a的值集为{a|a≥2}.【解说】由以上三例可知,数与形密切配合,坐标法以图形性质相助,如虎添翼,问题可迎刃而解.习题1.3用数形结合观点解证下列各题:1.过圆M:(x-a)2+y2=a2(a>0)上一点A(2a,0)作此圆的动弦AB,求AB 中点P的轨迹方程.必与相应的准线相交.u=x2+y2的最大值和最小值.习题1.3答案或提示1.连MP,则MP⊥AB,从而P的轨迹是以AM为直径的圆,方2.欲证准线l与以AB为直径的圆相交,即证圆心M到l的距离小于半径.设过A、B、M分别作准线l的垂线,重足分别为P、Q、N,(x,y)是以F1(-1,0)、F2(1,0)为焦点、长轴为8的椭圆上的动点.u max=16,u min=15.b2)]≥1,即(a2+b2-1)2≤0,所以a2+b2=1.学科方法²参数法参数观点是运动、变化思想在数学中的重要体现.参数是解析几何中最活跃的元素,也是解题的一种主要方法.解析几何中的许多解题技巧都来源于参数观点.(一)参数法解题的基本步骤参数法解题的步骤是:(1)设参,即选择适当的参数(参数的个数可取一个或多个);(2)用参,即建立参数方程或含参数的方程;(3)消参,即通过运算消去参数,使问题得到解决.例1 已知抛物线y2=2px(p>0),在x轴的正半轴上求一点M,使过M的弦P1P2,满足OP1⊥OP2.【解】如图2-5,设M(m,0)(m>0)、P1(x1,y1)、P2(x2,y2).∵ OP1⊥OP2,即y1y2=-x1x2.∴ (y1y2)2=4p2x1x2.从而(-x1x2)2=4p2x1x2.∵ x1≠0,x2≠0,∴ x1x2=4p2①设直线P1P2的方程为y=k(x-m),把它代入y2=2px中,整理,得k2x2-2(k2m+p)x+k2m2=0.由韦达定理,得x1x2=m2 ②把②代入①中,得m2=(2p)2.∵ m>0,p>0,∴m=2p.于是所求的点M的坐标为(2p,0).【解说】本例选点P1、P2的坐标为参数,利用已知条件建立x1,x2,y1,y2,m,p的关系式,消去参数,求得m的值.OP交椭圆于点R,又点Q在OP上且满足|OQ|²|OP|=|OR|2.当点P在l上移动时,求动点Q的轨迹方程,并说明轨迹是什么曲线.(1995年全国高考理科压轴题)【解】如图2-6,设动点Q(x,y)(x,y不同时为零).又设|OR|=λ|OQ|,|OP|=u|OQ|,(λ,u>0),由于Q、R、P三点共线,所以点R(λx,λy)、点P(ux,uy).∵ |OQ|²|OP|=|OR|2,∴ u|OQ|2=λ2|OQ|2.又|OQ|≠0,同理,由P在l上,可得于是由①、②、③,可得动点Q的轨迹方程为且长轴平行于x轴的椭圆,去掉坐标原点.利用已知条件|OQ|²|OP|=|OR|2巧妙地消去参数,这里参数是一个过渡,起桥梁作用.这种解法比高考命题者提供的答案简明.(二)解题技巧的一个源泉参数观点是产生解题技巧的一个源泉,解析几何的许多解题技巧都起源于参数.其中“设而不求”和“代点法”就是最突出的两个.1.设而不求例3 如图2-7,过圆外一点P(a,b)作圆x2+y2=R2的两条切线,切点为A、B,求直线AB的方程.【解】设A、B的坐标分别为(x1,y1)、(x2,y2),则切线AP、BP的方程分别为x1x+y1y=R2,x2x+y2y=R2.∵这两条切线都过点P(a,b),∴ ax1+by1=R2,ax2+by2=R2.由以上二式可以看出,点A、B在直线ax+by=R2上,又过A、B只有一条直线,∴直线AB的方程为ax+by=R2.【解说】本例中把A、B的坐标作为参数.虽然设了A、B的坐标,但并没有去求它的值,而是利用曲线与方程的概念,巧妙地“消去”参数,这就是所谓的“设而不求”.2.代点法例4 求抛物线y2=12x的以M(1,2)为中点的弦所在直线的方程.【解法1】设弦的两个端点为A(x1,y1)、B(x2,y2),则由中点坐标公式,得y1+y2=4 ①即(y1+y2)(y1-y2)=12(x1-x2).②即直线AB的斜率k=3.故直线AB的方程为y-2=3(x-1).即 3x-y-1=0.【解法2】∵弦的中点为M(1,2),∴可设弦的两个端点为A(x,y)、B(2-x,4-y).∵ A、B在抛物线上,∴ y2=12x,(4-y)2=12(2-x).以上两式相减,得y2-(4-y)2=12(x-2+x),即 3x-y-1=0,这就是直线AB的方程.【解说】以上两种解法都叫做代点法.它是先设曲线上有关点的坐标,然后代入曲线方程,最后经适当变换而得到所求的结果.习题2.2用参数法解证下列各题:1.已知椭圆9x2+16y2=144内有一点P(2,1),以P为中点作弦MN,则直线MN的方程为. [ ]A.9x-8y+26=0B.9x+8y-26=0C.8x-9y+26=0D.8x+9y-26=02.点D(5,0)是圆x2+y2-8x-2y+7=0内一点,过D作两条互相垂直的射线,交圆于A、B两点,求弦AB中点M的轨迹方程.且OP⊥OQ,求m的值.4.已知射线OA、OB分别在第一、四象限,且都与Ox轴成60的轨迹.5.已知两点P(-2,2)、Q(0,2)以及一条直线l:y=x.设长为程.(要求把结果写成普通方程)(1985年全国高考理科试题) 6.已知椭圆的中心在原点,对称轴合于坐标轴,直线y=-x+1与习题2.2答案或提示1.仿例4,选(B).2.设M(x,y),A(x+x0,y+y0),B(x-x0,y-y0),把A、B=0.3.仿例1,可得m=3.5.设A(t,t),B(t+1,t+1),又设直线PA、PB的斜率分别x2-y2+2x-2y+8=0.6.设椭圆的方程为ax2+by2=1(a>0,b>0),A、B、C的坐学科方法²待定系数法待定系数法是中学数学中的一种重要方法,它在平面解析几何中有广泛的应用.(一)求直线和曲线的方程例1 过直线x-2y-3=0与直线2x-3y-2=0的交点,使它与两坐标轴相交所成的三角形的面积为5,求此直线的方程.【解】设所求的直线方程为(x-2y-3)+λ(2x-3y-2)=0,整理,得依题意,列方程得于是所求的直线方程为8x-5y+20=0或2x-5y-10=0.【解说】 (1)本解法用到过两直线交点的直线系方程,λ是待定系数.(2)待定系数法是求直线、圆和圆锥曲线方程的一种基本方法.例2 如图2-9,直线l1和l2相交于点M,l1⊥l2,点N∈l1,以A、B为端点的曲线C上的任一点到l2的距离与到点N的距离相等.若系,求曲线C的方程.(1998年全国高考理科试题)【解】如图2-9,以l1为x轴,MN的垂直平分线为y轴,建立直角坐标系.由已知,得曲线C是以点N为焦点、l2为准线的抛物线的一段,其中点A、B 为曲线C的端点.设曲线C的方程为y2=2px,p>0(x1≤x≤x2,y>0).其中,x1、x2分别是A、B的横坐标,p=|MN|.从而M、N解之,得p=4,x1=1.故曲线C的方程为y2=8x (1≤x≤4,y>0).(二)探讨二元二次方程(或高次方程)表示的直线的性质例3 已知方程ax2+bxy+cy2=0表示两条不重合的直线L1、L2.求:(1)直线L1与L2交角的两条角平分线方程;(2)直线L1与L2的夹角的大小.【解】设L1、L2的方程分别为mx+ny=0、qx+py=0,则ax2+bxy+cy2=(mx+ny)(qx+py).从而由待定系数法,得a=mq,b=mp+nq,c=np.(1)由点到直线的距离公式,得所求的角平分线方程为即(m2+n2)(qx+py)2=(q2+p2)(mx+ny)2,化简、整理,得(nq-mp)[(nq+mp)x2+2(np-mq)xy-(nq+mp)y2]=0.∵ L1、L2是两条不重合的直线∴b2-4ac=(mp+nq)2-4mnpq=(mp-nq)2>0.即 mp-nq≠0.从而(nq+mp)x2+2(np-mq)xy-(nq+mp)y2=0.把 mq=a,mp+nq=b,np=c代入上式,得bx2+2(c-a)xy-by2=0.即为所求的两条角平分线方程.(2)显然当mq+np=0,即a+c=0时,直线L1与L2垂直,即夹角为90°.当mq+np≠0即a+c≠0时,设L1与L2的夹角为α,则【解说】一般地说,研究二元二次(或高次)方程表示的直线的性质,用待定系数法较为简便.(三)探讨二次曲线的性质1.证明曲线系过定点例4 求证:不论参数t取什么实数值,曲线系(4t2+t+1)x2+(t+1)y2+4t(t +1)y-(109t2+21t+31)=0都过两个定点,并求这两个定点的坐标.【证明】把原方程整理成参数t的方程,得(4x2+4y-109)t2+(x2+y2+4y-21)t+x2+y2-31=0.∵ t是任意实数上式都成立,【解说】由本例可总结出,证明含有一个参数t的曲线系F(x,y,t)=0过定点的步骤是:(1)把F(x,y,t)=0整理成t的方程;(2)因t是任意实数,所以t的各项系数(包括常数项)都等于零,得x、y 的方程组;(3)解这个方程组,即得定点坐标.2.求圆系的公切线或公切圆例5 求圆系x2+y2-2(2m+1)x-2my+4m2+4m+1=0(m≠0)的公切线方程.【解】将圆系方程整理为[x-(2m+1)]2+(y-m)2=m2(m≠0)显然,平行于y轴的直线都不是圆系的公切线.设它的公切线方程为 y=kx+b,则由圆心(2m+1,m)到切线的距离等于半径|m|,得从而[(1-2k)m-(k+b)]2=m2(1+k2),整理成m的方程,得(3k2-4k)m2-2(1-2k)(k+b)m+(k+b)2=0.∵ m取零以外的任意实数上式都成立,【解说】由本例可总结出求圆系F(x,y,m)=0的公切线方程的步骤是:(1)把圆系方程化为标准方程,求出圆心和半径;(2)当公切线的斜率存在时,设其方程为y=kx+b,利用圆心到切线的距离等于半径,求出k、b、m的关系式f(k,b,m)=0;(3)把f(k,b,m)=0整理成参数m的方程G(m)=0.由于m∈R,从而可得m 的各项系数(包括常数项)都等于零,得k、b的方程组;(4)解这个方程组,求出k、b的值;(5)用同样的方法,可求出x=a型的公切线方程.3.化简二元二次方程例6 求曲线9x2+4y2+18x-16y-11=0的焦点和准线.【分析】把平移公式x=x′+h,y=y′+k,代入原方程化简.【解】(略).习题2.3用待定系数法解证下列各题:1.求经过三点(2,3)、(5,3)、(3,-1)的圆的方程.2.求双曲线x2-2y2-6x+4y+3=0的焦点坐标.3.若方程ax3+bx2y+cxy2+dy3=0表示三条直线,且其中两条互相垂直,求证:a2+ac+bd+d2=0.4.求圆系2x2+2y2-4tx-8ty+9t2=0(t≠0)的公切线方程.5.试证圆系x2+y2-4Rxcosα-4Rsinα+3R2=0(R是正的常数,α为参数)与定圆相切,并求公切圆的方程.6.若在抛物线y2=2px(p>0)的对称轴上有一个定点Q,过Q的任习题2.3答案或提示1.设圆的方程为x2+y2+Dx+Ey+F=0,把三个已知点的坐标代入,可求得D=-8,E=-2,F=12.3.设过原点互相垂直的两条直线方程为lx2+mxy-ly2=0,另一条直线方程为px+qy=0,则ax3+bx2y+cxy2+dy3=(lx2+mxy-ly2)(px+qy),从而a=lp,b=lq+mp,c=mq-lp,d=-lp.于是可得a2+ac+bd+d2=0.4.y=x或y=7x.5.圆系方程为(x-2Rcosα)2+(y-2Rsinα)2=R2,设公切圆方程为(x-a)2+(y-b)2=r2,则由两圆相切的充要条件是圆心距等于两圆半径和或差的绝对值,可得(a-2Rcosα)2+(b-2Rsinα)2=(R±r)2,整理,可得a2+b2-2R即a=b=0.从而r2-3R2±2Rr=0,解得r1=R,r2=3R.6.设Q(x0,0),直线AB的参数方程为x=x0+tcosα,y=tsinα.代任一值,所以x0=p.学科方法²判别式法判别式法是中学数学中的一种常用方法,它在平面解析几何中有下列应用:(一)确定直线与二次曲线和二次曲线与二次曲线的位置关系它们中每一个点到点A的距离等于该点到直线l的距离?(1988年全国高考理科试题)点、l为准线的抛物线方程为y2=2px.椭圆上有四个点符合题意的充要条件为方程组y2=2px有四个不同的实数解.显然,这个方程组有四个不同的实数解的充要条件为方程①有两个不相等的正根.设方程①的两个根为x1、x2,则x1>0、x2>0的充要条件为又由已知,得p>0 ⑤【解说】本例的实质是求椭圆与抛物线有四个不同的交点的条件,它归结为一元二次方程ax2+bx+c=0有两个不等的正根的条件,即Δ(二)求极值例2 过点P(3,2)作直线l分别交x轴、y轴正方向于A、B两点,求△AOB 面积S的最小值.【解】如图2-21,设直线l的方程为y-2=k(x-3)(k<0),则它在x轴、y 轴上的截距分别为从而9k2+2(S-6)k+4=0.∵Δ=[2(S-6)]2-4³4³9≥0,∴ S(S-12)≥0.∵ S>0,∴S≥12.∴ S min=12.例3 在椭圆9x2+4y2=36上分别求一点,使x+y有最大值和最小值.【解】设x+y=u,则y=u-x.把它代入椭圆方程中,整理,得13x2-8ux+4(u2-9)=0.∵ x是实数,∴Δ≥0即(-8u)2-4³13³4(u2-9)≥0.解之,得-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有些问题,思索的过程只可意会,难以言传,因此只好用 观察法求解。即:先根据观察、猜想应用什么样的解, 然后进行直接验证。
分类考察讨论:
在些数学题,解题的复杂性,主要在于它的 条件、结论(或问题)包含多种不易识别的可能 情形。对于这类问题,选择恰当的分类标准,把 原题分解成一组并列的简单题,有助于实现复杂 问题简单化。
第一讲 数学思维变通性训练
1. 思维变通性概念
在数学教学中,思维变通性表现为:能善于 根据题设中的具体情况,提出新的构想和解题方 案。它体现学生在智力活动中灵活程度上的差异, 是数学思,用一套固定的方案,是行不通的,必 须视其具体情况,灵活确定解题方案。也就是说, 必须具有思维的变通性,根据数学思维变通性的 主要体现,本课程将着重进行以下几个方面的训 练:
复杂问题转化成简单问题,把抽象问题转
化成具体问题,把未知问题转化成已知问
题。因此,在解数学题时,观察具体特征,
联想有关问题之后,就要寻求转化关系。
有些数学题,条件比较抽象、复杂,不太容易入手。这时, 不妨简化题中某些已知条件,甚至暂时撇开不顾,先考虑 一个简化问题。这样简单化了的问题,对于解答原题,常 常能起到穿针引线的作用。
你是否利用了所有的已知数据?你是否利用了整个条件?你是否考虑了包含在问题中 的所有必要的概念?
第三:实现你的计划 实现计划:实现你的求解计划,检验每一步骤。你能否清楚地看 出这一步骤是否正确的?你能否证明这一步骤是正确的?
第四:验证所得的解 回顾:你能否检验这个论证?你能否用别的方法导出这个结果? 你能不能一下子看出来?你能不能把这个结果或方法用于其它的问题?
2.思维训练:
(1)观察能力的训练 虽然观察看起来是一种表面现象,但 它是认识事物内部规律的基础。所以, 必须重视观察能力的训练,使学生不 但能用常规方法解题,而且能根据题 目的具体特征,采用特殊方法来解题。
数学中,同一素材的题目,常常可以有不同 的表现形式;条件与结论(或问题)之间,也存 在着多种联系方式。因此,恰当构造辅助元素, 有助于改变题目的形式,沟通条件与结论(或条 件与问题)的内在联系,把陌生题转化为熟悉题。
如果你不能解决所提出的问题,可先解决一个与此有关的问题。你能不能想出一个更 容易着手的有关问题?一个更普遍的问题?一个更特殊的问题?一个类比的问题?你 能否解决这个问题的一部分?仅仅保持条件的一部分而舍去其余部分,这样对于未知 数能确定到什么程度?它会怎样变化?你能不能从已知数据导出某些有用的东西?你 能不能想出适于确定未知数的其它数据?如果需要的话,你能不能改变未知数或数据, 或二者都改变,以使新未知数和新数据彼此更接近?
(1)善于观察
做一道数学题,大致上有:审题、想题、解题三大段 。
& 在审题时要细心观察。
解数学题首先要弄清题意。即:正确地感知题目中出现 的主要概念,分清什么是已知,什么是求(证)。
& 在想题时要重视“特殊”的已知条件。
在探索解题思路时,往往会感到有些“特殊”的已知条 件用不上,因而思路也找不出来。有时虽然思路找出来 了,但如果注意到了已知条件中的某些“特殊性”,往 往可以发现有更为简便的思路存在。
你以前见过它吗?你是否见过相同的问题而形式稍有不同?你是否知道与此有关的问 题?你是否知道一个可能用得上的定理?看着未知数!试想出一个具有相同未知数或 相似未知数的熟悉的问题。这里有一个与你现在的问题有关,且早已解决的问题。你 能不能利用它?你能利用它的结果吗?你能利用它的方法吗?为了利用它,你是否应 该引入某些辅助元素?你能不能重新叙述这个问题?你能不能用不同的方法重新叙述 它?回到定义去。
对于这类题目,借助图表直观,利用示意图 或表格分析题意,有助于抽象内容形象化,复杂 关系条理化,使思维有相对具体的依托,便于深 入思考,发现解题线索。
有些涉及数量关系的题目,用代数方法求解, 道路崎岖曲折,计算量偏大。这时,不妨借助图 形直观,给题中有关数量以恰当的几何分析,拓 宽解题思路,找出简捷、合理的解题途径。
高中数学解题
思 维 训 练
数学教学的目的在于培养学生的思维
能力。要做到这一点,首先要培养学生良 好的思维品质。
事实上,良好的思维品质往往包括以
下几个方面:思维的变通性、思维的反思 性、思维的严密性和思维的发散性。
培养良好思维品质的途径是进行有素
的训练。本教程将结合中学数学教学的实 际情况,着重进行这方面的训练。
因而,怎样解题,解题的速度 如何,取决于能否由观察到的特征, 灵活运用有关知识,作出相应的联 想,找到突破口,不断深入。
(3)善于进行问题转化
数学家波利亚在《怎样解题》中说过,
数学解题是命题的连续变换。可见解题过 程是通过问题的转化才能完成的。转化是 解数学题的一种十分重要的思维方法。
G
那么,怎样转化呢?概括讲,就是把
有些结构复杂的综合题,就其生成背景而论, 大多是由若干比较简单的基本题,经过适当组合 抽去中间环节而构成的。
因此,从题目的因果关系入手,寻求可能的 中间环节和隐含条件,把原题分解成一组相互联 系的系列题,是实现复杂问题简单化的一条重要 途径。
联想是转化问题的桥梁。稍具 难度的问题和基础知识之间的联系 都是不明显的、间接的、复杂的。
小资料: 《怎样解题》 G.波利亚
第一:你必须弄清问题 弄清问题:未知数是什么?已知数据是什么?条件是什么?满 足条件是否可能?要确定未知数,条件是否充分?或者它是否不充分?或者是多余的? 或者是矛盾的?把条件的各部分分开。你能否把它们写下来?
第二:找出已知数与未知数之间的联系。如果找不出直接的联系,你可能不得不考虑辅 助问题,你应该最终得出一个求解的计划。 拟订计划:
数学解题中,构造的辅助元素是多种多样的, 常见的有构造图形(点、线、面、体),构造算 法,构造多项式,构造方程(组),构造坐标系, 构造数列,构造行列式,构造等价性命题,构造 反例,构造数学模型等等。
有些数学题,内容抽象,关系复杂,给理解题 意增添了困难,常常会由于题目的抽象性和复杂 性,使正常的思维难以进行到底。