导线测量平差

合集下载

导线测量平差实例

导线测量平差实例

导线测量平差实例
闭合导线:
名称表示原理
(导线长) D 实测边长总合
(角度总和)∑β 实测左角相加的总和
(角度闭合差)Fβ 实测左角相加的总和的秒位数
(坐标闭和差)Fx △x计算出的坐标增量之合
Fy △y计算出的坐标增量之合
(距离闭合差) F Fx平方加Fy平方开根号
(导线精度)K F/D(1÷F×D)
附合导线:
名称表示原理
(导线长) D 实测边长总合
(角度总和)∑β 实测左角相加的总和
(角度闭合差)Fβ 实测推算出的终点方位角减理论的终点方位角
(坐标闭和差)Fx △x总合减(终点x坐标减起始x坐标)
Fy △y总合减(终点y坐标减起始y坐标)
(距离闭合差) F Fx平方+Fy平方开根号
(导线精度)K F/D(1÷F×D)
坐标增量计算:
△x12=D12×cosa12
△y12=D12×sina12
D :实测两点间的距离。

a :实测两点间的方位角。

近似平差方法:①将角度闭合差除以测站数:Fβ÷N(N表示测站数)=∩(角度均值),然后将角度均值加到实测右角中。

②将Fx平方加Fy平方开根号,得出距离闭合差,用距离闭合差除以观测边长数得出距离均值,然后将距离均值加到每一条实测边长中。

③从起测点开始,再通过公式△x12=D12×cosa12 、△y12=D12×sina12求出坐标增量。

用上一测站的坐标加上坐标增量就得出平差后的坐标。

导线平差_精品文档

导线平差_精品文档

导线平差导线平差是指在测量或建设中进行的一项重要的技术工作,主要是为了保证导线的水平和垂直度,确保测量结果的准确性和可靠性。

在工程测量中,导线平差是不可或缺的一环,它可以帮助测量人员更好地掌握实地的情况,从而更准确地进行导线的布设和定位。

导线平差的原理是根据测量数据进行误差分析和修正,通过一系列的计算和调整,可以得到最为精确的导线位置和方向。

具体来说,导线平差包括两个方面的工作:平差计算和平差调整。

平差计算是根据测量数据,结合误差理论和数学方法,计算出导线的真实位置和方向;平差调整是通过人工或仪器,对导线进行微调,以保证导线的准确性。

在导线平差中,最常用的计算方法是最小二乘法。

最小二乘法是一种通过最小化测量数据与理论模型之间的偏差,来求解未知量的一种数学方法。

在导线平差中,我们可以将导线的真实位置和方向作为未知量,通过最小二乘法求解出来。

最小二乘法的基本原理是将导线的测量数据表示为一组方程组,其中未知量为导线的位置坐标和方向角。

通过最小二乘法,可以求解出最优解,使得测量数据与理论模型之间的偏差最小。

在计算过程中,需要考虑测量误差和观测精度对最终结果的影响。

除了最小二乘法,导线平差还可以采用其他的计算方法,如加权平差法和GPS平差法等。

这些方法在实际应用中,可以根据具体情况选择合适的方法。

导线平差的调整工作是为了进一步提高导线的准确性和可靠性。

在平差调整中,可以采用各种手段,如利用导线标杆进行修正、使用仪器进行微调等。

通过这些调整工作,可以使导线的位置和方向更加准确,从而提高测量结果的质量。

导线平差在工程测量中具有重要的应用价值。

首先,导线平差可以减小测量误差,提高测量精度。

导线平差可以根据实地情况进行修正,避免由于环境和操作因素引起的误差。

其次,导线平差可以提高导线的可靠性和稳定性。

通过导线平差的调整工作,可以使导线的位置和方向更加准确,从而保证测量结果的可靠性。

最后,导线平差可以为后续的工作提供基础。

拓普康全站仪导线测量与平差示例

拓普康全站仪导线测量与平差示例

TOPCON 北京技术中心 86-10-67802799
6、在主菜单选择[测量],点击[BS/FS测量]开始测量。
显示的对话框如下:
TOPCON 北京技术中心 86-10-67802799
7、确认后视点点号(b),在盘左状态下照准该后视点
按下面板上的[ENT]键观测并记录数据。
TOPCON 北京技术中心 86-10-67802799
TOPCON 北京技术中心 86-10-67802799
TOPCON 北京技术中心 86-10-67802799
其中限差设置部分,
Hz表示水平角限差:[盘左-(盘右-180)] VA表示垂直角限差:[盘左+盘右-360]
D表示距离限差:[盘左-盘右]
测量方法中“盘左-〉盘右”表示的观测顺序为: 盘左 BS -〉盘左 FS,盘右 FS-〉盘右 BS 注:以上限差应该根据所测导线的等级,按对应的规范 要求来设置。
按下[ENT]键测量,如果限差超限,会显示如下对话框:
点击[重测],重新照准,再次按[ENT]进行测量;点击[采用]则保留 当前测量值。
TOPCON 北京技术中心 86-10-67802799
10、盘右观测后视点(b)
盘右观测完前视点后,TopSURV自动切换到后视点盘右观 测界面:
按[ENT] 观测并记录数据(如果超限也会有提示窗口出现)。
TOPCON 北京技术中心 86-10-67802799
5、点击[坐标平差],显示坐标改正结果
点击[保存报表],可以将此次平差的相关数据 保存到文件中。
TOPCON 北京技术中心 86-10-67802799
6、以下是一个闭合导线的示例(在TopSURV中仍称为 附合导线,并按附合导线进行平差处理)

导线平差计算表格及解析

导线平差计算表格及解析

闭合导线坐标计算
注:黄色部分为外业测量出的或者是已知的;
“n”:多边形内角的个数;
“ƒβ容”:图根导线角度闭合差的容许值为±60″√n,当图根导线作为测区的首级控制网时为±40″√n;
β=β测-ƒβ n;
在这儿坐标方位角的计算就不说了;
△x i,1+i=D i,1+i*cosαi,1+i; △y i,1+i=D i,1+i*sinαi,1+i;
ƒx=Ʃ△x,ƒy=Ʃ△y;
导线全长闭合差ƒ=√(ƒ2x+ƒ2y),相对闭合差K=ƒ∕ƩD,图根导线的容许相对闭合差K容=1∕2000,当K<K容时则说明符合精度要求,可以进行调整,
υ△xi,1+i=-(ƒx∕ƩD)*D i,1+i,υ△yi,1+i=-(ƒy∕ƩD)*D i,1+i;
△x △y x y
υ△xi,1+i υ△yi,1+i ±±
△x i,1+i
△y i,1+i
Ʃ
ƩD ƒx ƒy
辅助计算
观测角 (β测) ′ ″改正数
(β) 改正后角度 ′ ″
坐标方位角 ′ ″
56序号1234△x′△y′ƒβ角度闭合差=Ʃβ测-Ʃβ
理=Ʃβ测-(n-2)*180; ƒβ
≤ƒβ容;
ƒx=Ʃ△x,ƒy=Ʃ△y; ƒD =√(ƒ2x +ƒ2y )
注:1、附合导线和闭合导线的差别在于两个方面:①角度闭合差的计算和调整,②坐标增量闭合差的计算;(怎么计算就不一一说了,见谅!)
坐标增量 m 改正后增量 m
坐标值 m 距离 m。

导线测量平差4.2更新指南

导线测量平差4.2更新指南

导线测量平差最近更新指南导线测量平差最近发布4.2版,主要增加或更新了以下功能:(如表格显示不正常,请刷新)一、表格输出。

表格输出到WORD,支持表格中的列向下错开半行(如方位角、边长),所有表格输出到WORD后与软件中显示的样式一样。

如下表:导线严密平差计算表工程名称:附合及水准示例等级:城市二级计算者:杨运英校核者:日期:2003.08.28二、导线采用近似平差且方位角边长不进行反算时的表格样式。

原表格中显示的是坐标增量改正数,现增加了一个选项,可以选择显示改正后的坐标增量,以满足一些工程要求格式统一的要求。

导线平差计算表工程名称:附合及水准示例等级:城市二级计算者:杨运英校核者:日期:2003.08.28、坐标导线平差。

指使用全站仪直接观测坐标、高程的闭、附合导线,其中平面坐标完全差的分配方式可以选用“按边长”、“按坐标增量”、“坐标转换”等方式。

坐标导线平差计算表工程名级:城市二级:杨运英校核者:日期:200四、单面单程水准记录计算已知点较密时线路中间也可以穿过已知点。

当含有中视时可以用于中平测量等,表格形式如下:水准测量记录计算表测线:仪器:观测:天气:地点:记录:计算者:校核者:日期:不含有中视时可用于五等、等外水准等的记录、计算。

表格形式如下:水准测量记录计算表测线:仪器:观测:天气:地点:记录:计算:校核:日期:部测量知点设站,后视另一已知点,观测各碎部点,计算其坐标、高程,绘制图形并可输出到CAD。

方式可以选用“斜距+天顶距”、“平距+高差”或“视距+天顶距”。

距+高差”方式表格如下:碎部测量记录后视:B 测站高程仪高:气:复核:期:距”(或“斜距+天顶距”)表格如下:碎部测量记录后视:B 测站高程:指标差:0" 天气:记录:日期:坐标转换于同椭球的不同坐标系间进行转换。

比如同椭球的国家坐标系与工程独立坐标系的转换。

坐标转换计算表工程名第页计算:复核:日期:支导线计算里指输入方位角与边长计算坐标的支导线,如需输入水平角、边长计算各点坐标,请使用“平差计算”模块中的支导线进行计算。

全站仪坐标导线测量的平差方法

全站仪坐标导线测量的平差方法

随着全站仪在工程测量中应用的逐渐普及,采用导线作为测量的平面控制越来越广泛,导线一般多布设成单一导线。

应用全站仪观测导线,可以通过机内的微处理器,直接得到地面点的平面近似坐标,因此在成果处理时可以应用这些近似坐标直接按坐标平差(即间接平差)法进行平差。

本文主要针对采用全站仪观测导线的近似平差和严密平差方法进行探讨。

导线的近似坐标平差导线测量用于图根控制等低精度测量中,往往采用近似平差即可。

由于全站仪直接测定各导线点的近似坐标值,平差计算就不用像传统的导线近似平差计算那样,先进行角度闭合差计算和调整,然后推算方位角,再进行坐标增量闭合差的计算和调整,最后根据平差后的坐标增量计算导线点的坐标。

全站仪观测导线直接按坐标平差计算,将更为简便。

直接按坐标平差法计算步骤如下:假设有一条附合导线,由于存在观测误差,最后测得的一点(假设为C)坐标与该点已知坐标(xc,yc)不一致,其差值即为纵、横坐标增量闭合差,即(1)导线全长闭合差为f:(2)导线全长相对闭合差为:(3)此时若满足要求的精度,就可以直接根据坐标增量闭合差来计算各个导线点的坐标改正数,各导线点的坐标改正值计算公式为:(4)改正后各点坐标xi、yi为:(5)式中,∆x1、∆x2、∆x i、∆y1、∆y2、∆y i、分别为第一、第二和第i条边的近似坐标增量;x i’、y i’为各待定点坐标的观测值(即全站仪外业直接观测的导线点的坐标)。

采用坐标法进行导线近似平差,直接在已经测得导线点的坐标上进行改正,方法简单,易于掌握,避免了传统近似平差法的方位角的推算和改正,以及坐标增量的计算和改正,能大大提高工作效率,而且不易出错。

同时可以看出传统附和导线测量需要两条已知边,作为方位角的检核条件,而直接坐标法,只需要一条已知边和一个已知点即可,使导线的布网更加灵活。

导线的严密坐标平差采用全站仪观测导线的优势高等级平面控制测量对精度的要求较高,需要严密平差。

全站仪观测的导线采用严密坐标平差法较为适宜。

导线测量平差记录表

导线测量平差记录表

导线测量平差最近更新导线测量平差最近发布4.2版,主要增加或更新了以下功能:(如表格显示不正常,请刷新)一、表格输出。

表格输出到WORD,支持表格中的列向下错开半行(如方位角、边长),所有表格输出到WORD后与软件中显示的样式一样。

如下表:导线严密平差计算表工程名称:附合及水准示例等级:城市二级计算者:杨运英校核者:日期:2003.08.28二、导线采用近似平差且方位角边长不进行反算时的表格样式。

原表格中显示的是坐标增量改正数,现增加了一个选项,可以选择显示改正后的坐标增量,以满足一些工程要求格式统一的要求。

导线平差计算表工程名称:附合及水准示例等级:城市二级计算者:杨运英校核者:日期:2003.08.28、坐标导线平差。

指使用全站仪直接观测坐标、高程的闭、附合导线,其中平面坐标完全差的分配方式可以选用“按边长”、“按坐标增量”、“坐标转换”等方式。

坐标导线平差计算表工程名级:城市二级:杨运英校核者:日期:200四、单面单程水准记录计算已知点较密时线路中间也可以穿过已知点。

当含有中视时可以用于中平测量等,表格形式如下:水准测量记录计算表测线:仪器:观测:天气:地点:记录:计算者:校核者:日期:不含有中视时可用于五等、等外水准等的记录、计算。

表格形式如下:水准测量记录计算表测线:仪器:观测:天气:地点:记录:计算:校核:日期:部测量知点设站,后视另一已知点,观测各碎部点,计算其坐标、高程,绘制图形并可输出到CAD。

方式可以选用“斜距+天顶距”、“平距+高差”或“视距+天顶距”。

距+高差”方式表格如下:碎部测量记录后视:B 测站高程:仪高:气:复核:距”(或“斜距+天顶距”)表格如下:碎部测量记录后视:B 测站高程:指标差:0" 天气:记录:日期:坐标转换于同椭球的不同坐标系间进行转换。

比如同椭球的国家坐标系与工程独立坐标系的转换。

坐标转换计算表工程名第页计算:复核:日期:支导线计算里指输入方位角与边长计算坐标的支导线,如需输入水平角、边长计算各点坐标,请使用“平差计算”模块中的支导线进行计算。

导线角度闭合差的调整方法

导线角度闭合差的调整方法

导线角度闭合差的调整方法
导线角度闭合差是指在测量导线方位角时,闭合回路中所测得的起始方位角与结束方位角之差。

其调整方法有以下几种:
1. 加入平差:在导线测量中,通过应用平差方法来消除导线角度闭合差。

常用的平差方法有闭合路线平差法和闭合导线平差法。

2. 使用导线调整器:导线调整器是一种可调整导线长度的设备。

通过适当地调整导线长度,可以改变导线角度闭合差大小。

3. 使用闭合差调整仪:闭合差调整仪是一种专门用于调整导线角度闭合差的仪器。

它通过测量起始方位角和结束方位角的差异,并通过自动调整导线长度来消除闭合差。

4. 重新测量:如果导线角度闭合差较大,可以考虑重新测量导线。

通过重新测量可以减小闭合差的大小。

5. 检查仪器精度:导线角度闭合差的大小可能与仪器的精度有关。

因此,检查和校准仪器也是调整导线角度闭合差的一种方法。

需要注意的是,无论采用何种方法调整导线角度闭合差,都需要保证调整后的闭合差满足测量要求和精度要求。

导线测量简易平差的计算流程

导线测量简易平差的计算流程

导线测量简易平差的计算流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!1. 准备工作收集导线测量的观测数据,包括边长和角度观测值。

导线测量平差教程

导线测量平差教程

计算方案得设置一、导线类型:1、闭、附合导线(图1)2、无定向导线(图2)3、支导线(图3)4、特殊导线及导线网、高程网(见数据输入一节),该选项适用于所有得导线,但不计算闭合差。

而且该类型不需要填写未知点数目。

当点击表格最后一行时自动添加一行,计算时删除后面得空行。

5、坐标导线。

指使用全站仪直接观测坐标、高程得闭、附合导线。

6、单面单程水准测量记录计算。

指仅进行单面读数且仅进行往测而无返测得水准测量记录计算。

当数据中没有输入“中视”时可以用作五等、等外水准等得记录计算。

当输入了“中视”时可以用作中平测量等得记录计算。

说明: 除“单面单程水准测量记录计算”仅用于低等级得水准测量记录计算外,其它类型选项都可以进行平面及高程得平差计算,输入了平面数据则进行平面得平差,输入了高程数据则进行高程得平差,同时输入则同时平差。

如果不需进行平面得平差,仅计算闭、附合高程路线,可以选择类型为“无定向导线”,或者选择类型为“闭附合导线”但表格中第一行及最后一行数据(均为定向点)不必输入,因为高程路线不需定向点。

二、概算1、对方向、边长进行投影改化及边长得高程归化,也可以只选择其中得一项改正。

2、应选择相应得坐标系统,以及Y坐标就是否包含500KM。

选择了概算时,Y坐标不应包含带号。

三、等级与限差1、在选择好导线类型后,再选择平面及高程得等级,以便根据《工程测量规范》自动填写限差等设置。

如果填写得值不符合您所使用得规范,则再修改各项值得设置。

比如现行得《公路勘测规范》得三级导线比《工程测量规范》得三级导线要求要低一些。

2、导线测量平差4、2及以前版本没有设置限差,打开4、2及以前版本时请注意重新设置限差。

四、近似平差与严密平差得选择及近似平差得方位角、边长就是否反算1、近似平差:程序先分配角度闭合差再分配坐标增量闭合差,即分别平差法。

2、严密平差:按最小二乘法原理平差。

3、《工程测量规范》规定:一级及以上平面控制网得计算,应采用严密平差法,二级及以下平面控制网,可根据需要采用严密或简化方法平差。

(整理)导线测量平差教程—计算方案设置

(整理)导线测量平差教程—计算方案设置

计算方案的设置一、导线类型:1.闭、附合导线(图1)2.无定向导线(图2)3.支导线(图3)4.特殊导线及导线网、高程网(见数据输入一节),该选项适用于所有的导线,但不计算闭合差。

而且该类型不需要填写未知点数目。

当点击表格最后一行时自动添加一行,计算时删除后面的空行。

5.坐标导线。

指使用全站仪直接观测坐标、高程的闭、附合导线。

6.单面单程水准测量记录计算。

指仅进行单面读数且仅进行往测而无返测的水准测量记录计算。

当数据中没有输入“中视”时可以用作五等、等外水准等的记录计算。

当输入了“中视”时可以用作中平测量等的记录计算。

说明:除“单面单程水准测量记录计算”仅用于低等级的水准测量记录计算外,其它类型选项都可以进行平面及高程的平差计算,输入了平面数据则进行平面的平差,输入了高程数据则进行高程的平差,同时输入则同时平差。

如果不需进行平面的平差,仅计算闭、附合高程路线,可以选择类型为“无定向导线”,或者选择类型为“闭附合导线”但表格中第一行及最后一行数据(均为定向点)不必输入,因为高程路线不需定向点。

二、概算1.对方向、边长进行投影改化及边长的高程归化,也可以只选择其中的一项改正。

2.应选择相应的坐标系统,以及Y坐标是否包含500KM。

选择了概算时,Y坐标不应包含带号。

三、等级与限差1.在选择好导线类型后,再选择平面及高程的等级,以便根据《工程测量规范》自动填写限差等设置。

如果填写的值不符合您所使用的规范,则再修改各项值的设置。

比如现行的《公路勘测规范》的三级导线比《工程测量规范》的三级导线要求要低一些。

2.导线测量平差4.2及以前版本没有设置限差,打开4.2及以前版本时请注意重新设置限差。

四、近似平差与严密平差的选择及近似平差的方位角、边长是否反算1.近似平差:程序先分配角度闭合差再分配坐标增量闭合差,即分别平差法。

2.严密平差:按最小二乘法原理平差。

3.《工程测量规范》规定:一级及以上平面控制网的计算,应采用严密平差法,二级及以下平面控制网,可根据需要采用严密或简化方法平差。

导线网条件平差计算

导线网条件平差计算

感谢您的观看
汇报人:XX
实例总结和经验教训
实例分析:介绍 具体的导线网条 件平差计算实例, 包括数据来源、 计算过程和结果
分析
总结:对实例分 析的结果进行总 结,提炼出导线 网条件平差计算 的关键技术和方

经验教训:分享 在实例分析过程 中遇到的问题和 解决方法,以及 可以改进和优化
的地方
实例应用:探讨 实例分析结果在 实际工程中的应 用,以及如何根 据实际情况调整 和改进计算方法
精度分析和误差处理
精度分析:通过对比实际测量数据和计算结果,评估平差计算的准确性和可靠性。 误差处理:对测量过程中产生的误差进行修正,以提高平差计算的精度。 实例分析:通过具体实例展示精度分析和误差处理在导线网条件平差计算中的应用。 注意事项:强调在进行精度分析和误差处理时应注意的事项,以确保计算结果的准确性。
软件测试和性能评估
测试目的:验证软件是否符合 设计要求和功能需求
测试方法:单元测试、集成测 试、系统测试和验收测试
性能评估指标:处理速度、精 度、可靠性、可扩展性和可维 护性
评估工具:负载测试、压力测 试和性能分析工具
导线网条件平差 计算的未来发展
导线网条件平差计算技术的发展趋势和方向
智能化:随着人 工智能技术的不 断发展,导线网 条件平差计算将 更加智能化,能 够自动识别和解
决各种问题。
自动化:未来导 线网条件平差计 算将更加自动化, 减少人工干预, 提高计算效率和
精度。
精细化:随着测量 技术和数据处理技 术的发展,导线网 条件平差计算将更 加精细化,能够对 各种复杂情况进行
精确处理。
集成化:未来导 线网条件平差计 算将与其他测量 技术进行集成, 形成更加完整的 测量系统,提高 测量精度和效率。

导线测量平差计算过程

导线测量平差计算过程

导线测量平差计算过程
导线测量平差计算过程主要包括如下步骤:
1.数据处理:将实测数据进行清理、整理,确定每条导线的起点、终
点和中间支点的坐标;
2.角度平差:按照两点连线的方向角计算各个支点上的内角和外角,
然后将各个内角和外角进行平差,得到各个内角和外角的平差值;
3.边长平差:按照测量结果计算各段边长,然后进行边长平差,得到
各段边长的平差值;
4.计算导线全长:将所有导线的平差后的边长之和加上起点和终点的
误差校正值,即可得到导线的全长;
5.校正角度:将各个内角和外角的平差值加上导线全长的误差校正值,即可得到校正后的内角和外角;
6.计算坐标:按照支点的坐标和导线的长度及方向角,逐一计算各个
点的坐标,然后进行坐标平差,得到各个支点的平差坐标和导线终点的坐标。

以上是导线测量平差计算过程的基本步骤,根据具体情况,在实际操
作时还需根据需要进行进一步的计算和处理。

全站仪平差方法

全站仪平差方法

全站仪坐标导线测量及平差方法的比较引言多年来,全站仪以其自动化快速三维坐标测量与定位功能,和数据采集方面的自动数据流实现外业数据的电子记录以及从外业到内业一体化的自动流程这两大特点而倍受人们的青睐。

不仅在测绘、建筑工程、交通与水利工程、地籍与房地产中大显身手,而且在大型工业生产,构件装调以及体育竞技等领域中也得到重视和应用。

全站仪是集光、机、电、磁、微电脑等技术于一体,汇集现代科技最新成果于一身,具有小型、便捷、高精度、多功能和自动化等特点的新一代综合性测绘仪器。

目前,全站仪已从普通型发展到精密的电脑智能型,除能进行常规的测角、测距外,还具有多种专用功能,利用其三维坐标测量功能可进行导线型坐标测量,直接获取各导线点的三维坐标,称此种导线为全站仪导线。

针对全站仪导线,如何对其坐标观测数据进行平差处理以求得合理的结果呢? 这是学术界一直在探讨的一个问题,并且近年来各种全站仪坐标导线平差方法不断提出。

1 全站仪坐标导线测量以附合导线为例,如图1 所示,A ,B ,C ,D 为已知控制点,中间各点为导线点,全站仪导线测量方法如下:首先将全站仪安置于已知点B 上,利用全站仪的三维坐标测量功能和微电脑记忆功能,输入已知点A ,B 的三维坐标、方位以及仪器和觇标高度后,全站仪瞄准A 点定位,测记前视导线点2坐标;然后将仪器移至2 (关电源) ,继续不断测记新导线点3 ,4 , ⋯坐标。

全站仪将自动地显示各导线点的三维坐标,并记录在电子手簿上,而不需内业计算,直接在现场完成三维导线测量。

2 几种平差方法简述1) 第一种方法称为坐标转换平差法,其基本思想就是:通过坐标的旋转、平移和尺度统一等转换方法将带有观测误差的坐标值归算到平差后的坐标值。

具体做法是,先根据导线起点和终点的坐标闭合差计算出坐标转换参数,再以求得的转换参数对其他导线点的观测坐标进行转换,求得各点的坐标改正数,从而求得各导线点的平差坐标[ 1 ] 。

导线平差 (2)

导线平差 (2)

导线平差什么是导线平差导线平差是一种测量方法,用于测量和校正地面上的导线的位置和形状误差。

这些误差通常由各种因素引起,如地形变化、温度变化和测量仪器误差等。

导线平差可以帮助我们获得更准确的测量结果,并对地面上的导线进行校正。

导线平差的目的导线平差的主要目的是消除导线测量中的误差,使测量结果更加准确可靠。

通过导线平差,我们可以校正导线的曲线形状、长度和位置误差,以提高测量的准确性和可靠性。

导线平差的步骤导线平差通常包括以下几个步骤:1. 测量导线在进行导线平差之前,首先需要对导线进行测量。

测量导线可以使用各种测量仪器,如全站仪、经纬仪等。

在测量导线时,需要记录导线的起点和终点坐标,以及导线上的其他测量点坐标。

2. 创建导线平差网络在测量导线后,我们需要创建一个导线平差网络。

导线平差网络是由测量导线和测量点组成的网络。

通过导线平差网络,我们可以计算出导线的长度和位置误差。

3. 进行导线平差计算在创建导线平差网络之后,我们可以进行导线平差计算。

导线平差计算通常涉及各种数学和统计方法,如最小二乘法、误差传播法等。

通过导线平差计算,我们可以得到导线的校正结果。

4. 校正导线根据导线平差计算的结果,我们可以对导线进行校正。

校正导线包括校正导线的长度、形状和位置。

校正导线可以使用各种方法,如切割导线、唐氏法等。

导线平差的应用导线平差在土木工程、测绘工程、地质工程等领域广泛应用。

它可以帮助我们获得更准确的测量结果,并对导线进行校正。

导线平差还可以用于创建地形地图、计算土地面积和边界等。

导线平差的注意事项在进行导线平差时,需要注意以下几个事项:1.始终使用准确的测量仪器和工具。

测量仪器和工具的准确性会直接影响导线平差的结果。

2.在测量导线之前,需要确保导线表面干净和平整。

导线表面的污垢和不平整会影响测量结果。

3.注意温度变化对导线长度的影响。

温度变化会导致导线的伸缩,进而影响导线平差的结果。

4.在进行导线平差计算时,需要注意数学和统计方法的正确使用。

导线平差_精品文档

导线平差_精品文档

导线平差1. 介绍导线平差是测量中常用的一种调整测量结果的方法,用于消除测量误差和随机误差,提高测量精度和准确度。

导线平差的主要目的是通过对已知的测量数据进行计算和分析,得到相对真实的测量结果。

2. 导线平差方法导线平差方法通常分为两种:条件平差和最小二乘平差。

2.1 条件平差条件平差是一种基于条件方程的平差方法,可以通过已知的测量数据和误差观测值,根据一定的条件方程计算出未知的测量量。

条件平差的基本原理是建立条件方程组,其中包括观测方程和平差方程。

观测方程是通过测量数据得到的,它描述了测量数据之间的关系。

平差方程则是基于观测方程和误差观测值,通过求解最小二乘问题来计算未知量的方法。

2.2 最小二乘平差最小二乘平差是一种常用的导线平差方法,通过最小化误差的平方和来求解未知量,从而得到最优的平差结果。

与条件平差不同的是,最小二乘平差不需要建立条件方程,而是基于观测方程直接进行计算。

最小二乘平差的基本原理是建立误差方程,其中包括观测方程和约束方程。

观测方程描述了测量数据之间的关系,约束方程则是对未知量之间的关系进行限制,如已知的长度、角度等。

3. 导线平差步骤导线平差的步骤可以分为以下几个主要阶段:3.1 数据处理数据处理是导线平差的第一步,主要包括数据输入和数据检查。

在数据输入过程中,需要将测量数据和误差观测值输入计算机或平差软件中,确保数据的准确性和完整性。

数据检查则是对输入的数据进行检验,发现并修正可能存在的错误。

3.2 条件方程建立条件方程的建立是导线平差的核心部分,需要根据已知的测量数据和误差观测值,建立观测方程和平差方程。

观测方程描述了测量数据之间的关系,平差方程则是基于观测方程和误差观测值,通过求解最小二乘问题来计算未知量。

3.3 方程求解方程求解是导线平差的关键步骤,通过对条件方程进行计算和求解,得到未知量的数值。

在求解过程中,可以利用矩阵运算和数值计算方法来提高计算效率和精度。

3.4 结果分析结果分析是导线平差的最后一步,主要是对平差结果进行分析和评价。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全站仪观测导线测量平差方法的研究
摘要:针对全站仪观测导线能够即时直接得到待定点的近似坐标的特点,从而提出了便于实际应用的近似坐标平差和严密坐标平差方法。

分析了其原理和优点,并给出了实际操作的公式。

关键词:导线;平差;方位角;间接平差
1 问题的提出
随着全站仪在工程测量中应用的逐渐普及,采用导线作为测量的平面控制越来越广泛,导线一般多布设成单一导线。

应用全站仪观测导线,可以通过机内的微处理器,直接得到地面点的平面近似坐标,因此在成果处理时可以应用这些近似坐标直接按坐标平差(即间接平差)法进行平差。

这将优于过去导线计算过程中先进行边、角平差后,再求取坐标的方法。

本文主要针对采用全站仪观测导线的近似平差和严密平差方法进行探讨。

2 导线的近似坐标平差
导线测量用于图根控制等低精度测量中,往往采用近似平差即可。

由于全站仪直接测定各导线点的近似坐标值,平差计算就不用像传统的导线近似平差计算那样,先进行角度闭合差计算和调整,然后推算方位角,再进行坐标增量闭合差的计算和调整,最后根据平差后的坐标增量计算导线点的坐标。

全站仪观测导线
直接按坐标平差计算,将更为简便。

直接按坐标平差法计算步骤如下:
图1有一条附和导线,由于存在观测误差,最后测得的C点坐标(,)
与C点已知坐标(,)不一致,其差值即为纵、横坐标增量闭合差 , ,即
(1)
导线全长闭合差f为: (2)
导线全长相对闭合差K为: (3)
图1 附和导线
Fig 1 Closed traverse
此时若满足要求的精度,就可以直接根据坐标增量闭合差来计算各个导线点的坐标改正数,各导线点的坐标改正值、计算公式为:
(4)
改正后各点坐标、为:
(5)
式中,、、,、、分别为第一、第二和第条边的近
似坐标增量;、x′
i 、y′
i
为各待定点坐标的观测值(即全站仪外业直接观
测的导线点的坐标)。

采用坐标法进行导线近似平差,直接在已经测得导线点的坐标上进行改正,方法简单,易于掌握,避免了传统近似平差法的方位角的推算和改正,以及坐标增量的计算和改正,能大大提高工作效率,而且不易出错。

同时可以看出传统附和导线测量需要两条已知边,作为方位角的检核条件,而直接坐标法,只需要一条已知边和一个已知点即可,使导线的布网更加灵活。

3 导线的严密坐标平差
高等级平面控制测量对精度的要求较高,需要严密平差。

全站仪观测的导线采用严密坐标平差法较为适宜。

严密坐标平差取待定点的坐标平差值作为未知数,通过平差计算可直接得到各待定点的坐标。

但过去影响应用坐标平差(间接平差)法的主要原因是辅助计算量大,尤其是在列立误差方程之前,需要按近似平差方法将全部导线点的近似坐标推算出来;采用全站仪观测导线,在测量中可直接得到待定点的近似坐标,因此不必再解算待定点的近似坐标。

另一方面坐标平差法误差方程式的列立简单且有规律性,便于编制程序。

坐标平差法虽然法方程的阶数较高,但利用编制的程序输入计算机中解算,仍是快捷迅速的,这是传统条件平差无可比拟的,因此采用坐标平差法平差全站仪导线是比较适宜的。

3.1 坐标平差中边、角观测值权的确定
坐标平差已是一种成型的平差方法,有关其原理、计算公式和计算步骤等在各种平差文献中都有较细的推导和叙述,这里只就应用该法平差全站仪观测导线过程中,有关边、角权的确定方法谈一点体会。

3.1.1 边、角观测误差方程式
坐标平差法计算,首先是列立误差方程式。

导线平差有角度和边长两种类型误差方程式,在图2中,β为观测角度,略去推导过程,其误差方程为:
(6)
式中:D°为边长近似值;Δx°、Δy°为近似纵横坐标增量;δ
x 、δ
y
为纵、横坐标改正数;l
β=α°BA-α°BC-β,α°为导线边的近似坐标方位角。

导线的每个观测角都要列立这样的观测误差方程式,式(6)为A、B、C三点
均为待定点的情况,若三点中有已知点,则已知点的坐标改正数δ
x 、δ
y
=0。

图2 角度观测图
Fig 2 Observation of angles
图3 距离观测图
Fig 3 Observation of distance
在图3中,D
i 为AB边的距离观测值,A、B为待定点,略去其推导过程D
i

观测误差方程式为:
(7)
式中:、、、分别为A、B两点的近似坐标;、、
、为A、B两点的近似坐标改正数。

应用上述两类误差方程式组成法方程式时,因边、角的观测精度不等,则其权不等。

即使边之间或角度之间若非等精度观测,其权数也是不等的。

因此就要合理地确定其权数,观测值的权是组成法方程的重要元素,权确定的合理与否,直接影响到计算结果。

3.1.2 单位权中误差和权的确定
应用全站仪观测的导线,测距精度较高,通常边、角同时测得,据此笔者认为按如下方法确定其权较为合理。

(1)导线所有的转折角因测量的测回数相等,按等权对待,并设角度观测中
误差为单位权中误差,即μ
0=m β。

(2)导线边的观测,因各边距离不等,则各边的距离观测精度不等,可以根据全站仪的标称测距精度求出每条边的测距中误差,再按权的定义公式
,确定每一条边的权值。

例如:用拓普康GTS-701全站仪观测了一条导线,现就其单位权中误差的确定方法和权的计算方法加以说明:
该仪器的测角标称精度为±2″,若对导线所有转折角进行一测回观测,则
角度的观测中误差m
β=±2″,距离观测标称精度为±(3+2³10-6²D)mm,其中
D为观测边的距离,以公里为单位。

因此可以根据观测边的距离计算出每条边的中误差。

例如某条边的观测距离为1325.375m,则该边的距离观测中误差为m
D

m
D
=±(3+2³1.325375)mm=±5.65mm。

权的确定可取角度观测中误差为单位权中误差,即μ
0=m
β=2″,则角度观测
值的权P
β为:
(无单位)
该条边距离观测值的权为:
7.08(秒/cm)
如此可以逐一算出各边距离观测值权的大小,用以组成法方程进行下一步的解算,进而得出最后结果。

4 结语
综上所述,在导线平面控制测量中,应用全站仪观测,因为待定点的近似坐标在观测时可同时得到。

针对该情况,在此分别提出了近似和严密的坐标平差方法,供读者在实际应用中参考。

一般低等级控制测量采用近似坐标平差就可满足精度要求,高等级控制测量应采用严密平差的方法进行解算,可根据平面控制测量设计的等级和精度要求而选用相应的平差方法。

相关文档
最新文档