2017年武汉市中考数学试卷(含答案解析版)

合集下载

武汉市2017年中考数学试卷参考答案

武汉市2017年中考数学试卷参考答案

2
又∵AB=AC ∴AO 平分∠BAC (2)方法 1:如图,过点 D 作 DK⊥AO 于 K. ∵由(1)知 AO⊥BC,OB=OC,BC=6
∴ BH=CH= 1 BC=3,∠COH= 1 ∠BOC,
2
2
∵∠BAC= 1 ∠BOC,∴∠COH=∠BAC 2
在 Rt△COH 中,∠OHC=90°,sin∠COH= HC CO


x x
2 5x 5<0
6>0


xx< <5-1或x>6∴
x<-1或 x<5

x>6 x<5
∴此时x<-1

x x
2 5x 5>0
6<0

x>1<5 x<6∴x>1<5x<6
解得:
5<x<6
综上,原不等式的解集是: x<-1或5<x<6
由 6 >x得, 6 x>0
x5
x5
y
y = x2 5∙x 6
∴ 6 x2 5x >0 ∴ x2 5x 6<0
x5
x5

x2 5x x 5<0
6>0


x x
2 5x 5>0
6<0
-1 O
6
x
结合抛物线 y=x2 5x 6 的图象可知
解法 2:图像法,将反比例函数 y 6 向右平移 5 个单位. x
23、.解:(1)∵∠ADC=90°,∠EDC+∠ADC=180°, ∴∠EDC=90°,又∠ABC=90°, ∴∠EDC=∠ABC,又∠E 为公共角, ∴△EDC∽∠EBA,
B C
∴EEDB=EECA,∴ED²EA=EC²EB. (2)过 C 作 CF⊥AD 于 F,过 A 作 AG⊥EB 交 EB 延长线于 G.

2017年中考数学真题试题(含答案)

2017年中考数学真题试题(含答案)

2017年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.﹣2017的绝对值是()A.2017 B.﹣2017 C.12017D.﹣12017【答案】A.2.一组数据1,3,4,2,2的众数是()A.1 B.2 C.3 D.4【答案】B.3.单项式32xy的次数是()A.1 B.2 C.3 D.4【答案】D.4.如图,已知直线a∥b,c∥b,∠1=60°,则∠2的度数是()A.30°B.60°C.120°D.61°【答案】B.5.世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×105C.6.7×106D.67×104【答案】B.6.如图,△ABC沿着BC方向平移得到△A′B′C′,点P是直线AA′上任意一点,若△ABC,△PB′C′的面积分别为S1,S2,则下列关系正确的是()A.S1>S2B.S1<S2C.S1=S2D.S1=2S2【答案】C.7.一个多边形的每个内角都等于144°,则这个多边形的边数是()A.8 B.9 C.10 D.11【答案】C.8.把不等式组231345xx x+>⎧⎨+≥⎩的解集表示在数轴上如下图,正确的是()A.B.C.D.【答案】B.9.如图,已知点A在反比例函数kyx=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.4yx=B.2yx=C.8yx=D.8yx=-【答案】C.10.观察下列关于自然数的式子:4×12﹣12①4×22﹣32②4×32﹣52③…根据上述规律,则第2017个式子的值是()A.8064 B.8065 C.8066 D.8067 【答案】D.二、填空题(本大题共8小题,每小题4分,共32分)11.5的相反数是 . 【答案】﹣5. 12.一组数据2,3,2,5,4的中位数是 .【答案】3.13.方程1201x x-=-的解为x = . 【答案】2.14.已知一元二次方程230x x k -+=有两个相等的实数根,则k = .【答案】94. 15.已知菱形的两条对角线的长分别是5cm ,6cm ,则菱形的面积是 cm 2.【答案】15.16.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B 处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB =2米,BC =18米,则旗杆CD 的高度是 米.【答案】3.42.17.从﹣1,0,1,2这四个数中,任取两个不同的数作为点的坐标,则该点在第一象限的概率为 .【答案】16. 18.如图,在Rt △ABC 中,∠C =90°,点D 是AB 的中点,ED ⊥AB 交AC 于点E .设∠A =α,且tanα=13,则tan2α= .【答案】34.三、解答题19.(1)计算:101()4sin 60(3 1.732)122----+; (2)先化简,再求值:2261213x x x x x +-⋅-++,其中x =2. 【答案】(1)1;(2)21x -,2. 20.如图,已知:∠BAC =∠EAD ,AB =20.4,AC =48,AE =17,AD =40.求证:△ABC ∽△AED .【答案】证明见解析.21.某校为了了解九年级九年级学生体育测试情况,随机抽查了部分学生的体育测试成绩的样本,按A ,B ,C (A 等:成绩大于或等于80分;B 等:成绩大于或等于60分且小于80分;C 等:成绩小于60分)三个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给的信息解答下列问题:(1)请把条形统计图补充完整;(2)扇形统计图中A 等所在的扇形的圆心角等于 度;(3)若九年级有1000名学生,请你用此样本估计体育测试众60分以上(包括60分)的学生人数.【答案】(1)作图见解析;(2)108;(3)800.22.如图,已知点E ,F 分别是平行四边形ABCD 对角线BD 所在直线上的两点,连接AE ,CF ,请你添加一个条件,使得△ABE ≌△CDF ,并证明.【答案】证明见解析.四、解答题23.某商店以20元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y(千克)与销售单价x(元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数表达式;(2)要使销售利润达到800元,销售单价应定为每千克多少元?【答案】(1)60(020)80(2080)xyx x<<⎧=⎨-+≤≤⎩;(2)40元或60元.五、解答题24.如图,已知在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC交于点D,点E是BC的中点,连接BD,DE.(1)若ADAB=13,求sin C;(2)求证:DE是⊙O的切线.【答案】(1)13;(2)证明见解析. 六、解答题 25.如图,抛物线2y x bx c =++经过点A (﹣1,0),B (0,﹣2),并与x 轴交于点C ,点M 是抛物线对称轴l 上任意一点(点M ,B ,C 三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P 1,P 2,使得△MP 1P 2与△MCB 全等,并求出点P 1,P 2的坐标;(3)在对称轴上是否存在点Q ,使得∠BQC 为直角,若存在,作出点Q (用尺规作图,保留作图痕迹),并求出点Q 的坐标.【答案】(1)22y x x =--;(2)P 1(﹣1,0),P 2(1,﹣2)或P 1(2,0),P 2(52,74);(3)点Q 的坐标是:(1227-+1227--.。

2017年中考数学真题试题与答案(word版)

2017年中考数学真题试题与答案(word版)

XX★ 启用前2017 年中考题数学试卷一、选择题(本大题共 12 小题,每小题 3 分,共 36 分.在每小题给出的四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上)1、计算2( 1) 的结果是()1B、2C、1D、 22、若∠α的余角是30°,则 cosα的值是()A 、213C、2D、3A 、B 、23223、下列运算正确的是()A 、2a a 1 B、a a2a2C、a a a2 D 、( a)2a24、下列图形是轴对称图形,又是中心对称图形的有()A、4 个B、3 个5、如图,在平行四边形∠1=()C、2 个D、1 个ABCD 中,∠ B=80 °, AE平分∠BAD交 BC于点E, CF∥ AE交 AE于点F,则A、 40°B、 50°C、 60°D、80°6、已知二次函数y ax2的图象开口向上,则直线y ax 1 经过的象限是()A 、第一、二、三象限 B、第二、三、四象限7、如图,你能看出这个倒立的水杯的俯视图是(C、第一、二、四象限)D、第一、三、四象限A B C D8、如图,是我市 5 月份某一周的最高气温统计图,则这组数据(最高气温)的众数与中位数分别是()A 、 28℃, 29℃B 、 28℃, 29.5℃C、 28℃, 30℃D 、 29℃, 29℃9、已知拋物线 y1 x2 2,当 1 x 5 时, y 的最大值是()2 35 7 A 、 2C 、B 、3D 、3 310、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为 1)的一块碎片到玻璃店,配制成形状、 大小与原来一致的镜面, 则这个镜面的半径是 ( )A 、 2B 、 5C 、22D 、311、如图,是反比例函数yk 1x和 yk 2 x( k 1k 2 )在第一象限的图象,直线AB ∥ x轴,并分别交两条曲线于A 、B 两点,若S AOB2 ,则k 2k 1 的值是()A 、 1B 、 2C 、 4D 、 812、一个容器装有1 升水,按照如下要求把水倒出:第1 次倒出1升水,第2 次倒出的水量是1升的1 ,223第 3 次倒出的水量是1 升的314,第4 次倒出的水量是14升的1 ,⋯按照这种倒水的方法,倒了5 10 次后容器内剩余的水量是()A 、10 升11B 、1 升9C 、110升D 、111升二、填空题(本大题共6 小题,每小题3 分,共 18 分 .把答案填在答题卡中的横线上)13、 2011的相反数是 __________14、近似数 0.618 有__________个有效数字.15、分解因式:a 3= __________16、如图,是某校三个年级学生人数分布扇形统计图,则九年级学生人数所占扇形的圆心角的度数为 __________C 'D 17、如图,等边△ ABC 绕点 B 逆时针旋转30°时,点 C 转到 C ′的位置, 且 BC ′与 AC 交于点 D ,则CD的值为 __________16 题图17 题图18 题图18、如图, AB 是半圆 O 的直径,以 0A 为直径的半圆O ′与弦 AC 交于点 D ,O ′ E ∥ AC ,并交 OC 于点E .则下列四个结论:①点 D 为 AC 的中点;② S O 'OE1S AOC ;③ AC 2AD;④四边形 O'DEO 是菱形.其中正确的结2论是 __________.(把所有正确的结论的序号都填上)三、解答题(本大题共 8 小题,满分共 66 分,解答过程写在答题卡上,解答应写出文字说明,证明过程或演算步骤) .19、计算: (1) 1(5) 034 .220、假日,小强在广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为 60°,已知风筝线 BC 的长为 10 米,小强的身高 AB 为 1.55 米,请你帮小强画出测量示意图,并计算出风筝离地面的高度.(结果精确到 1 米,参考数据2 ≈ 1.41 , 3≈ 1.73 )21、如图, △ OAB 的底边经过⊙ O 上的点 C ,且 OA=OB ,CA=CB ,⊙O 与 OA 、OB 分别交于 D 、E 两点.( 1)求证: AB 是⊙ O 的切线;( 2)若 D 为 OA 的中点,阴影部分的面积为33,求⊙ O 的半径 r .22、一个不透明的纸盒中装有大小相同的黑、白两种颜色的围棋,其中白色棋子 3 个(分别用白 A 、白 B 、白 C 表示),若从中任意摸出一个棋子,是白色棋子的概率为3 .4( 1)求纸盒中黑色棋子的个数;( 2)第一次任意摸出一个棋子(不放回) ,第二次再摸出一个棋子,请用树状图或列表的方法,求两次摸到相同颜色棋子的概率.23、上个月某超市购进了两批相同品种的水果,第一批用了 2000 元,第二批用了 5500 元,第二批购进水果的重量是第一批的 2.5 倍,且进价比第一批每千克多 1 元.( 1)求两批水果共购进了多少千克?( 2)在这两批水果总重量正常损耗 10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于 26%,那么售价至少定为每千克多少元?利润(利润率 =100%)进价AG为边作一个正方形AEFG ,24、如图,点G 是正方形ABCD 对角线 CA 的延长线上任意一点,以线段线段 EB 和 GD 相交于点 H.( 1)求证: EB=GD ;( 2)判断 EB 与 GD 的位置关系,并说明理由;( 3)若AB=2 , AG=2,求EB的长.25、已知抛物线y ax22ax 3a ( a 0) 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点 D 为抛物线的顶点.(1)求 A 、 B 的坐标;(2)过点 D 作 DH 丄 y 轴于点 H,若 DH=HC ,求 a 的值和直线 CD 的解析式;(3)在第( 2)小题的条件下,直线 CD 与 x 轴交于点 E,过线段 OB 的中点 N 作 NF 丄 x 轴,并交直线CD 于点 F,则直线 NF 上是否存在点 M ,使得点 M 到直线 CD 的距离等于点 M 到原点 O 的距离?若存在,求出点M 的坐标;若不存在,请说明理由.中考数学试题答案一、选择题题号123456789101112答案B A C C B D B A C B C D二、填空题13. 201114. 315.a(3 a)(3 a)°17.2318.①③④16. 144三、解答题19. 解:原式 =2-1-3+2 ,=0 .故答案为: 0 .20.解:∵一元二次方程 x2-4x+1=0 的两个实数根是 x1、 x2,∴ x1 +x 2=4 , x1?x2=1 ,∴( x1+x 2)2÷()=4 2÷2=4 ÷421.解:在 Rt △ CEB 中,sin60 °=,∴CE=BC?sin60°=10×≈8.65m,∴CD=CE+ED=8.65+1.55=10.≈210m,答:风筝离地面的高度为 10m .22.( 1)证明:连 OC ,如图,∵ OA=OB , CA=CB ,∴OC ⊥AB,∴AB 是⊙ O 的切线;(2)解:∵ D 为 OA 的中点, OD=OC=r ,∴ OA=2OC=2r ,∴∠ A=30°,∠ AOC=60°, AC=r,∴∠ AOB=120°, AB=2r,∴ S 阴影部分 =S △OAB -S 扇形ODE = ?OC?AB-=-,∴?r?2r- r2=-,∴ r=1 ,即⊙ O 的半径 r 为 1 .23. 解:( 1) 3÷-3=1 .答:黑色棋子有 1 个;( 2)共12 种情况,有 6 种情况两次摸到相同颜色棋子,所以概率为.24. 解:( 1)设第一批购进水果x 千克,则第二批购进水果 2.5 千克,依据题意得:,解得 x=200 ,经检验 x=200 是原方程的解,∴x+2.5x=700 ,答:这两批水果功够进 700 千克;( 2)设售价为每千克 a 元,则:,630a≥ 7500× 1.26,∴,∴a≥15,答:售价至少为每千克 15 元.25.( 1 )证明:在△ GAD 和△ EAB 中,∠ GAD=90° +∠ EAD ,∠ EAB=90° +∠ EAD ,∴∠ GAD= ∠ EAB ,又∵ AG=AE , AB=AD ,∴△ GAD ≌△ EAB ,∴EB=GD ;( 2) EB ⊥ GD ,理由如下:连接BD ,由( 1 )得:∠ ADG= ∠ ABE ,则在△ BDH 中,∠DHB=180° - (∠ HDB+ ∠ HBD )=180°-90 °=90°,∴EB⊥GD ;( 3)设BD与AC交于点O,∵ AB=AD=2在 Rt △ABD中, DB=,∴ EB=GD=.26. 解:( 1)由y=0得, ax 2-2ax-3a=0,∵ a≠0,∴ x2 -2x-3=0,解得1=-1,x2=3,∴点 A 的坐标( -1, 0),点 B 的坐标( 3,0);(2)由 y=ax 2 -2ax-3a ,令 x=0 ,得 y=-3a ,∴ C ( 0, -3a ),又∵ y=ax 2 -2ax-3a=a ( x-1 )2-4a ,得 D (1 , -4a ),∴ DH=1 , CH=-4a- ( -3a ) =-a ,∴ -a=1 ,∴ a=-1 ,∴C(0, 3),D(1,4),设直线 CD 的解析式为y=kx+b ,把 C、 D 两点的坐标代入得,,解得,∴直线 CD 的解析式为y=x+3 ;( 3)存在.由( 2)得, E(-3,0),N(-,0)∴F(,),EN= ,作 MQ⊥CD 于 Q,设存在满足条件的点M(,m),则FM=-m ,EF==,MQ=OM=由题意得: Rt △ FQM ∽ Rt △ FNE ,∴=,整理得 4m 2+36m-63=0 ,∴m2+9m=,m 2+9m+=+(m+ )2=m+ =±∴ m1=,m2=-,∴点 M 的坐标为M1(,),M2(,-).”可见,一个人的心胸和眼光,决定了他志向的短浅或高远;一个清代“红顶商人”胡雪岩说:“做生意顶要紧的是眼光,看得到一省,就能做一省的生意;看得到天下,就能做天下的生意;看得到外国,就能做外国的生意。

湖北省武汉市硚口区2017年中考数学模拟试卷(附答案)

湖北省武汉市硚口区2017年中考数学模拟试卷(附答案)

2017年九年级数学中考模拟试卷一、选择题:1.一个正方形的面积为50平方厘米,则正方形的边长约为( )A.5厘米B.6厘米C.7厘米D.8厘米2.下列算式中,你认为正确的是()3.下列计算中,正确的是()A.2a2+3a2=5a2B.(a﹣b)2=a2﹣b2C.a3•a2=a6D.(﹣2a3)2=8a64.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是2或3的概率是,则a的值是( )A.6B.3C.2D.15.若x,x2是一元二次方程x2﹣5x+6=0的两个根,则x1+x2的值是()1A.1 B.5 C.﹣5 D.66.若点A(m,n)在第二象限,那么点B(﹣m,|n|)在()A.第一象限B.第二象限C.第三象限D.第四象限7.如图是某几何体的三视图,则该几何体的表面积为()A.24+12B.16+12C.24+6D.16+68.某校在七年级设立了六个课外兴趣小组,每个参加者只能参加一个兴趣小组,如图是六个兴趣小组不完整的频数分布直方图和扇形统计图.根据图中信息,可得下列结论不正确的是()A.七年级共有320人参加了兴趣小组B.体育兴趣小组对应扇形圆心角的度数为96°C.美术兴趣小组对应扇形圆心角的度数为72°D.各小组人数组成的数据中位数是56.9.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4与x轴、y轴分别交于A、B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是()A.6B.8C.10D.1210.如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为()A.12B.16C.18D.24二、填空题:11.如果定义新运算“※”,满足a※b=a×b-a÷b,那么1※(-2)= .12.2016年春节期间,在网络上用“百度”搜索引擎搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为.13.有两组卡片,第一组的三张卡片上分别写有数字3,4,5,第二组的三张卡片上分别写有数字1,3,5,现从每组卡片中各随机抽出一张,用抽取的第一组卡片的数字减去抽取的第二组卡片上的数字,差为正数的概率为.14.在平面直角坐标系中,平行四边形OABC的边OC落在x轴的正半轴上,且点C(4,0),B(6,2),直线y=2x+1以每秒1个单位的速度向下平移,经过秒该直线可将平行四边形OABC的面积平分.15.如图,定点A(-2,0),动点B在直线y=x上运动,当线段AB最短时,点B的坐标为.16.把正方形ABCD沿对边中点所在直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE,若AB的长为2,则FM= .三、解答题:17.2x2+3x+1=018.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.19.某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球 B.乒乓球 C.羽毛球 D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)20.如图,点A是反比例函数y=-2x-1在第二象限内图象上一点,点B是反比例函数y=4x-1在第一象限内图象上一点,直线AB与y轴交于点C,且AC=BC,连接OA、OB,求△AOB的面积.21.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.22.九(1)时间x(天) 1≤x<50 50≤x≤90售价(元/件) x+40 90每天销量(件) 200-2x已知该商品的进价为每件30(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.四、综合题:23.四边形ABCD为矩形,G是BC上的任意一点,DE⊥AG于点E.(1)如图1,若AB=BC,BF∥DE,且交AG于点F,求证:AF﹣BF=EF;(2)如图2,在(1)条件下,AG=BG,求CG:CE;(3)如图3,连EC,若CG=CD,DE=2,GE=1,则CE= (直接写出结果)24.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.参考答案1.C2.D3.A4.C5.B6.B7.A8.B9.A10.A11.答案为:-1.5;12.答案为:4.51×107.13.答案为:.14.答案为:615.答案为:(﹣1,﹣1).16.答案为:.17.分解因式得:(2x+1)(x+1)=0,可得2x+1=0或x+1=0,解得:x1=﹣0.5,x2=﹣1;18.证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.19.略20.21.解:(1)MN是⊙O切线.理由:连接OC.∵OA=OC,∴∠OAC=∠OCA,∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A,∴∠BCM=∠BOC,∵∠B=90°,∴∠BOC+∠BCO=90°,∴∠BCM+∠BCO=90°,∴OC⊥MN,∴MN是⊙O切线.(2)由(1)可知∠BOC=∠BCM=60°,∴∠AOC=120°,在RT△BCO中,OC=OA=4,∠BCO=30°,∴BO=OC=2,BC=2∴S阴=S扇形OAC﹣S△OAC=﹣=﹣4.22.解:(1)当1≤x<50时,y=(x+40-30)(200-2x)=-2x2+180x+2000;当50≤x≤90时,y=(90-30)(200-2x)=-120x+12000.(2)当1≤x<50时,y=-2x2+180x+2000=-2(x-45)2+6050,∵a=-2<0,∴当x=45时,y有最大值,最大值为6050元;当50≤x≤90时,y=-120x+12000,∵k=-120<0,∴y随x的增大而减小,∴当x=50时,y有最大值,最大值为6000元.综上可知,当x=45时,当天的销售利润最大,最大利润为6050元 (3)4123.24.解:(1)依题意得:,解之得:,∴抛物线解析式为y=﹣x2﹣2x+3 ∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解之得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).。

2017年中考数学试题分项版解析汇编第02期专题01实数含解析20170816117

2017年中考数学试题分项版解析汇编第02期专题01实数含解析20170816117

专题1:实数一、选择题1.(2017北京第4题)实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a4B.bd0 C. a b D.b c0【答案】C.考点:实数与数轴2.(2017天津第1题)计算(3)5的结果等于()A.2 B.2C.8 D.8【答案】A.【解析】试题分析:根据有理数的加法法则即可得原式-2,故选A.3.(2017天津第4题)据《天津日报》报道,天津市社会保障制度更加成熟完善,截止2017年4月末,累计发放社会保障卡12630000张.将12630000用科学记数法表示为()A.0.1263108B.1.263107C.12.63106D.126.3105【答案】B.【解析】试题分析:学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,n的值为这个数的整数位数减1,所以12630000=1.263107.故选B.4.(2017福建第1题)3的相反数是()A.-3 B.1C.133D.3【解析】只有符号不同的两个数互为相反数,因此3的相反数是-3;故选A.5.(2017福建第3题)用科学计数法表示136 000,其结果是()A.0.136106B.1.36105C.136103D.136106【答案】B【解析】13600=1.36×105,故选B.6.(2017河南第1题)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.7.(2017河南第2题)2016年,我国国内生产总值达到74.4万亿元.数据“74.4万亿”用科学计数法表示为()A.74.41012B.7.441013C.74.41013D.7.441014【答案】B.考点:科学记数法.8.(2017湖南长沙第1题)下列实数中,为有理数的是()A.3B.C.32D.1【答案】D【解析】试题分析:根据实数的意义,有理数为有限小数和有限循环小数,无理数为无限不循环小数,可知1是有理数.故选:D9.(2017广东广州第1题)如图1,数轴上两点A,B表示的数互为相反数,则点B表示的()A.-6 B.6 C.0 D.无法确定【答案】B【解析】试题分析:-6的相反数是6,A点表示-6,所以,B点表示6.故选答案B.考点:相反数的定义10.(2017湖南长沙第3题)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为()A.0.826106B.8.26107C.82.6106D.8.26108【答案】B考点:科学记数法的表示较大的数111.(2017山东临沂第1题)的相反数是()2007 11A.B.C.2017 D.201720072007【答案】A【解析】试题分析:根据只有符号不同的两数互为相反数,可知的相反数为.1120072007故选:A112.(2017山东青岛第1题)的相反数是().8A.8 B.8 C.18D.18【答案】C 【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:1的相反数是818.故选:C考点:相反数定义13. (2017四川泸州第1题)7的绝对值为()A.7B.7C.17D.17【答案】A.【解析】试题分析:根据绝对值的性质可得-7的绝对值为7,故选A.14. (2017四川泸州第2题) “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567103B.56.7104C.5.67105D.0.567106【答案】C.15.(2017山东滨州第1题)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.16. (2017江苏宿迁第1题)5的相反数是11A.5B.C.D.555【答案】D.【解析】试题分析:根据只有符号不同的两个数互为相反数可得5的相反数是-5,故选D.17. .(2017山东日照第1题)﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【答案】B.试题分析:当a是负有理数时,a的绝对值是它的相反数﹣a,所以﹣3的绝对值是3.故选B.考点:绝对值.18. (2017辽宁沈阳第1题)7的相反数是()A.-7B.C.D.74177【答案】A.【解析】试题分析:根据“只有符号不同的两个数互为相反数”可得7的相反数是-7,故选A.考点:相反数.19.(2017山东日照第3题)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.考点:科学记数法—表示较大的数.20. (2017辽宁沈阳第3题) “弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。

【2017中考数学真题】湖北武汉市试卷及解析【2017数学中考真题系列】

【2017中考数学真题】湖北武汉市试卷及解析【2017数学中考真题系列】

2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算的结果为()A.6 B.﹣6 C.18 D.﹣182.若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠43.下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3 D.(x2)34.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+26.点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)7.某物体的主视图如图所示,则该物体可能为()A.B.C. D.8.按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.129.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.10.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7二、填空题(本大题共6个小题,每小题3分,共18分)11.计算2×3+(﹣4)的结果为.12.计算﹣的结果为.13.如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.15.如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为.16.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b=,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x 轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算的结果为()A.6 B.﹣6 C.18 D.﹣18【解析】=6.故选:A.2.(3分)(2017•武汉)若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4【解析】依题意得:a﹣4≠0,解得a≠4.故选:D.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3 D.(x2)3【解析】A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x64.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70【解析】共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.5.(3分)(2017•武汉)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2【解析】原式=x2+2x+x+2=x2+3x+2,故选B6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)【解析】A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.7.(3分)(2017•武汉)某物体的主视图如图所示,则该物体可能为()A. B. C.D.【解析】A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.8.(3分)(2017•武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12【解析】由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数,故选B.为(﹣2)n是解9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.【解析】如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD⊥BC 于D,设BD=x,则CD=5﹣x.由勾股定理可知:AD2=AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(5﹣x)2,解得x=1,∴AD=4,∵•BC•AD=(AB+BC+AC)•r,×5×4=×20×r,∴r=,故选C10.(3分)(2017•武汉)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7【解析】如图:故选D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为2.【解析】原式=6﹣4=2,故答案为:212.(3分)(2017•武汉)计算﹣的结果为.【解析】原式=,故答案为:.13.(3分)(2017•武汉)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为30°.【解析】∵四边形ABCD是平行四边形,∴∠ABC=∠D=100°,AB∥CD,∴∠BAD=180°﹣∠D=80°,∵AE平分∠DAB,∴∠BAE=80°÷2=40°,∵AE=AB,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC﹣∠ABE=30°;故答案为:30°.14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.【解析】画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为=,故答案为:15.(3分)(2017•武汉)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为3﹣3.【解析】将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,如图所示.∵AB=AC=2,∠BAC=120°,∴BN=CN,∠B=∠ACB=30°.在Rt△BAN中,∠B=30°,AB=2,∴AN=AB=,BN==3,∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.∵BD=2CE,BD=CF,∠ACF=∠B=30°,∴设CE=2x,则CM=x,EM=x,FM=4x﹣x=3x,EF=ED=6﹣6x.在Rt△EFM中,FE=6﹣6x,FM=3x,EM=x,∴EF2=FM2+EM2,即(6﹣6x)2=(3x)2+(x)2,解得:x1=,x2=(不合题意,舍去),∴DE=6﹣6x=3﹣3.故答案为:3﹣3.16.(3分)(2017•武汉)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是<a<或﹣3<a<﹣2.【解析】∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<<3,解得<a<;当a<0时,2<﹣a<3,解得﹣3<a<﹣2.故答案为:<a<或﹣3<a<﹣2.三、解答题(共8题,共72分)17.(8分)(2017•武汉)解方程:4x﹣3=2(x﹣1)【解析】4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=18.(8分)(2017•武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.【解析】CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.19.(8分)(2017•武汉)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图部门所对应的圆心角的度数为108°②在统计表中,b=9,c=6(2)求这个公司平均每人所创年利润.【解析】(1)①在扇形图中,C部门所对应的圆心角的度数为:360°×30%=108°;②A部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:=7.6(万元).20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?【解析】(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得40x+30(20﹣x)=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得,解得≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.21.(8分)(2017•武汉)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)【解析】延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC⊥BE,∵∠E=∠BAC,∴sinE=sin∠BAC,∴=,∴CE=BC=10,∴BE==8,OA=OE=CE=5,∵AH⊥BC,∴BE∥OA,∴,即=,解得:OD=,∴CD=5+=,∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线,∴OH=BE=4,CH=BC=3,∴AH=5+4=9,在Rt△ACH中,AC===3.22.(10分)(2017•武汉)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.(1)∵点A(﹣3,a)在y=2x+4与y=的图象上,∴2×(﹣3)+4=a,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M在直线AB上,∴M(,m),N在反比例函数y=上,∴N(,m),∴MN=x N﹣x m=﹣=4或x M﹣x N=﹣=4,解得:∵m>0,∴m=2或m=6+4;(3)x<﹣1或x5<x<6,由>x得:﹣x>0,∴>0,∴<0,∴><或<>,结合抛物线y=x2﹣5x﹣6的图象可知,由><得<或><,∴<<或><,∴此时x<﹣1,由<>得,<<>,∴<<>,解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.23.(10分)(2017•武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)【解析】(1)如图1中,∵∠ADC=90°,∠EDC+∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC,∵∠E=∠E,∴△EDC∽△EBA,∴=,∴ED•EA=EC•EB.(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.在Rt△CDF中,cos∠ADC=,∴=,∵CD=5,∴DF=3,∴CF==4,∵S△CDE=6,∴•ED•CF=6,∴ED==3,EF=ED+DF=6,∵∠ABC=120°,∠G=90°,∠G+∠BAG=∠ABC,∴∠BAG=30°,∴在Rt△ABG中,BG=AB=6,AG==6,∵CF⊥AD,AG⊥EB,∴∠EFC=∠G=90°,∵∠E=∠E,∴△EFC∽△EGA,∴=,∴=,∴EG=9,∴BE=EG﹣BG=9﹣6,∴S四边形ABCD=S△ABE﹣S△CDE=(9﹣6)×6﹣6=75﹣18.(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,∴tan∠E=,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,∴FG=DF﹣DG=5+n﹣3a,∵CH⊥AD,AG⊥DF,∠E=∠F,易证△AFG∽△CEH,∴=,∴=,∴a=,∴AD=5a=.24.(12分)(2017•武汉)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x 轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.【解析】(1)将点A(﹣1,1)、B(4,6)代入y=ax2+bx中,,解得:,∴抛物线的解析式为y=x2﹣x.(2)证明:设直线AF的解析式为y=kx+m,将点A(﹣1,1)代入y=kx+m中,即﹣k+m=1,∴k=m﹣1,∴直线AF的解析式为y=(m﹣1)x+m.联立直线AF和抛物线解析式成方程组,,解得:,,∴点G的坐标为(2m,2m2﹣m).∵GH⊥x轴,∴点H的坐标为(2m,0).∵抛物线的解析式为y=x2﹣x=x(x﹣1),∴点E的坐标为(1,0).设直线AE的解析式为y=k1x+b1,将A(﹣1,1)、E(1,0)代入y=k1x+b1中,,解得:,∴直线AE的解析式为y=﹣x+.设直线FH的解析式为y=k2x+b2,将F(0,m)、H(2m,0)代入y=k2x+b2中,,解得:,∴直线FH的解析式为y=﹣x+m.∴FH∥AE.(3)设直线AB的解析式为y=k0x+b0,将A(﹣1,1)、B(4,6)代入y=k0x+b0中,,解得:,∴直线AB的解析式为y=x+2.当运动时间为t秒时,点P的坐标为(t﹣2,t),点Q的坐标为(t,0).当点M在线段PQ上时,过点P作PP′⊥x轴于点P′,过点M作MM′⊥x轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM,∴==,∴QM′=,MM′=t,∴点M的坐标为(t﹣,t).又∵点M在抛物线y=x2﹣x上,∴t=×(t﹣)2﹣(t﹣),解得:t=;当点M在线段QP的延长线上时,同理可得出点M的坐标为(t﹣4,2t),∵点M在抛物线y=x2﹣x上,∴2t=×(t﹣4)2﹣(t﹣4),解得:t=.综上所述:当运动时间为秒、秒、秒或秒时,QM=2PM.精品文档21。

湖北省武汉市2017年中考数学试卷(含答案解析版)

湖北省武汉市2017年中考数学试卷(含答案解析版)

2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)计算 36的结果为(的结果为( )A .6 B .﹣6 6 C C .18 D .﹣182.(3分)若代数式1a−a−44在实数范围内有意义,则实数a 的取值范围为(的取值范围为( ) A .a=4 a=4 B B .a >4 C .a <4 D .a ≠43.(3分)下列计算的结果是x 5的为(的为() A .x 10÷x 2 B .x 6﹣x C .x 2•x 3 D .(x 2)34.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m1.501.60 1.65 1.70 1.75 1.80人数 2 3 2 3 4 1 则这些运动员成绩的中位数、众数分别为( )A .1.65、1.70 B .1.65、1.75 C .1.70、1.75 D .1.70、1.705.(3分)计算(x +1)(x +2)的结果为()的结果为( )A .x 2+2 B.x 2+3x +2 2 C C .x 2+3x +3 3 D D .x 2+2x +2 6.(3分)点A (﹣3,2)关于y 轴对称的点的坐标为(轴对称的点的坐标为( )A .(3,﹣2)B .(3,2) C .(﹣3,﹣2)D .(2,﹣3)7.(3分)某物体的主视图如图所示,则该物体可能为( )A .B . C .D .8.(3分)按照一定规律排列的n 个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n 为(为( )A .9 B .10 C .11 D .129.(3分)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( ) A . 32 B .32C . 3D .2 3 10.(3分)如图,在Rt △ABC 中,∠C=90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为(数最多为( )A .4 B .5 C .6 D .7二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算2×3+(﹣4)的结果为)的结果为 .12.(3分)计算x x x+1+1﹣1x x+1+1的结果为的结果为 . 13.(3分)如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE=AB ,则∠EBC 的度数为的度数为 .14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 .15.(3分)如图,在△ABC 中,AB=AC=2 3,∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为的长为 .16.(3分)已知关于x 的二次函数y=ax 2+(a 2﹣1)x ﹣a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是的取值范围是 .三、解答题(共8题,共72分)17.(8分)解方程:4x ﹣3=2(x ﹣1)18.(8分)如图,点C 、F 、E 、B 在一条直线上,∠CFD=∠BEA ,CE=BF ,DF=AE ,写出CD 与AB 之间的关系,并证明你的结论.19.(8分)某公司共有A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部门员工人数 每人所创的年利润/万元 A510 Bb 8 Cc 5(1)①在扇形图中,C 部门所对应的圆心角的度数为部门所对应的圆心角的度数为②在统计表中,b= ,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=35,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=kx的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式6x−x−55>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=35,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=3 5,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒2个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算 36的结果为(的结果为( )A .6 B .﹣6 6 C C .18 D .﹣18【考点】73:二次根式的性质与化简.【分析】根据算术平方根的定义计算即可求解.【解答】解: 36=6.故选:A .【点评】考查了算术平方根,关键是熟练掌握算术平方根的计算法则.2.(3分)(2017•武汉)若代数式1a−a−44在实数范围内有意义,则实数a 的取值范围为(围为( )A .a=4 a=4 B B .a >4 C .a <4 D .a ≠4 【考点】62:分式有意义的条件.【分析】分式有意义时,分母a ﹣4≠0.【解答】解:依题意得:a ﹣4≠0,解得a ≠4.故选:D .【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.3.(3分)(2017•武汉)下列计算的结果是x 5的为(的为() A .x 10÷x 2 B .x 6﹣x C .x 2•x 3 D .(x 2)3【考点】A:48:同底数幂的除法;:同底数幂的除法;B:35:合并同类项;:合并同类项;C:46:同底数幂的乘法;:同底数幂的乘法;D:47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法法则,根据同底数幂的乘法法则,同底数幂除法法则,同底数幂除法法则,同底数幂除法法则,幂的乘方以及合并同类幂的乘方以及合并同类项,进行运算即可.【解答】解:A 、x 10÷x 2=x 8.B 、x 6﹣x=x 6﹣x .C 、x 2•x 3=x 5.D 、(x 2)3=x 6故选C .【点评】此题考查了同底数幂的乘法、除法法则,幂的乘方以及合并同类项,解答此题关键是熟练运算法则.4.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m1.50 1.60 1.65 1.70 1.75 1.80人数 2 3 2 3 4 1 则这些运动员成绩的中位数、众数分别为( )A .1.65、1.70 B .1.65、1.75 C .1.70、1.75 D .1.70、1.70【考点】W5:众数;W4:中位数.【分析】找中位数要把数据按从小到大的顺序排列,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,众数是一组数据中出现次数最多的数据,注意众数可以不注意众数可以不止一个.【解答】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m ,故中位数为1.70;跳高成绩为1.75m 的人数最多,故跳高成绩的众数为1.75;故选C .【点评】本题为统计题,本题为统计题,考查众数与中位数的意义.考查众数与中位数的意义.考查众数与中位数的意义.众数是一组数据中出现次数众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)(2017•武汉)计算(x +1)(x +2)的结果为()的结果为( )A.x2+2 B.x2+3x+2 2 C C.x2+3x+3 3 D D.x2+2x+2【考点】4B:多项式乘多项式.【专题】11 :计算题;512:整式.【分析】原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式=x2+2x+x+2=x2+3x+2,故选B【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为(轴对称的点的坐标为( )A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)【考点】P5:关于x轴、y轴对称的点的坐标.【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.解决本题的关键是掌握好对称点本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点【点评】本题考查了关于原点对称的点的坐标,的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.2017•7•武汉)某物体的主视图如图所示,则该物体可能为()7.(3分)(201A.B. C.D.【考点】U3:由三视图判断几何体.【分析】根据主视图利用排除法确定正确的选项即可.【解答】解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C 、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D 、五棱柱的主视图为矩形,不符合题意,故选:A .【点评】本题考查了由三视图判断几何体的知识,本题考查了由三视图判断几何体的知识,解题的关键是能够了解各个几解题的关键是能够了解各个几何体的主食图,难度不大.8.(3分)(2017•武汉)按照一定规律排列的n 个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n 为(为( )A .9 B .10 C .11 D .12【考点】37:规律型:数字的变化类.【分析】观察得出第n 个数为(﹣2)n ,根据最后三个数的和为768,列出方程,求解即可.【解答】解:由题意,得第n 个数为(﹣2)n ,那么(﹣2)n ﹣2+(﹣2)n ﹣1+(﹣2)n =768,当n 为偶数:整理得出:3×2n ﹣2=768,解得:n=10;当n 为奇数:整理得出:﹣3×2n ﹣2=768,则求不出整数,故选B .【点评】此题考查规律型:数字的变化类,找出数字的变化规律,得出第n 个数为(﹣2)n 是解决问题的关键.9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为(的半径为( )A . 32B .32C . 3D .2 3 【考点】MI :三角形的内切圆与内心.【分析】如图,AB=7,BC=5,AC=8,内切圆的半径为r ,切点为D 、E 、F ,作AD ⊥BC 于D ,设BD=x ,则CD=5﹣x .由AD 2=AB 2﹣BD 2=AC 2﹣CD 2,可得72﹣x 2=82﹣(5﹣x )2,解得x=1,推出AD=4 3,由12•BC•AD=12(AB +BC +AC )•r ,列出方程即可解决问题.【解答】解:如图,AB=7,BC=5,AC=8,内切圆的半径为r ,切点为D 、E 、F ,作AD ⊥BC 于D ,设BD=x ,则CD=5﹣x .由勾股定理可知:AD 2=AB 2﹣BD 2=AC 2﹣CD 2,即72﹣x 2=82﹣(5﹣x )2,解得x=1,∴AD=4 3,∵12•BC•AD=12(AB +BC +AC )•r , 12×5×4 3=12×20×r ,∴r= 3,故选C【点评】本题考查三角形的内切圆与内心、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,题的关键是学会添加常用辅助线,构造直角三角形解决问题,构造直角三角形解决问题,构造直角三角形解决问题,学会利用面积法求学会利用面积法求内切圆的半径,属于中考常考题型.10.(3分)(2017•武汉)如图,在Rt △ABC 中,∠C=90°,以△ABC 的一边为边画等腰三角形,画等腰三角形,使得它的第三个顶点在△使得它的第三个顶点在△ABC 的其他边上,的其他边上,则可以画出的不同的则可以画出的不同的等腰三角形的个数最多为(等腰三角形的个数最多为( )A .4 B .5 C .6 D .7【考点】KJ :等腰三角形的判定与性质.【分析】①以B 为圆心,BC 长为半径画弧,交AB 于点D ,△BCD 就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI是等腰三角形.⑦以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;【解答】解:如图:故选D.主要考查学生的理解能力和动手本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手【点评】本题考查了等腰三角形的判定的应用,操作能力.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为)的结果为 2.【考点】1G:有理数的混合运算.【专题】11 :计算题;511:实数.【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=6﹣4=2,故答案为:2【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.(3分)(2017•武汉)计算x x x+1+1﹣1x x+1+1的结果为的结果为 x−x−11x x+1+1 . 【考点】6B :分式的加减法.【分析】根据同分母分式加减运算法则化简即可.【解答】解:原式=x−x−11x x+1+1, 故答案为:x−x−11x x+1+1.【点评】本题考查了分式的加减运算,熟记运算法则是解题的关键.13.(3分)(2017•武汉)如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE=AB ,则∠EBC 的度数为的度数为 30° .【考点】L5:平行四边形的性质.【分析】由平行四边形的性质得出∠ABC=∠D=100°,AB ∥CD ,得出∠BAD=180°﹣∠D=80°,由等腰三角形的性质和三角形内角和定理求出∠ABE=70°,即可得出∠EBC 的度数.【解答】解:∵四边形ABCD 是平行四边形,∴∠ABC=∠D=100°,AB ∥CD ,∴∠BAD=180°﹣∠D=80°,∵AE 平分∠DAB ,∴∠BAE=80°÷2=40°,∵AE=AB ,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC ﹣∠ABE=30°;故答案为:30°.【点评】此题主要考查了平行四边形的性质,此题主要考查了平行四边形的性质,等腰三角形的性质,等腰三角形的性质,等腰三角形的性质,三角形和内角三角形和内角和定理等知识;关键是掌握平行四边形对边平行,对角相等.14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,个黄球,它们除颜色外完全相同.它们除颜色外完全相同.它们除颜色外完全相同.随机摸出两个小球,随机摸出两个小球,随机摸出两个小球,摸出两个颜色相同的小球摸出两个颜色相同的小球的概率为的概率为 25 .【考点】X6:列表法与树状图法.【分析】根据题意画出树状图,再根据树状图即可求得所有等可能的结果与两次取出的小球颜色相同的情况,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为820=25, 故答案为:25【点评】此题考查了树状图法与列表法求概率.此题考查了树状图法与列表法求概率.解题的关键是根据题意列表或画解题的关键是根据题意列表或画树状图,注意列表法与树状图法可以不重不漏的表示出所有等可能的结果.注意列表法与树状图法可以不重不漏的表示出所有等可能的结果.用到用到的知识点为:概率=所求情况数与总情况数之比.15.(3分)(2017•武汉)如图,在△ABC 中,AB=AC=2 3,∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为的长为 3 3﹣3 .【考点】KD :全等三角形的判定与性质;KQ :勾股定理;PB :翻折变换(折叠问题);R2:旋转的性质.【分析】将△ABD 绕点A 逆时针旋转120°得到△ACF ,连接EF ,过点E 作EM ⊥CF 于点M ,过点A 作AN ⊥BC 于点N ,由AB=AC=2 3、∠BAC=120°,可得出BC=6、∠B=∠ACB=30°,通过角的计算可得出∠FAE=60°,结合旋转的性质可证出△ADE≌△AFE (SAS ),进而可得出DE=FE ,设CE=2x ,则CM=x ,EM= 3x 、FM=4x ﹣x=3x 、EF=ED=6﹣6x ,在Rt △EFM 中利用勾股定理可得出关于x 的一元二次方程,解之可得出x 的值,再将其代入DE=6﹣6x 中即可求出DE 的长.【解答】解:将△ABD 绕点A 逆时针旋转120°得到△ACF ,连接EF ,过点E 作EM ⊥CF 于点M ,过点A 作AN ⊥BC 于点N ,如图所示.∵AB=AC=2 3,∠BAC=120°,∴BN=CN ,∠B=∠ACB=30°.在Rt △BAN 中,∠B=30°,AB=2 3,∴AN=12AB= 3,BN= AB 2−AN 2=3, ∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD +∠CAE=60°,∴∠FAE=∠FAC +∠CAE=∠BAD +∠CAE=60°.在△ADE 和△AFE 中, AD =AF ∠DAE =∠FAE =60°AE =AE,∴△ADE ≌△AFE (SAS ),∴DE=FE .∵BD=2CE ,BD=CF ,∠ACF=∠B=30°,∴设CE=2x ,则CM=x ,EM= 3x ,FM=4x ﹣x=3x ,EF=ED=6﹣6x .在Rt △EFM 中,FE=6﹣6x ,FM=3x ,EM= 3x ,∴EF 2=FM 2+EM 2,即(6﹣6x )2=(3x )2+( 3x )2,解得:x 1=3− 32,x 2=3+ 32(不合题意,舍去), ∴DE=6﹣6x=3 3﹣3.故答案为:3 3﹣3.【点评】本题考查了全等三角形的判定与性质、本题考查了全等三角形的判定与性质、勾股定理、勾股定理、勾股定理、解一元二次方程以及解一元二次方程以及旋转的性质,通过勾股定理找出关于x的一元二次方程是解题的关键.16.(3分)(2017•武汉)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为轴的一个交点的坐标为((m,0).若2<m<3,则a的取值范围是的取值范围是 13<a<12或﹣3<a<﹣2.【考点】HA:抛物线与x轴的交点.【分析】先用a表示出抛物线与x轴的交点,轴的交点,再分再分a>0与a<0两种情况进行讨论即可.【解答】解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=1a,x2=﹣a,∴抛物线与x轴的交点为(1a,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<1a<3,解得13<a<12;当a<0时,2<﹣a<3,解得﹣3<a<﹣2.故答案为:13<a<12或﹣3<a<﹣2.【点评】本题考查的是抛物线与x轴的交点,在解答此题时要注意进行分类讨论,不要漏解.三、解答题(共8题,共72分)17.(8分)(2017•武汉)解方程:4x﹣3=2(x﹣1)【考点】86:解一元一次方程.【分析】去括号、移项、合并同类项、系数化为1即可得到方程的解.【解答】解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=1 2【点评】本题主要考查了解一元一次方程,本题主要考查了解一元一次方程,解一元一次方程时先观察方程的形式解一元一次方程时先观察方程的形式和特点,和特点,若有分母一般先去分母;若有分母一般先去分母;若有分母一般先去分母;若既有分母又有括号,若既有分母又有括号,若既有分母又有括号,且括号外的项在乘括号且括号外的项在乘括号内各项后能消去分母,就先去括号.18.(8分)(2017•武汉)如图,点C 、F 、E 、B 在一条直线上,∠CFD=∠BEA ,CE=BF ,DF=AE ,写出CD 与AB 之间的关系,并证明你的结论.【考点】KD :全等三角形的判定与性质.【分析】求出CF=BE ,根据SAS 证△AEB ≌△CFD ,推出CD=AB ,∠C=∠B ,根据平行线的判定推出CD ∥AB .【解答】解:CD ∥AB ,CD=AB ,理由是:∵CE=BF ,∴CE ﹣EF=BF ﹣EF ,∴CF=BE ,在△AEB 和△CFD 中,CF =BE∠CFD =∠BEA DF =AE,∴△AEB ≌△CFD (SAS ),∴CD=AB ,∠C=∠B ,∴CD ∥AB .【点评】本题考查了平行线的判定和全等三角形的性质和判定的应用.本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.(8分)(2017•武汉)某公司共有A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部门员工人数 每人所创的年利润/万元 A5 10 Bb 8 Cc 5(1)①在扇形图中,C 部门所对应的圆心角的度数为部门所对应的圆心角的度数为 108°②在统计表中,b= 9 ,c= 6(2)求这个公司平均每人所创年利润.【考点】VB :扇形统计图;W2:加权平均数.【分析】(1)①根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;②先求得A 部门的员工人数所占的百分比,进而得到各部门的员工总人数,据此可得B ,C 部门的人数;(2)根据总利润除以总人数,即可得到这个公司平均每人所创年利润.【解答】解:(1)①在扇形图中,C 部门所对应的圆心角的度数为:360°×30%=108°;②A 部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:5×10+9×8+6×520=7.6(万元). 【点评】本题主要考查了扇形统计图以及平均数的计算,本题主要考查了扇形统计图以及平均数的计算,解题时注意:解题时注意:解题时注意:通过扇形通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元 (1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?【考点】CE :一元一次不等式组的应用;9A :二元一次方程组的应用.【专题】12 :应用题.【分析】(1)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,利用购买甲、乙两种奖品共花费了650元列方程40x +30(20﹣x )=650,然后解方程求出x ,再计算20﹣x 即可;(2)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,利用购买乙种奖品的件数不超过种甲种奖奖品件数的2倍,花总花费费不超过680元列不等式组 20−x ≤2x4040x x +30(20−x x))≤680,然后解不等式组后确定x 的整数值即可得到该公司的购买方案.【解答】解:(1)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件, 根据题意得40x +30(20﹣x )=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,根据题意得 20−x ≤2x 4040x x +30(20−x x))≤680,解得203≤x ≤8,∵x 为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.【点评】本题考查了一元一次不等式组的应用:本题考查了一元一次不等式组的应用:对具有多种不等关系的问题,对具有多种不等关系的问题,对具有多种不等关系的问题,考考虑列一元一次不等式组,并求解;一元一次不等式组的应用主要是列一元一次不等式组解应用题,21.(8分)(2017•武汉)如图,△ABC 内接于⊙O ,AB=AC ,CO 的延长线交AB 于点D(1)求证:AO 平分∠BAC ;(2)若BC=6,sin ∠BAC=35,求AC 和CD 的长. 【考点】MA :三角形的外接圆与外心;T7:解直角三角形.【分析】(1)延长AO 交BC 于H ,连接BO ,证明A 、O 在线段BC 的垂直平分线上,得出AO ⊥BC ,再由等腰三角形的性质即可得出结论;(2)延长CD 交⊙O 于E ,连接BE ,则CE 是⊙O 的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC ,得出sinE=sin ∠BAC ,求出CE=53BC=10,由勾股定理求出BE=8,证出BE ∥OA ,得出OA BE =OD DE ,求出OD=2513,得出CD ═9013,而BE ∥OA ,由三角形中位线定理得出OH=12BE=4,CH=12BC=3,在Rt △ACH 中,由勾股定理求出AC 的长即可.【解答】(1)证明:延长AO 交BC 于H ,连接BO ,如图1所示:∵AB=AC ,OB=OC ,∴A 、O 在线段BC 的垂直平分线上,∴AO ⊥BC ,又∵AB=AC ,∴AO 平分∠BAC ;(2)解:延长CD 交⊙O 于E ,连接BE ,如图2所示:则CE 是⊙O 的直径,∴∠EBC=90°,BC ⊥BE , ∵∠E=∠BAC , ∴sinE=sin ∠BAC , ∴BC CE =35, ∴CE=53BC=10,∴BE= CE 2−BC 2=8,OA=OE=12CE=5, ∵AH ⊥BC , ∴BE ∥OA ,∴OA BE =OD DE ,即58=OD5−OD, 解得:OD=2513,∴CD=5+2513=9013,∵BE ∥OA ,即BE ∥OH ,OC=OE , ∴OH 是△CEB 的中位线,∴OH=12BE=4,CH=12BC=3, ∴AH=5+4=9,在Rt △ACH 中,AC= AH 2+CH 2= 92+32=3 10.【点评】本题考查了等腰三角形的判定与性质、圆周角定理、勾股定理、平行线分线段成比例定理、三角形中位线定理、三角函数等知识;本题综合性强,有一定难度.22.(10分)(2017•武汉)如图,直线y=2x +4与反比例函数y=kx 的图象相交于A(﹣3,a )和B 两点 (1)求k 的值;(2)直线y=m (m >0)与直线AB 相交于点M ,与反比例函数的图象相交于点N .若MN=4,求m 的值;(3)直接写出不等式6x−x−55>x 的解集.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)把点A (﹣3,a )代入y=2x +4与y=kx即可得到结论;(2)根据已知条件得到M (m m+4+42,m ),N (6m,m ),根据MN=4列方程即可得到结论;(3)根据6x−x−55>x 得到6−x 2+5+5x x x−x−55>0解不等式组即可得到结论.【解答】(1)∵点A (﹣3,a )在y=2x +4与y=kx的图象上,∴2×(﹣3)+4=a , ∴a=﹣2,∴k=(﹣3)×(﹣2)=6; (2)∵M 在直线AB 上,∴M (m +42,m ),N 在反比例函数y=6x 上,∴N (6m,m ),∴MN=x N ﹣x m =6m ﹣m−m−442=4或x M ﹣x N =m−m−442﹣6m=4, 解得:∵m >0, ∴m=2或m=6+4 3; (3)x <﹣1或x5<x <6, 由6x−x−55>x 得:6x−x−55﹣x >0, ∴6−x 2+5+5x x x−x−55>0,∴x 2−5x−x−66x−x−55<0,∴ x 2−5x −6>0x −5<0或 x 2−5x −6<0x −5>, 结合抛物线y=x 2﹣5x ﹣6的图象可知,由x 2−5x −6>0x −5<0得x <−1或x >6x <5, ∴ x <−1x <5或 x >6x <5,∴此时x <﹣1,由 x 2−5x −6<0x −5>0得, −1<x <6x >5,∴ −1<x <6x >5,解得:5<x <6,综上,原不等式的解集是:x <﹣1或5<x <6.【点评】本题考查了反比例函数与一次函数的交点问题,本题考查了反比例函数与一次函数的交点问题,求不等式组的解集,求不等式组的解集,求不等式组的解集,正正确的理解题意是解题的关键23.(10分)(2017•武汉)已知四边形ABCD 的一组对边AD 、BC 的延长线交于点E .(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB ;(2)如图2,若∠ABC=120°,cos ∠ADC=35,CD=5,AB=12,△CDE 的面积为6,求四边形ABCD 的面积;(3)如图3,另一组对边AB 、DC 的延长线相交于点F .若cos ∠ABC=cos ∠ADC=35,CD=5,CF=ED=n ,直接写出AD 的长(用含n 的式子表示)【考点】SO:相似形综合题.【分析】(1)只要证明△EDC∽△EBA,可得EDEB=ECEA,即可证明ED•EA=EC•EB;(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.想办法求出EB,AG即可求出△ABE的面积,即可解决问题;(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,只要证明△AFG∽△CEH,可得AGCH =FGEH,即4a5+5+n−n−n−33a=4n n+3+3,求出a即可解决问题;【解答】解:(1)如图1中,∵∠ADC=90°,∠EDC+∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC,∵∠E=∠E,∴△EDC∽△EBA,∴EDEB=ECEA,∴ED•EA=EC•EB.(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.在Rt△CDF中,cos∠ADC=3 5,∴DF CD =35,∵CD=5, ∴DF=3,∴CF= CD 2−DF 2=4,∵S △CDE =6, ∴12•ED•CF=6, ∴ED=12CF=3,EF=ED +DF=6,∵∠ABC=120°,∠G=90°,∠G +∠BAG=∠ABC , ∴∠BAG=30°,∴在Rt △ABG 中,BG=12AB=6,AG= AB 2−BG 2=6 3,∵CF ⊥AD ,AG ⊥EB ,∴∠EFC=∠G=90°,∵∠E=∠E , ∴△EFC ∽△EGA , ∴EF EG =CF AG , ∴6EG =46 3, ∴EG=9 3,∴BE=EG ﹣BG=9 3﹣6,∴S 四边形ABCD =S △ABE ﹣S △CDE =12(9 3﹣6)×6 3﹣6=75﹣18 3.(3)如图3中,作CH ⊥AD 于H ,则CH=4,DH=3,∴tan ∠E=4n n+3+3,作AG ⊥DF 于点G ,设AD=5a ,则DG=3a ,AG=4a , ∴FG=DF ﹣DG=5+n ﹣3a ,∵CH ⊥AD ,AG ⊥DF ,∠E=∠F , 易证△AFG ∽△CEH , ∴AG CH =FG EH , ∴4a 5+5+n−n−n−33a =4n n+3+3, ∴a=n n+5+5n n+6+6,∴AD=5a=5(5(nn n+5)+5)n n+6+6. 【点评】本题考查相似形综合题、相似三角形的判定和性质、直角三角形的30度角性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.24.(12分)(2017•武汉)已知点A (﹣1,1)、B (4,6)在抛物线y=ax 2+bx 上 (1)求抛物线的解析式;(2)如图1,点F 的坐标为(0,m )(m >2),直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H .设抛物线与x 轴的正半轴交于点E ,连接FH 、AE ,求证:FH ∥AE ;(3)如图2,直线AB 分别交x 轴、y 轴于C 、D 两点.点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒 2个单位长度;同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,QM=2PM ,直接写出t 的值.【考点】HF :二次函数综合题.【分析】(1)根据点A 、B 的坐标利用待定系数法,即可求出抛物线的解析式; (2)根据点A 、F 的坐标利用待定系数法,可求出直线AF 的解析式,联立直线AF 和抛物线的解析式成方程组,通过解方程组可求出点G 的坐标,进而可得出点H 的坐标,利用分解因式法将抛物线解析式变形为交点式,由此可得出点E 的坐标,再根据点A 、E (F 、H )的坐标利用待定系数法,可求出直线AE (FH )的解析式,由此可证出FH ∥AE ;(3)根据点A 、B 的坐标利用待定系数法,可求出直线AB 的解析式,进而可找出点P 、Q 的坐标,分点M 在线段PQ 上以及点M 在线段QP 的延长线上两种情况考虑,借助相似三角形的性质可得出点M 的坐标,再利用二次函数图象上点的坐标特征可得出关于t 的一元二次方程,解之即可得出结论. 【解答】解:(1)将点A (﹣1,1)、B (4,6)代入y=ax 2+bx 中, a −b =11616a a +4b =6,解得:a =12b =−12, ∴抛物线的解析式为y=12x 2﹣12x .(2)证明:设直线AF 的解析式为y=kx +m ,将点A (﹣1,1)代入y=kx +m 中,即﹣k +m=1, ∴k=m ﹣1,∴直线AF 的解析式为y=(m ﹣1)x +m . 联立直线AF 和抛物线解析式成方程组,y =(m −1)1)x x +m y =12x 2−12x,解得: x 1=−1y 1=1, x 2=2my 2=2m 2−m , ∴点G 的坐标为(2m ,2m 2﹣m ). ∵GH ⊥x 轴,∴点H 的坐标为(2m ,0).∵抛物线的解析式为y=12x 2﹣12x=12x (x ﹣1),∴点E 的坐标为(1,0). 设直线AE 的解析式为y=k 1x +b 1,将A (﹣1,1)、E (1,0)代入y=k 1x +b 1中,。

中考数学专题01实数-(第01期)-2017年中考数学试题分项版解析汇编(解析版)

中考数学专题01实数-(第01期)-2017年中考数学试题分项版解析汇编(解析版)

专题01 实数问题一、选择题目1.(2017浙江衢州市第1题)-2的倒数是A.B. C. -2 D. 2【答案】A 【解析】试题解析:根据倒数的定义得:﹣2的倒数是﹣. 故选A . 考点:倒数.2.(2017山东德州市第1题)-2的倒数是( )A .B .C .-2D .2【答案】A 【解析】试题分析:性质符号相同,分子分母位置颠倒的两个数称为互为倒数,所以-2的倒数是考点:互为倒数的定义.3.(2017山东德州市第2题)2016年,我市“全面改薄”和改变大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列。

477万用科学记数法表示正确的是( )学*科网 A .4.77×105B . 47.7×105C .4.77×106D .0.477×105【答案】C 【解析】21211-2121-2试题分析:选项B 和D 中,乘号前面的a 都不对,应该1≤a<10;选项A 中指数错误,当原数当绝对值>1时,应该为原数的整数位数减去1。

考点:科学记数法的表示方法4.(2017浙江宁波市第112,0,2这四个数中,为无理数的是( )B.12 C.0 D.2-【答案】A. 【解析】12,0,2故选A. 考点:无理数.5.(2017浙江宁波市第3题) 2017年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮——“泰欧”轮,其中45万吨用科学记数法表示为( )A.60.4510吨B.54.510吨C.44510吨D.44.510吨【答案】B.考点:科学记数法----表示较大的数.6.(2017浙江宁波市第4x 的取值范围是( ) A.3xB.3xC.3xD.3x【答案】D 【解析】试题解析:根据二次根式有意义的条件得:x-3≥0 解得:x≥3. 故选D.考点:二次根式有意义的条件.7.(2017重庆市A 卷第1题)在实数﹣3,2,0,﹣4中,最大的数是( )A .﹣3B .2C .0D .﹣4【答案】B. 【解析】试题解析:∵﹣4<﹣3<0<2, ∴四个实数中,最大的实数是2. 故选B .考点:有理数的大小比较.8.(2017重庆市A 卷第5+1的值应在( ) A .3和4之间 B .4和5之间C .5和6之间D .6和7之间【答案】B . 【解析】<4,+1<5. 故选B .考点:无理数的估算.9.(2017江苏徐州市第1题)的倒数是( )A .B .C .D .【答案】D . 【解析】试题解析:-5的倒数是-15;故选D . 考点:倒数10.(2017江苏徐州市第3题) 肥皂泡的泡壁厚度大约是米,数字用科学记数法表示为( )A .B .C .D .5-5-51515-0.000000710.0000007177.110⨯60.7110-⨯77.110-⨯87110-⨯【答案】C.【解析】试题解析:数字0.00000071用科学记数法表示为7.1×10-7,故选C.考点:科学记数法—表示较小的数.11.(2017甘肃平凉市第2题)据报道,2016年10月17日7时30分28秒,神舟十一号载人飞船在甘肃酒泉发射升空,与天宫二号在距离地面393000米的太空轨道进行交会对接,而这也是未来我国空间站运行的轨道高度.393000用科学记数法表示为()A.39.3×104 B.3.93×105 C.3.93×106 D.0.393×106【答案】B.考点:科学记数法—表示较大的数.12.(2017甘肃平凉市第3题)4的平方根是()A.16 B.2 C【答案】C【解析】试题解析:∵(±2)2=4,∴4的平方根是±2,故选C.考点:平方根.13.(2017广西贵港市第1题)7的相反数是()A.7 B.7- C.17 D.17-【答案】B 【解析】试题解析:7的相反数是﹣7, 故选:B . 考点:相反数.14.(2017广西贵港市第4题)下列二次根式中,最简二次根式是( )A. BD【答案】A考点:最简二次根式.15.(2017贵州安顺市第1题)﹣2017的绝对值是( )A .2017B .﹣2017C .±2017 D.﹣【答案】A .学科网 【解析】试题解析:﹣2017的绝对值是2017. 故选A . 考点:绝对值.16.(2017贵州安顺市第2题)我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( ) A .275×104B .2.75×104C .2.75×1012D .27.5×1011【答案】C . 【解析】试题解析:将27500亿用科学记数法表示为:2.75×1012.12017故选C .考点:科学记数法—表示较大的数.17.(2017湖北武汉市第1) A .6 B .-6 C .18 D .-18 【答案】A. 【解析】故选A.考点:算术平方根.18.(2017湖南怀化市第1题)2的倒数是( ) A.2B.2C.12D.12【答案】C 【解析】试题解析:﹣2得到数是12,故选C . 考点:倒数.19.(2017湖南怀化市第3题)为了贯彻习近平总书记提出的“精准扶贫”战略构想,怀化市2016年共扶贫149700人,将149700用科学记数法表示为( )A.51.49710B.414.9710C.60.149710D.61.49710【答案】A. 【解析】试题解析:将149700用科学记数法表示为1.497×105, 故选A .考点:科学记数法—表示较大的数.20.(2017江苏无锡市第1题)﹣5的倒数是( )A .B .±5C .5D .﹣1515【解析】试题解析:∵﹣5×(﹣)=1,∴﹣5的倒数是﹣.故选D.考点:倒数21.(2017江苏盐城市第1题)-2的绝对值是()A.2 B.-2 C.D.−【答案】A.【解析】试题解析:-2的绝对值是2,即|-2|=2.故选A.考点:绝对值.22.(2017贵州黔东南州第1题)|﹣2|的值是()A.﹣2 B.2 C.﹣12D.12【答案】B.【解析】试题解析:∵﹣2<0,∴|﹣2|=2.故选B.考点:绝对值.23.(2017四川泸州市第1题)-7的绝对值是()A.7 B.-7 C.17 D.-1715151 21 2【解析】试题解析:|-7|=7.故选A.考点:绝对值.24.(2017四川泸州市第2题)“五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为()A.567×103 B.56.7×104 C.5.67×105 D.0.567×106【答案】C.【解析】试题解析:567000=5.67×105,故选C.考点:科学记数法—表示较大的数.25.(2017四川省宜宾市第1题)9的算术平方根是()A.3 B.﹣3 C.±3【答案】A.【解析】试题解析:∵32=9,∴9的算术平方根是3.故选A.考点:算术平方根.26.(2017四川省宜宾市第2题)据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106B.0.55×108C.5.5×106D.5.5×107【答案】D.【解析】试题解析:55000000=5.5×107,故选D.考点:科学记数法—表示较大的数27.(2017四川省自贡市第1题)计算(﹣1)2017的结果是()A.﹣1 B.1 C.﹣2017 D.2017【答案】A【解析】试题解析:(﹣1)2017=﹣1,故选A.考点:有理数的乘方.28.(2017四川省自贡市第3题)380亿用科学记数法表示为()A.38×109B.0.38×1013C.3.8×1011 D.3.8×1010【答案】D【解析】试题解析:380亿=38 000 000 000=3.8×1010.故选D.考点:科学计数法----表示较大的数.29.(2017新疆建设兵团第1题)下列四个数中,最小的数是()A.﹣1 B.0 C. D.3【答案】A.【解析】试题解析:∵﹣1<0<<3,∴四个数中最小的数是﹣1.故选A.考点:有理数大小比较30.(2017浙江省嘉兴市第1题)2-的绝对值为()A.2B.2-C.12D.12-【答案】A. 【解析】1 21 2试题解析:-2的绝对值是2, 即|-2|=2. 故选A . 考点:绝对值.31.(2017山东烟台市第1题)下列实数中的无理数是( )A. B . C .0 D .【答案】B . 【解析】0,13是有理数,π是无理数,故选:B . 考点:无理数.32.(2017山东烟台市第3题)我国推行“一带一路”政策以来,已确定沿线有65个国家加入,共涉及总人口约达46亿人,用科学记数法表示该总人口为( )A .B .C .D .【答案】A . 【解析】试题解析:46亿=4600 000 000=4.6×109, 故选A .考点:科学记数法—表示较大的数.33.(2017山东烟台市第6题)如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序如下:9π319106.4⨯81046⨯101046.0⨯10106.4⨯则输出结果为( )A. B . C. D .【答案】C . 【解析】17=2.故选:C .考点:计算器—数的开方.二、填空题目1.(2017浙江衢州市第11题)二次根式中字母的取值范围是__________ 【答案】a≥2.考点:二次根式有意义的条件. 2.(2017山东德州市第2题) 计算:【答案】【解析】. 考点:无理数运算3.(2017浙江宁波市第4题)实数8的立方根是 . 【答案】-2 【解析】试题分析:∵(-2)3=-8212132172252 a a∴-8的立方根是-2.考点:立方根4.(2017重庆市A卷第13题)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为.【答案】【解析】试题解析:11000=1.1×104.考点:科学记数法---表示较大的数.5.(2017重庆市A卷第14题)计算:|﹣3|+(﹣1)2= .【答案】4.【解析】试题解析:|﹣3|+(﹣1)2=4考点:有理数的混合运算.6.(2017江苏徐州市第9题)的算术平方根是.【答案】2【解析】试题解析:∵22=4,∴4的算术平方根是2.考点:算术平方根.7.(2017江苏徐州市第11的取值范围是.【答案】x≥6.考点:二次根式有意义的条件.8.(2017甘肃平凉市第12与0.50.5.(填“>”、“=”、“<”)4x【答案】> 【解析】1-2, >0,>0. 考点:实数大小比较.9.(2017广西贵港第13题)计算:35--= . 【答案】-8 【解析】试题解析:﹣3﹣5=﹣8. 考点:有理数的减法.10.(2017广西贵港第14题)中国的领水面积为2370000km ,把370000用科学记数法表示为 . 【答案】3.7×105. 【解析】试题解析:370 000=3.7×105. 考点:科学记数法—表示较大的数.11.(2017湖北武汉市第11题)计算23(4)⨯+-的结果为 . 【答案】2. 【解析】试题解析:23(4)⨯+-=6-4=2. 考点:有理数的混合运算.12.(2017江苏无锡市第11的值是 .【答案】6. 【解析】⨯=6.考点:二次根式的乘除法.13.(2017江苏无锡市第13题)贵州FAST 望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m 2,这个数据用科学记数法可表示为 . 【答案】2.5×105. 【解析】试题解析:将250000用科学记数法表示为:2.5×105. 考点:科学记数法—表示较大的数.14.(2017江苏无锡市第14题)如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.【答案】11.考点:1.有理数大小比较;2.有理数的减法.15.(2017江苏盐城市第7题)请写出一个无理数 【解析】考点:无理数.⨯=16.(2017江苏盐城市第9题)2016年12月30日,盐城市区内环高架快速路网二期工程全程全线通车,至此,已通车的内环高架快速路里程达57000米,用科学记数法表示数57000为 【答案】5.7×104. 【解析】试题解析:将57000用科学记数法表示为:5.7×104. 考点:科学记数法—表示较大的数.17.(2017江苏盐城市第10在实数范围内有意义,则x的取值范围是 【答案】x≥3. 【解析】试题解析:根据题意得x-3≥0, 解得x≥3.考点:二次根式有意义的条件.18.(2017四川泸州市第17题)计算:(-3)2+20170 【答案】7. 【解析】考点:1.实数的运算;2.零指数幂;3.特殊角的三角函数值.19.(2017四川省自贡市第13题)计算(﹣12)﹣1= .【答案】-2 【解析】试题解析:原式=11-2=﹣2.考点:负整数指数幂.20.(2017山东省烟台市第13题) .【答案】6. 【解析】试题解析:原式=1×4+2 =4+2 =6.考点:实数的运算;零指数幂;负整数指数幂.三、解答题1.(2017浙江衢州市第17题)计算:【答案】 【解析】试题分析:按照实数的运算法则依次进行计算即可得解. 试题解析:原式.考点:1.实数的运算;2.零指数幂;3.特殊角的三角函数值.2.(2017江苏徐州市第19(1)题)计算:;【答案】3.考点:1..实数的运算;2.零指数幂;3.负整数指数幂.3.(2017甘肃平凉市第193tan30°+(π-4)0-()-1.=-+⨯-|2|)21(320︒--⨯-+60tan 2)1(120π1201(2)20172-⎛⎫--+ ⎪⎝⎭121-.【解析】试题分析:本题涉及零指数幂、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则计算.试题解析:原式=312+-=12+-1-.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.二次根式的性质与化简;5.特殊角的三角函数值.4.(2017广西贵港市第19(1))计算:)20132cos602π-⎛⎫-+---⎪⎝⎭;【答案】-1.【解析】试题分析:根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;试题解析:原式=3+1-(-2)2-2×12=4-4-1=-1考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.5.(2017贵州安顺市第19题)|+(13)﹣1﹣(3﹣π)0﹣(﹣1)2017.【答案】3.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.6.(2017湖南怀化市第171031120173tan3084°.【答案】-2【解析】1是正数,所以它的绝对值是本身,任何不为0的零次幂都是1,11()4=4,tan30°=8的立方根,是2,分别代入计算可得结果.试题解析:原式1+1﹣4+2,4+2,=﹣2.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.7.(2017江苏无锡市第19(1)题)计算:|﹣6|+(﹣2)3+)0;【答案】-1.【解析】试题分析:(1)根据零指数幂的意义以及绝对值的意义即可求出答案;(2)根据平方差公式以及单项式乘以多项式法则即可求出答案.试题解析:原式=6﹣8+1=﹣1学*科网考点:实数的运算;单项式乘多项式;零指数幂.8.(江苏盐城市第17+()-1-20170.【答案】3.【解析】试题分析:首先计算开方,乘方、然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.试题解析:原式=2+2-1=3.考点:实数的运算;零指数幂;负整数指数幂.9.(2017贵州黔东南州第17题)计算:﹣1﹣2(π﹣3.14)012【答案】【解析】试题分析:原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.试题解析:原式=1++1考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.10.(2017四川省宜宾市第17题(1))计算(2017﹣π)0﹣()﹣1+|﹣2|【答案】-1.【解析】试题分析:根据零指数幂、负整数指数幂、绝对值分别求出每个部分的值,再代入求出即可. 试题解析:原式=1﹣4+2=﹣1;考点:实数的运算;零指数幂;负整数指数幂.11.(2017四川省自贡市第19题)计算:4sin45°+|﹣2|+(13)0.【答案】3.【解析】考点:1.实数的运算;2.特殊角三角函数值;3.零指数幂.12.(2017新疆建设兵团第16题)计算:(12)﹣1﹣||(1﹣π)0.14【答案】【解析】试题分析:根据负整数指数幂,去绝对值,二次根式的化简以及零指数幂的计算法则计算.试题解析:原式=2考点:实数的运算;零指数幂;负整数指数幂.13.(2017浙江省嘉兴市第17题(1))计算:212(4)--⨯-.【答案】5.【解析】试题分析:首先计算乘方和负指数次幂,计算乘法,然后进行加减即可.试题解析:原式=3-12×(-4)=3+2=5.考点:实数的运算;负整数指数幂.祝你考试成功!祝你考试成功!。

历年湖北省武汉市中考数学试卷(含答案)

历年湖北省武汉市中考数学试卷(含答案)

2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)计算的结果为()A.6 B.﹣6 C.18 D.﹣182.(3分)若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠43.(3分)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)34.(3分)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:1.50 1.60 1.65 1.70 1.75 1.80成绩/m人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.(3分)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+26.(3分)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)7.(3分)某物体的主视图如图所示,则该物体可能为()A .B .C .D .8.(3分)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.129.(3分)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算2×3+(﹣4)的结果为.12.(3分)计算﹣的结果为.13.(3分)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.15.(3分)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC 上,∠DAE=60°.若BD=2CE,则DE的长为.16.(3分)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510B b8C c5(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b=,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算的结果为()A.6 B.﹣6 C.18 D.﹣18【分析】根据算术平方根的定义计算即可求解.【解答】解:=6.故选:A.【点评】考查了算术平方根,关键是熟练掌握算术平方根的计算法则.2.(3分)(2017•武汉)若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4【分析】分式有意义时,分母a﹣4≠0.【解答】解:依题意得:a﹣4≠0,解得a≠4.故选:D.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)3【分析】根据同底数幂的乘法法则,同底数幂除法法则,幂的乘方以及合并同类项,进行运算即可.【解答】解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x6故选C.【点评】此题考查了同底数幂的乘法、除法法则,幂的乘方以及合并同类项,解答此题关键是熟练运算法则.4.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:1.50 1.60 1.65 1.70 1.75 1.80成绩/m人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.【点评】本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)(2017•武汉)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2【分析】原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式=x2+2x+x+2=x2+3x+2,故选B【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【解答】解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.【点评】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.7.(3分)(2017•武汉)某物体的主视图如图所示,则该物体可能为()A.B. C.D.【分析】根据主视图利用排除法确定正确的选项即可.【解答】解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够了解各个几何体的主食图,难度不大.8.(3分)(2017•武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12【分析】观察得出第n个数为(﹣2)n,根据最后三个数的和为768,列出方程,求解即可.【解答】解:由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数,故选B.【点评】此题考查规律型:数字的变化类,找出数字的变化规律,得出第n个数为(﹣2)n是解决问题的关键.9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.【分析】如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD ⊥BC于D,设BD=x,则CD=5﹣x.由AD2=AB2﹣BD2=AC2﹣CD2,可得72﹣x2=82﹣(5﹣x)2,解得x=1,推出AD=4,由•BC•AD=(AB+BC+AC)•r,列出方程即可解决问题.【解答】解:如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD⊥BC于D,设BD=x,则CD=5﹣x.由勾股定理可知:AD2=AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(5﹣x)2,解得x=1,∴AD=4,∵•BC•AD=(AB+BC+AC)•r,×5×4=×20×r,∴r=,故选C【点评】本题考查三角形的内切圆与内心、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用面积法求内切圆的半径,属于中考常考题型.10.(3分)(2017•武汉)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7【分析】①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④作AC的垂直平分线交AB于点H,△ACH就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI是等腰三角形.⑦以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;【解答】解:如图:故选D.【点评】本题考查了等腰三角形的判定的应用,主要考查学生的理解能力和动手操作能力.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为2.【分析】原式先计算乘法运算,再计算加减运算即可得到结果.【解答】解:原式=6﹣4=2,故答案为:2【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.(3分)(2017•武汉)计算﹣的结果为.【分析】根据同分母分式加减运算法则化简即可.【解答】解:原式=,故答案为:.【点评】本题考查了分式的加减运算,熟记运算法则是解题的关键.13.(3分)(2017•武汉)如图,在▱ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为30°.【分析】由平行四边形的性质得出∠ABC=∠D=100°,AB∥CD,得出∠BAD=180°﹣∠D=80°,由等腰三角形的性质和三角形内角和定理求出∠ABE=70°,即可得出∠EBC的度数.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=100°,AB∥CD,∴∠BAD=180°﹣∠D=80°,∵AE平分∠DAB,∴∠BAE=80°÷2=40°,∵AE=AB,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC﹣∠ABE=30°;故答案为:30°.【点评】此题主要考查了平行四边形的性质,等腰三角形的性质,三角形和内角和定理等知识;关键是掌握平行四边形对边平行,对角相等.14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.【分析】根据题意画出树状图,再根据树状图即可求得所有等可能的结果与两次取出的小球颜色相同的情况,然后根据概率公式求解.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为=,故答案为:【点评】此题考查了树状图法与列表法求概率.解题的关键是根据题意列表或画树状图,注意列表法与树状图法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.15.(3分)(2017•武汉)如图,在△ABC中,AB=AC=2,∠BAC=120°,点D、E都在边BC上,∠DAE=60°.若BD=2CE,则DE的长为3﹣3.【分析】(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,由AB=AC=2、∠BAC=120°,可得出BC=6、∠B=∠ACB=30°,通过角的计算可得出∠FAE=60°,结合旋转的性质可证出△ADE≌△AFE(SAS),进而可得出DE=FE,设CE=2x,则CM=x,EM=x、FM=4x﹣x=3x、EF=ED=6﹣6x,在Rt△EFM中利用勾股定理可得出关于x的一元二次方程,解之可得出x的值,再将其代入DE=6﹣6x中即可求出DE的长.(方法二)将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=30°,根据旋转的性质可得出∠ECG=60°,结合CF=BD=2CE可得出△CEG为等边三角形,进而得出△CEF 为直角三角形,通过解直角三角形求出BC的长度以及证明全等找出DE=FE,设EC=x,则BD=CD=2x,DE=FE=6﹣3x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6﹣3x=x可求出x以及FE的值,此题得解.【解答】解:(方法一)将△ABD绕点A逆时针旋转120°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,如图所示.∵AB=AC=2,∠BAC=120°,∴BN=CN,∠B=∠ACB=30°.在Rt△BAN中,∠B=30°,AB=2,∴AN=AB=,BN==3,∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.∵BD=2CE,BD=CF,∠ACF=∠B=30°,∴设CE=2x,则CM=x,EM=x,FM=4x﹣x=3x,EF=ED=6﹣6x.在Rt△EFM中,FE=6﹣6x,FM=3x,EM=x,∴EF2=FM2+EM2,即(6﹣6x)2=(3x)2+(x)2,解得:x1=,x2=(不合题意,舍去),∴DE=6﹣6x=3﹣3.故答案为:3﹣3.(方法二):将△ABD绕点A逆时针旋转120°得到△ACF,取CF的中点G,连接EF、EG,如图所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=30°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG为等边三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=30°,∴△CEF为直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.设EC=x,则BD=CD=2x,DE=FE=6﹣3x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6﹣3x=x,x=3﹣,∴DE=x=3﹣3.故答案为:3﹣3.【点评】本题考查了全等三角形的判定与性质、勾股定理、解一元二次方程以及旋转的性质,通过勾股定理找出关于x的一元二次方程是解题的关键.16.(3分)(2017•武汉)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是<a<或﹣3<a<﹣2.【分析】先用a表示出抛物线与x轴的交点,再分a>0与a<0两种情况进行讨论即可.【解答】解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<<3,解得<a<;当a<0时,2<﹣a<3,解得﹣3<a<﹣2.故答案为:<a<或﹣3<a<﹣2.【点评】本题考查的是抛物线与x轴的交点,在解答此题时要注意进行分类讨论,不要漏解.三、解答题(共8题,共72分)17.(8分)(2017•武汉)解方程:4x﹣3=2(x﹣1)【分析】去括号、移项、合并同类项、系数化为1即可得到方程的解.【解答】解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=【点评】本题主要考查了解一元一次方程,解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号.18.(8分)(2017•武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.【分析】求出CF=BE,根据SAS证△AEB≌△CFD,推出CD=AB,∠C=∠B,根据平行线的判定推出CD∥AB.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.【点评】本题考查了平行线的判定和全等三角形的性质和判定的应用.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.(8分)(2017•武汉)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510B b8C c5(1)①在扇形图中,C部门所对应的圆心角的度数为108°②在统计表中,b=9,c=6(2)求这个公司平均每人所创年利润.【分析】(1)①根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;②先求得A部门的员工人数所占的百分比,进而得到各部门的员工总人数,据此可得B,C部门的人数;(2)根据总利润除以总人数,即可得到这个公司平均每人所创年利润.【解答】解:(1)①在扇形图中,C部门所对应的圆心角的度数为:360°×30%=108°;②A部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:=7.6(万元).【点评】本题主要考查了扇形统计图以及平均数的计算,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?【分析】(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,利用购买甲、乙两种奖品共花费了650元列方程40x+30(20﹣x)=650,然后解方程求出x,再计算20﹣x即可;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,利用购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元列不等式组,然后解不等式组后确定x的整数值即可得到该公司的购买方案.【解答】解:(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得40x+30(20﹣x)=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得,解得≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.【点评】本题考查了一元一次不等式组的应用:对具有多种不等关系的问题,考虑列一元一次不等式组,并求解;一元一次不等式组的应用主要是列一元一次不等式组解应用题,21.(8分)(2017•武汉)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB 于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.【分析】(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,证出BE∥OA,得出,求出OD=,得出CD═,而BE∥OA,由三角形中位线定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.【解答】(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC⊥BE,∵∠E=∠BAC,∴sinE=sin∠BAC,∴=,∴CE=BC=10,∴BE==8,OA=OE=CE=5,∵AH⊥BC,∴BE∥OA,∴,即=,解得:OD=,∴CD=5+=,∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线,∴OH=BE=4,CH=BC=3,∴AH=5+4=9,在Rt△ACH中,AC===3.【点评】本题考查了等腰三角形的判定与性质、圆周角定理、勾股定理、平行线分线段成比例定理、三角形中位线定理、三角函数等知识;本题综合性强,有一定难度.22.(10分)(2017•武汉)如图,直线y=2x+4与反比例函数y=的图象相交于A (﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.【分析】(1)把点A(﹣3,a)代入y=2x+4与y=即可得到结论;(2)根据已知条件得到M(,m),N(,m),根据MN=4列方程即可得到结论;(3)根据>x得到>0解不等式组即可得到结论.【解答】(1)∵点A(﹣3,a)在y=2x+4与y=的图象上,∴2×(﹣3)+4=a,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M在直线AB上,∴M(,m),N在反比例函数y=上,∴N(,m),∴MN=x N﹣x m=﹣=4或x M﹣x N=﹣=4,解得:∵m>0,∴m=2或m=6+4;(3)x<﹣1或x5<x<6,由>x得:﹣x>0,∴>0,∴<0,∴或,结合抛物线y=x2﹣5x﹣6的图象可知,由得,∴或,∴此时x<﹣1,由得,,∴,解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.【点评】本题考查了反比例函数与一次函数的交点问题,求不等式组的解集,正确的理解题意是解题的关键23.(10分)(2017•武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)【分析】(1)只要证明△EDC∽△EBA,可得=,即可证明ED•EA=EC•EB;(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.想办法求出EB,AG即可求出△ABE的面积,即可解决问题;(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,只要证明△AFG∽△CEH,可得=,即=,求出a即可解决问题;【解答】解:(1)如图1中,∵∠ADC=90°,∠EDC+∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC,∵∠E=∠E,∴△EDC∽△EBA,∴=,∴ED•EA=EC•EB.(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.在Rt △CDF 中,cos ∠ADC=, ∴=,∵CD=5,∴DF=3,∴CF==4,∵S △CDE =6, ∴•ED•CF=6,∴ED==3,EF=ED +DF=6,∵∠ABC=120°,∠G=90°,∠G +∠BAG=∠ABC ,∴∠BAG=30°,∴在Rt △ABG 中,BG=AB=6,AG==6,∵CF ⊥AD ,AG ⊥EB ,∴∠EFC=∠G=90°,∵∠E=∠E ,∴△EFC ∽△EGA , ∴=, ∴=,∴EG=9,∴BE=EG ﹣BG=9﹣6,∴S 四边形ABCD =S △ABE ﹣S △CDE =(9﹣6)×6﹣6=75﹣18.(3)如图3中,作CH ⊥AD 于H ,则CH=4,DH=3,∴tan∠E=,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,∴FG=DF﹣DG=5+n﹣3a,∵CH⊥AD,AG⊥DF,∠E=∠F,易证△AFG∽△CEH,∴=,∴=,∴a=,∴AD=5a=.【点评】本题考查相似形综合题、相似三角形的判定和性质、直角三角形的30度角性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.24.(12分)(2017•武汉)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.【分析】(1)根据点A、B的坐标利用待定系数法,即可求出抛物线的解析式;(2)根据点A、F的坐标利用待定系数法,可求出直线AF的解析式,联立直线AF和抛物线的解析式成方程组,通过解方程组可求出点G的坐标,进而可得出点H的坐标,利用分解因式法将抛物线解析式变形为交点式,由此可得出点E 的坐标,再根据点A、E(F、H)的坐标利用待定系数法,可求出直线AE(FH)的解析式,由此可证出FH∥AE;(3)根据点A、B的坐标利用待定系数法,可求出直线AB的解析式,进而可找出点P、Q的坐标,分点M在线段PQ上以及点M在线段QP的延长线上两种情况考虑,借助相似三角形的性质可得出点M的坐标,再利用二次函数图象上点的坐标特征可得出关于t的一元二次方程,解之即可得出结论.【解答】解:(1)将点A(﹣1,1)、B(4,6)代入y=ax2+bx中,,解得:,∴抛物线的解析式为y=x2﹣x.(2)证明:设直线AF的解析式为y=kx+m,将点A(﹣1,1)代入y=kx+m中,即﹣k+m=1,∴k=m﹣1,∴直线AF的解析式为y=(m﹣1)x+m.联立直线AF和抛物线解析式成方程组,,解得:,,∴点G的坐标为(2m,2m2﹣m).∵GH⊥x轴,∴点H的坐标为(2m,0).∵抛物线的解析式为y=x2﹣x=x(x﹣1),∴点E的坐标为(1,0).设直线AE的解析式为y=k1x+b1,将A(﹣1,1)、E(1,0)代入y=k1x+b1中,,解得:,∴直线AE的解析式为y=﹣x+.设直线FH的解析式为y=k2x+b2,将F(0,m)、H(2m,0)代入y=k2x+b2中,,解得:,∴直线FH的解析式为y=﹣x+m.∴FH∥AE.(3)设直线AB的解析式为y=k0x+b0,将A(﹣1,1)、B(4,6)代入y=k0x+b0中,,解得:,∴直线AB的解析式为y=x+2.当运动时间为t秒时,点P的坐标为(t﹣2,t),点Q的坐标为(t,0).当点M在线段PQ上时,过点P作PP′⊥x轴于点P′,过点M作MM′⊥x轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM,∴==,∴QM′=,MM′=t,∴点M的坐标为(t﹣,t).又∵点M在抛物线y=x2﹣x上,∴t=×(t﹣)2﹣(t﹣),解得:t=;当点M在线段QP的延长线上时,同理可得出点M的坐标为(t﹣4,2t),∵点M在抛物线y=x2﹣x上,∴2t=×(t﹣4)2﹣(t﹣4),解得:t=.综上所述:当运动时间为秒、秒、秒或秒时,QM=2PM.【点评】本题考查了待定系数法求一次(二次)函数解析式、二次函数图象上点的坐标特征、二次函数的三种形式、相似三角形的性质以及两条直线相交或平行,解题的关键是:(1)根据点A、B的坐标利用待定系数法,求出抛物线的解析式;(2)根据点A、E(F、H)的坐标利用待定系数法,求出直线AE(FH)的解析式:(3)分点M在线段PQ上以及点M在线段QP的延长线上两种情况,借助相似三角形的性质找出点M的坐标.31。

湖北省武汉市2017年中考数学真题及答案

湖北省武汉市2017年中考数学真题及答案

36 湖北省武汉市 2017 年中考数学真题试题第Ⅰ卷(选择题 共 30 分)一、选择题(共 10 小题,每小题 3 分,共 30 分)1.计算 的结果为( )A .6B .-6C .18D .-1812.若代数式a - 4在实数范围内有意义,则实数a 的取值范围为( )A . a = 4B . a > 4C . a < 4D . a ≠ 4 3.下列计算的结果是 x 5的为( ) A . x10÷ x 2 B . x 6 - x C . x 2 □x 3 D . (x 2 )34.在一次中学生田径运动会上,参加男子跳高的 15 名运动员的成绩如下表所示.则这些运动员成绩的中位数,众数分别为( )A .1.65,1.70B .1.65,1.75C . 1.70,1.75D .1.70,1.70 5.计算(x +1)(x + 2) 的结果为( )A . x 2+ 2 B . x 2+ 3x + 2 C . x 2+ 3x + 3 D . x 2+ 2x + 2 6.点 A (-3, 2) 关于 y 轴对称的坐标为( )A . (3, -2)B . (3, 2)C . (-3, -2)D . (2, -3,) 7.某物体的主视图如图所示,则该物体可能为( )A .B .C .D .成绩/m 1.50 1.60 1.65 1.70 1.75 1.80 人数2323413 8.按照一定规律排列的n 个数:-2, 4 ,-8,16,-32,64,….若最后三个数的和为 768,则n 为( ) A .9 B .10 C .11 D .12 9.已知一个三角形的三边长分别为 5,7,8.则其内切圆的半径为( )3 A . B .22C .D . 210.如图,在 Rt ∆ABC 中,∠C = 90,以∆ABC 的一边为边画等腰三角形,使得它的第三个顶点在∆ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C . 6D .7第Ⅱ卷(非选择题 共 90 分)二、填空题(共 6 小题,每小题 3 分,共 18 分) 11.计算2 ⨯ 3 + (-4) 的结果为 .12.计算 x 2-1 的 结 果 为 .x +1 x +113.如图,在□ ABCD 中,∠D=100°,∠DAB 的平分线 AE 交 DC 于点 E ,连接 BE ,若 AE=AB ,则∠EBC 的度数 为 .14.一个不透明的袋中共有 5 个小球,分别为 2 个红球和 3 个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 .15.如图△ ABC 中, AB=AC , ∠ BAC=120°, ∠ DAE=60°, BD=5, CE=8,则 DE 的长为 .3 316.已知关于 x 的二次函数 y=ax2+(a2-1)x-a 的图象与x 轴的一个交点的坐标为(m,0),若 2<m<3,则 a 的取值范围是.三、解答题(共 8 小题,共 72 分)在答题卡指定位置写出必要的演算过程或证明过程.17.解方程:4x - 3 = 2(x -1) .18.如图,点C, F , E, B 在一条直线上,∠CFD =∠BEA ,CE =BF , DF =AE .写出CD 与AB 之间的关系,并证明你的结论.19.某公司共有A, B, C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图.各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A 5 10B b 8C c 5(1)①在扇形图中,C 部门所对应的圆心角的度数为;②在统计表中,b = ,c = ;(2)求这个公司平均每人所创年利润.k 20.某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件,其中甲种奖品每件 40 元,乙种奖品每件 30 元.(1)如果购买甲、乙两种奖品共花费了 650 元,求甲、乙两种奖品各购买了多少件;(2)如果购买乙种奖品的件数不超过甲种奖品件数的 2 倍,总花费不超过 680 元,求该公司有哪.几.种.不同的购买方案.21.如图, ∆ABC 内接于□ O , AB = AC , CO 的延长线交 AB 于点 D .(1)求证 AO 平分∠BAC ;3 (2)若 BC = 6, s in ∠BAC = ,求 AC 和CD 的长.522.如图,直线 y = 2x + 4 与反比例函数 y =的图象相交于A (-3, a ) 和B 两点.x(1)求k 的值;(2)直线 y = m (m > 0) 与直线 AB 相交于点M ,与反比例函数 y = k的图象相交于点 N .若MN = 4 ,x求m 的值;(3)直接写出不等式6x - 5> x 的解集. 23.已知四边形 ABCD 的一组对边 AD , BC 的延长线相交于点 E .(1)如图 1,若∠ABC = ∠ADC = 90,求证 ED □EA = EC □EB ;(2)如图 2,若∠ABC = 120,cos ∠ADC = 3,CD = 5 ,AB = 12 ,∆CDE 的面积为 6,求四边形 ABCD5的面积;(3)如图 3,另一组对边 AB , DC 的延长线相交于点 F ,若cos ∠ABC = cos ∠ADC = 3, CD = 5 ,5CF = ED = n ,直接写出 AD 的长(用含n 的式子表示). 24.已知点 A (-1,1), B (4, 6) 在抛物线 y = ax 2+ bx 上.(1)求抛物线的解析式;(2)如图 1,点 F 的坐标为(0, m )(m > 2) ,直线 AF 交抛物线于另一点G ,过点G 作 x 轴的垂线,垂足为 H ,设抛物线与 x 轴的正半轴交于点 E ,连接 FH , AE ,求证 FH // AE ;(3)如图 2,直线 AB 分别交 x 轴, y 轴于C , D 两点,点 P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒 个单位长度,同时点Q 从原点O 出发,沿 x 轴正方向匀速运动,速度为每秒 1 个单位长度,点M是直线 PQ 与抛物线的一个交点,当运动到t 秒时, QM = 2PM ,直接写出t 的值.236 参考答案及解析: 1.【答案】A. 【解析】试题解析:∵ =6 故选 A.考点:算术平方根.2.【答案】D.考点:分式有意义的条件. 3.【答案】C. 【解析】试题解析:A . x 10 x 2=x 8,该选项错误;B .x 6与 x 不能合并,该选项错误; C .x 2 □x 3 = x 5,该选项正确; D . (x 2 )3=x 6,该选项错误. 故选 C.考点:1.同底数幂的除法;2.同底数幂的乘法;3.积的乘方与幂的乘方.4.【答案】C.【解析】考点:1.中位数;2.众数.5.【答案】B.【解析】试题解析:(x +1)(x + 2) =x2+2x+x+2= x2+3x +2.故选 B.考点:多项式乘以多项式6.【答案】B.【解析】试题解析:根据关于 y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得:点A(-3,2)关于 y 轴对称的坐标为(3,2).故选 B.考点:关于 x 轴、y 轴对称的点的坐标特征7.【答案】D【解析】试题解析:只有选项 A 的图形的主视图是拨给图形,其余均不是.故选 A.考点:三视图.8.【答案】A.考点:数字变化规律.9.【答案】C考点:三角形的内切圆. 10.【答案】C考点:画等腰三角形.11.【答案】2.【解析】试题解析:2 ⨯ 3 + (-4) =6-4=2. 考点:有理数的混合运算.12.【答案】x-1.【解析】试题解析:x2 - 1x2 -1 (x +1)(x -1)= = =x -1x +1 x +1 x +1 x +1 考点:分式的加减法.13.【答案】30°.【解析】考点:1.解平分线的性质;2.平行四边形的性质.214.【答案】.5【解析】试题解析:根据题意可得:列表如下红 1 红 2 黄 1 黄 2 黄 3红 1 红 1,红 2 红 1,黄 1 红 1,黄 2 红 1,黄 3 红 2 红 2,红 1 红 2,黄 1 红 2,黄 2 红 2,黄 3 黄 1 黄 1,红 1 黄 1,红 2 黄 1,黄 2 黄 1,黄 3 黄 2 黄 2,红 1 黄 2,红 2 黄 2,黄 1 黄 2,黄 3 黄 3 黄 3,红 1 黄 3,红 2 黄 3,黄 1 黄 3,黄 2共有 20 种所有等可能的结果,其中两个颜色相同的有 8 种情况,8 2故摸出两个颜色相同的小球的概率为= .20 5考点:列表法和树状图法.15.【答案】7.【解析】考点:1.含30度角的直角三角形;2.等腰三角形的性质.⎨ ⎩ 1 116.【答案】-3<a<-2,<a< .3 2【解析】试题解析:把(m,0)代入 y=ax2+(a2-1 )x-a 得,am2+(a2-1)m-a=0 解得:m=2a=(-a2 -1)±(a2 +1)2a∵2<m<31 1解得:-3<a<-2,<a< .3 2考点:二次函数的图象.117.【答案】x= .2考点:解一元一次方程.18.【答案】证明见解析:【解析】试题分析:通过证明ΔCDF≌ΔABE,即可得出结论试题解析:CD 与AB 之间的关系是:CD=AB,且CD∥A B证明:∵CE=BF,∴CF=BE在ΔCDF 和ΔBAE 中⎧CF=BE⎪∠CFD=∠BEA⎪DF=AE∴ΔCDF≌ΔBAE(-a2-1)±(a2-1)2+4ac∴CD=BA,∠C=∠B∴CD∥BA考点:全等三角形的判定与性质.19.【答案】(1)①108°;②9,6;(2)7.6万元.5÷25%=20∴20×45%=9(人)20×30%=6(人)(2)10×25%+8×45%+5×30%=7.6答:这个公司平均每人所创年利润是 7.6 万元.考点:1.扇形统计图;2.加权平均数.20.【答案】(1)甲、乙两种奖品分别购买 5 件、15 件.(2)该公司有两种不同的购买方案:方案一:购买甲种奖品 7 件,购买乙种奖品 13 件;方案二、购买甲种奖品 8 件,购买乙种奖品 12 件.(2)设甲种奖品购买 m 件,则乙种奖品购买(20-m)件≤ ⎧20-m 依题意得: ⎨≤ 2m ⎩40m+30(20-m )≤ 65020 解得: m 3 ≤ 8∵m 为整数,∴m=7 或 8当 m=7 时,20-m=13;当 m=8 时,20-m=12答:该公司有两种不同的购买方案:方案一:购买甲种奖品 7 件,购买乙种奖品 13 件;方案二、购买甲种奖品 8 件,购买乙种奖品 12 件.考点:1.二元一次方程组的应用;2.一元一次不等式组的应用.21.【答案】(1)证明见解析;(2) 3 90 ; . 13(2)过点C 作 CE⊥AB 于E3∵sin∠BAC= ,设 AC=5m ,则 CE=3m 5∴AE=4m,BE=m在 Rt ΔCBE 中,m 2+(3m)2=36 103 10 ∴m= , 5∴AC= 3延长 AO 交 BC 于点H ,则AH⊥BC,且BH=CH=3,考点:1.全等三角形的判定与性质;2.解直角三角形;3.平行线分线段成比例.22.【答案】(1)-6;(2) m=2 或 6+ 4 ;(3) x<-1 或 5<x<61033(2)∵M 是直线 y=m 与直线 AB 的交点m - 4 ∴M( ,m ) 26 同理,N ( ,m ) mm - 4 6 ∴MN=|- |=4 2 mm - 4 6∴ - =±42 m解得 m=2 或-6 或 6± 4∵m>0∴m=2 或 6+ 4(3)x<-1 或 5<x<6考点:1.求反比例函数解析式;2.反比例函数与一次函数交点问题.5n + 25 23.【答案】(1)证明见解析;(2)75-18 ;(3)n + 633(3)由(1)(2)提供的思路即可求解. 试题解析:(1)∵∠ADC=90°∴∠EDC=90°∴∠ABE=∠CDE又∵∠AEB=∠CED∴ΔEAB∽ΔECD∴ EB=EAED EC∴ED □EA =EC □EB由(1)有:ΔECG∽ΔEAH33 3 315 ±113 13 ±89 ∴EG=CGEH AH∴EH=9∴S四边形 ABCD=SΔAEH-SΔECG-SΔABH=1⨯6 ⨯9 -6 -1⨯6⨯62 2=75-185n +25(3)n +6考点:相似三角形的判定与性质.1 124.【答案】(1)抛物线的解析式为:y=x2-x;(2)证明见解析;(3);.2 2 6 2(3)进行分类讨论即可得解.试题解析:(1)∵点A(-1,1),B(4,6)在抛物线y=ax2+bx上∴a-b=1,16a+4b =61 1解得:a= ,b=-2 21 1∴抛物线的解析式为:y= x2- x2 23设直线 AF 的解析式为 y=kx+m∵A (-1,1)在直线 AF 上,∴-k+m=1即:k=m-1∴直线 AF 的解析式可化为:y=(m-1)x+m1 1 1 1与y= x2- x 联立,得(m-1)x+m= x2- x2 2 2 2∴(x+1)(x-2m)=0∴x=-1 或 2m∴点 G 的横坐标为 2m考点:二次函数综合题.。

2017武汉中考数学试题(附含答案解析版)

2017武汉中考数学试题(附含答案解析版)

2017年武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算的结果为()A.6 B.﹣6 C.18 D.﹣182.若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠43.下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)34.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+26.点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)7.某物体的主视图如图所示,则该物体可能为()A. B. C.D.8.按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.129.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.10.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7二、填空题(本大题共6个小题,每小题3分,共18分)11.计算2×3+(﹣4)的结果为.12.计算﹣的结果为.13.如图,在▱ABCD中,∠D= 00°,∠DAB的平分线AE交DC于点E,连接BE.若AE=AB,则∠EBC的度数为.14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.15.如图,在△ABC中,AB=AC=2,∠BAC= 0°,点D、E都在边BC上,∠DAE= 0°.若BD=2CE,则DE的长为.16.已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.三、解答题(共8题,共72分)17.(8分)解方程:4x﹣3=2(x﹣1)18.(8分)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C部门所对应的圆心角的度数为②在统计表中,b= ,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B 两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC= 0°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算的结果为()A.6 B.﹣6 C.18 D.﹣18解:=6.故选:A.2.(3分)(2017•武汉)若代数式在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4解:依题意得:a﹣4≠0,解得a≠4.故选:D.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)3解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x64.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.5.(3分)(2017•武汉)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2解:原式=x2+2x+x+2=x2+3x+2,故选B6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2)C.(﹣3,﹣2)D.(2,﹣3)解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.7.(3分)(2017•武汉)某物体的主视图如图所示,则该物体可能为()A.B.C.D.解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.8.(3分)(2017•武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12解:由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数,故选B.为(﹣2)n是解9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()A.B.C.D.解:如图,AB=7,BC=5,AC=8,内切圆的半径为r,切点为D、E、F,作AD⊥BC 于D,设BD=x,则CD=5﹣x.由勾股定理可知:AD2=AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(5﹣x)2,解得x=1,∴AD=4,∵•BC•AD=(AB+BC+AC)•r,×5×4=×20×r,∴r=,故选C10.(3分)(2017•武汉)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4 B.5 C.6 D.7解:如图:故选D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为 2 .解:原式=6﹣4=2,故答案为:212.(3分)(2017•武汉)计算﹣的结果为.解:原式=,故答案为:.13.(3分)(2017•武汉)如图,在▱ABCD中,∠D= 00°,∠DAB的平分线AE 交DC于点E,连接BE.若AE=AB,则∠EBC的度数为 0°.解:∵四边形ABCD是平行四边形,∴∠ABC=∠D= 00°,AB∥CD,∴∠BAD= 80°﹣∠D=80°,∵AE平分∠DAB,∴∠BAE=80°÷ = 0°,∵AE=AB,∴∠ABE=( 80°﹣ 0°)÷ =70°,∴∠EBC=∠ABC﹣∠ABE= 0°;故答案为: 0°.14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为80 =,故答案为:15.(3分)(2017•武汉)如图,在△ABC中,AB=AC=2,∠BAC= 0°,点D、E都在边BC上,∠DAE= 0°.若BD=2CE,则DE的长为3﹣3 .解:将△ABD绕点A逆时针旋转 0°得到△ACF,连接EF,过点E作EM⊥CF于点M,过点A作AN⊥BC于点N,如图所示.∵AB=AC=2,∠BAC= 0°,∴BN=CN,∠B=∠ACB= 0°.在Rt△BAN中,∠B= 0°,AB=2,∴AN=AB=,BN==3,∴BC=6.∵∠BAC= 0°,∠DAE= 0°,∴∠BAD+∠CAE= 0°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE= 0°.在△ADE和△AFE中,∠ ∠ 0°,∴△ADE≌△AFE(SAS),∴DE=FE.∵BD=2CE,BD=CF,∠ACF=∠B= 0°,∴设CE=2x,则CM=x,EM=x,FM=4x﹣x=3x,EF=ED=6﹣6x.在Rt△EFM中,FE=6﹣6x,FM=3x,EM=x,∴EF2=FM2+EM2,即(6﹣6x)2=(3x)2+(x)2,解得:x1=,x2=(不合题意,舍去),∴DE=6﹣6x=3﹣3.故答案为:3﹣3.16.(3分)(2017•武汉)已知关于x的二次函数y=ax2+(a2﹣1)x﹣a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是<a<或﹣3<a<﹣2 .解:∵y=ax2+(a2﹣1)x﹣a=(ax﹣1)(x+a),∴当y=0时,x1=,x2=﹣a,∴抛物线与x轴的交点为(,0)和(﹣a,0).∵抛物线与x轴的一个交点的坐标为(m,0)且2<m<3,∴当a>0时,2<<3,解得<a<;当a<0时,2<﹣a<3,解得﹣3<a<﹣2.故答案为:<a<或﹣3<a<﹣2.三、解答题(共8题,共72分)17.(8分)(2017•武汉)解方程:4x﹣3=2(x﹣1)解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=18.(8分)(2017•武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,∠ ∠ ,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.19.(8分)(2017•武汉)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表(1)①在扇形图中,C部门所对应的圆心角的度数为 08°②在统计表中,b= 9 ,c= 6(2)求这个公司平均每人所创年利润.解:(1)①在扇形图中,C部门所对应的圆心角的度数为: 0°× 0%= 08°;②A部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为: 08°,9,6;(2)这个公司平均每人所创年利润为: 098=7.6(万元).20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?解:(1)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得40x+30(20﹣x)=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x件,乙种奖品购买了(20﹣x)件,根据题意得 00 0 0 80,解得≤x≤8,∵x为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.21.(8分)(2017•武汉)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB 于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=,求AC和CD的长.(1)证明:延长AO交BC于H,连接BO,如图1所示:∵AB=AC,OB=OC,∴A、O在线段BC的垂直平分线上,∴AO⊥BC,又∵AB=AC,∴AO平分∠BAC;(2)解:延长CD交⊙O于E,连接BE,如图2所示:则CE是⊙O的直径,∴∠EBC=90°,BC⊥BE,∵∠E=∠BAC,∴sinE=sin∠BAC,∴=,∴CE=BC=10,∴BE==8,OA=OE=CE=5,∵AH⊥BC,∴BE∥OA,∴,即8=,解得:OD=,∴CD=5+=90,∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线,∴OH=BE=4,CH=BC=3,∴AH=5+4=9,在Rt△ACH中,AC==9=3 0.22.(10分)(2017•武汉)如图,直线y=2x+4与反比例函数y=的图象相交于A (﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.(1)∵点A(﹣3,a)在y=2x+4与y=的图象上,∴2×(﹣3)+4=a,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M在直线AB上,∴M(,m),N在反比例函数y=上,∴N(,m),∴MN=xN ﹣xm=﹣=4或xM﹣xN=﹣=4,解得:∵m>0,∴m=2或m=6+4;(3)x<﹣1或x5<x<6,由>x得:﹣x>0,∴>0,∴<0,∴>0<0或<0>0,结合抛物线y=x2﹣5x﹣6的图象可知,由>0 <0得<或 ><,∴<<或><,∴此时x<﹣1,由<0>0得,< <>,∴< <>,解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.23.(10分)(2017•武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC= 0°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)解:(1)如图1中,∵∠ADC=90°,∠EDC+∠ADC= 80°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC,∵∠E=∠E,∴△EDC∽△EBA,∴=,∴ED•EA=EC•EB.(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.在Rt△CDF中,cos∠ADC=,∴=,∵CD=5,∴DF=3,∴CF==4,∵S△CDE=6,∴•ED•CF=6,∴ED==3,EF=ED+DF=6,∵∠ABC= 0°,∠G=90°,∠G+∠BAG=∠ABC,∴∠BAG= 0°,∴在Rt△ABG中,BG=AB=6,AG==6,∵CF⊥AD,AG⊥EB,∴∠EFC=∠G=90°,∵∠E=∠E,∴△EFC∽△EGA,∴=,∴=,∴EG=9,∴BE=EG﹣BG=9﹣6,∴S四边形ABCD =S△ABE﹣S△CDE=(9﹣6)×6﹣6=75﹣18.(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,∴tan∠E=,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,∴FG=DF﹣DG=5+n﹣3a,∵CH⊥AD,AG⊥DF,∠E=∠F,易证△AFG∽△CEH,∴=,∴=,∴a=,∴AD=5a=.24.(12分)(2017•武汉)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx 上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.解:(1)将点A(﹣1,1)、B(4,6)代入y=ax2+bx中,,解得:,∴抛物线的解析式为y=x2﹣x.(2)证明:设直线AF的解析式为y=kx+m,将点A(﹣1,1)代入y=kx+m中,即﹣k+m=1,∴k=m﹣1,∴直线AF的解析式为y=(m﹣1)x+m.联立直线AF和抛物线解析式成方程组,,解得:,,∴点G的坐标为(2m,2m2﹣m).∵GH⊥x轴,∴点H的坐标为(2m,0).∵抛物线的解析式为y=x2﹣x=x(x﹣1),∴点E的坐标为(1,0).设直线AE的解析式为y=k1x+b1,将A(﹣1,1)、E(1,0)代入y=k1x+b1中,0,解得:,∴直线AE的解析式为y=﹣x+.设直线FH的解析式为y=k2x+b2,将F(0,m)、H(2m,0)代入y=k2x+b2中,0,解得:,∴直线FH的解析式为y=﹣x+m.∴FH∥AE.(3)设直线AB 的解析式为y=k 0x+b 0,将A (﹣1,1)、B (4,6)代入y=k 0x+b 0中,0 0 0 0 ,解得: 0 0, ∴直线AB 的解析式为y=x+2.当运动时间为t 秒时,点P 的坐标为(t ﹣2,t ),点Q 的坐标为(t ,0).当点M 在线段PQ 上时,过点P 作PP′⊥x 轴于点P′,过点M 作MM′⊥x 轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM ,∴ ′ ′= ′ ′=, ∴QM′= ,MM′=t , ∴点M 的坐标为(t ﹣ ,t ). 又∵点M 在抛物线y= x 2﹣x 上, ∴ t= ×(t ﹣ )2﹣ (t ﹣), 解得:t=; 当点M 在线段QP 的延长线上时,同理可得出点M 的坐标为(t ﹣4,2t ),∵点M 在抛物线y= x 2﹣x 上, ∴2t= ×(t ﹣4)2﹣(t ﹣4), 解得:t= 89. 综上所述:当运动时间为 秒、 秒、 89 秒或 89秒时,QM=2PM .。

2017年湖北省天门市、仙桃市、潜江市、江汉油田中考数学试卷(含解析版)

2017年湖北省天门市、仙桃市、潜江市、江汉油田中考数学试卷(含解析版)

2017年湖北省天门市、仙桃市、潜江市、江汉油田中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.1.(3分)如果向北走6步记作+6,那么向南走8步记作()A.+8步B.﹣8步C.+14步D.﹣2步2.(3分)北京时间5月27日,蛟龙号载人潜水器在太平洋马里亚纳海沟作业区开展了本航段第3次下潜,最大下潜深度突破6500米,数6500用科学记数法表示为()A.65×102B.6.5×102C.6.5×103D.6.5×1043.(3分)如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()A.25° B.35° C.45° D.50°4.(3分)如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()A.传B.统C.文D.化5.(3分)下列运算正确的是()A.(π﹣3)0=1 B.√9=±3 C.2﹣1=﹣2 D.(﹣a2)3=a66.(3分)关于一组数据:1,5,6,3,5,下列说法错误的是()A.平均数是4 B.众数是5 C.中位数是6 D.方差是3.27.(3分)一个扇形的弧长是10πcm,面积是60πcm2,则此扇形的圆心角的度数是()A.300°B.150°C.120°D.75°8.(3分)若α、β为方程2x2﹣5x﹣1=0的两个实数根,则2α2+3αβ+5β的值为()A .﹣13B .12C .14D .159.(3分)如图,P (m ,m )是反比例函数y=9x在第一象限内的图象上一点,以P 为顶点作等边△PAB ,使AB 落在x 轴上,则△POB 的面积为( )A .92B .3√3C .9+12√34D .9+3√3210.(3分)如图,矩形ABCD 中,AE ⊥BD 于点E ,CF 平分∠BCD ,交EA 的延长线于点F ,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD ;②∠DBC=30°;③AE=45√5;④AF=2√5,其中正确结论的个数有( )A .1个B .2个C .3个D .4个二、填空题:本大题共6小题,每小题3分,共18分,请将结果直接填写在答题卡对应的横线上.11.(3分)已知2a ﹣3b=7,则8+6b ﹣4a= .12.(3分)“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需 元. 13.(3分)飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是s=60t ﹣32t 2,则飞机着陆后滑行的最长时间为 秒.14.(3分)为加强防汛工作,某市对一拦水坝进行加固,如图,加固前拦水坝的横断面是梯形ABCD .已知迎水坡面AB=12米,背水坡面CD=12√3米,∠B=60°,加固后拦水坝的横断面为梯形ABED ,tanE=313√3,则CE 的长为 米.15.(3分)有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是 .16.(3分)如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (﹣1,1),B (0,﹣2),C (1,0),点P (0,2)绕点A 旋转180°得到点P 1,点P 1绕点B 旋转180°得到点P 2,点P 2绕点C 旋转180°得到点P 3,点P 3绕点A 旋转180°得到点P 4,…,按此作法进行下去,则点P 2017的坐标为 .三、解答题:本大题共9小题,共72分. 17.(6分)化简:5a+3b a 2−b 2﹣2aa 2−b 2.18.(6分)解不等式组{5x +1>3(x −1)12x −1≤7−32x ,并把它的解集在数轴上表示出来.19.(6分)如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.20.(6分)近几年,随着电子商务的快速发展,“电商包裹件”占“快递件”总量的比例逐年增长,根据企业财报,某网站得到如下统计表:年份2014 2015 2016 2017(预计)快递件总量(亿件) 140 207 310 450 电商包裹件(亿件)98153235351(1)请选择适当的统计图,描述2014﹣2017年“电商包裹件”占当年“快递件”总量的百分比(精确到1%);(2)若2018年“快递件”总量将达到675亿件,请估计其中“电商包裹件”约为多少亿件?21.(8分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 与过点C 的切线互相垂直,垂足为点D ,AD 交⊙O 于点E ,连接CE ,CB . (1)求证:CE=CB ;(2)若AC=2√5,CE=√5,求AE 的长.22.(8分)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y 乙(单位:元)与原价x (单位:元)之间的函数关系如图所示:(1)直接写出y 甲,y 乙关于x 的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?23.(10分)已知关于x 的一元二次方程x 2﹣(m+1)x+12(m 2+1)=0有实数根.(1)求m 的值;(2)先作y=x 2﹣(m+1)x+12(m 2+1)的图象关于x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n (n ≥m )与变化后的图象有公共点时,求n 2﹣4n 的最大值和最小值.24.(10分)在Rt △ABC 中,∠ACB=90°,点D 与点B 在AC 同侧,∠DAC >∠BAC ,且DA=DC ,过点B 作BE ∥DA 交DC 于点E ,M 为AB 的中点,连接MD ,ME .(1)如图1,当∠ADC=90°时,线段MD与ME的数量关系是;(2)如图2,当∠ADC=60°时,试探究线段MD与ME的数量关系,并证明你的结论;(3)如图3,当∠ADC=α时,求MEMD的值.25.(12分)如图,在平面直角坐标系中,四边形ABCD的边AD在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B两点的直线l:y=﹣2x﹣10向右平移,平移后的直线与x轴交于点E,与直线BC交于点F,设AE的长为t(t≥0).(1)四边形ABCD的面积为;(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;(3)当t=2时,直线EF上有一动点,作PM⊥直线BC于点M,交x轴于点N,将△PMF沿直线EF折叠得到△PTF,探究:是否存在点P,使点T恰好落在坐标轴上?若存在,请求出点P的坐标;若不存在,请说明理由.2017年湖北省江汉油田中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在下列各小题中,均给出四个答案,其中有且只有一个正确答案,请将正确答案的字母代号在答题卡上涂黑,涂错或不涂均为零分.1.(3分)(2017•江汉油田)如果向北走6步记作+6,那么向南走8步记作()A.+8步B.﹣8步C.+14步D.﹣2步【考点】11:正数和负数.【分析】“正”和“负”相对,向北走记作正数,那么向南走应【解答】解:∵向北走6步记作+6,∴向南走8步记作﹣8,故选 B.【点评】本题考查了正数和负数的定义.2.(3分)(2017•江汉油田)北京时间5月27日,蛟龙号载人潜水器在太平洋马里亚纳海沟作业区开展了本航段第3次下潜,最大下潜深度突破6500米,数6500用科学记数法表示为()A.65×102B.6.5×102C.6.5×103D.6.5×104【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数6500用科学记数法表示为6.5×103.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2017•江汉油田)如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A 的度数是()A.25° B.35° C.45° D.50°【考点】JA:平行线的性质.【分析】先根据平行线的性质以及角平分线的定义,得到∠AFE的度数,再根据平行线的性质,即可得到∠A的度数.【解答】解:∵CD∥EF,∠C=∠CFE=25°,∵FC平分∠AFE,∴∠AFE=2∠CFE=50°,又∵AB∥EF,∴∠A=∠AFE=50°,故选:D.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.4.(3分)(2017•江汉油田)如图是一个正方体的展开图,把展开图折叠成正方体后,有“弘”字一面的相对面上的字是()A.传B.统C.文D.化【考点】I8:专题:正方体相对两个面上的文字.【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“扬”与“统”相对,面“弘”与面“文”相对,“传”与面“化”相对.故选:C.【点评】本题考查了正方体的展开图得知识,注意正方体的空间图形,从相对面入手,分析及解答问题.5.(3分)(2017•江汉油田)下列运算正确的是()A.(π﹣3)0=1 B.√9=±3 C.2﹣1=﹣2 D.(﹣a2)3=a6【考点】47:幂的乘方与积的乘方;22:算术平方根;6E:零指数幂;6F:负整数指数幂.【分析】根据零指数幂、算术平方根、负整数指数幂、积的乘方的计算法则计算,对各选项分析判断后利用排除法求解.【解答】解:解:A、(π﹣3)0=1,故A正确;B、√9=3,故B错误;,故C错误;C、2﹣1=12D、(﹣a2)3=a6,故D错误.故选:A.【点评】本题考查零指数幂、算术平方根、负整数指数幂、积的乘方,熟练掌握运算性质和法则是解题的关键.6.(3分)(2017•江汉油田)关于一组数据:1,5,6,3,5,下列说法错误的是()A.平均数是4 B.众数是5 C.中位数是6 D.方差是3.2【考点】W7:方差;W1:算术平均数;W4:中位数;W5:众数.【分析】分别求出这组数据的平均数、中位数、众数和方差,再分别对每一项进行判断即可.【解答】解:A、这组数据的平均数是(1+5+6+3+5)÷5=4,故本选项正确;B、5出现了2次,出现的次数最多,则众数是3,故本选项正确;C、把这组数据从小到大排列为:1,3,5,5,6,最中间的数是5,则中位数是5,故本选项错误;D 、这组数据的方差是:15[(1﹣4)2+(5﹣4)2+(6﹣4)2+(3﹣4)2+(5﹣4)2]=3.2,故本选项正确;故选C .【点评】本题考查平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.7.(3分)(2017•江汉油田)一个扇形的弧长是10πcm ,面积是60πcm 2,则此扇形的圆心角的度数是( )A .300°B .150°C .120°D .75°【考点】MO :扇形面积的计算;MN :弧长的计算.【专题】11 :计算题;559:圆的有关概念及性质.【分析】利用扇形面积公式1求出R 的值,再利用扇形面积公式2计算即可得到圆心角度数.【解答】解:∵一个扇形的弧长是10πcm ,面积是60πcm 2,∴S=12Rl ,即60π=12×R ×10π, 解得:R=12,∴S=60π=nπ×122360,解得:n=150°,故选B【点评】此题考查了扇形面积的计算,以及弧长的计算,熟练掌握扇形面积公式是解本题的关键.8.(3分)(2017•江汉油田)若α、β为方程2x 2﹣5x ﹣1=0的两个实数根,则2α2+3αβ+5β的值为( )A .﹣13B .12C .14D .15【考点】AB :根与系数的关系.【专题】11 :计算题.【分析】根据一元二次方程解的定义得到2α2﹣5α﹣1=0,即2α2=5α+1,则2α2+3αβ+5β可表示为5(α+β)+3αβ+1,再根据根与系数的关系得到α+β=52,αβ=﹣12,然后利用整体代入的方法计算.【解答】解:∵α为2x 2﹣5x ﹣1=0的实数根,∴2α2﹣5α﹣1=0,即2α2=5α+1,∴2α2+3αβ+5β=5α+1+3αβ+5β=5(α+β)+3αβ+1,∵α、β为方程2x 2﹣5x ﹣1=0的两个实数根,∴α+β=52,αβ=﹣12,∴2α2+3αβ+5β=5×52+3×(﹣12)+1=12.故选B .【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2=﹣b a ,x 1x 2=c a .也考查了一元二次方程解的定义.9.(3分)(2017•江汉油田)如图,P (m ,m )是反比例函数y=9x 在第一象限内的图象上一点,以P 为顶点作等边△PAB ,使AB 落在x 轴上,则△POB 的面积为( )A .92B .3√3C .9+12√34D .9+3√32【考点】G5:反比例函数系数k 的几何意义;G6:反比例函数图象上点的坐标特征;KK :等边三角形的性质.【分析】易求得点P 的坐标,即可求得点B 坐标,即可解题.【解答】解:作PD ⊥OB ,∵P (m ,m )是反比例函数y=9x 在第一象限内的图象上一点, ∴m=9m ,解得:m=3,∴PD=3,∵△ABP 是等边三角形,∴BD=√33PD=√3, ∴S △POB =12OB •PD=12(OD+BD )•PD=9+3√32, 故选 D .【点评】本题考查了等边三角形的性质,考查了反比例函数点坐标的特性,本题中求得m 的值是解题的关键.10.(3分)(2017•江汉油田)如图,矩形ABCD 中,AE ⊥BD 于点E ,CF 平分∠BCD ,交EA 的延长线于点F ,且BC=4,CD=2,给出下列结论:①∠BAE=∠CAD ;②∠DBC=30°;③AE=45√5;④AF=2√5,其中正确结论的个数有()A.1个B.2个C.3个D.4个【考点】S9:相似三角形的判定与性质;LB:矩形的性质.【分析】根据余角的性质得到∠BAE=∠ADB,等量代换得到∠BAE=∠CAD,故①正确;根据三角函数的定义得到tan∠DBC=CDBC =12,于是得到∠DBC≠30°,故②错误;由勾股定理得到BD=√BC2+CD2=2√5,根据相似三角形的性质得到AE=45√5;故③正确;根据角平分线的定义得到∠BCF=45°,求得∠ACF=45°﹣∠ACB,推出∠EAC=2∠ACF,根据外角的性质得到∠EAC=∠ACF+∠F,得到∠ACF=∠F,根据等腰三角形的判定得到AF=AC,于是得到AF=2√5,故④正确.【解答】解:在矩形ABCD中,∵∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠ADE+∠DAE=∠DAE+∠BAE=90°,∴∠BAE=∠ADB,∵∠CAD=∠ADB,∴∠BAE=∠CAD,故①正确;∵BC=4,CD=2,∴tan∠DBC=CDBC =1 2,∴∠DBC≠30°,故②错误;∵BD=√BC2+CD2=2√5,∵AB=CD=2,AD=BC=4,∵△ABE∽△DBA,∴AEAD =ABBD,即AE4=2√5,∴AE=45√5;故③正确;∵CF平分∠BCD,∴∠BCF=45°,∴∠ACF=45°﹣∠ACB,∵AD ∥BC ,∴∠DAC=∠BAE=∠ACB ,∴∠EAC=90°﹣2∠ACB ,∴∠EAC=2∠ACF ,∵∠EAC=∠ACF+∠F ,∴∠ACF=∠F ,∴AF=AC ,∵AC=BD=2√5,∴AF=2√5,故④正确;故选C .【点评】本题考查了矩形的性质,相似三角形的判定和性质,三角形的外角的性质,角平分线的定义,熟练掌握相似三角形的判定和性质是解题的关键.二、填空题:本大题共6小题,每小题3分,共18分,请将结果直接填写在答题卡对应的横线上.11.(3分)(2017•江汉油田)已知2a ﹣3b=7,则8+6b ﹣4a= ﹣6 .【考点】33:代数式求值.【分析】先变形,再整体代入求出即可.【解答】解:∵2a ﹣3b=7,∴8+6b ﹣4a=8﹣2(2a ﹣3b )=8﹣2×7=﹣6,故答案为:﹣6.【点评】本题考查了求代数式的值,能够整体代入是解此题的关键.12.(3分)(2017•江汉油田)“六一”前夕,市关工委准备为希望小学购进图书和文具若干套,已知1套文具和3套图书需104元,3套文具和2套图书需116元,则1套文具和1套图书需 48 元.【考点】9A :二元一次方程组的应用.【分析】设1套文具的价格为x 元,一套图书的价格为y 元,根据“1套文具和3套图书需104元,3套文具和2套图书需116元”,即可得出关于x 、y 的二元一次方程组,解之即可得出x 、y 的值,将其代入x+y 中,即可得出结论.【解答】解:设1套文具的价格为x 元,一套图书的价格为y 元,根据题意得:{x +3y =1043x +2y =116,解得:{x =20y =28, ∴x+y=20+28=48.故答案为:48.【点评】本题考查了二元一次方程组的应用,找准等量关系,列出关于x 、y 的二元一次方程组是解题的关键.13.(3分)(2017•江汉油田)飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是s=60t ﹣32t 2,则飞机着陆后滑行的最长时间为 20 秒.【考点】HE :二次函数的应用.【分析】将s=60t ﹣1.5t 2,化为顶点式,即可求得s 的最大值,从而可以解答本题.【解答】解:解:s=60t ﹣32t 2=﹣32(t ﹣20)2+600,∴当t=20时,s 取得最大值,此时s=600.故答案是:20.【点评】本题考查二次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,会将二次函数的一般式化为顶点式,根据顶点式求函数的最值.14.(3分)(2017•江汉油田)为加强防汛工作,某市对一拦水坝进行加固,如图,加固前拦水坝的横断面是梯形ABCD .已知迎水坡面AB=12米,背水坡面CD=12√3米,∠B=60°,加固后拦水坝的横断面为梯形ABED ,tanE=313√3,则CE 的长为 8 米.【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】分别过A 、D 作下底的垂线,设垂足为F 、G .在Rt △ABF 中,已知坡面长和坡角的度数,可求得铅直高度AF 的值,也就得到了DG 的长;在Rt △CDG 中,由勾股定理求CG 的长,在Rt △DEG 中,根据正切函数定义得到GE 的长;根据CE=GE ﹣CG 即可求解.【解答】解:分别过A 、D 作AF ⊥BC ,DG ⊥BC ,垂点分别为F 、G ,如图所示.∵在Rt △ABF 中,AB=12米,∠B=60°,∴sin ∠B=AF AB, ∴AF=12×√32=6√3,∴DG=6√3.∵在Rt △DGC 中,CD=12√3,DG=6√3米,∴GC=√CD 2−DG 2=18.∵在Rt △DEG 中,tanE=313√3,∴6√3GE =313√3,∴GE=26,∴CE=GE ﹣CG=26﹣18=8.即CE 的长为8米.故答案为8.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,锐角三角函数的定义,勾股定理.作辅助线构造直角三角形是解答此类题的一般思路.15.(3分)(2017•江汉油田)有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下放在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是 25 . 【考点】X6:列表法与树状图法.【专题】543:概率及其应用.【分析】列表得出所有等可能的情况数,找出恰好是两个连续整数的情况数,即可求出所求概率.【解答】解:列表如下:1 2 3 4 51 ﹣﹣﹣ (2,1) (3,1) (4,1) (5,1)2 (1,2) ﹣﹣﹣ (3,2) (4,2) (5,2)3 (1,3) (2,3) ﹣﹣﹣ (4,3) (5,3)4 (1,4) (2,4) (3,4) ﹣﹣﹣ (5,4)5 (1,5) (2,5) (3,5) (4,5) ﹣﹣﹣ 所有等可能的情况有20种,其中恰好是两个连续整数的情况有8种,则P (恰好是两个连续整数)=820=25, 故答案为:25【点评】此题考查了列表法与树状图法,概率=所求情况数与总情况数之比.16.(3分)(2017•江汉油田)如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A (﹣1,1),B (0,﹣2),C (1,0),点P (0,2)绕点A 旋转180°得到点P 1,点P 1绕点B 旋转180°得到点P 2,点P 2绕点C 旋转180°得到点P 3,点P 3绕点A 旋转180°得到点P 4,…,按此作法进行下去,则点P 2017的坐标为 (﹣2,0) .【考点】R7:坐标与图形变化﹣旋转;D2:规律型:点的坐标.【分析】画出P1~P6,寻找规律后即可解决问题.【解答】解:如图所示,P1(﹣2,0),P2(2,﹣4),P3(0,4),P4(﹣2,﹣2),P5(2,﹣2),P6(0,2),发现6次一个循环,∵2017÷6=336…1,∴点P2017的坐标与P1的坐标相同,即P2017(﹣2,0),故答案为(﹣2,0).【点评】本题考查坐标与图形的性质、点的坐标等知识,解题的关键是循环探究问题的方法,属于中考常考题型.三、解答题:本大题共9小题,共72分.17.(6分)(2017•江汉油田)化简:5a+3ba2−b2﹣2aa2−b2.【考点】6B:分式的加减法.【分析】根据分式的减法可以解答本题.【解答】解:5a+3ba2−b2﹣2aa2−b2=5a+3b−2a (a+b)(a−b)=3(a+b) (a+b)(a−b)=3a−b.【点评】本题考查分式的减法,解答本题的关键是明确分式的减法的计算方法.18.(6分)(2017•江汉油田)解不等式组{5x +1>3(x −1)12x −1≤7−32x ,并把它的解集在数轴上表示出来.【考点】CB :解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式5x+1>3(x ﹣1),得:x >﹣2,解不等式12x ﹣1≤7﹣32x ,得:x ≤4,则不等式组的解集为﹣2<x ≤4,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(6分)(2017•江汉油田)如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.【考点】R9:利用旋转设计图案;P8:利用轴对称设计图案.【分析】(1)根据中心对称图形,画出所有可能的图形即可.(2)根据是轴对称图形,不是中心对称图形,画出图形即可.【解答】解:(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形,答案如图所示;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形,答案如图所示;【点评】本题考查中心对称图形、轴对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.(6分)(2017•江汉油田)近几年,随着电子商务的快速发展,“电商包裹件”占“快递件”总量的比例逐年增长,根据企业财报,某网站得到如下统计表:年份2014 2015 2016 2017(预计)快递件总量(亿件)140 207 310 450电商包裹件(亿件)98 153 235 351 (1)请选择适当的统计图,描述2014﹣2017年“电商包裹件”占当年“快递件”总量的百分比(精确到1%);(2)若2018年“快递件”总量将达到675亿件,请估计其中“电商包裹件”约为多少亿件?【考点】VE:统计图的选择;V5:用样本估计总体;VA:统计表.【分析】(1)分别计算各年的百分比,并画统计图,也可以画条形图;(2)从2014到2017发现每年上涨两个百分点,所以估计2018年的百分比为80%,据此计算即可.【解答】解:(1)2014:98÷140=0.7,2015:153÷207≈0.74,2016:235÷310≈0.76,2017:351÷450=0.78,画统计图如下:(2)根据统计图,可以预估2018年“电商包裹件”占当年“快递件”总量的80%,所以,2018年“电商包裹件”估计约为:675×80%=540(亿件),答:估计其中“电商包裹件”约为540亿件.【点评】本题考查了统计图的选择、百分比的计算,明确折线统计图的特点:①能清楚地反映事物的变化情况.②显示数据变化趋势.21.(8分)(2017•江汉油田)如图,AB为⊙O的直径,C为⊙O上一点,AD与过点C的切线互相垂直,垂足为点D,AD交⊙O于点E,连接CE,CB.(1)求证:CE=CB;(2)若AC=2√5,CE=√5,求AE的长.【考点】MC:切线的性质;KQ:勾股定理;S9:相似三角形的判定与性质.【分析】(1)连接OC,利用切线的性质和已知条件推知OC∥AD,根据平行线的性质和等角对等边证得结论;(2)AE=AD﹣ED,通过相似三角形△ADC∽△ACB的对应边成比例求得AD=4,DC=2.在直角△DCE中,由勾股定理得到DE=√EC2−DC2=1,故AE=AD﹣ED=3.【解答】(1)证明:连接OC,∵CD是⊙O的切线,∴OC⊥CD.∵AD⊥CD,∴OC∥AD,∴∠1=∠3.又OA=OC,∴∠2=∠3,∴∠1=∠2,∴CE=CB;(2)解:∵AB是直径,∴∠ACB=90°,∵AC=2√5,CB=CE=√5,∴AB=√AC2+CB2=√(2√5)2+(√5)2=5.∵∠ADC=∠ACB=90°,∠1=∠2,∴△ADC∽△ACB,∴ADAC =ACAB=DCCB,即2√5=2√55=√5,∴AD=4,DC=2.在直角△DCE 中,DE=√EC 2−DC 2=1,∴AE=AD ﹣ED=4﹣1=3.【点评】本题考查了切线的性质,勾股定理,相似三角形的判定与性质,解题时,注意辅助线的作法.22.(8分)(2017•江汉油田)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y 甲、y 乙(单位:元)与原价x (单位:元)之间的函数关系如图所示:(1)直接写出y 甲,y 乙关于x 的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?【考点】FH :一次函数的应用.【分析】(1)利用待定系数法即可求出y 甲,y 乙关于x 的函数关系式;(2)当0<x <2000时,显然到甲商店购买更省钱;当x ≥2000时,分三种情况进行讨论即可.【解答】解:(1)设y 甲=kx ,把(2000,1600)代入,得2000x=1600,解得k=0.8,所以y 甲=0.8x ;当0<x <2000时,设y 乙=ax ,把(2000,2000)代入,得2000x=2000,解得k=1,所以y 乙=x ;当x ≥2000时,设y 乙=mx+n ,把(2000,2000),(4000,3400)代入,得{2000m +n =20004000m +n =3400, 解得{m =0.7n =600. 所以y 乙={x(0<x <2000)0.7x +600(x ≥2000);(2)当0<x<2000时,0.8x<x,到甲商店购买更省钱;当x≥2000时,若到甲商店购买更省钱,则0.8x<0.7x+600,解得x<6000;若到乙商店购买更省钱,则0.8x>0.7x+600,解得x>6000;若到甲、乙两商店购买一样省钱,则0.8x=0.7x+600,解得x=6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.【点评】本题考查了一次函数的应用,待定系数法求函数的解析式,正确求出函数解析式进行分类讨论是解题的关键.23.(10分)(2017•江汉油田)已知关于x的一元二次方程x2﹣(m+1)x+1(m2+1)=0有2实数根.(1)求m的值;(m2+1)的图象关于x轴的对称图形,然后将所作图形向左平(2)先作y=x2﹣(m+1)x+12移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n2﹣4n的最大值和最小值.【考点】HA:抛物线与x轴的交点;AA:根的判别式;H6:二次函数图象与几何变换;H7:二次函数的最值.【分析】(1)由题意△≥0,列出不等式,解不等式即可;(2)画出翻折.平移后的图象,根据顶点坐标即可写出函数的解析式;(3)首先确定n的取值范围,利用二次函数的性质即可解决问题;(m2+1)=0,【解答】解:(1)对于一元二次方程x2﹣(m+1)x+12△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2,∵方程有实数根,∴﹣(m﹣1)2≥0,∴m=1.(2)由(1)可知y=x2﹣2x+1=(x﹣1)2,图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)由{y =2x +n y =−x 2−4x −2消去y 得到x 2+6x+n+2=0, 由题意△≥0,∴36﹣4n ﹣8≥0,∴n ≤7,∵n ≤m ,m=1,∴1≤n ≤7,令y ′=n 2﹣4n=(n ﹣2)2﹣4,∴n=2时,y ′的值最小,最小值为﹣4,n=7时,y ′的值最大,最大值为21,∴n 2﹣4n 的最大值为21,最小值为﹣4.【点评】本题考查抛物线与x 轴的交点、待定系数法、翻折变换、平移变换、二次函数的最值问题等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.24.(10分)(2017•江汉油田)在Rt △ABC 中,∠ACB=90°,点D 与点B 在AC 同侧,∠DAC >∠BAC ,且DA=DC ,过点B 作BE ∥DA 交DC 于点E ,M 为AB 的中点,连接MD ,ME .(1)如图1,当∠ADC=90°时,线段MD 与ME 的数量关系是 MD=ME ;(2)如图2,当∠ADC=60°时,试探究线段MD 与ME 的数量关系,并证明你的结论;(3)如图3,当∠ADC=α时,求ME MD 的值.【考点】SO :相似形综合题.【分析】(1)先判断出△AMF ≌△BME ,得出AF=BE ,MF=ME ,进而判断出∠EBC=∠BED ﹣∠ECB=45°=∠ECB ,得出CE=BE ,即可得出结论;(2)同(1)的方法即可;(3)同(1)的方法判断出AF=BE ,MF=ME ,再判断出∠ECB=∠EBC ,得出CE=BE 即可得出∠MDE=α2,即可得出结论.【解答】解:(1)如图1,延长EM 交AD 于F ,∵BE ∥DA ,∴∠FAM=∠EBM ,∵AM=BM ,∠AMF=∠BME ,∴△AMF ≌△BME ,∴AF=BE ,MF=ME ,∵DA=DC ,∠ADC=90°,∴∠BED=∠ADC=90°,∠ACD=45°,∵∠ACB=90°,∴∠EBC=∠BED﹣∠ECB=45°=∠ECB,∴CE=BE,∴AF=CE,∵DA=DC,∴DF=DE,∴DM⊥EF,DM平分∠ADC,∴∠MDE=45°,∴MD=ME,故答案为MD=ME;(2)MD=√3ME,理由:如图2,延长EM交AD于F,∵BE∥DA,∴∠FAM=∠EBM,∵AM=BM,∠AMF=∠BME,∴△AMF≌△BME,∴AF=BE,MF=ME,∵DA=DC,∠ADC=60°,∴∠BED=∠ADC=60°,∠ACD=60°,∵∠ACB=90°,∴∠ECB=30°,∴∠EBC=∠BED﹣∠ECB=30°=∠ECB,∴CE=BE,∴AF=CE,∵DA=DC,∴DF=DE,∴DM⊥EF,DM平分∠ADC,∴∠MDE=30°,在Rt△MDE中,tan∠MDE=MEMD =√33,∴MD=√3ME.(3)如图3,延长EM交AD于F,∵BE∥DA,∴∠FAM=∠EBM,∵AM=BM,∠AMF=∠BME,∴△AMF≌△BME,∴AF=BE,MF=ME,延长BE交AC于点N,∴∠BNC=∠DAC,∵DA=DC,∴∠DCA=∠DAC,∴∠BNC=∠DCA,∴∠ECB=∠EBC,∴CE=BE,∴AF=CE,∴DF=DE,∴DM⊥EF,DM平分∠ADC,∵∠ADC=α,∴∠MDE=α2,在Rt△MDE中,MEMD =tan∠MDE=tanα2.【点评】此题是相似形综合题,主要考查了全等三角形的判断和性质,等腰三角形的判断和性质,锐角三角函数,解(1)(2)的关键是判断出∠MDE=12∠ADC,是一道基础题目.25.(12分)(2017•江汉油田)如图,在平面直角坐标系中,四边形ABCD的边AD在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B两点的直线l:y=﹣2x﹣10向右平移,平移后的直线与x轴交于点E,与直线BC交于点F,设AE的长为t(t ≥0).(1)四边形ABCD的面积为20 ;(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;(3)当t=2时,直线EF 上有一动点,作PM ⊥直线BC 于点M ,交x 轴于点N ,将△PMF 沿直线EF 折叠得到△PTF ,探究:是否存在点P ,使点T 恰好落在坐标轴上?若存在,请求出点P 的坐标;若不存在,请说明理由.【考点】FI :一次函数综合题.【分析】(1)根据函数解析式得到OA=5,求得AC=7,得到OC=4,于是得到结论;(2)①当0≤t ≤3时,根据已知条件得到四边形ABFE 是平行四边形,于是得到S=AE •OC=4t ;②当3≤t <7时,如图1,求得直线CD 的解析式为:y=2x ﹣4,直线E ′F ′的解析式为:y=﹣2x+2t ﹣10,解方程组得到G (t−32,t ﹣7),于是得到S=S 四边形ABCD ﹣S △DE ′G =20﹣12×(7﹣t )×(7﹣t )=﹣12t 2+7t ﹣92,③当t ≥7时,S=S 四边形ABCD =20,(3)当t=2时,点E ,F 的坐标分别为(﹣3,0),(﹣1,﹣4),此时直线EF 的解析式为:y=﹣2x ﹣6,设动点P 的直线为(m ,﹣2m ﹣6),求得PM=|(﹣2m ﹣6)﹣(﹣4)|=2|m+1|,PN=(﹣2m ﹣6|=2(m+3|,FM=|m ﹣(﹣1)|=|m+1,①假设直线EF 上存在点P ,使点T 恰好落在x 轴上,如图2,连接PT ,FT ,②假设直线EF 上存在点P ,使点T 恰好落在y 轴上,如图3,连接PT ,FT ,根据全等三角形的判定性质和相似三角形的判定和性质即可得到结论.【解答】解:(1)在y=﹣2x ﹣10中,当y=0时,x=﹣5,∴A (﹣5,0),∴OA=5,∴AC=7,把x=﹣3代入y=﹣2x ﹣10得,y=﹣4∴OC=4,∴四边形ABCD 的面积=12(3+7)×4=20;故答案为:20;(2)①当0≤t ≤3时,∵BC ∥AD ,AB ∥EF ,∴四边形ABFE 是平行四边形,∴S=AE •OC=4t ;②当3≤t <7时,如图1,∵C (0,﹣4),D (2,0),∴直线CD 的解析式为:y=2x ﹣4,∵E ′F ′∥AB ,BF ′∥AE ′∴BF ′=AE=t ,∴F ′(t ﹣3,﹣4),直线E ′F ′的解析式为:y=﹣2x+2t ﹣10,解{y =2x −4y =−2x +2t −10得,{x =t−32y =t −7。

湖北省武汉市2017年中考数学真题及答案

湖北省武汉市2017年中考数学真题及答案

湖北省武汉市2017年中考数学真题试题第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,共30分)A.6 B.-6 C.18 D.-18 2.若代数式14a -在实数范围内有意义,则实数a 的取值范围为( ) A.4a = B.4a > C.4a < D.4a ≠ 3.下列计算的结果是5x 的为( )A.102x x ÷ B.6x x - C.23x x D.23()x4.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示. 成绩/m 1.501.601.651.701.751.80人数232341则这些运动员成绩的中位数,众数分别为( )A.1.65,1.70 B.1.65,1.75 C. 1.70,1.75 D.1.70,1.70 5.计算(1)(2)x x ++的结果为( )A.22x + B.232x x ++ C. 233x x ++ D.222x x ++ 6.点(3,2)A -关于y 轴对称的坐标为( )A.(3,2)- B.(3,2) C. (3,2)-- D.(2,3,)- 7.某物体的主视图如图所示,则该物体可能为( )A. B. C. D.高途课堂整理8.按照一定规律排列的n 个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则n 为( ) A.9 B.10 C.11 D.129.已知一个三角形的三边长分别为5,7,8.则其内切圆的半径为( )A.2B.32D.10.如图,在Rt ABC ∆中,90C ∠=,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A.4 B.5 C. 6 D.7第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,共18分) 11.计算23(4)⨯+-的结果为 .12.计算2111x x x -++的结果为 .13.如图,在 ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E,连接BE,若AE=AB,则∠EBC 的度数为 .14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 .15.如图△ABC 中,AB=AC,∠BAC=120°,∠DAE=60°,BD=5,CE=8,则DE 的长为 .高途课堂整理16.已知关于x 的二次函数y=ax 2+(a 2-1)x-a 的图象与x 轴的一个交点的坐标为(m,0),若2<m<3,则a 的取值范围是 .三、解答题 (共8小题,共72分)在答题卡指定位置写出必要的演算过程或证明过程. 17.解方程:432(1)x x -=-.18.如图,点,,,C F E B 在一条直线上,CFD BEA ∠=∠,,CE BF DF AE ==.写出CD 与AB 之间的关系,并证明你的结论.19.某公司共有,,A B C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图.各部门人数及每人所创年利润统计表 部门 员工人数 每人所创的年利润/万元 A 510 B b 8 Cc5(1)①在扇形图中,C 部门所对应的圆心角的度数为___________;②在统计表中,b =___________,c =___________; (2)求这个公司平均每人所创年利润.高途课堂整理20.某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件,其中甲种奖品每件40元,乙种奖品每件30元.(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件;(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种...不同的购买方案.21.如图,ABC ∆内接于O ,,AB AC CO =的延长线交AB 于点D .(1)求证AO 平分BAC ∠; (2)若36,sin 5BC BAC =∠=,求AC 和CD 的长. 22.如图,直线24y x =+与反比例函数ky x=的图象相交于(3,)A a -和B两点.(1)求k 的值;(2)直线(0)y m m =>与直线AB 相交于点M ,与反比例函数ky x=的图象相交于点N .若4MN =,求m 的值; (3)直接写出不等式65x x >-的解集. 23.已知四边形ABCD 的一组对边,AD BC 的延长线相交于点E .高途课堂整理(1)如图1,若90ABC ADC ∠=∠=,求证ED EA EC EB = ;(2)如图2,若120ABC ∠=,3cos 5ADC ∠=,5CD =,12AB =,CDE ∆的面积为6,求四边形ABCD 的面积;(3)如图3,另一组对边,AB DC 的延长线相交于点F ,若3cos cos 5ABC ADC ∠=∠=,5CD =,CF ED n ==,直接写出AD 的长(用含n 的式子表示).24.已知点(1,1),(4,6)A B -在抛物线2y ax bx =+上.(1)求抛物线的解析式;(2)如图1,点F 的坐标为(0,)(2)m m >,直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H ,设抛物线与x 轴的正半轴交于点E ,连接,FH AE ,求证//FH AE ;(3)如图2,直线AB 分别交x 轴,y 轴于,C D 两点,点P 从点C 出发,沿射线CD 方向匀速运动,速度个单位长度,同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度,点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,2QM PM =,直接写出t 的值.高途课堂整理参考答案及解析: 1.【答案】A. 【解析】故选A.考点:算术平方根. 2.【答案】D.考点:分式有意义的条件. 3.【答案】C. 【解析】试题解析:A.=x 8,该选项错误;B.与不能合并,该选项错误; C.=,该选项正确; D.=x 6,该选项错误.故选C.考点:1.同底数幂的除法;2.同底数幂的乘法;3.积的乘方与幂的乘方. 4.【答案】C. 【解析】102x x 6x x 23x x 5x 23()x 高途课堂整理考点:1.中位数;2.众数. 5.【答案】B. 【解析】试题解析:=x 2+2x+x+2= x 2+3x +2.故选B.考点:多项式乘以多项式 6.【答案】B. 【解析】试题解析:根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得: 点A(-3,2)关于y 轴对称的坐标为(3,2). 故选B.考点:关于x 轴、y 轴对称的点的坐标特征 7.【答案】D 【解析】试题解析:只有选项A 的图形的主视图是拨给图形,其余均不是. 故选A. 考点:三视图. 8.【答案】A.考点:数字变化规律.(1)(2)x x ++高途课堂整理9.【答案】C高途课堂整理考点:三角形的内切圆.10.【答案】C考点:画等腰三角形. 11.【答案】2. 【解析】试题解析:=6-4=2. 考点:有理数的混合运算. 12.【答案】x-1. 【解析】试题解析:=考点:分式的加减法.13.【答案】30°. 【解析】23(4)⨯+-2111x x x -++211)(1)=111(-+-=-++x x x x x x 高途课堂整理考点:1.解平分线的性质;2.平行四边形的性质. 14.【答案】. 【解析】试题解析:根据题意可得:列表如下 红1 红2 黄1 黄2 黄 3 红1红1,红2 红1,黄1 红1,黄2 红1,黄3 红2 红2,红1红2,黄1 红2,黄2 红2,黄3 黄1 黄1,红1 黄1,红2黄1,黄2 黄1,黄3 黄2 黄2,红1 黄2,红2 黄2,黄1黄2,黄3 黄3黄3,红1黄3,红2黄3,黄1黄3,黄2共有20种所有等可能的结果,其中两个颜色相同的有8种情况, 故摸出两个颜色相同的小球的概率为. 考点:列表法和树状图法.15.【答案】7.2582=205高途课堂整理【解析】考点:1.含30度角的直角三角形;2.等腰三角形的性质.高途课堂整理16.【答案】-3<a<-2,<a<. 【解析】 试题解析:把(m,0)代入y=ax 2+(a 2-1)x-a 得,am 2+(a 2-1)m-a=0解得:m= ∵2<m<3解得:-3<a<-2,<a<. 考点:二次函数的图象.17.【答案】x=.考点:解一元一次方程.18.【答案】证明见解析:【解析】试题分析:通过证明ΔCDF≌ΔABE,即可得出结论试题解析:CD 与AB 之间的关系是:CD=AB,且CD∥A B证明:∵CE=BF,∴CF=BE在ΔCDF 和ΔBAE 中∴ΔCDF≌ΔBAE1312222(--1)(--1)(+1)22a a a a a ±±=131212CF=BE CFD=BEA DF=AE ⎧⎪∠∠⎨⎪⎩高途课堂整理∴CD=BA,∠C=∠B∴CD∥BA考点:全等三角形的判定与性质.19.【答案】(1)①108°;②9,6;(2)7.6万元.5÷25%=20∴20×45%=9(人)20×30%=6(人)(2)10×25%+8×45%+5×30%=7.6 答:这个公司平均每人所创年利润是7.6万元.考点:1.扇形统计图;2.加权平均数.20.【答案】(1)甲、乙两种奖品分别购买5件、15件.(2)该公司有两种不同的购买方案:方案一:购买甲种奖品7件,购买乙种奖品13件;方案二、购买甲种奖品8件,购买乙种奖品12件.(2)设甲种奖品购买m件,则乙种奖品购买(20-m)件高途课堂整理依题意得:解得: ∵m 为整数,∴m=7或8当m=7时,20-m=13;当m=8时,20-m=12答:该公司有两种不同的购买方案:方案一:购买甲种奖品7件,购买乙种奖品13件;方案二、购买甲种奖品8件,购买乙种奖品12件.考点:1.二元一次方程组的应用;2.一元一次不等式组的应用.21.【答案】(1)证明见解析;(2);. (2)过点C 作CE⊥AB 于E∵sin∠BAC=,设AC=5m,则CE=3m ∴AE=4m,BE=m在Rt ΔCBE 中,m 2+(3m)2=36 20-240+30(20-m)650m m m ⎧≤⎨≤⎩2083m ≤≤901335高途课堂整理∴m=, ∴AC=延长AO 交BC 于点H,则AH⊥BC,且BH=CH=3,考点:1.全等三角形的判定与性质;2.解直角三角形;3.平行线分线段成比例.22.【答案】(1)-6;(2) m=2或6+;(3) x<-1或5<x<65高途课堂整理(2)∵M 是直线y=m 与直线AB 的交点∴M(,m) 同理,N(,m)∴MN=|-|=4 ∴-=±4 解得m=2或-6或6±∵m>0∴m=2或6+(3)x<-1或5<x<6考点:1.求反比例函数解析式;2.反比例函数与一次函数交点问题. 23.【答案】(1)证明见解析;;(3) 42m -6m 42m -6m 42m -6m 5256n n ++高途课堂整理(3)由(1)(2)提供的思路即可求解.试题解析:(1)∵∠ADC=90°∴∠EDC=90°∴∠ABE=∠CDE又∵∠AEB=∠CED∴ΔEAB∽ΔECD∴∴由(1)有:ΔECG∽ΔEAHEB EA ED EC=ED EA EC EB =高途课堂整理∴∴S四边形ABCD =SΔAEH -S ΔECG-S ΔABH=(3) 考点:相似三角形的判定与性质.24.【答案】(1)抛物线的解析式为:y=x 2-x;(2)证明见解析;(3);. (3)进行分类讨论 即可得解. 试题解析:(1)∵点A(-1,1),B(4,6)在抛物线y=ax 2+bx 上 ∴a-b=1,16a+4b =6解得:a=,b=- ∴抛物线的解析式为:y=x2-x EG CG EH AH =116622⨯⨯--⨯⨯5256n n ++1212156±132±12121212高途课堂整理设直线AF 的解析式为y=kx+m∵A (-1,1)在直线AF 上,∴-k+m=1即:k=m-1∴直线AF 的解析式可化为:y=(m-1)x+m与y=x 2-x 联立,得(m-1)x+m=x 2-x ∴(x+1)(x-2m)=0∴x=-1或2m∴点G 的横坐标为2m12121212高途课堂整理考点:二次函数综合题.高途课堂整理。

【真题】2017年武汉市中考数学试卷及答案解析(word版)

【真题】2017年武汉市中考数学试卷及答案解析(word版)

湖北省武汉市2017年中考数学试题第Ⅰ卷(选择题 共30分)一、选择题(共10小题,每小题3分,共30分)1 )A .6B .-6C .18D .-18 【答案】A. 【解析】故选A.考点:算术平方根. 2.若代数式14a -在实数范围内有意义,则实数a 的取值范围为( ) A .4a = B .4a > C .4a < D .4a ≠ 【答案】D.考点:分式有意义的条件.3.下列计算的结果是5x 的为( )A .102x x ÷B .6x x -C .23x xD .23()x 【答案】C. 【解析】试题解析:A .102x x ÷=x 8,该选项错误;B .6x 与x 不能合并,该选项错误;C .23x x =5x ,该选项正确;D .23()x =x 6,该选项错误. 故选C.考点:1.同底数幂的除法;2.同底数幂的乘法;3.积的乘方与幂的乘方.4.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示.则这些运动员成绩的中位数,众数分别为( )A .1.65,1.70B .1.65,1.75C . 1.70,1.75D .1.70,1.70 【答案】C. 【解析】考点:1.中位数;2.众数.5.计算(1)(2)x x ++的结果为( )A .22x +B .232x x ++C . 233x x ++D .222x x ++ 【答案】B. 【解析】试题解析:(1)(2)x x ++=x 2+2x+x+2= x 2+3x +2. 故选B.考点:多项式乘以多项式6.点(3,2)A -关于y 轴对称的坐标为( )A .(3,2)-B .(3,2)C . (3,2)--D .(2,3,)- 【答案】B.【解析】试题解析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得:点A(-3,2)关于y轴对称的坐标为(3,2).故选B.考点:关于x轴、y轴对称的点的坐标特征7.某物体的主视图如图所示,则该物体可能为()A. B. C. D.【答案】D【解析】试题解析:只有选项A的图形的主视图是拨给图形,其余均不是.故选A.考点:三视图.8.按照一定规律排列的n个数:-2,4,-8,16,-32,64,….若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12【答案】A.考点:数字变化规律.9.已知一个三角形的三边长分别为5,7,8.则其内切圆的半径为()A B .32C .D .【答案】C考点:三角形的内切圆.10.如图,在Rt ABC ∆中,90C ∠=,以ABC ∆的一边为边画等腰三角形,使得它的第三个顶点在ABC ∆的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A.4 B.5 C. 6 D.7【答案】C考点:画等腰三角形.第Ⅱ卷(非选择题共90分)二、填空题(共6小题,每小题3分,共18分)⨯+-的结果为.11.计算23(4)【答案】2.【解析】⨯+-=6-4=2.试题解析:23(4)考点:有理数的混合运算.12.计算2111xx x-++的结果为.【答案】x-1. 【解析】试题解析:2111xx x-++=211)(1)=111(-+-=-++x x xxx x考点:分式的加减法.13.如图,在ABCD中,∠D=100°,∠DAB的平分线AE交DC于点E,连接BE,若AE=AB,则∠EBC的度数为.【答案】30°.【解析】考点:1.解平分线的性质;2.平行四边形的性质.14.一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为.【答案】25.【解析】试题解析:根据题意可得:列表如下共有20种所有等可能的结果,其中两个颜色相同的有8种情况,故摸出两个颜色相同的小球的概率为82= 205.考点:列表法和树状图法.15.如图△ABC中,AB=AC,∠BAC=120°,∠DAE=60°,BD=5,CE=8,则DE的长为.【答案】7.【解析】考点:1.含30度角的直角三角形;2.等腰三角形的性质.16.已知关于x的二次函数y=ax2+(a2-1)x-a的图象与x轴的一个交点的坐标为(m,0),若2<m<3,则a 的取值范围是 . 【答案】-3<a<-2,13<a<12. 【解析】试题解析:把(m ,0)代入y=ax 2+(a 2-1)x-a 得,am 2+(a 2-1)m-a=0解得:22(--1)(+1)2a a a±=∵2<m<3 解得:-3<a<-2,13<a<12. 考点:二次函数的图象.三、解答题 (共8小题,共72分)在答题卡指定位置写出必要的演算过程或证明过程.17.解方程:432(1)x x -=-.【答案】x=12.考点:解一元一次方程.18.如图,点,,,C F E B 在一条直线上,CFD BEA ∠=∠,,CE BF DF AE ==.写出CD 与AB 之间的关系,并证明你的结论.【答案】证明见解析: 【解析】试题分析:通过证明ΔCDF ≌ΔABE ,即可得出结论 试题解析:CD 与AB 之间的关系是:CD=AB ,且CD ∥AB 证明:∵CE=BF ,∴CF=BE 在ΔCDF 和ΔBAE 中CF=BE CFD=BEA DF=AE ⎧⎪∠∠⎨⎪⎩∴ΔCDF ≌ΔBAE ∴CD=BA ,∠C=∠B ∴CD ∥BA考点:全等三角形的判定与性质.19.某公司共有,,A B C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图.各部门人数及每人所创年利润统计表(1)①在扇形图中,C 部门所对应的圆心角的度数为___________;②在统计表中,b =___________,c =___________; (2)求这个公司平均每人所创年利润. 【答案】(1)①108°;②9,6;(2)7.6万元.5÷25%=20∴20×45%=9(人)20×30%=6(人)(2)10×25%+8×45%+5×30%=7.6答:这个公司平均每人所创年利润是7.6万元.考点:1.扇形统计图;2.加权平均数.20.某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件,其中甲种奖品每件40元,乙种奖品每件30元.(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件;(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种...不同的购买方案.【答案】(1)甲、乙两种奖品分别购买5件、15件.(2)该公司有两种不同的购买方案:方案一:购买甲种奖品7件,购买乙种奖品13件;方案二、购买甲种奖品8件,购买乙种奖品12件.(2)设甲种奖品购买m 件,则乙种奖品购买(20-m )件 依题意得:20-240+30(20-m )650m mm ⎧≤⎨≤⎩解得:2083m ≤≤ ∵m 为整数,∴m=7或8当m=7时,20-m=13;当m=8时,20-m=12答:该公司有两种不同的购买方案:方案一:购买甲种奖品7件,购买乙种奖品13件;方案二、购买甲种奖品8件,购买乙种奖品12件.考点:1.二元一次方程组的应用;2.一元一次不等式组的应用. 21.如图,ABC ∆内接于O ,,AB AC CO =的延长线交AB 于点D .(1)求证AO 平分BAC ∠; (2)若36,sin 5BC BAC =∠=,求AC 和CD 的长.【答案】(1)证明见解析;(2);9013.(2)过点C作CE⊥AB于E∵sin∠BAC=35,设AC=5m,则CE=3m∴AE=4m,BE=m在RtΔCBE中,m2+(3m)2=36∴,∴AC=延长AO交BC于点H,则AH⊥BC,且BH=CH=3,考点:1.全等三角形的判定与性质;2.解直角三角形;3.平行线分线段成比例. 22.如图,直线24y x =+与反比例函数ky x=的图象相交于(3,)A a -和B 两点.(1)求k 的值;(2)直线(0)y m m =>与直线AB 相交于点M ,与反比例函数ky x=的图象相交于点N .若4MN =,求m 的值;(3)直接写出不等式65xx>-的解集.【答案】(1)-6;(2) m=2或6+或5<x<6(2)∵M是直线y=m与直线AB的交点∴M(42m-,m)同理,N(6m,m)∴MN=|42m--6m|=4∴42m--6m=±4解得m=2或-6或6±∵m>0∴m=2或6+(3)x<-1或5<x<6考点:1.求反比例函数解析式;2.反比例函数与一次函数交点问题. 23.已知四边形ABCD的一组对边,AD BC的延长线相交于点E.(1)如图1,若90ABC ADC ∠=∠=,求证ED EA EC EB =; (2)如图2,若120ABC ∠=,3cos 5ADC ∠=,5CD =,12AB =,CDE ∆的面积为6,求四边形ABCD 的面积;(3)如图3,另一组对边,AB DC 的延长线相交于点F ,若3cos cos 5ABC ADC ∠=∠=,5CD =,CF ED n ==,直接写出AD 的长(用含n 的式子表示).【答案】(1)证明见解析;(2);(3)5256n n ++(3)由(1)(2)提供的思路即可求解. 试题解析:(1)∵∠ADC=90° ∴∠EDC=90° ∴∠ABE=∠CDE 又∵∠AEB=∠CED ∴ΔEAB ∽ΔECD ∴EB EAED EC= ∴ED EA EC EB =由(1)有:ΔECG ∽ΔEAH ∴EG CGEH AH=∴∴S 四边形ABCD =S ΔAEH -S ΔECG -S ΔABH=116622⨯⨯--⨯⨯(3)5256n n ++考点:相似三角形的判定与性质.24.已知点(1,1),(4,6)A B -在抛物线2y ax bx =+上.(1)求抛物线的解析式;(2)如图1,点F 的坐标为(0,)(2)m m >,直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H ,设抛物线与x 轴的正半轴交于点E ,连接,FH AE ,求证//FH AE ; (3)如图2,直线AB 分别交x 轴,y 轴于,C D 两点,点P 从点C 出发,沿射线CD 方向个单位长度,同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度,点M 是直线PQ 与抛物线的一个交点,当运动到秒时,2QM PM =,直接写出的值.【答案】(1)抛物线的解析式为:y=12x 2-12x ;(2)证明见解析;(3.(3)进行分类讨论 即可得解.试题解析:(1)∵点A (-1,1),B (4,6)在抛物线y=ax 2+bx 上 ∴a-b=1,16a+4b=6 解得:a=12,b=-12∴抛物线的解析式为:y=12x 2-12x设直线AF的解析式为y=kx+m∵A (-1,1)在直线AF上,∴-k+m=1即:k=m-1∴直线AF的解析式可化为:y=(m-1)x+m与y=12x2-12x联立,得(m-1)x+m=12x2-12x∴(x+1)(x-2m)=0 ∴x=-1或2m∴点G的横坐标为2m考点:二次函数综合题.。

月考、期中、中考模拟卷武汉市黄陂区2017年3月九年级下数学试卷及答案

月考、期中、中考模拟卷武汉市黄陂区2017年3月九年级下数学试卷及答案

2016----2017学年度黄陂区部分学校3月月考九年级数学试题一、选择题(共10题,每小题3分,共30分) 1.-2的相反数是( ) A. 2 B. -2 C. 21-D. 212.式子1-x 在实数范围内有意义,则x 的取值范围是( ) A.1->x B. 1≥x C. 1-≥x D. 1>x3.运用乘法公式计算2)2(-a 的结果是( )A. 442+-a aB. 422+-a aC. 42-aD. 442--a a 4.下列说法正确的是( )A. “打开电视,正在播放《新闻联播》”是必然事件B. “x x (02<是实数)”是随机事件C.掷一枚质地均匀的硬币10次,可能有5次正面向上D.为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查 5.下列运算中,正确的是( )A. 12322=-m mB. 2m m m =+C. 428224m m m =÷D. 2m m m =∙ 6.如图,将ABE ∆向右平移2cm 得到DCF ∆,若ABE ∆的周长是16cm ,则四边形ABFD 的周长是( ) A. 16cm B. 18cm C. 20cm D. 21cm第10题图7.点),1(1y A ,),2(2y B ,),3(3y C -都在双曲线xy 6=上,则1y ,2y ,3y 的大小关系是( ) A.213y y y << B. 321y y y << C. 312y y y << D. 123y y y << 8.某中学篮球队12名队员的年龄如下表:第6题图EB A DFC第9题图BACD OF DC BAP年龄:(岁) 13 14 15 16 人数1542关于这12名队员的年龄,下列说法错误的是( )A. 众数是14B. 极差是3C.中位数是14.5D.平均数是14.89.在数学活动课上,老师要求学生在5×5的正方形ABCD 网格中(小正方形的边长为1)画直角三角形,要求三个顶点都在各点上,而且三边与AB 或AD 都不平行,则画出的形状不同的直角三角形有( )种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.计算√36的结果为()A.6 B.﹣6 C.18 D.﹣182.若代数式1a−4在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠43.下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)34.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m1.50 1.60 1.65 1.70 1.75 1.80人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.705.计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+26.点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)7.某物体的主视图如图所示,则该物体可能为()A.B.C.D.8.按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A .9B .10C .11D .129. 已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .√32B .32C .√3D .2√3 10. 如图,在Rt △ABC 中,∠C=90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7二、填空题(本大题共6个小题,每小题3分,共18分)11. 计算2×3+(﹣4)的结果为 .12. 计算x x+1﹣1x+1的结果为 . 13. 如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE=AB ,则∠EBC 的度数为 .14. 一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 .15. 如图,在△ABC 中,AB=AC=2√3,∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为 .16. 已知关于x 的二次函数y=ax 2+(a 2﹣1)x ﹣a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是 .三、解答题(共8题,共72分)17.(8分)解方程:4x ﹣3=2(x ﹣1)18.(8分)如图,点C 、F 、E 、B 在一条直线上,∠CFD=∠BEA ,CE=BF ,DF=AE ,写出CD 与AB 之间的关系,并证明你的结论.19.(8分)某公司共有A 、B 、C 三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部门员工人数 每人所创的年利润/万元 A5 10 Bb 8 Cc 5(1)①在扇形图中,C 部门所对应的圆心角的度数为②在统计表中,b= ,c=(2)求这个公司平均每人所创年利润.20.(8分)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?21.(8分)如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D(1)求证:AO平分∠BAC;(2)若BC=6,sin∠BAC=35,求AC和CD的长.22.(10分)如图,直线y=2x+4与反比例函数y=kx的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式6x−5>x的解集.23.(10分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=35,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=3 5,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)24.(12分)已知点A(﹣1,1)、B(4,6)在抛物线y=ax2+bx上(1)求抛物线的解析式;(2)如图1,点F的坐标为(0,m)(m>2),直线AF交抛物线于另一点G,过点G作x轴的垂线,垂足为H.设抛物线与x轴的正半轴交于点E,连接FH、AE,求证:FH∥AE;(3)如图2,直线AB分别交x轴、y轴于C、D两点.点P从点C出发,沿射线CD方向匀速运动,速度为每秒√2个单位长度;同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度.点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=2PM,直接写出t的值.2017年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)(2017•武汉)计算√36的结果为()A.6 B.﹣6 C.18 D.﹣18解:√36=6.故选:A.2.(3分)(2017•武汉)若代数式1a−4在实数范围内有意义,则实数a的取值范围为()A.a=4 B.a>4 C.a<4 D.a≠4解:依题意得:a﹣4≠0,解得a≠4.故选:D.3.(3分)(2017•武汉)下列计算的结果是x5的为()A.x10÷x2B.x6﹣x C.x2•x3D.(x2)3解:A、x10÷x2=x8.B、x6﹣x=x6﹣x.C、x2•x3=x5.D、(x2)3=x64.(3分)(2017•武汉)在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m1.50 1.60 1.65 1.70 1.75 1.80人数232341则这些运动员成绩的中位数、众数分别为()A.1.65、1.70 B.1.65、1.75 C.1.70、1.75 D.1.70、1.70解:共15名学生,中位数落在第8名学生处,第8名学生的跳高成绩为1.70m,故中位数为1.70;跳高成绩为1.75m的人数最多,故跳高成绩的众数为1.75;故选C.5.(3分)(2017•武汉)计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+2解:原式=x2+2x+x+2=x2+3x+2,故选B6.(3分)(2017•武汉)点A(﹣3,2)关于y轴对称的点的坐标为()A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)解:A(﹣3,2)关于y轴对称的点的坐标为(3,2),故选:B.7.(3分)(2017•武汉)某物体的主视图如图所示,则该物体可能为()A.B. C.D.解:A、球的主视图为圆,符合题意;B、圆锥的主视图为矩形,不符合题意;C、六棱柱与六棱锥的组合体的主视图为矩形和三角形的结合图,不符合题意;D、五棱柱的主视图为矩形,不符合题意,故选:A.8.(3分)(2017•武汉)按照一定规律排列的n个数:﹣2、4、﹣8、16、﹣32、64、…,若最后三个数的和为768,则n为()A.9 B.10 C.11 D.12解:由题意,得第n个数为(﹣2)n,那么(﹣2)n﹣2+(﹣2)n﹣1+(﹣2)n=768,当n为偶数:整理得出:3×2n﹣2=768,解得:n=10;当n为奇数:整理得出:﹣3×2n﹣2=768,则求不出整数,故选B.为(﹣2)n是解9.(3分)(2017•武汉)已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )A .√32B .32C .√3D .2√3 解:如图,AB=7,BC=5,AC=8,内切圆的半径为r ,切点为D 、E 、F ,作AD ⊥BC 于D ,设BD=x ,则CD=5﹣x .由勾股定理可知:AD 2=AB 2﹣BD 2=AC 2﹣CD 2,即72﹣x 2=82﹣(5﹣x )2,解得x=1,∴AD=4√3,∵12•BC•AD=12(AB +BC +AC )•r , 12×5×4√3=12×20×r , ∴r=√3,故选C10.(3分)(2017•武汉)如图,在Rt △ABC 中,∠C=90°,以△ABC 的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为( )A .4B .5C .6D .7解:如图:故选D .二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2017•武汉)计算2×3+(﹣4)的结果为 2 .解:原式=6﹣4=2,故答案为:212.(3分)(2017•武汉)计算x x+1﹣1x+1的结果为 x−1x+1 . 解:原式=x−1x+1, 故答案为:x−1x+1. 13.(3分)(2017•武汉)如图,在▱ABCD 中,∠D=100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE=AB ,则∠EBC 的度数为 30° .解:∵四边形ABCD 是平行四边形,∴∠ABC=∠D=100°,AB ∥CD ,∴∠BAD=180°﹣∠D=80°,∵AE 平分∠DAB ,∴∠BAE=80°÷2=40°,∵AE=AB ,∴∠ABE=(180°﹣40°)÷2=70°,∴∠EBC=∠ABC ﹣∠ABE=30°;故答案为:30°.14.(3分)(2017•武汉)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同.随机摸出两个小球,摸出两个颜色相同的小球的概率为 25. 解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色相同的有8种结果,∴两次取出的小球颜色相同的概率为820=25, 故答案为:2515.(3分)(2017•武汉)如图,在△ABC 中,AB=AC=2√3,∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为 3√3﹣3 .解:将△ABD 绕点A 逆时针旋转120°得到△ACF ,连接EF ,过点E 作EM ⊥CF 于点M ,过点A 作AN ⊥BC 于点N ,如图所示.∵AB=AC=2√3,∠BAC=120°,∴BN=CN ,∠B=∠ACB=30°.在Rt △BAN 中,∠B=30°,AB=2√3,∴AN=12AB=√3,BN=√AB 2−AN 2=3, ∴BC=6.∵∠BAC=120°,∠DAE=60°,∴∠BAD +∠CAE=60°,∴∠FAE=∠FAC +∠CAE=∠BAD +∠CAE=60°.在△ADE 和△AFE 中,{AD =AF ∠DAE =∠FAE =60°AE =AE,∴△ADE ≌△AFE (SAS ),∴DE=FE .∵BD=2CE ,BD=CF ,∠ACF=∠B=30°,∴设CE=2x ,则CM=x ,EM=√3x ,FM=4x ﹣x=3x ,EF=ED=6﹣6x .在Rt △EFM 中,FE=6﹣6x ,FM=3x ,EM=√3x ,∴EF 2=FM 2+EM 2,即(6﹣6x )2=(3x )2+(√3x )2,解得:x 1=3−√32,x 2=3+√32(不合题意,舍去), ∴DE=6﹣6x=3√3﹣3.故答案为:3√3﹣3.16.(3分)(2017•武汉)已知关于x 的二次函数y=ax 2+(a 2﹣1)x ﹣a 的图象与x 轴的一个交点的坐标为(m ,0).若2<m <3,则a 的取值范围是 13<a <12或﹣3<a <﹣2 .解:∵y=ax 2+(a 2﹣1)x ﹣a=(ax ﹣1)(x +a ),∴当y=0时,x 1=1a,x 2=﹣a , ∴抛物线与x 轴的交点为(1a,0)和(﹣a ,0). ∵抛物线与x 轴的一个交点的坐标为(m ,0)且2<m <3,∴当a >0时,2<1a <3,解得13<a <12; 当a <0时,2<﹣a <3,解得﹣3<a <﹣2.故答案为:13<a <12或﹣3<a <﹣2. 三、解答题(共8题,共72分)17.(8分)(2017•武汉)解方程:4x ﹣3=2(x ﹣1)解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=1 218.(8分)(2017•武汉)如图,点C、F、E、B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,{CF=BE∠CFD=∠BEA DF=AE,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.19.(8分)(2017•武汉)某公司共有A、B、C三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510B b8C c5(1)①在扇形图中,C部门所对应的圆心角的度数为108°②在统计表中,b= 9 ,c= 6(2)求这个公司平均每人所创年利润.解:(1)①在扇形图中,C 部门所对应的圆心角的度数为:360°×30%=108°; ②A 部门的员工人数所占的百分比为:1﹣30%﹣45%=25%,各部门的员工总人数为:5÷25%=20(人),∴b=20×45%=9,c=20×30%=6,故答案为:108°,9,6;(2)这个公司平均每人所创年利润为:5×10+9×8+6×520=7.6(万元). 20.(8分)(2017•武汉)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件?(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,求该公司有哪几种不同的购买方案?解:(1)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,根据题意得40x +30(20﹣x )=650,解得x=5,则20﹣x=15,答:甲种奖品购买了5件,乙种奖品购买了15件;(2)设甲种奖品购买了x 件,乙种奖品购买了(20﹣x )件,根据题意得{20−x ≤2x 40x +30(20−x)≤680,解得203≤x ≤8, ∵x 为整数,∴x=7或x=8,当x=7时,20﹣x=13;当x=8时,20﹣x=12;答:该公司有2种不同的购买方案:甲种奖品购买了:7件,乙种奖品购买了13件或甲种奖品购买了8件,乙种奖品购买了12件.21.(8分)(2017•武汉)如图,△ABC 内接于⊙O ,AB=AC ,CO 的延长线交AB 于点D(1)求证:AO 平分∠BAC ;(2)若BC=6,sin ∠BAC=35,求AC 和CD 的长. (1)证明:延长AO 交BC 于H ,连接BO ,如图1所示:∵AB=AC ,OB=OC ,∴A 、O 在线段BC 的垂直平分线上,∴AO ⊥BC ,又∵AB=AC ,∴AO 平分∠BAC ;(2)解:延长CD 交⊙O 于E ,连接BE ,如图2所示:则CE 是⊙O 的直径,∴∠EBC=90°,BC ⊥BE ,∵∠E=∠BAC ,∴sinE=sin ∠BAC ,∴BC CE =35, ∴CE=53BC=10, ∴BE=√CE 2−BC 2=8,OA=OE=12CE=5, ∵AH ⊥BC ,∴BE ∥OA ,∴OA BE =OD DE ,即58=OD 5−OD, 解得:OD=2513, ∴CD=5+2513=9013, ∵BE ∥OA ,即BE ∥OH ,OC=OE ,∴OH 是△CEB 的中位线,∴OH=12BE=4,CH=12BC=3, ∴AH=5+4=9,在Rt △ACH 中,AC=√AH 2+CH 2=√92+32=3√10.22.(10分)(2017•武汉)如图,直线y=2x +4与反比例函数y=k x的图象相交于A (﹣3,a )和B 两点(1)求k 的值;(2)直线y=m (m >0)与直线AB 相交于点M ,与反比例函数的图象相交于点N .若MN=4,求m 的值;(3)直接写出不等式6x−5>x 的解集.(1)∵点A (﹣3,a )在y=2x +4与y=k x的图象上, ∴2×(﹣3)+4=a ,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M 在直线AB 上,∴M (m+42,m ),N 在反比例函数y=6x上, ∴N (6m,m ), ∴MN=x N ﹣x m =6m ﹣m−42=4或x M ﹣x N =m−42﹣6m=4, 解得:∵m >0,∴m=2或m=6+4√3;(3)x <﹣1或x5<x <6,由6x−5>x 得:6x−5﹣x >0, ∴6−x 2+5x x−5>0, ∴x 2−5x−6x−5<0, ∴{x 2−5x −6>0x −5<0或{x 2−5x −6<0x −5>0, 结合抛物线y=x 2﹣5x ﹣6的图象可知,由{x 2−5x −6>0x −5<0得{x <−1或x >6x <5,∴{x<−1x<5或{x>6x<5,∴此时x<﹣1,由{x2−5x−6<0x−5>0得,{−1<x<6x>5,∴{−1<x<6 x>5,解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.23.(10分)(2017•武汉)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=35,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=3 5,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)解:(1)如图1中,∵∠ADC=90°,∠EDC +∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC ,∵∠E=∠E ,∴△EDC ∽△EBA ,∴ED EB =EC EA, ∴ED•EA=EC•EB .(2)如图2中,过C 作CF ⊥AD 于F ,AG ⊥EB 于G .在Rt △CDF 中,cos ∠ADC=35, ∴DF CD =35,∵CD=5, ∴DF=3,∴CF=√CD 2−DF 2=4,∵S △CDE =6,∴12•ED•CF=6, ∴ED=12CF=3,EF=ED +DF=6, ∵∠ABC=120°,∠G=90°,∠G +∠BAG=∠ABC ,∴∠BAG=30°,∴在Rt △ABG 中,BG=12AB=6,AG=√AB 2−BG 2=6√3, ∵CF ⊥AD ,AG ⊥EB ,∴∠EFC=∠G=90°,∵∠E=∠E ,∴△EFC ∽△EGA ,∴EF EG =CF AG , ∴6EG =6√3, ∴EG=9√3, ∴BE=EG ﹣BG=9√3﹣6,∴S 四边形ABCD =S △ABE ﹣S △CDE =12(9√3﹣6)×6√3﹣6=75﹣18√3.(3)如图3中,作CH ⊥AD 于H ,则CH=4,DH=3,∴tan ∠E=4n+3, 作AG ⊥DF 于点G ,设AD=5a ,则DG=3a ,AG=4a ,∴FG=DF ﹣DG=5+n ﹣3a ,∵CH ⊥AD ,AG ⊥DF ,∠E=∠F ,易证△AFG ∽△CEH ,∴AG CH =FG EH,∴4a 5+n−3a =4n+3, ∴a=n+5n+6, ∴AD=5a=5(n+5)n+6. 24.(12分)(2017•武汉)已知点A (﹣1,1)、B (4,6)在抛物线y=ax 2+bx 上(1)求抛物线的解析式;(2)如图1,点F 的坐标为(0,m )(m >2),直线AF 交抛物线于另一点G ,过点G 作x 轴的垂线,垂足为H .设抛物线与x 轴的正半轴交于点E ,连接FH 、AE ,求证:FH ∥AE ;(3)如图2,直线AB 分别交x 轴、y 轴于C 、D 两点.点P 从点C 出发,沿射线CD 方向匀速运动,速度为每秒√2个单位长度;同时点Q 从原点O 出发,沿x 轴正方向匀速运动,速度为每秒1个单位长度.点M 是直线PQ 与抛物线的一个交点,当运动到t 秒时,QM=2PM ,直接写出t 的值.解:(1)将点A (﹣1,1)、B (4,6)代入y=ax 2+bx 中,{a −b =116a +4b =6,解得:{a =12b =−12, ∴抛物线的解析式为y=12x 2﹣12x .(2)证明:设直线AF 的解析式为y=kx +m ,将点A (﹣1,1)代入y=kx +m 中,即﹣k +m=1,∴k=m ﹣1,∴直线AF 的解析式为y=(m ﹣1)x +m .联立直线AF 和抛物线解析式成方程组,{y =(m −1)x +m y =12x 2−12x,解得:{x 1=−1y 1=1,{x 2=2m y 2=2m 2−m , ∴点G 的坐标为(2m ,2m 2﹣m ).∵GH ⊥x 轴,∴点H 的坐标为(2m ,0).∵抛物线的解析式为y=12x 2﹣12x=12x (x ﹣1), ∴点E 的坐标为(1,0).设直线AE 的解析式为y=k 1x +b 1,将A (﹣1,1)、E (1,0)代入y=k 1x +b 1中,{−k 1+b 1=1k 1+b 1=0,解得:{k 1=−12b 1=12, ∴直线AE 的解析式为y=﹣12x +12. 设直线FH 的解析式为y=k 2x +b 2,将F (0,m )、H (2m ,0)代入y=k 2x +b 2中,{b 2=m 2mk 2+b 2=0,解得:{k 2=−12b 2=m , ∴直线FH 的解析式为y=﹣12x +m . ∴FH ∥AE .(3)设直线AB 的解析式为y=k 0x +b 0,将A (﹣1,1)、B (4,6)代入y=k 0x +b 0中,{−k 0+b 0=14k 0+b 0=6,解得:{k 0=1b 0=2, ∴直线AB 的解析式为y=x +2.当运动时间为t 秒时,点P 的坐标为(t ﹣2,t ),点Q 的坐标为(t ,0).当点M 在线段PQ 上时,过点P 作PP′⊥x 轴于点P′,过点M 作MM′⊥x 轴于点M′,则△PQP′∽△MQM′,如图2所示.∵QM=2PM ,∴QM′QP′=MM′PP′=23, ∴QM′=43,MM′=23t , ∴点M 的坐标为(t ﹣43,23t ). 又∵点M 在抛物线y=12x 2﹣12x 上, ∴23t=12×(t ﹣43)2﹣12(t ﹣43), 解得:t=15±√1136; 当点M 在线段QP 的延长线上时,同理可得出点M 的坐标为(t ﹣4,2t ),∵点M 在抛物线y=12x 2﹣12x 上, ∴2t=12×(t ﹣4)2﹣12(t ﹣4), 解得:t=13±√892. 综上所述:当运动时间为15−√1136秒、15+√1136秒、13−√892秒或13+√892秒时,QM=2PM .。

相关文档
最新文档