含纳米银的抗菌水凝胶研究
阴道用纳米银温敏喷雾凝胶的研究的开题报告
阴道用纳米银温敏喷雾凝胶的研究的开题报告一、研究背景随着社会的发展和女性健康意识的增强,女性生殖健康受到了越来越多的关注。
阴道炎等疾病的发病率不断上升,给女性的身心健康带来了一定的困扰。
纳米银温敏喷雾凝胶作为一种新型的阴道清洁产品,具有广泛的应用前景。
该产品可以有效杀菌、抗炎、防止感染,改善生殖健康状况。
因此,本研究旨在探讨阴道用纳米银温敏喷雾凝胶的疗效及安全性,为提高女性生殖健康水平提供科学依据。
二、研究内容1. 纳米银温敏喷雾凝胶的制备及性能测试,包括成分分析、物理化学性质、杀菌抗炎作用等。
2. 临床观察阴道用纳米银温敏喷雾凝胶治疗阴道炎的疗效,采用随机对照实验设计,分别观察治疗组和对照组的临床疗效及安全性。
3. 纳米银温敏喷雾凝胶的安全性评估,包括皮肤刺激性、过敏性等。
三、研究意义阴道炎等妇科疾病的治疗一直是女性健康研究的热点之一。
纳米银温敏喷雾凝胶作为一种新型的阴道清洁产品,具有杀菌、抗炎、营养滋润等多种功能,可以有效预防和治疗阴道炎等疾病。
本研究将为女性生殖健康提供一种新的治疗方案,为提高女性生殖健康水平做出贡献。
四、研究方法1. 实验室内制备纳米银温敏喷雾凝胶,测试其物理化学性质和杀菌抗炎作用。
2. 选择合适的研究人员,采用随机对照实验设计,招募符合入选标准的病人,将其随机分为治疗组和对照组,分别进行治疗和观察。
3. 采用SPSS软件对数据进行统计分析,得出结论。
同时进行纳米银温敏喷雾凝胶的安全性评估。
五、预期成果1. 纳米银温敏喷雾凝胶的制备及性能测试数据。
2. 阴道用纳米银温敏喷雾凝胶治疗阴道炎的疗效以及安全评估数据。
3. 本研究的成果将为阴道炎等妇科疾病的治疗提供一种新的治疗方案,从而提高女性生殖健康水平。
参考文献:1. 郑琳琳,赵雨晨. 纳米银在医药领域的应用研究进展[J]. 中国中药杂志, 2018, 43(23): 4669-4675.2. 徐佩玉,张志华,韩艳婷. 基于纳米技术的药物温敏喷雾剂的研究进展[J]. 云南大学学报(自然科学版), 2021, 43(2): 288-296.3. 王亮,李雪. 阴道用纳米银制药研究进展[J]. 世界最新医学信息文摘, 2020, 20(02): 90-92.。
含纳米银的抗菌凝胶和敷料的制备与表征
含纳米银的抗菌凝胶和敷料的制备与表征纳米银通常指粒径小于100 nm的金属银单质。
由于纳米银的表面效应,同等浓度下其抑菌能力要明显好于大颗粒的银单质。
此外,纳米尺度的银单质比银离子具有更好的抑菌效果。
在医疗领域使用的过程中,银单质不会像抗生素那样,会因为细菌的耐药性而导致药效丧失。
正因如此,纳米银在医疗卫生领域的应用成为了近年来研究的热点。
目前,已有纳米银抗菌纤维、纳米银抗菌凝胶和纳米银抗菌敷料等医疗产品相继问世。
其应用范围包括了痤疮、前列腺炎、癣、妇科疾病以及烧伤、创伤等的治疗。
但有研究对当今中国市场上销售的纳米银医疗产品的体外细胞毒性进行了评测,结果发现,绝大多数的含纳米银医疗器械产品都具有Ⅲ级及以上的细胞毒性,生物相容性较差。
对此,本研究的目的是制备出具有较低细胞毒性且具有一定抑菌能力的纳米银医疗产品,其中主要研究方向为纳米银凝胶,次要研究方向为纳米银敷料。
凝胶和敷料可用于皮肤Ⅱ度烧伤中体液渗出期的治疗。
这主要得益于凝胶和敷料的以下六个特性:①具有良好的生物相容性;②能吸收创面的渗出液;③能保持创面的湿润,从而促进肉芽组织的生长和伤口的愈合;④具有抑菌活性并能阻止外部细菌所带来的感染;⑤能较好地黏附在创面上;⑥具有一定的机械强度。
在皮肤Ⅱ度烧伤的体液渗出期中,创面会分泌出大量的体液,临床上除了输液以补充丢失的体液外,还需要及时清理分泌出的体液,因为在潮湿的环境下,富有营养物质的分泌物会孳生大量细菌,从而导致创面的感染,进而影响创口的恢复甚至患者的生命安全。
另外,创面由于没有皮肤的保护,用药时,药物的有效成分和其他分子量较小的成分都会随着受损的皮肤进入创口的细胞和人体的血液循环。
如果药物的成分中有较高细胞毒性的成分,则在治疗的同时,会对患者造成二次伤害。
因此,制备出一种有效抗感染且具有良好生物相容性的凝胶和敷料,对于患者的预后和转归将大有裨益。
通常含纳米银的凝胶和敷料的细胞毒性来源主要有两方面:一是纳米银,二是凝胶和敷料本身的基质。
纳米银抗菌水凝胶作用
纳米银抗菌凝胶作用一、银是一种消毒剂银在医学上的使用可追溯到公元前。
古人知道银有加速创口愈合、防治感染、净化水质和保鲜防腐的作用。
用银器存放食物,能防止细菌生长,延长食物储存期。
我国明代医学家李时珍在《本草纲目》中记述:银屑有安五脏、定心神、止惊悸、除邪气等作用;久服能轻身延年,生银味辛寒、无毒;中医用银诊治有关疾病,西医用银治疡的记载也有100余年。
1884年,德国产科医生Crede将浓度1%的硝酸银溶液滴入新生儿眼中,预防新生儿结膜炎,使婴儿的失明率从10%降至0.2%。
直到今天为止,许多国家仍在使用Crede预防法,我国也不例外。
1893年,试验发现:银对细菌等微生物有杀灭作用。
因此,银成为一种消毒剂。
二、纳米银比银更强——杀菌作用今天,银在医学上有了更广泛的作用。
0.5%的硝酸银是医治烧伤和创伤的标准溶液;10~20%硝酸银涂抹可治疗子宫糜烂。
哥伦比亚大学Fox教授将银与磺胺嘧啶化合,产生磺胺嘧啶银,其活性比单独的磺胺至少强50倍。
纳米银的出现,突破了普通银制剂杀菌力比抗菌素弱的瓶颈。
科学家们发现,银在纳米状态下具有极强的杀菌作用,是普通银的数百倍。
三、纳米银的抗菌机理:纳米银颗粒直接进入菌体与氧代谢酶(-SH)结合,使菌体窒息而死;能和细菌细胞壁上暴露的肽聚糖反应,产生可塑性化合物,阻止病菌活动,杀死病菌;银可以和病原体的DNA结合,导致细菌DNA结构变异,抑制了DNA 复制,导致病菌失去了活力。
这种独特的作用机制,可杀死与其接触的大多数细菌、霉菌、孢子等微生物。
经国内八大权威机构研究发现:纳米银对耐药病原菌,如:耐药大肠杆菌、耐药金葡萄球菌、耐药绿脓杆菌、化脓链球菌、耐药肠球菌、厌氧菌等均有较强的抗菌活性;对烧烫伤及创伤表面常见的细菌,如:金黄色葡萄球菌、大肠杆菌、绿脓杆菌、白色念珠菌及其它G+、G-致病菌等均有杀菌作用;对沙眼衣原体、性传播疾病的淋球菌也有强大的杀菌作用。
四、纳米银的抗菌特点:①强效杀菌:研究发现,Ag可在数分钟内杀死650多种细菌。
《纳米银-天然高聚物复合抗菌溶胶的合成及其性能研究》
《纳米银-天然高聚物复合抗菌溶胶的合成及其性能研究》篇一纳米银-天然高聚物复合抗菌溶胶的合成及其性能研究一、引言随着科技的发展和人们对健康生活品质的追求,抗菌材料在医疗、食品包装、环境治理等领域的应用日益广泛。
纳米银因其良好的抗菌性能和生物相容性,成为一种重要的抗菌材料。
然而,单纯的纳米银在应用过程中存在易团聚、稳定性差等问题。
因此,本文提出了一种新型的纳米银/天然高聚物复合抗菌溶胶,通过复合天然高聚物以提高其稳定性和抗菌效果。
二、文献综述目前,国内外对于纳米银及其复合材料的制备与应用研究较为丰富。
研究表明,纳米银因其小尺寸效应、表面效应等特性,具有显著的抗菌性能。
同时,天然高聚物具有良好的生物相容性、可降解性和环保性,是改善纳米银性能的重要材料。
在合成过程中,采用适当的方法将纳米银与天然高聚物结合,可以有效提高其稳定性和抗菌性能。
三、实验部分(一)材料与试剂1. 纳米银溶液:市售或自制;2. 天然高聚物:如壳聚糖、淀粉等;3. 其他试剂:如溶剂、交联剂等。
(二)合成方法采用溶胶-凝胶法或原位还原法等,将纳米银与天然高聚物进行复合,制备出纳米银/天然高聚物复合抗菌溶胶。
具体步骤如下:1. 制备纳米银溶液;2. 将天然高聚物溶解在适当溶剂中;3. 在一定条件下,将纳米银溶液与天然高聚物溶液混合,进行复合反应;4. 通过交联剂等手段增强复合溶胶的稳定性;5. 洗涤、干燥,得到纳米银/天然高聚物复合抗菌溶胶。
(三)表征方法采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、动态光散射(DLS)等技术对合成产物进行表征,分析其形貌、粒径、分散性等性能。
同时,采用紫外-可见光谱(UV-Vis)、红外光谱(IR)等技术对产物进行结构分析。
四、结果与讨论(一)形貌与结构分析通过TEM、SEM等表征手段,观察到纳米银颗粒均匀地分布在天然高聚物基质中,形成了一种稳定的复合溶胶。
同时,通过UV-Vis、IR等手段对产物进行结构分析,证实了纳米银与天然高聚物之间的成功复合。
含纳米银的抗菌水凝胶研究
含纳米银的抗菌水凝胶研究杨立群;林凯城;沈荣春;马林;张黎明;卢亢【摘要】为赋予水凝胶的抗菌性能,该文对含有纳米银的水凝胶进行了研究.首先在硝酸银溶液加入硼氢化钠还原剂和聚乙烯砒咯烷酮分散剂,合成纳米银;然后将不同体积的纳米银分散液加入到卡波姆溶液中,搅拌下滴加氢氧化钠溶液,制备含纳米银的水凝胶.紫外-可见光谱法的结果表明硝酸银被还原成纳米银,X-射线粉末衍射法证实纳米银被分散在水凝胶中,并通过Scherrer公式计算出纳米银的尺寸约为5 nm.溶胀性能测试结果表明水凝胶的溶胀率约为900%.抑菌性能测试结果显示,当水凝胶中纳米银浓度为10 μg/mL(低于纳米银的安全浓度25 μg/mL),水凝胶能有效抑制大肠杆菌和金黄色葡萄球菌的生长.所制备的抗菌水凝胶可望应用于创伤皮肤和皮肤疾病的外用治疗.%The silver nanoparticles-based hydrogels were investigated in order to increase the antibacterial property in this work. The silver nanoparticles were synthesized in aqueous silver nitrate solution by adding sodium borohydride as a reduction reagent and polyvinyl pyrrolidone as a dispersion aid. And then the silver nanoparticles-based hydrogels were further prepared in the carbomer solution by adding the dispersion solutions of silver nanoparticles with different volumes and sodium hydroxide solution. The result of UV-vis analysis indicated that the silver nanoparticles were successfully synthesized. The existence of silver nanoparticles in the hydrogels was confirmed by X-ray scattering analysis, and the diameters of silver nanoparticles were calculated to be about 5 nm according to the Scherrer equation. The swelling ratio of the hydrogels was determined to be 900%. The hydrogels exhibited strong antibacterialproperties to Escherichia coli and Staphylococcus aureus with the content of silver nanoparticles 10 μg/mL, which is lower than the safe content of silver nanoparticles 25 μg/mL. The hydrogels are thus anticipated to be used for the treatment of wounded skin and skin disease.【期刊名称】《中山大学学报(自然科学版)》【年(卷),期】2011(050)006【总页数】4页(P58-61)【关键词】水凝胶;纳米银;卡波姆;抗菌性能;溶胀性能【作者】杨立群;林凯城;沈荣春;马林;张黎明;卢亢【作者单位】中山大学化学与化学工程学院//聚合物复合材料及功能材料教育部重点实验室//新型聚合物材料设计合成与应用广东省高校重点实验室,广东广州510275;中山大学化学与化学工程学院//聚合物复合材料及功能材料教育部重点实验室//新型聚合物材料设计合成与应用广东省高校重点实验室,广东广州 510275;中山大学化学与化学工程学院//聚合物复合材料及功能材料教育部重点实验室//新型聚合物材料设计合成与应用广东省高校重点实验室,广东广州 510275;中山大学化学与化学工程学院//聚合物复合材料及功能材料教育部重点实验室//新型聚合物材料设计合成与应用广东省高校重点实验室,广东广州 510275;中山大学化学与化学工程学院//聚合物复合材料及功能材料教育部重点实验室//新型聚合物材料设计合成与应用广东省高校重点实验室,广东广州 510275;广东泰宝科技医疗用品有限公司,广东普宁 515300【正文语种】中文【中图分类】O635水凝胶是一种三维立体、以化学键或物理交联作用形成的亲水性聚合物网络,它既有液体的运动性和流动性,又具有固体的形稳性[1]。
浅析纳米银抗菌凝胶治疗阴道炎、宫颈糜烂的临床效果
浅析纳米银抗菌凝胶治疗阴道炎、宫颈糜烂的临床效果摘要:目的:研究分析纳米银抗菌凝胶在阴道炎、宫颈糜烂治疗中的效果。
方法:此次研究的对象是选取我院2013年4月至2015年4月间收治的60例阴道炎、宫颈糜烂患者,将其临床资料进行回顾性分析,并对其采用纳米银进行治疗,并对治疗效果进行分析。
结果:60例患者中阴道炎以及宫颈糜烂情况治疗中仅有3例伴有宫颈糜烂的患者治疗效果较差,其中1例为中度宫颈糜烂患者,2例为重度宫颈糜烂患者,其余患者治疗效果均比较理想。
结论:纳米银对轻度、中度宫颈糜烂患者的治疗效果较为显著,对阴道炎患者的治疗效果也非常显著。
关键词:纳米银;阴道炎;宫颈糜烂Abstract:Objective:To study and analyze the effect of nanometer silver antibacterial gel in the treatment of vaginitis and cervical erosion. Methods:the research object is selected in our hospital from April 2013 to April 2015 were treated60 cases of vaginitis,cervical erosion patients,retrospective analysis,and its treatment with silver nanoparticles,and the treatment effect analysis. Results:60 cases of patients with treatment effect in patients with vaginitis and cervical erosion treatment in only 3 cases of cervical erosion with the poor,including 1 cases of moderate cervical erosion patients,2 cases of patients with severe cervical erosion,the rest of the patients,treatment effects are ideal. Conclusion:nano silver treatment of mild and moderate cervical erosion patients is more effective,and the treatment of vaginitis patients is also very significant.[keyword] nano silver;vaginitis;cervical erosion宫颈糜烂和阴道炎是妇科中常见的两种疾病,且此两种疾病的发病率比较高,对女性的身心健康造成很大的影响。
邦尔洁纳米银抗菌水凝胶治疗宫颈糜烂中度的临床研究
邦尔洁纳米银抗菌水凝胶治疗宫颈糜烂中度的临床研究发表时间:2015-11-19T10:40:55.883Z 来源:《健康世界》2015年2期供稿作者:李和清[导读] 益阳市赫山区中医医院邦尔洁纳米银抗菌水凝胶用于治疗宫颈糜烂中度的治疗高效、安全。
益阳市赫山区中医医院摘要:目的:评价邦尔洁纳米银抗菌水凝胶治疗宫颈糜烂中度的临床有效性及安全性。
方法:2012年5月至2014年5月,采用,随机双盲阳性药物,平行对照试验。
设计方法,将益阳市赫山区中医院就诊的,经筛选符合宫颈糜烂中度的487例患者随机分为观察组240例,对照组247例。
观察组用邦尔洁纳米银抗菌水凝胶一天一次,一次一支,阴道上药,6天为一疗程,用三个疗程。
对照组用消糜栓,一天一次,一次一粒,阴道上药,5天为一疗程,用三个疗程。
比较两组患者用药后的临床治愈率和不良反应发生率。
结果:疗程结束时,临床治愈率观察组为80%(192/240),对照组为60%(148/247),两者比较,差异有统计学意义(P<0.05﹚。
不良反应发生率观察组4%(10/240),对照组为3%(8/247)两组比较差异无统计学意义(P>0.05)。
结论:邦尔洁纳米银抗菌水凝胶用于治疗宫颈糜烂中度的治疗高效、安全。
关键词:邦尔洁纳米银抗菌水凝胶;宫颈糜烂中度;临床研究邦尔洁纳米银抗菌水凝胶主要由纳米银和给水凝胶器两部分组成,该产品具有消炎、杀菌、止痒作用,对金黄色葡萄球菌、大肠杆菌、淋球菌、白色念珠菌、真菌、酵母菌等病原体微生物的生长有明显抑制作用。
临床主要用于各种妇科阴道炎、宫颈炎(宫颈糜烂)的治疗。
其临床上的主要不良反应为对金属银过敏者。
消糜栓具有清热解毒、燥湿杀虫、去腐生肌作用。
邦尔洁纳米银抗菌水凝胶治疗宫颈糜烂中度作用明显优于消糜栓。
本研究通过多中心、随机、对照研究,评价邦尔洁纳米银抗菌水凝胶治疗宫颈糜烂中度的临床疗效和安全性。
资料与方法一、资料来源2012年5月至2014年5月,选择在益阳赫山区中医院就诊的宫颈糜烂患者,年龄在20~55岁,诊断标准参考乐杰和谢幸、丰有吉主编的《妇产科学》[1]。
纳米银抗菌凝胶治疗阴道炎、宫颈糜烂的疗效观察
纳米银抗菌凝胶治疗阴道炎、宫颈糜烂的疗效观察【摘要】目的采用纳米银抗菌凝胶治疗阴道炎、宫颈糜烂患者,并分析治疗效果。
方法研究资料是江苏无锡锡山区东亭街道社区卫生服务中心收集到的患有阴道炎、宫颈糜烂的患者,共计120例,收集病例的时间节点为2018年9月至2019年9月,对全部患者均应用纳米银抗菌凝胶治疗,治疗9天为治疗治疗疗程,治疗后观察患者的治疗效果情况。
结果纳米银抗菌凝胶治疗阴道炎的总有效率为95.83%,治疗宫颈糜烂的总有效率为83.33%,其中治疗轻度宫颈糜烂有效率为100%,治疗中度宫颈糜烂有效率为87.5%。
经过统计分析结果明确纳米银抗菌凝胶治疗单纯型宫颈糜烂的有效率为95.00%。
结论应用纳米银抗菌凝胶治疗阴道炎,治疗轻、中度宫颈糜烂、单纯型宫颈糜烂有较好的治疗效果,可以在临床中继续推广使用。
【关键词】纳米银抗菌凝胶;阴道炎;宫颈糜烂;疗效阴道炎、宫颈糜烂这两种疾病均是临床上常见的妇科类疾病,对广大女性的身体健康危害极大,临床中对这两种疾病的治愈率较低[1],并且疾病的复发率较高,处理起来十分棘手。
为了研究治疗方法与治疗效果,本文应用纳米银抗菌凝胶治疗阴道炎与宫颈糜烂患者,现将治疗过程介绍如下:1资料和方法1.1一般资料本次研究选取的研究资料是江苏无锡锡山区东亭街道社区卫生服务中心收集到的患有阴道炎、宫颈糜烂的患者,共计120例,这些患者资料均是在 2018年9月至2019年9月期间收集到的,经过统计调查得知患者的年龄为20-55岁。
全部患者均经过临床检查确诊,均为同时患有阴道炎与宫颈糜烂的患者。
1.2 材料纳米银抗菌凝胶由深圳市爱杰特医药科技有限公司研制。
1.3治疗措施嘱患者在每晚睡觉之前清洁外阴,确保外阴清洁干净,然后应用凝胶器将抗菌凝胶推入阴道深部,每晚使用1支,9天为一个治疗疗程。
阴道炎、宫颈糜烂治疗结束后3天复查[2]。
询问患者自觉症状改善情况,对患者的阴道、宫颈糜烂情况进行复查,并对分泌物进行相应的实验室检查。
制备含有纳米银粒子的聚乙烯醇水凝胶及纳米银加量对抗菌性能的影响
制备含有纳米银粒子的聚乙烯醇水凝胶及纳米银加量对抗菌性能的影响Preparation and Antibacterial Effects of PVA-PVP Hydrogels Containing Silver NanoparticlesHaijun Yu,1,2Xiaoyi Xu,1,2Xuesi Chen,1Tiancheng Lu,1,2Peibiao Zhang,1Xiabin Jing1 1State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry, Chinese Academy of Sciences,Changchun130022,People’s Republic of China 2Graduate School of Chinese Academy of Sciences,Beijing100039,People’s Republic of ChinaReceived20April2006;accepted14May2006DOI10.1002/app.24835Published online in Wiley InterScience().ABSTRACT:The poly(vinyl alcohol)/poly(N-vinyl pyr-rolidone)(PVA–PVP)hydrogels containing silver nanopar-ticles were prepared by repeated freezing–thawing treat-ment.The silver content in the solid composition was in the range of0.1–1.0wt%,the silver particle size was from 20to100nm,and the weight ratio of PVA to PVP was 70:30.The in?uence of silver nanoparticles on the proper-ties of PVA–PVP matrix was investigated by differential scanning calorimeter,infrared spectroscopy and UV–vis spectroscopy,using PVA–PVP?lms containing silver par-ticles as a model.The morphology of freeze-dried PVA–PVP hydrogel matrix and dispersion of the silver nanoparticles in the matrix was examined by scanning electron microscopy. It was found that a three-dimensional structure was formed during the process of freezing–thawing treatment and nose-rious aggregation of the silver nanoparticles occurred.Water absorption properties,release of silver ions from the hydro-gels and the antibacterial effects of the hydrogels against Escherichia coli and Staphylococcus aureus were examined too. It was proved that the nanosilver-containing hydrogels had an excellent antibacterial ability.ó2006Wiley Periodicals,Inc. J Appl Polym Sci103:125–133,2007Key words:silver;hydrogel;antibiotic;wound dressingINTRODUCTIONDespite major advances in burn wound management and other supportive care regimens,infection re-mains the leading cause of morbidity in the ther-mally injured patients,and the search for different treatments and new ideas is continuing.1Silver metal and silver ions have been known as effective anti-microbial agents for a long time,The application of silver-binding membranes has recently been sug-gested to further reduce the silver toxicity,to retard the movement of silver ions,and to minimize silver absorption at a healing wound.2–4 There have been several kinds of silver-containing materials that can be used for wound dressing.For example,silver sulfadiazine containing chitosan-based wound dressing,5–7dendrimer–silver complexes and nanocomposites,8nanosilver/cellulose acetate com-posite?bers,and silver nylon dressings were all proved to be antibacterial.9,10Beside an antibiotic ability,however,the principal function of a wound dressing is to provide an optimal healing environ-ment,e.g.,isolation from the external environment,complete coverage of the wound surface to prevent further contamination or infection,and maintenance of a moist microenvironment next to the wound sur-face.11Hydrogelsconsist of three-dimensional hydro-philic polymer networks in which a large amount of water is interposed.Because of their unique proper-ties,a wide range of medical,pharmaceutical,and prosthetic applications have been proposed for them.12So hydrogel wound dressings are better choice than fabrics or?lms for burn injury treatment. Many polymers can be used to prepare hydrogels, such as poly(vinyl alcohol)(PVA)and poly(vinyl pyr-rolidone)(PVP).PVA is a well-known biologically friendly polymer and has been developed for biomed-ical applications such as arti?cial pancreas,13–15syn-thetic vitreous body,16wound dressing,arti?cial skin, and cardiovascular device.17,18PVP is one of the most widely used polymers in medicine because of its solu-bility in water and its extremely low cytotoxicity.19A recent work described the topical application of PVP onto the skin for transdermal delivery of drugs.20 Combination of the properties of PVA and PVP in PVA–PVP blends has led to the preparation of new biomaterials.21,22In our previous study,23physically crosslinked PVA–PVP hydrogels with perfect me-chanical properties were prepared by cyclic freezing–thawing treatment.In this paper,therefore,great attempts are made to incorporate silver nanoparticles into PVA–PVP hy-drogels to combine the good mechanical strength ofCorrespondenceto:X.Jing(**************.cn).Contract grant sponsor:National Natural Science Founda-tion of China;contract grant numbers:20274048,50373043. Contract grant sponsor:Chinese Academy of Sciences;con-tract grant number:KJCX2-SW-H07.Journal of Applied Polymer Science,Vol.103,125–133(2007) V C2006Wiley Periodicals,Inc.PVA–PVP hydrogel wound dressing and the power-ful antibacterial ability of nanosilver together.Theformulation and properties of this novel wound dress-ing,the in vitro release pro?les of the silver ions fromthe hydrogel and the antibacterial activity againstGram-negative Escherichia coli(E.coli)and Gram-posi-tive Staphylococcus aureus(S.aureus)are reported.EXPERIMENTALMaterialsPolyvinal alcohol(PVA)with a hydrolysis degree of99.0–99.8%(molecular weight?7.3?104–7.7?104)was supplied by Shanghai Chemical Reagent Com-pany(Shanghai,China).PVP(molecular weight ?3.6?105)was purchased from BASF Chemical Co.(Ludwigshafen,Germany).These polymers wereused without further puri?cation.Silver nitrate(AgNO3),sodium citrate and all other reagents wereof analytical grade and used without further puri?-cation.Distilled water was used as solvent in allexperiments.PreparationsPreparation of silver solsThe silver nanoparticles were prepared by sodiumcitrate reduction of AgNO3.24Typically,18mg ofAgNO3was dissolved in100mL of distilled waterand brought to boiling.Two milliliters of1%solu-tion of trisodium citrate was added,and the solutionwas kept on boiling for$1h.The Ag sol prepared was greenish yellow.Preparation of Ag/PVA–PVP composite hydrogelsA PVA–PVP aqueous solution was added into the preparedAg sol.The total concentration of PVA and PVP was$12wt%and the PVA-to-PVP weight ratio was70:30.The weight contents of silver with respect to the PVA–PVP amount used were0.1,0.2, 0.4,0.8,and1.0wt%,respectively.The mixture so-lution was put into the wells of a24-well plate and was frozen at(à208C for12h and then thawed at 258C for12h.This treatment was repeated for three times and hydrogel disks of about3mm in thickness were obtained.The total solid content in the hydro-gels was12wt%.Preparation of Ag/PVA–PVP composite?lmsTo investigate the interaction between silver and PVA–PVP matrix,nanosilver/PVA–PVP composite ?lms were prepared as models for Ag/PVA–PVP hy-drogels.The mixture solutions were prepared by the same method as for Ag/PVA–PVP hydrogels but the total concentration of PVA and PVP was$1wt%. Then the mixture solutions were cast onto glass slides and dried in vacuum for24h at608C to obtain the composite?lms of ca.100m m in thickness. CharacterizationStructure and morphologyUV–Vis spectra of the silver sols and the Ag/PVA–PVP?lms were collected using a UV-2400spectro-photometer(2100,Shimadzu,Kyoto,Japan)with a slit width of2.0nm.The size distribution of the sil-ver nanoparticles was measured using a transmission electron microscope(TEM-20100TOEL,Tokyo,Japan) and a dynamic light scattering instrument(DLS)with a vertically polarized He–Ne laser(DAWN EOS,Wyatt Technology,Santa Barbara,CA)at a?xed scattering angle of908and at a constant temperature of258C. The structures of the Ag/PVA–PVP?lms were charac-terized by Fourier transform infrared spectroscopy (FTIR,Bruker Vertex70,Ettlingen,Germany).A differ-ential scanningcalorimeter(DSC-7,Perkin–Elmer,Nor-walk,CT)was employed to detect the crystalline status in the nanoAg/PVA–PVP?lms over the temperature range of50–2408C at a scanning rate of108C/min under nitrogen protection.The surface and cross sec-tion morphology of the freeze-dried nanoAg/PVA–PVP hydrogels was examined using a?eld emission scanning electron microscope(FE-SEM,FEI/Philips, Hillsboro,OR).Water take-upThe prepared hydrogel plates were immersed in dis-tilled water of200-folds mass at378C for24h,23then they were taken out and weighed after removal of the free water on the surfaces with?lter paper.The equilibrium swelling-ratio(ESR)was calculated by ESRe%T?eW eàW dT=W d?100%where W e was the weight of the swollen gel in equi-librium state and W d was the solid weight in the hydrogel.Release of silver ions from the hydrogelsThe in vitro release pro?les of silver ions from the hydrogels were obtained by the method developed by Radhesh Kumar.25Brie?y,the hydrogels of0.3g was stored in a?ask containing10mL aqueous me-dium(9.5mL distilled watert0.5mL0.1N HNO3) at378C and the?ask was oscillated at a frequency of126YU ET AL.60rpm in a rotary shaker.HNO 3was added to pro-tect the released Ag tions from being reduced to me-tallic silver.The concentrations of silver ions released from the hydrogels into the water were measured using an inductively coupled plasma atomic absorb-ance spectrometer (SPS-1500VR,Seiko Instruments,Tokyo,Japan).Antibacterial ability of the nanoAg/PVA–PVP hydrogelsAntibacterial test was performed by modi?ed Kirby Bauer technique and LB broth method.26Following two microorganisms were used:S.aureus strain 209,ATCC 25,923,which is Gram-positive and can exist on the body surface of mammals; E.coli ,ATCC 25,922,which is Gram-negative and is a widespread intestinal parasite of mammals.The bacteria were cultivated at 378C in sterilized LB broth (peptone 10g,yeast extract 5g,NaNO 310g,distilled water 1000mL)at 90rpm in a rotary shaker for 16h.In the modi?ed Kirby Bauer method,a droplet of 50m L bacteria medium was dispensed onto an agar plate,then the hydrogel disks were placed and the incuba-tion was continued for 24h at 378C.In the LB broth method,the hydrogel disks of 0.3g were put in the ?asks,which contained 10mL aqueous medium at 378C and were oscillated at a frequency of 60rpm for periods ranging from 1to 96h.Then 3.0mL of the above aqueous solution was mixed with 3.0mL of the bacteria medium,the incubation was contin-ued for another 6h.Culture with pure LB broth served as control.The optical density (OD)of the bacterial broth medium at 600nm was measured by a UV–vis spectrophotometer.The inhibition ratios for the nanoAg/PVA–PVP hydrogels were calcu-lated as follows: Inhibition ratio e%T?100à100eA t àA 0T=eA con àA 0Twhere A 0was the OD for bacterial broth medium before incubation;A t and A con were the ODs for hydrogel and control sample after 6h incubation,respectively.RESULTS AND DISCUSSIONSilver nanoparticlesThe silver nanoparticles were prepared as a nanosil-ver sol or a silver colloid by reducing AgNO 3with sodium citrate.Their TEMimage is shown in Figure 1.Their average size is about 100nm.Their surfaces are smooth.Figure 2shows their diameter distribu-tion determined by DLS,ranging over 30–170nm with an average of 100nm.A typical absorption spectrum of the silver colloidal solution is shown in Figure 3(a).According to Ref.27,this band is assigned to the surface plasmon absorption (SPR)of the nanosilver particles.It peaks at 425nm and has a band width at half maximum of $130nm,which is an indication of the particle sizedistribution.Figure 1Typical TEM micrograph of the silver nanopar-ticles prepared by sodium citrate reduction of AgNO 3.Figure 2Size distribution of the silver nanoparticles determined by DLS measurement.PVA–PVP HYDROGELS CONTAINING SILVER NANOPARTICLES 127Ag/PVA–PVP composite ?lmsTo investigate possible interactions between the sil-ver nanoparticles and the PVA–PVP matrix in the Ag/PVA–PVP composite hydrogels and to under-stand the in?uence of the silver nanoparticles on the structure and performance of the hydrogels,compos-ite,Ag/PVA–PVP ?lms were prepared in the pres-ent study as a model of Ag/PVA–PVP hydrogels.The same mixture solutions were used for both com-posite ?lms and composite hydrogels.Therefore,the model ?lms have the same solid composition as the composite hydrogels.Because there is no interfer-ence of water in the model ?lms,they can be easily characterized by various techniques.Figure 3also shows the UV–vis spectra of the Ag/PVA–PVP composite ?lms.The SPR bands of the Ag/PVA–PVPcomposite ?lms show different peak positions and peak widths.For the ?lms containing 0.2,0.4,0.8,and 1.0wt %of nanosilver,the bands peak at 410,419,425,and 443nm,pared with Figure 3(a)for the pure silver colloi-dal solution,the ?rst two show blue-shifts while the other two show red-shifts.Among the four compos-ite ?lms,only the one containing 1.0wt %of silver shows comparable band width (160nm)to the col-loidal solution,the rest three give narrower band widths (70–130nm).It has been proved that PVA and PVP are both good stabilizing agents for silver nanoparticles.27,28So the blue-shifts and the nar-rower widths of the SPR bands can be explained as the smaller size and more uniform size distribution of the silver nanoparticles in the ?rst two composite ?lms and the red-shifts and wider width indicate the opposite variations,which can be induced by ag-glomeration of the Ag nanoparticles and/or change of the dielectric properties of the surrounding envi-ronment.29This can be further explained by consid-ering the interactions between the nanosilver and the PVA–PVP matrix in the following discussions.As seen in Figure 4,an increase of the silver con-tent in the Ag/PVA–PVP composite ?lms leads to enhancement of the 1145cm à1band for the ?lms containing 0.1and 0.2wt %of nanosilver and to weakening of the same band for the ?lms containing more nanosilver.This band can be assigned to C ààO stretching vibration of PVA.It is a measure of the interaction between PVP and PVA.Its enhancement and weakening with silver-content reveal involve-ment of the nanosilver in the interaction between PVP and PVA.The DSC traces of pure PVA–PVP and nanoAg/PVA–PVP composite ?lms with various contents of silver are shown inFigure 5.The melting tempera-tures (T m ),glass transition temperatures (T g )and melting enthalpies (D H m )of the various samples are listed in Table I.Sure enough,the T m ,T g ,and D H m all show similar variations with increasing nanosil-ver content,i.e.,increasing (T g and D H m )or decreas-ing (T m )for the ?lms containing 0.1,0.2and 0.4wt %of nanosilver and changing reversely for those ?lms containing more nanosilver.It is noticed that all Ag/PVA–PVP ?lms show more D H m than the PVA–PVP ?lm.These results differ from that reported by Z.H.Mbhele et al.29In their study,incorporation of silver particles,with average diameter of 5nm,into the PVA matrix led to a dramatic decrease in T m and increaseinFigure 3UV–vis absorption spectra of as-prepared silver sol in water (a)and nanoAg/PVA–PVP composite ?lms (b–e).Silver contents:(b)0.2wt %;(c)0.4wt %;(d)0.8wt %;(e)1.0wt%.Figure 4FTIR spectra of pure PVA–PVP and nanoAg/PVA–PVP composite ?lms with different Ag contents (0.1,0.2,0.4,0.8,and 1.0wt %).128YU ET AL.T g both by more than 208C but did not affect crystallin-ity in PVA.They explained the observed effects as the reduced mobility of the PVA chains attached to the sur-face of the Ag nanoparticles.To explain the above results of UV–vis,FTIR,and DSC observations,we have to consider the possible interactions in the Ag/PVA–PVP systems,i.e.,those between PVA and PVP,between PVA and nanosilver,and between PVP and nanosilver.In the previous work,23we proved that the crystallinity of PVA in PVA–PVP hydrogels decreased with increasing PVP content,because of the interfer-ence of PVP to the crystallization of PVA.It seems that the PVP has stronger interaction than the PVA does with the silver particles.When silver particles are added into the PVA–PVP matrix,they interact with the PVP molecules preferentially,the interaction between PVA and PVP molecules is weakened,which results in the improvement of the crystallinity ofPVA in the composite (indicated by the increase of D H m ).On the other hand,interactions between the silver particles and the PVA molecules still exist,so mobility of the PVA chains attached to the surfaces of the Ag particles is reduced.29When silver content is 0.4wt %,the lowest T m and highest T g are obtained.Further increment of the silver content results in aggregation of the silver nano-particles,weakening of their interactions with both PVA and PVP,and enhancement of the interaction between PVP and PVA.This is in accordance with the FTIR data.On the basis of the above results,we can draw a conclusion that silver particles could be equably dis-persed in the PVA–PVP hydrogel matrix due to their interaction with the PVA–PVP matrix.Therefore,PVA–PVP hydrogel could be used as an eligible sil-ver nanoparticle carrier to prepare silver-containing hydrogels used for wound dressing.Ag/PVA–PVP composite hydrogels Water absorptionBesides good mechanical properties,a hydrogel wound dressing has to absorb the exudates on the wound surface and provide a wet environment for the wound.So the water absorbing and keeping abil-ity of hydorgels is very important.Water-take-up ability of the Ag/PVA–PVP hydrogels is shown in Figure 6.It can be found that all hydrogels show a swelling ratio as high as 40folds,which is enough for hydrogel wound dressings.The incorporation of the nanosilver in the hydrogel does not in?uence the water absorption ability.SEM analysisIt is well known that a porous surface is important for the transport of oxygen from outside to insideofFigure 5DSC curves of pure PVA–PVP and nanoAg/PVA–PVP composite ?lms with various contents of silver (For clarity,curves are presented in the range 180–2308C.Heating rate 108C/min).TABLE IMelting Enthalpy (D H m ),Melting Peak Temperature (T m ),and Glass Transition Temperature (T g )of Pure PVA–PVP and Ag/PVA–PVP Composite FilmsAg (wt %)T g (8C)T m (8C)D H m (J/g)088.3216.425.50.188.7215.431.60.290.621333.10.495208.92 8.30.887.1210.432188.6214.734Figure 6Water absorption ability of pure PVA–PVP and nanoAg/PVA–PVP composite hydrogels with various con-tents of silver.PVA–PVP HYDROGELS CONTAINING SILVER NANOPARTICLES 129Figure 7SEM images of pure PVA–PVP and nanoAg/PVA–PVP composite hydrogels.(a)surface image of PVA–PVP hydrogel plate;(b)surface image of 0.1wt %Ag/PVA–PVP hydrogel plate;(c)surface image of 0.8wt %Ag/PVA–PVP hydrogel plate;(d)cross-section image of 0.1wt %Ag/PVA–PVP hydrogel plate;(e)cross-section image of 0.8wt %Ag/PVA–PVP hydrogel plate.130YU ET AL.the wound dressing,and a three-dimensional net-work structure is crucial to absorbing and keeping large amount of water in hydrogel materials.We examined the surface and cross-sectional morpholo-gies of Ag/PVA–PVP composite hydrogels by SEM. As shown in Figure7,porous surface morphology and three-dimensional network structure in the cross section are formed in both PVA–PVP and Ag/PVA–PVP hydrogels.No distinguished difference is found for the hydrogels with different silver contents.No serious aggregation of the nanoparticles is observed even when the silver content is up to1wt%.This can be explained as a stable network structure formed in the hydrogels and the strong interaction between the silver particles and the PVA and PVP molecules as we have discussed in the previous section.In vitro release of silver ions from the hydrogelsThe antimicrobial activity of silver is dependent on the silver cation Agt,which binds strongly to elec-tron-donating groups in biological molecules con-taining sulfur,oxygen or nitrogen.Hence the silver-based antimicrobial polymers have to release the Agtto a pathogenic environment to be effective.In this work the silver release model developed by Radhesh Kumar was employed,and atomic absorp-tion spectroscopy(AAS)was used for the quantita-tive determination of the silver ion released from the hydrogels.25Five Ag/PVA–PVP hydrogel samples with silver contents of0.1,0.2,0.4,0.8,and1.0wt% with respect to total PVA–PVP weight were used. The duration of96h was selected for the release experiment to study the whole release process of the silver ions.As shown in Figure8(A),the release of silver ions from the hydrogels is very quick at the beginning and then becameslower and slower.The silver ion release shows dependence to some extent on the silver content in the hydrogels.For example, the amount of silver ions released in the?rst12h increases with increasing silver content in the hydro-gels,being0.20,0.45,1.35,3.76,and6.26ppm for the samples containing0.1,0.2,0.4,0.8,and1.0wt%of silver content,respectively.When the silver ion con-centration released is plotted against square root of incubation time h1/2[Fig.8(B)],linear relationships are obtained,except for the initial stages of soaking. This indicates that the release of silver ions is con-trolled by the interdiffusion of the ions within the hydrogel.30In vitro antibacterial effectUsing a modi?ed Kirby Bauer technique,the bacteri-cidal effects of two Ag/PVA–PVP hydrogels and pure PVA–PVP hydrogel were evaluated compara-tively.26After24h incubation at378C,the Ag/PVA–PVP hydrogels showed antibacterial effect on Gram-positive S.aureus and Gram-negative E.coli.The diameter of inhibition zone for the1.0wt%Ag/ PVA–PVP hydrogel is slightly larger than that for the0.2wt%Ag/PVA–PVP sample(see Fig.9).As a control,the pure PVA–PVP hydrogel showed no inhibition ability.Elemental silver has been believed to function antimicrobially either as a release system for silver ions or as a contact-active material.31In the present study,the Ag/PVA–PVP hydrogels seem to be only contact-active.The diffusing ability of the sil-ver ions on agar plate might have been limited by the formation of secondary silver compounds,which is the limitation of the Kirby Bauer technique as a quantitative tool to determine the antimicrobial ac-tivity.32Therefore,LB medium method wasintro-Figure8Silver ion release pro?les of nanoAg/PVA–PVP composite hydrogels with various contents of silver:(A) the concentration of silver ion released versus time;(B)the concentration of silver ion released versus square root of time.(&)1.0wt%;(!)0.8wt%;(~)0.4wt%;(l)0.2wt %;(n)0.1wt%.PVA–PVP HYDROGELS CONTAINING SILVER NANOPARTICLES131duced to determine the antimicrobial activity of Ag/PVA–PVP hydrogels quantitatively.26Pure PVA–PVP hydrogel and four Ag/PVA–PVP samples (Ag wt %?0.1,0.2,0.4,and 1.0,respectively)were tested.As shown in Figure 10,the antibioticability to E.coli ,expressed as inhibition ratio,was enhanced with increasing silver content in the hydrogels.When the silver content was 1.0wt %,the inhibition ratio reached up to 90%.CONCLUSIONSThe PVA–PVP hydrogels containing silver nanopar-ticles were prepared through repeated freezing–thawing treatment.The silver content with respect to the polymers used was in the range of 0.1–1.0wt %.The silver particle size was from 20to 100nm as measured by TEM and SDLS.By using PVA–PVP ?lms containing silver particles as a model,the in?u-ence of silver nanoparticles on the properties of PVA–PVP matrix was investigated by UV–vis,DSC,and FTIR,the morphology of freeze-dried PVA–PVP hydrogel matrix and dispersion of the silver nano-particles in the matrix was examined by SEM.It was found that a three-dimensional structure was formed during the process of freezing–thawing treatment and no serious aggregation of the silver nanopar-ticles occurred.Water absorption properties,the release of silver ions from the hydrogels were inves-tigated,and the antibacterial effects of the hydrogels against E.coli and S.aureus were examined by modi-?ed KB method and LB broth method.It was proved that the nanosilver-containing hydrogels had an excellent antibacterial performance.We thank Professor Shan Chen of Northeast Normal University in China for providing the microorganisms S.aureus and E.coli .References1.Green?eld,E.;McManus,A.T.Nurs Clin North Am 1997,32,297.2.Klasen,H.J Burns 2000,26,117.3.Klasen,H.J Burns 2000,26,131.4.Tsipouras,N.;Rix,C.J.;Brady,P.H.Clin Chem 1997,43,290.5.Mi,F.L.;Wu,Y.B.;Shyu,S.S.;Schoung,J.Y.;Huang,Y.B.;Tsai,Y.H.;H ao,J.Y.J Biomed Mater Res 2002,59,438.Figure 10Quantitative evaluation of in vitro inhibition ability to E.coli of the pure PVA–PVP and Ag/PVA–PVP hydrogels in 6hduration.Figure 9Antibacterial test results for E.coli (A)and S.aureus (B)after 24h incubation.(a)PVA–PVP hydrogel;(b)0.2wt %Ag/PVA–PVP hydrogel;(c)1.0wt %Ag/PVA–PVP hydrogel.[Color ?gure can be viewed in the online issue,which is available at .]132YU ET AL.6.Yu,S.H.;Mi,F.L.;Wu,Y.B.;Peng,C.K.;Shyu,S.S.;Huang,R.N.J.Appl Polym Sci2005,98,538.7.Mi,F.L.;Wu,Y.B.;Shyu,S.S.;Chao,A.C.;Lai,J.Y.;Su,C.C.J Membrane Sci2003,212,237.8.Son,W.K.;Youk,J.H.;Lee,T.S.;Park,W.H.MacromolRapid Commun2004,25,1632.9.Balogh,L.;Swanson,D.R.;Tomalia,D.A.;Hagnauer,G.L.;McManus,A.T.Nano Lett2001,1,18.10.Vuong,T.E.;Franco,E.;Lehnert,S.;Lambert,C.;Portelance,L.;Nasr,E.;Faria,S.;Hay,J.;Larsson,S.;Shenouda,G.;Sou-hami,L.;Wong,F.;Freeman,C.Int J Radiat Oncology Biol Phys2004,59,809.11.Nho,Y.C.;Park,K.R.J Appl Polym Sci2002,85,1787.12.Drury,J.L.;Mooney,D.J.Biomaterials2003,24,4337.13.Giusti,P.;Lazzeri,L.;Barbani,N.J Mater Sci Mater Med1993,4,538.14.Young,T.H.;Yao,N.K.;Chang,R.F.;Chen,L.W.Biomateri-als1996,17,2139.15.Young,T.H.;Chuang,W.Y.;Yao,N.K.;Chen,L.W.J.Biomed Mater Res1998,40,385.16.Inoue,K.;Fujisato,T.;Gu,Y.J.;Burczak,K.;Sumi,S.;Kogire,M.;Tobe,T.;Uchida,K.;Nakai,I.;Maetani,S.;Ikada,Y.Pan-creas1992,7,562.17.Burczak,K.;Gamian,E.;Kochman,A.Biomaterials1996,17,2351.18.Rosiak,J.M.;Ulanski,P.Radiat Phys Chem1999,55,139.19.Razzak,M.T.;Zainuddin, E.;Dewi,S.;Lely,H.;Taty,S.Radiat Phys Chem1999,55,153.20.Lopes,C.M.A.;Felisberti,M.I.Biomaterials2003,24,1279.21.Cassu,S.N.;Felisberti,M.I.Polymer1997,38,3907.22.Seabra,A.B.;Oliveira,M.G.Biomaterials2004,25,3773.23.Yu,H.J.;Xu,X.Y.;Chen,X.S.;Hao,J.Q.;Jing,X.B.J.ApplPolym Sci accepted.24.Jin,Y.D.;Dong,S.J.J Phys Chem B107:129022003.25.Kumar,R.;Unstedt,H.M.Biomaterials20812005,26.26.Melaiye, A.;Sun,Z.H.;Hindi,K.;Milsted, A.;Ely, D.;Reneker,D.H.;Tessier,C.A.;Youngs,W.J.J Am Chem Soc 2005,127,2285.27.Yin,B.S.;Ma,H.Y.;Wang,S.Y.;Chen,S.H.J Phys Chem B107:88982003.28.Gaddy,G. A.;Korchev, A.S.;McLain,J.L.;Slaten, B.L.;Steigerwalt,E.S.;Mills,G.J Phys Chem B2004,108,14850.29.Mbhele,Z.H.;Salemane,M.G.;Sittert,C.G.C.E.;Nedeljko-vicc′,J.M.;Djokovic′,V.;Luyt,A.S Chem Mater2003,15,5019.30.Kawashita,M.;Toda,S.;Kim,H.M.;Kokubo,T.;Masuda,N.J Biomed Mater Res2003,66,266.31.Chan,H.H.;Jan,T.;Christina,S.;Ralf,T.;Joerg, C.T.Advanced Materials2004,16,967.32.Nomiya,K.;Tsuda,K.;Sudoh,T.;Oda,M.J Inorg Biochem1997,68,39.PVA–PVP HYDROGELS CONTAINING SILVER NANOPARTICLES133。
妇科外用纳米银抗菌凝胶的研制的开题报告
妇科外用纳米银抗菌凝胶的研制的开题报告一、选题的背景与意义:随着社会经济的快速发展,人们对生活质量的要求也越来越高。
女性的健康状况对家庭和社会的发展有着重要的影响。
而妇科疾病是影响女性健康的重要因素之一。
近年来,妇科疾病的发病率和病情的严重程度呈逐年增加的趋势。
造成现状的原因可能是多方面的,而抗菌药物的滥用则是其中之一。
近年来,随着纳米技术的快速发展,纳米银材料逐渐成为医学领域的研究热点。
纳米银具有广谱性抗菌作用,对于各种耐药细菌具有杀菌效果。
同时,纳米银材料安全可靠,不会引起细胞毒性或肝肾损害等副作用。
因此,纳米银材料在医学领域中具有广阔的应用前景。
本研究拟利用纳米银材料制备妇科外用抗菌凝胶,应用于妇科疾病的治疗。
该凝胶具有杀菌、消炎、止痒等作用,可以有效缓解妇科炎症病症状,减轻患者疼痛和不适感,提高患者的生活质量。
同时,由于纳米银材料的优良性能,凝胶还具有较长的贮存期和较好的稳定性,能够方便地应用于医疗实践中。
因此,本研究的开展具有重要的现实意义,对于改善女性生活质量、预防和治疗妇科疾病具有积极作用,同时也可推动纳米技术在医学领域的研究和应用。
二、研究内容和方法:1. 银纳米粒子制备:采用化学还原法合成银纳米粒子,并通过透射电子显微镜(TEM)等手段进行形貌和尺寸的表征。
2. 抗菌凝胶制备:利用聚合物材料制备抗菌凝胶,并控制凝胶的物理化学性质,使其具有适宜的黏度、流动性和稳定性。
3. 杀菌性能测试:采用菌落计数法测定抗菌测试中常见的致病菌对抗菌凝胶的杀菌效果,并通过对比试验评估其抗菌活性。
4. 包材和保质期:选用适当的包材包装抗菌凝胶,并评估其保质期和成本。
三、研究预期目标:本研究旨在成功开发一种纳米银材料为主要成分的妇科外用抗菌凝胶,并确定其最佳制备工艺及杀菌效果。
预期成果将具有以下特点:1. 具有杀菌、消炎、止痒等作用,可以有效缓解妇科疾病病症状,提高患者生活质量。
2. 抗菌凝胶中纳米银材料的应用,具有广谱性抗菌作用,可对抗各种耐药细菌,有效预防细菌耐药问题。
纳米银抗菌凝胶中银含量检测方法分析与探究
2020年第2期Vol.30No.2检验检疫学刊JOURNAL OF INSPECTION AND QUARANTINE1前言作为广泛应用的纳米材料,纳米银在医药生产中得到了应用,与水凝胶结合能够得到较好的抗菌水凝胶敷料,可有效促进患者伤口愈合,但人体内银含量过多也会产生毒性。
目前,检测纳米银抗菌凝胶中银含量的方法较多,选择合适的检测方法,才能在保证检测精度的同时,为产品生产控制提供高效技术,保障其进一步安全使用。
2材料与方法2.1材料纳米银抗菌凝胶(市场购买,30g);银标准溶液(自制,1mg/kg);磷酸二氢铵(优级纯,1%);硝酸(优级纯,1.42g/mL);去离子水;其余试剂均为分析纯。
VaLcan42全自动消解仪;PRODIGY XP 电感耦合等离子体反射光谱仪;Milli-Poer-Q 超纯水机;SX2-2.5-10箱式电阻炉;ZEEnit700原子吸收光谱仪;DV 215CD 电子分析天平;KQ-500VDE 双频数控超声波清洗器。
2.2方法2.2.1ICP-AES 检测采用电感耦合等离子原子发射光谱法(ICP-AES)进行样品检测,需要根据光谱仪谱线库数据确定测定元素的干扰谱线及强度信息。
采用具有较高灵敏度的328nm 谱线,不存在元素干扰,同时强度较大,用于银离子检测可以获得较强峰值。
利用标准液进行信号分析,可以确定观察高度为15mm [1,2]。
仪器射频第一作者E-mail:****************收稿日期:2020-03-05纳米银抗菌凝胶中银含量检测方法分析与探究龚伶玲(长沙市口腔医院湖南长沙410004)摘要为了对比不同的前处理法和银含量检测法,提出纳米银抗菌凝胶中银含量的高效、低成本检测方法。
本文分别利用电感耦合等离子原子发射光谱法(ICP -AES )和石墨炉原子吸收法(GFAAS )开展银含量检测对比实验。
结果显示,采用ICP -AES 法和GFAAS 法均能满足银含量检测精度的要求,但采用GFAAS 法更加低廉、高效。
《纳米银-天然高聚物复合抗菌溶胶的合成及其性能研究》范文
《纳米银-天然高聚物复合抗菌溶胶的合成及其性能研究》篇一纳米银-天然高聚物复合抗菌溶胶的合成及其性能研究一、引言随着人们对生活品质的追求,抗菌材料的应用逐渐成为人们关注的焦点。
纳米银作为一种高效的抗菌剂,因其独特的物理和化学性质,在抗菌领域具有广泛的应用前景。
然而,单纯的纳米银存在易氧化、易团聚等问题,这限制了其在实际应用中的效果。
因此,将纳米银与天然高聚物进行复合,形成纳米银/天然高聚物复合抗菌溶胶,既可提高其稳定性,又能增强其抗菌性能。
本文旨在研究纳米银/天然高聚物复合抗菌溶胶的合成方法及其性能表现。
二、材料与方法1. 材料实验所需材料包括纳米银、天然高聚物(如壳聚糖、海藻酸钠等)、其他添加剂(如稳定剂、交联剂等)以及去离子水等。
2. 合成方法(1)采用化学还原法或光化学法合成纳米银;(2)将天然高聚物溶解于适当溶剂中,形成高聚物溶液;(3)将纳米银溶液与高聚物溶液混合,通过物理或化学方法进行复合;(4)通过加入稳定剂、交联剂等改善其稳定性和分散性;(5)对所得复合溶胶进行性能测试和表征。
3. 性能测试与表征采用透射电子显微镜(TEM)、动态光散射(DLS)、傅里叶变换红外光谱(FTIR)等手段对复合溶胶的形貌、粒径、分散性等进行表征。
同时,采用抑菌圈法、最低抑菌浓度(MIC)法等测试其抗菌性能。
三、结果与分析1. 形貌与粒径分析通过TEM观察,纳米银/天然高聚物复合溶胶中的纳米银颗粒呈球形或近似球形,分布均匀,无明显团聚现象。
DLS结果显示,复合溶胶的粒径分布较窄,说明其具有良好的分散性。
2. 抗菌性能分析通过抑菌圈法和MIC法测试,发现纳米银/天然高聚物复合抗菌溶胶对多种细菌(如大肠杆菌、金黄色葡萄球菌等)具有显著的抑制作用。
与单纯的纳米银相比,复合溶胶的抗菌性能更为优异,且具有较低的MIC值。
这表明天然高聚物的加入,不仅提高了纳米银的稳定性,还增强了其抗菌性能。
3. 稳定性分析在储存过程中,纳米银/天然高聚物复合抗菌溶胶表现出良好的稳定性。
如水芳芯纳米银治疗急性宫颈炎的疗效与安全性回顾性分析
如水芳芯纳米银抗菌凝胶治疗急性宫颈炎的疗效与安全性回顾性分析摘要目的:探讨如水芳芯纳米银抗菌凝胶治疗急性宫颈炎的疗效和安全性。
方法:回顾性分析我院76例急性宫颈炎患者的临床资料,根据治疗方法不同分为两组各38例,观察组采用宫颈管内置入纳米银治疗,对照组采用口服司帕沙星片治疗,比较两组疗效和不良反应。
结果:观察组治疗显效率86.8%,有效率97.4%,均显著高于对照组(P<0.05),不良反应发生率5.3%则显著低于对照组(P<0.05)。
结论:如水芳芯纳米银智能抗菌水凝胶治疗急性宫颈炎疗效确切,有效率高,且减少不良反应。
关键词:急性宫颈炎;纳米银;疗效;药品不良反应中图分类号:R94B1-6824)40急性宫颈炎是女性产褥感染或感染性流产引发的一种急性妇科病,相比慢性宫颈炎,其发病率对照组患者较低。
急性宫颈炎最常见病原菌是淋球菌,累及宫颈黏膜腺体,且沿黏膜表面扩散感染。
其他病原体如葡萄球菌、链球菌和肠球菌等也可直接引发急性宫颈炎。
急性宫颈炎一般采用口服抗菌药治疗或能深人到阴道穹隆及宫颈处的洗液治疗。
如水芳芯纳米银抗菌凝胶是一种治疗宫颈炎的新药,对慢性官颈炎疗效确切,但对急性宫颈炎的报道较少。
本文回顾性分析我院76例急性宫颈炎患者的临床资料,探讨如水芳芯纳米银抗菌凝胶治疗的临床效果和安全性,报道如下。
1资料与方法1.1一般资料回顾性分析我院76例急性宫颈炎患者的临床资料。
人选标准所有患者均符合急性宫颈炎诊断标准,且经阴道镜诊断证实患者均表现为白带增多部分患者伴随外阴瘙痒和下腹部不适等黏液脓性宫颈炎症状;排除慢性宫颈炎、宫颈癌和宫颈上皮内瘤样病变者排除妊娠期和哺乳期妇女排除心脑肝肾和血管等严重并发症者。
根据治疗方法不同将人选患者分为两组各38例。
观察组患者年龄20~49岁,平均(26.5±7.9)岁,孕次(1.3±0.8)次,产次(0.8±0.5)次,流产次数(O.7±0.7)次对照组患者年龄21—47岁,2.1两组药物疗效比较平均(27.0±7.3)岁,孕次(1.4±1.0)次产次(0.8土0.4)次流产次数(0.9±0.8)次。
《纳米银-天然高聚物复合抗菌溶胶的合成及其性能研究》范文
《纳米银-天然高聚物复合抗菌溶胶的合成及其性能研究》篇一纳米银-天然高聚物复合抗菌溶胶的合成及其性能研究一、引言随着现代医学的飞速发展,抗菌材料的应用已经越来越广泛,尤其是对各种疾病,特别是感染性疾病的预防和治疗。
纳米银作为一种具有独特抗菌性能的材料,其独特的物理和化学性质使其在抗菌领域具有巨大的应用潜力。
然而,单纯的纳米银材料在稳定性和生物相容性等方面仍存在一定的问题。
因此,本研究旨在通过合成纳米银/天然高聚物复合抗菌溶胶,以提高其稳定性和生物相容性,并进一步研究其抗菌性能。
二、实验部分1. 材料与试剂本实验所需的主要材料和试剂包括纳米银粒子、天然高聚物(如壳聚糖、海藻酸钠等)、溶剂(如水、乙醇等)以及其他必要的化学试剂。
2. 合成方法首先,将纳米银粒子与天然高聚物进行混合,通过适当的溶剂进行溶解和分散,然后进行一定的化学反应或物理作用,形成纳米银/天然高聚物复合抗菌溶胶。
3. 性能表征利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、动态光散射(DLS)等技术对合成后的纳米银/天然高聚物复合抗菌溶胶进行形貌、粒径和分散性等性能的表征。
同时,通过抗菌实验评估其抗菌性能。
三、结果与讨论1. 形貌与粒径分析通过SEM和TEM观察,发现纳米银粒子与天然高聚物成功复合,形成均匀分散的溶胶。
DLS结果表明,复合溶胶的粒径分布较窄,表明其具有良好的分散性。
2. 抗菌性能研究通过对比实验,发现纳米银/天然高聚物复合抗菌溶胶对多种细菌和真菌具有显著的抑制作用。
其抗菌性能优于单纯的纳米银粒子,这可能是由于天然高聚物的存在提高了纳米银的稳定性和生物相容性。
此外,我们还研究了不同浓度和不同作用时间的溶胶对细菌生长的影响,发现低浓度的溶胶即可在短时间内显著抑制细菌生长。
3. 稳定性分析通过长时间观察和比较,发现纳米银/天然高聚物复合抗菌溶胶具有良好的稳定性。
即使在存放一段时间后,其形貌和粒径分布仍保持较好,这归因于天然高聚物的稳定作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v r a d i i vla o 『 ] A t h r aooia i o n n v o e a t n J . c P am clg t v ui a c
S n c ,2 1 i ia 0 0,3 :1 2 1 6 5—1 3 . 6 4
[ ] 廖镇江 , 3 郇京宁 , 吕国宁 , 等.硝酸银 软膏对 Ⅱ度烧 伤
1 6 9 3 1 .
糌
[ ] 张富强 , 9 余文 , 傅远 飞. 六种纳米载银无机抗菌剂 的体 外细胞毒性 比较 [] J .中华 口腔 医学杂 志 , 05 4 20 , 0
( ) 5 4— 0 . 6 : 0 57
建
[0 M Y , H N . c e p r c t i o o 1] AY, I Z A G L A f i po h o n r — J a la a c p
r t i e a o a t ls it e t n b s d h d o es fr a e s v rn n p ri e n o d xr — a e y r g l o l c a
at at a adctyi l pl a o J .Ju a o ni c r n a l c pi t n[ ] or l f b el i a ta a c i n
( 5 : 5— 6 1) 7 7 .
2 4姆类水凝胶的溶胀性取决于丙烯酸聚合物 交联结构 的伸展程度 ,越容易伸展 的丙烯酸 聚合 物,其形成水凝胶后溶胀率越高。抗菌水凝胶的溶
胀 性 能如 图 5所示 。大约在 3 i ,4种 水凝 胶 0mn后 的溶胀 率基 本达 到恒定 值 ,溶胀 率约 为 90 。 0%
C e sr , 0 9. 6: 4 — 6 8 h mi y 2 0 4 6 3 t 4 .
[ 1 H Q A Y NJ e a Fr ao l r e— 1 ] ER, I NX, I , t . o tn f i e dn 1 m i o sv
disu dr i o aei aiin『 .C e c hs re n e c w v r a o J t m r rd t 1 hmi P y— l a
子及 其表征 [ ] J .功 能材料 , 0 7 6( 8 : 9 20 , 3 ) 9 6—
第6 期
杨立群等 :含纳米 银的抗 菌水凝胶研究
表 2 水凝胶 的抗菌性能分析
6 1
[ ] Y N , A , U e a O h a i d g od 2 A G L L N Y G OH, t 1 p t l c r - a - . hm u l
e 0一 a b x meh lc i s n h d o es y t e i 。i d N, c r o y ty h t a y r g l :s n h ss n o
创 面治疗 作用 的 多 中心 临床研 究 [ ] J .中华烧 伤杂
志 , 0 6 2 ( ) 3 9— 6 . 20 , 2 5 : 5 31
[ ] 李辉. 4 磺胺 嘧啶银 临床 应用 回顾 [ ] 河南北 方学 院 J. 学报 : 医学 版 , 0 5 2 ( ) 7 — 3 20 ,2 2 : 1 7. [ ] 尾崎又治 , 5 架集诚一 郎.纳米微粒导论 [ . M] 赵健泽 , 张联盟 , . 译 武汉 : 武汉工业大学 出版社 , 9 . 1 1 9 [ ] 赵维娟 , 6 黄通瑞 , 张梅. 纳米银水凝胶体外皮肤渗透作 用研究 [ ] J .医药 导报 , 09 2 ( ) 1 6 10 . 20 , 88 : 0 — 08 0 [ ] 邬运学 , 7 田华 , 武钦 学 , . 等 纳米银 外用抗 菌凝胶 治疗 痤疮炎性丘疹疗效观察 [ ] J .中国实用医药 , 0 0 5 2 1,
[ ] C R S N C H S A N SM, C R N e a 8 A L O , U S I S H A D A M, t 1 .
Unq e c l l r i tr cin o i e a o a t l s sz - i u el a ne a t f s v r n u o l n p r ce : ie i
Ta l 2 T e a t a tr lp o e t fh d o es b e h ni ce i r p r o y r g l b a y
水凝胶
抑菌 圈尺寸/m c
E c eih a c l s h r i oi c S a h lc c u u e tp yo o c s a ru s
dpn et ee t n fec v oye s c s J . h ee dn gnr i at e xgn p i [ ] T e ao o r i ee
Jun h s a h mit o r a o P yi lC e s B,2 0 lf c y r 0 8,1 2:1 6 8 — 1 30
图 5 水凝胶 的溶胀 曲线
F g 5 S l n u v s o y r g l i. wel g c r e fh d o e s i
Ma r moe u a ce c , P r c o lc l r S in e at A : P r a d p l d u e n A p i e
3 结
论
is L t r , 0 3,3 9: 5 — 4 8 c et s 2 0 e 6 44 5.
[2 樊新 , 1] 黄可龙 , 刘素琴 , 化学还原法制备纳米银粒 等.
以卡波姆为水凝胶基材 ,制备出含有纳米银的
抗 菌水凝 胶 。U v 法 的结果 表 明 ,在 硼氢化 钠 的 V—s i