滑动轴承
滑动轴承
2.限制轴承pv值
pv Fn [ pv] 20000B
3.限制滑动速度v
v dn [v]
601000
MPam / s m/s
(17.3) (17.4)
17.7 滑动轴承的条件性计算
17.7.2 推力轴承
常见的推力轴承止推面的形状见图17.12。实心端面推力轴颈 由于跑合时中心与边缘的磨损不均匀,愈近边缘部分磨损愈 快,以致中心部分压强极高。空心轴颈和环状轴颈可以克服 这一缺点。载荷很大时可以采用多环轴颈,它能承受双向的 轴向载荷。
轴承衬的厚度应随轴承直径的增大而增大,一般由十 分之几毫米到6毫米。
17.4 轴瓦结构
17.4.2 油孔、油沟和油室
油孔用来供应润滑油,油沟则用来输送和分布润滑油。 油沟的形状和位置影响轴承中油膜压力分布情况。润滑油 应该自油膜压力最小的地方输入轴承。油沟不应该开在油 膜承载区内,否则会降低油膜的承载能力(图17.7)。轴 向油沟应较轴承宽度稍短,以免油从油沟端部大量流失。 图17.8是油室的结构,它可使润滑油沿轴向均匀分布,并 起着贮油和稳定供油的作用。
17.6 润滑方法
3.油环润滑 轴颈上套有轴环(图17.10b),油环下垂浸到油池里,轴颈 回转时把油带到轴颈上去。这种装置只能用于水平而连续运 转的轴颈,供油量与轴的转速、油环的截面形状和尺寸、润 滑油粘度等有关。适用的转速范围为 60r/min~100r/min<n<1500r/min~2000r/min。速度过低,油环 不能把油带起;速度过高,环上的油会被甩掉。
工业上应用最广的润滑脂是钙基润滑脂,它在100摄氏度 附近开始稠度急剧降低,因此只能在60摄氏度以下使用。 钠基润滑脂滴点高,一般用在120摄氏度以下,比钙基脂 耐热,但怕水。锂基润滑脂有一定的抗水性和较好的稳 定性,适用于-20摄氏度~120摄氏度。
滑动轴承概述
滑动轴承概述轴承轴承支承轴及轴上零件,保证轴的旋转精度。
根据轴承工作的摩擦性质,可分为滑动轴承和滚动轴承。
滑动轴承具有工作平稳、无噪音、径向尺寸小、耐冲击和承载能力大等优点。
而滚动轴承是标准零件,成批量生产成本低,安装方便,广泛应用。
对于初学者来讲,滚动轴承的类型选择;寿命计算;组合设计是比较难掌握。
因此,滚动轴承的寿命计算和组合设计是本章讨论的重点。
§11—1 滑动轴承概述一、滑动轴承的类型滑动轴承按其承受载荷的方向分为:(1)径向滑动轴承,它主要承受径向载荷。
(2)止推滑动轴承,它只承受轴向载荷。
滑动轴承按摩擦(润滑)状态可分为液体摩擦(润滑)轴承和非液体摩擦(润滑)轴承。
(1)液体摩擦轴承(完全液体润滑轴承)液体摩擦轴承的原理是在轴颈与轴瓦的摩擦面间有充足的润滑油,润滑油的厚度较大,将轴颈和轴瓦表面完全隔开。
因而摩擦系数很小,一般摩擦系数=0.001~0.008。
由于始终能保持稳定的液体润滑状态。
这种轴承适用于高速、高精度和重载等场合。
(2)非液体摩擦轴承(不完全液体润滑轴承)非液体摩擦轴承依靠吸附于轴和轴承孔表面的极薄油膜,单不能完全将两摩擦表面隔开,有一部分表面直接接触。
因而摩擦系数大,=0.05~0.5。
如果润滑油完全流失,将会出现干摩擦。
剧烈摩擦、磨损,甚至发生胶合破坏。
二、滑动轴承的特点优点:(1)承载能力高;(2)工作平稳可靠、噪声低;(3)径向尺寸小;(4)精度高;(5)流体润滑时,摩擦、磨损较小;(6)油膜有一定的吸振能力缺点:(1)非流体摩擦滑动轴承、摩擦较大,磨损严重。
(2)流体摩擦滑动轴承在起动、行车、载荷、转速比较大的情况下难于实现流体摩擦;(3)流体摩擦、滑动轴承设计、制造、维护费用较高。
§11—2 滑动轴承的结构和材料一、径向滑动轴承1.整体式滑动轴承整体式滑动轴承结构如图所示,由轴承座1和轴承衬套2组成,轴承座上部有油孔,整体衬套内有油沟,分别用以加油和引油,进行润滑。
机械设计8—滑动轴承
3. 许用油膜厚度[h] ] 在其他条件不变的情况下, 在其他条件不变的情况下,外载荷 F↑,动压润滑轴承的 ↑ hmin↓ ,轴承、轴颈表面的微观凸峰可能直接接触,而不能实现 轴承、轴颈表面的微观凸峰可能直接接触, 液体润滑。 液体润滑。 显然,要想实现液体润滑,应满足如下条件: 显然,要想实现液体润滑,应满足如下条件: hmin ≥ [h]= S ( Rz1 + Rz2 ) ] 式中: 式中: S — 安全因数 , S ≥2,一般可取 S=2 一般可取 RZ1,RZ2 —轴颈和轴承孔表面粗糙度,µm 轴颈和轴承孔表面粗糙度, 轴颈和轴承孔表面粗糙度
特点
应用
2.极大型的、极微型的、极简单的场合;如自动化办公设备等。 极大型的、极微型的、极简单的场合;如自动化办公设备等。 极大型的 3.结构上要求剖分的场合;如曲轴用轴承。 结构上要求剖分的场合; 结构上要求剖分的场合 如曲轴用轴承。 4.受冲击与振动的场合;如轧钢机。 受冲击与振动的场合;如轧钢机。 受冲击与振动的场合
ψ = δ /r → δ = ψ . r =0.001x60 = 0.06mm x χ = 1-[h]/δ = 1 -9.6x10-3/0.06 = 0.84 - ] x
查表12-7,B/d = 108/120=0.9 得到 , / 查表 /
χ
Cp
0.80 3.067
0.85 4.459
插值计算:Cp = 4.181
§8-2 径向滑动轴承的主要类型
一、整体式 结构简单,成本低, 间隙无法 结构简单,成本低,但间隙无法 补偿,且只能从轴端装入, 补偿,且只能从轴端装入,适用 低速、轻载或间歇工作的场合。 低速、轻载或间歇工作的场合。 无法用于曲轴。 无法用于曲轴。 二、对开式(剖分式) 对开式(剖分式)
滑动轴承实验报告
一、实验目的1. 了解滑动轴承的结构和工作原理。
2. 测量轴承的径向和轴向油膜压力分布曲线。
3. 观察径向滑动轴承液体动压润滑油膜的形成过程和现象。
4. 分析轴承在不同载荷和速度条件下的性能变化。
二、实验原理滑动轴承是利用液体动压原理,通过在轴承和轴颈之间形成油膜,减小摩擦和磨损,保证机器的正常运转。
实验中,通过测量油膜压力分布,可以分析轴承的润滑性能和工作状态。
三、实验仪器与设备1. 滑动轴承实验台2. 轴承加载装置3. 润滑油泵4. 压力传感器5. 数据采集系统6. 计算机及实验软件四、实验步骤1. 将实验台安装好,检查各部件连接是否牢固。
2. 添加润滑油,确保油量充足。
3. 启动润滑油泵,调节转速至预定值。
4. 打开轴承加载装置,逐步增加载荷。
5. 使用压力传感器测量轴承的径向和轴向油膜压力。
6. 记录实验数据,包括转速、载荷、油膜压力等。
7. 改变转速和载荷,重复实验步骤。
五、实验结果与分析1. 径向油膜压力分布曲线实验结果显示,轴承的径向油膜压力分布曲线呈抛物线形状。
在轴承中心区域,油膜压力最大,随着距离轴承中心的增加,油膜压力逐渐减小。
这是因为液体动压原理使得油膜压力在轴承中心区域达到最大值。
2. 轴向油膜压力分布曲线实验结果显示,轴承的轴向油膜压力分布曲线呈线性形状。
在轴承中心区域,轴向油膜压力最大,随着距离轴承中心的增加,轴向油膜压力逐渐减小。
这是由于轴承受到轴向载荷,使得轴向油膜压力在轴承中心区域达到最大值。
3. 载荷对油膜压力的影响实验结果显示,随着载荷的增加,轴承的径向和轴向油膜压力均呈上升趋势。
这是因为载荷的增加使得轴承受到更大的压力,导致油膜压力增大。
4. 转速对油膜压力的影响实验结果显示,随着转速的增加,轴承的径向和轴向油膜压力均呈下降趋势。
这是因为转速的增加使得油膜厚度减小,导致油膜压力降低。
六、实验结论1. 滑动轴承的径向和轴向油膜压力分布曲线呈抛物线和线性形状。
滑动轴承
特
点: 有良好的流动性,可形成动压、静压或边膜界润滑膜。
适用场合:不完全液体滑动轴承和完全液体润滑滑动轴承。 选择原则:主要考虑润滑油的粘度。 转速高、压力小时,油的粘度应低一些;反之,粘度应高一些。 高温时,粘度应高一些;低温时,粘度可低一些。
三、固体润滑剂及其选择
◆
特
点:可在滑动表面形成固体膜。
③ 验算轴承的工作能力 1、平均压力p的验算
F p p Bd
F— 径向载荷, N; B— 轴瓦有效宽度,mm; d— 轴颈直径, mm; [p]— 许用压强,Mpa。 目的:防止p过高,油被挤出,产生 “过度磨损”。 2、 pv的验算 ≧ 轴承发热量∝单位面积摩擦功耗fpv ≨ pv↑→摩擦功耗↑→发热量↑→易胶合 F dn Fn pv [ pv ] MPa· m/s
衬的剥离有些相似,但疲劳剥落周边不规则,结合不良造成的 剥离则周边比较光滑。
4
腐蚀 润滑剂在使用中不断氧化,所生成的酸性物质对轴承材料
有腐蚀性,特别是对铸造铜铅合金中的铅,易受腐蚀而形成点
状的脱落。氧对锡基巴氏合金的腐蚀,会使轴承表面形成一层 由SnO2和SnO混合组成的黑色硬质覆盖层,它能擦伤轴颈表面, 并使轴承间隙变小。此外,硫对含银或含铜的轴承材料的腐蚀, 润滑油中水分对铜铅合金的腐蚀,都应予以注意。
3.根据液体润滑承载机理
液体动力润滑轴承(液体动压轴承):无外部压力源,油 膜靠摩擦面的相对运动而自动形成。
液体静压润滑轴承:外部一定压力的流体进入摩擦面,建 立压力油膜。 本章主要讨论液体动压润滑轴承,工程中一般设计成①或②。
三、滑动轴承的特点和应用
1.优点
①轴颈与轴瓦靠面接触,可用于承受载荷特殊的 情况(重载、振动载荷、冲击载荷等):内燃机、 汽轮机等 ②用于支承刚度要求高的情况:机床 ③用于旋转运动精度高的场合:仪表 ④用于转速特别高的场合:电机
滑动轴承
转速高、压力小时 选粘度低的油; 转速低、压力大时 选粘度高的油; 较高温度下工作时 用粘度高些的油。
压力高、滑动速度低时,选 择 针入度小的脂; 反之,选择 针入度大的脂; 润滑脂的滴点一般应高于轴 承工作温度约20—30℃。
二、润滑方式及润滑装置
1、油润滑
连续润滑:比较重要的轴承应当采用连续润滑方式 轴颈
三、滑动轴承的特点
1.承载能力大,耐冲击; 2.工作平稳,噪音低; 3.结构简单,径向尺寸小,轴向尺寸大。
四、滑动轴承的应用场合 1.高速、高精度、重载的场合;如汽轮 发电机、水轮发电机、机床等; 2.极大型的、极微型的、极简单的场合; 如自动化办公设备等; 3.结构上要求剖分的场合;如曲轴轴承; 4.受冲击与振动载荷的场合;如轧钢机。
已知:W=16KN,卷筒转速n=35r/min, d=50mm。试求:设计两端滑动轴承。
解:1)求F
当钢绳在卷筒中间时,两端滑动轴承受力相等, 且为钢绳上拉力的一半。但当钢绳绕到卷筒的边缘时 ,一端滑动轴承上受力达最大值,为:( W=16KN ,n=35r/min,d=50mm)
700 F RB W 800 14000 N
故选用 ZCuSn pb5 Zn5( 锡青铜)合适 5
针阀式油杯
定期旋转杯盖,使空腔体积减小而将润滑脂 注入轴承内,它只能间歇润滑。
旋盖
杯体
旋盖式油杯
§12-5 非液体摩擦滑动轴承的计算
一、径向滑动轴承 1、确定轴承的结构形式并选定轴瓦材料 2、选定宽径比B/d 轴瓦宽度与轴颈直径之比B/d称为宽径比,它是径向 滑动轴承中的重要参数之一。推荐取0.5-1.5的径宽比。
§12-3 滑动轴承的润滑
滑动轴承分类介绍
滑动轴承1、滑动轴承的分类:1)按承受载荷的方向不同,分为径向轴承、径向止推轴承、止推轴承。
2)按承载机理分为固体摩擦轴承、边界摩擦轴承、动压轴承、静压轴承、静电轴承、磁力轴承。
3)按轴瓦材料分为金属轴承、粉末冶金轴承、碳石墨轴承、塑料轴承、橡胶轴承、宝石轴承、木轴承、陶瓷轴承。
4)按润滑剂不同分无润滑油轴承、固体润滑轴承、脂润滑轴承、有润滑轴承、水和气润滑轴承。
5)油润滑轴承按润滑方法不同,有滴油润滑轴承、油垫润滑轴承、油环润滑轴承、含油轴承、油浴润滑轴承、压力供油轴承。
常用滑动轴承:整体式轴承、对开式轴承、四开式轴承、自位式轴承、四油楔式轴瓦、椭圆瓦、止推瓦。
2、滑动轴承的选择选择径向滑动轴承可参考图13.1-1,选择止推滑动轴承可参考图13.1-23、对轴瓦基本要求(1)轴瓦应可靠地固定在轴承体上,不允许有任何相对轴向或径向运动。
(2)足够的强度与刚度。
(3)合金层必须对轴瓦紧密结合,不允许有任何气孔、松动。
(4)散热好。
(5)润滑好。
(6)轴承体有良好同心度,易拆卸检修。
4、对合金层的基本要求(1)抗压及抗疲劳强度足够,保证轴承承载能力大。
(2)可塑性好,允许轴少量倾斜偏移,允许微小硬颗粒嵌入。
(3)耐磨性好,摩擦系数低。
(4)导热性好。
(5)跑合性好,可缩短跑合时间,延长使用寿命。
5、轴瓦的引油方法(1)当轴瓦下半部承受载荷时,应由上部引入润滑油,也就是进油孔应避开轴承区,防止破坏油膜的连续,降低承载能力。
油槽不应沿轴瓦全长上开通,其长度一般为轴瓦长度的80%。
如两端开通,会降低承载能力。
(2)负荷交替作用在上下瓦时,应在轴瓦侧面,如轴瓦结合面附近引油。
(3)负荷随轴旋转而变化时,可借轴颈上钻出的油孔,或者由轴颈表面的纵向油槽布油。
但油孔、油槽应开在油层压力最低处,即应参照轴颈负荷矢量图指定的部位引油。
或在轴承背面开环形油槽引油。
轴瓦检修:1.检查(1)要求用小铅锤沿合金衬里表面顺次敲击,若为清脆声,则表示合金层与底瓦贴合牢固,亦无裂纹与孔洞。
机械设计-滑动轴承概述
轴瓦结构与轴瓦材料
轴承材料 1、对材料性能要求
轴瓦和轴承衬与轴颈直接接触,承受载荷,产生摩 擦和磨损,因此材料应具有以下性能:
(1) 足够的强度 (2)良好的耐磨性、减磨性和耐腐蚀性 (3)良好的导热性和抗胶合能力
轴瓦结构与轴瓦材料
2、常用的材料
总结
1.滑动轴承的结构 2.轴瓦结构与轴瓦材料
谢谢观看
轴瓦结构与轴瓦材料
轴瓦结构
2、油沟、油孔
为了使将润滑油能够很好地分布到轴瓦的整个工 作表面,在轴瓦的非承载区上要开出油沟和油孔。
轴瓦结构与轴瓦材料
轴瓦结构
3、轴承衬
为了节省金属材料(如轴承合金)及提高轴承工作能力,在强度 较高、价格较廉的轴瓦内表面上浇注一层减摩性更好的,但价格较 贵的合金材料。其厚度在0.5~6mm内。
3)应用:适于低速、轻载或间隙工作的机器。
滑动轴承的结构
径向滑动轴承
滑动轴承的结构
径向滑动轴承
当轴承受到的径向力有较大偏斜时,可采用斜开式向 心滑动轴承,剖分角一般为45°。
滑动轴承的结构
径向滑动轴承
3、自动调心式滑动轴承 为防止轴承与轴颈的“边缘接触”,以避免轴承端部局部迅 速磨损。
特点轴:瓦外表面做成球面,与轴承盖和轴座的内表面相 配合,适应轴颈在轴弯曲时产生偏斜,减小磨损。
滑动轴承概述
1 滑动轴承的结构
CONTENTS
目
2 轴瓦结构与轴瓦材料
录
滑动轴承的结构
滑动轴承
径向滑动轴承(承受径向载荷) 按承载方向的不同 止推滑动轴承(承受轴向载荷)
径向止滑推动轴承(承受径向、轴向载荷)
滑动轴承的结构
径向滑动轴承
(1)整体式 1)构成: 轴承座、轴瓦
滑动轴承-课件
轴瓦检查项目
• 轴承合金无脱胎、裂纹、砂眼、气孔等缺陷; • 轴径与轴瓦的接触角,接触面积; • 调整垫片与轴承座配合情况,球形瓦的球面能起到调心
作用(对于没有垫片小型轴瓦外部与轴承座应检查接触 情况)。 • 轴瓦结合面是否平整,有无毛刺、变形存在。
轴瓦着色检 查脱胎、裂 纹
径向轴瓦研刮及接触情况
• 轻微锈蚀也可用涂油细砂布衬在布带上,沿轴绕两圈,用手 来回拉动研磨。
瓦顶隙测量
• 多油楔轴瓦上部是空的,用圆瓦测量的方法无法测量顶隙,测量时借助 百分表,在轴承支架没有安装以前,将上下轴瓦扣在一起,并紧固连接 螺栓,通过轴瓦的上下活动量测量轴瓦顶隙。
轴瓦上下移动 测量顶部间隙
轴颈
铅丝 1.5-2倍间隙 长度10-40mm
滑动轴承
讲课:钟旭
滑动轴承的应用
• 滑动轴承具有结构简单,承载能力大运行平稳,能长周期、安全、 稳定运行,在炼化企业应用广泛。
优点:1)承载能力高;2)工作平稳可靠、噪声低;3)径向尺寸 小;4)精度高;5)流体润滑时,摩擦、磨损较小;6)油膜有一 定的吸振能力。
缺点:1)非流体摩擦滑动轴承、摩擦较大,磨损严重。2)流体摩 擦滑动轴承在起动、行车、载荷、转速比较大的情况下难于实现流 体摩擦;3)流体摩擦、滑动轴承设计、制造、维护费用较高。
侧间隙:1-3倍的顶间隙。
径向滑动轴承
• 多油楔瓦: 轴瓦内孔有三个或四个楔形油膜;据有关资料介绍该瓦在正常
运行情况下,在轻载时有稳定作用,在中等载荷时其稳定性并不 理想,该瓦的耗能要比椭圆瓦多30%,此值对大容量机组而言绝非 小数,同时从制造、检修、运行诸多方面进行比较,该瓦也不占 优势。
但由于油楔不对称性, 只允许轴颈单向旋转。
简述滑动轴承的特点及结构形式
滑动轴承是一种广泛应用在工业领域的重要机械零部件,它具有许多独特的特点和多种不同的结构形式。
本文将简要介绍滑动轴承的特点及其常见的结构形式,以期为读者更好地了解和应用滑动轴承提供帮助。
一、滑动轴承的特点1.1 负载承受能力强:滑动轴承能够承受大量的负载,在一定程度上减少了机械设备的磨损,延长了使用寿命。
1.2 运行稳定且噪音小:滑动轴承在运行过程中具有良好的稳定性,且噪音较小,能够为机械设备提供良好的运行环境。
1.3 安装维护简便:滑动轴承的安装和维护相对比较简便,能够减少设备的停机时间和维修成本。
1.4 具有一定的自润滑性:滑动轴承能够在一定程度上实现自润滑,减少了摩擦和磨损,提高了机械设备的工作效率。
1.5 适用范围广泛:滑动轴承适用于各种不同类型的机械设备,可以满足不同工作条件下的需求。
二、滑动轴承的结构形式2.1 滑动轴承的平面滑动结构:平面滑动轴承是最常见的一种结构形式,它由滑动轴承座、滑动轴承套、滑动轴承润滑脂和轴承套等部件组成,通过润滑脂来减少摩擦和磨损,实现轴承的正常运转。
2.2 滚动滑动轴承的结构:滚动滑动轴承是一种利用滚动体在内圈和外圈之间滚动运动的轴承结构形式,它能够承受较大的径向负载和轴向负载,具有较高的刚性和承载能力。
2.3 液体滑动轴承的结构:液体滑动轴承是一种利用液体膜分离的技术原理,通过润滑油膜来减少摩擦和磨损,实现轴承的稳定运转。
2.4 多孔滑动轴承的结构:多孔滑动轴承是一种通过多孔结构实现润滑的轴承形式,它具有良好的润滑性能和降噪减震效果,并能够适应高速、高负载的工作环境。
2.5 其他滑动轴承的结构形式:除了上述常见的滑动轴承结构形式外,还有一些其他特殊类型的滑动轴承,如磁悬浮滑动轴承、气体动压滑动轴承等,它们在特定的工作条件下能够发挥出更好的性能和效果。
总结而言,滑动轴承作为一种重要的机械零部件,具有负载承受能力强、运行稳定且噪音小、安装维护简便、具有一定的自润滑性和适用范围广泛等特点。
滑动轴承介绍
• 一般用塞尺测量,塞进长度不应小于轴 颈直径的1/4,若间隙过小可以刮削瓦口 以增大间隙。侧隙一般为顶隙的1/2,越 向下越小。
3.2.3.2顶间隙 一般采用压铅丝(铅丝受压极限)和抬轴 打表两中方法测量。
3.2.3.3轴向间隙 一般采用打表法。
3.2.4轴瓦压紧力的测量与调整
• 1.1.2浸洗 清洗液:各种清洗液体 用 途:去除工件表面厚重的油污、锈迹
• 1.1.3吹洗 清洗液:蒸汽、压缩空气或氮气 用 途:吹除工件表面污物并使之干燥
1.2清洗注意事项
• 1.2.1用热煤油、溶剂油清洗时,应严格控制油的加热温度, 确保安全。溶剂煤油加热温度应小于65℃,不得用火焰直接 对盛装煤油的容器直接加热。
• 1.2.2用蒸汽或热空气吹扫时,应及时吹除水分,并涂以润滑 油脂。若需要长期储存,可改用其他防锈或防腐类油脂。
• 1.2.3油垢过厚时,应先擦除,再用碱性清洗液清洗。材料性 质不同的零件,不宜放在一起清洗。
• 1.2.4设备加工面上的防锈漆,应用适当的稀释剂或脱漆剂等 溶剂清洗;气相防锈剂可用酒精清洗。
轴承类型
结构特点
装配方法
整体Байду номын сангаас承
结构简单,只能从轴颈端 部拆装,间隙不可调
手工冲击压入,机 具压入,温差法
剖分轴承
剖分结构,间隙可调,易 于维修
手工冲击压入
自位轴承
轴瓦可适当摆动以适应轴 弯曲所产生的偏差
手工冲击压入
2.2.2常用调整措施
调整 方式
着色
刮削 余量
用途
检查轴瓦与轴颈的接 触情况
提高轴瓦与轴颈的接 触精度,增大间隙
实施流体动压效果的介质是气体,具 有黏度低、发热量小的特点
滑动轴承的组成及其类型
滑动轴承的组成及其类型滑动轴承是一种常用的力学零件,广泛应用于机械设备中。
它通过滑动摩擦来支撑和传递转动运动或直线运动载荷。
滑动轴承的组成主要包括轴承壳体、滑动层、摩擦材料和润滑剂。
根据轴承的结构和用途不同,滑动轴承可以分为几种类型,如下所示。
1. 原理型滑动轴承:原理型滑动轴承是最基本的一种类型,它由平面轴承和滚轮轴承组成。
它的工作原理是通过固定的轴和转动的内圈之间的摩擦来支撑和传递载荷。
2. 液体动压滑动轴承:液体动压滑动轴承又称为液膜滑动轴承。
它通过液体的压力来支撑和传递载荷,摩擦非常小,具有良好的稳定性和耐磨性。
3. 液体静压滑动轴承:液体静压滑动轴承又称为静压气体轴承。
它通过气囊或液囊形成压力,从而支撑和传递载荷。
它的优点是工作平稳,摩擦小,负荷能力强。
4. 气体动压滑动轴承:气体动压滑动轴承是一种利用气体的动力来支撑和传递载荷的轴承。
它具有自润滑、稳定性好的优点,通常应用于高转速的轴承系统中。
5. 磁悬浮轴承:磁悬浮轴承是一种利用磁力来支撑和传递载荷的轴承。
它通过磁场的作用使轴承与支承之间产生浮动,从而减小了摩擦和磨损。
6. 弹性元件滑动轴承:弹性元件滑动轴承通过弹性元件的变形来支撑和传递载荷。
它具有结构简单、制造成本低等优点,广泛应用于一些低载荷和低速度的轴承系统中。
除了以上几种常见的滑动轴承类型,还有一些特殊用途的滑动轴承,如磁流体轴承、陶瓷轴承、液滴轴承等。
综上所述,滑动轴承是一种常用的机械零件,其组成包括轴承壳体、滑动层、摩擦材料和润滑剂。
根据不同的结构和用途,滑动轴承可以分为原理型滑动轴承、液体动压滑动轴承、液体静压滑动轴承、气体动压滑动轴承、磁悬浮轴承、弹性元件滑动轴承等多种类型。
每种类型的滑动轴承都有其特点和适用范围,在不同的机械设备中具有广泛的应用。
滑动轴承特点与应用场合
滑动轴承特点与应用场合
滑动轴承是一种常见的轴向力支撑装置,其特点和应用场合如下:
特点:
1. 由于滑动轴承采用润滑剂(如油脂或润滑油)来减少摩擦,使得摩擦损失较小,运行时产生的热量也较少。
2. 滑动轴承的结构简单,易于加工和安装,同时由于没有滚动元件,更容易实现精确的位置控制。
3. 滑动轴承的运行平稳,噪音低,振动小。
4. 滑动轴承具有很高的承载能力和较大的接触面积,能够承受较大的轴向和径向载荷。
5. 滑动轴承适应性强,能够适应大范围的工作温度和工作速度。
应用场合:
1. 机械制造业:滑动轴承广泛应用于各种机械设备中,如泵、风机、发电机组、冶金设备等。
2. 汽车工业:滑动轴承用于汽车发动机、变速器、车桥、转向系统等部位,承受较大的载荷和较高的转速。
3. 铁路交通:滑动轴承用于铁路车辆的轴箱、悬挂系统、制动系统等,能够提供良好的承载能力和高速运行的平稳性。
4. 船舶工业:滑动轴承用于船舶的主推进轴、副推进轴、转向轴等,能够适应恶劣的海洋环境和长时间的高速运行。
5. 石油化工:滑动轴承用于石油化工设备的泵、离心机、混合器等,能够承受高温和腐蚀性介质的侵蚀。
6. 风力发电:滑动轴承用于风力发电机组的主轴、转子轴等,能够承受风力的冲击和旋转运动。
7. 农业机械:滑动轴承用于农业机械的拖拉机、收割机、播种机等,适应恶劣的土壤环境和高负载工况。
8. 轨道交通:滑动轴承用于城市轨道交通的车辆底架、车轮系统等,能够提供良好的减震和减噪性能。
《滑动轴承》课件
滑动轴承的材料选择
陶瓷材料
具有优异的耐磨和耐腐蚀性能,可 在高温和恶劣环境中使用。
聚四氟乙烯
金属材料
具有低摩擦系数和优良的自润滑性 能,在高速和高温环境下表现出色。
常见的金属滑动轴承材料包括铜合 金、铝合金和钢等,适用于各种工 作条件。
滑动轴承的工作原理
滑动轴承通过润滑剂形成润滑膜,减少摩擦,使轴承套和轴承座之间产生相 对滑动,将外力和负荷传递到润滑膜上。
《滑动轴承》PPT课件
本课件将介绍滑动轴承的定义、分类、特点、优点和缺点,以及应用领域、 材料选择、工作原理,摩擦学性能,磨损机理,寿命预测和故障诊断等内容。
滑动轴承的定义
滑动轴承是一种通过润滑剂形成润滑膜减少摩擦的机械元件。它由轴承套、 轴承座、润滑剂和密封件等组成。
滑动轴承的分类
1 按结构分类
2 按润滑方式分类
分为滑动面轴承和滚动体轴承,滑动面轴承可进 一步细分为径向和轴向滑动轴承。
分为液体润滑、固体润滑和气体润滑滑动轴承。
滑动轴承的特点
高承载能力
滑动轴承具有较大的接触面积和 承载能力,适用于高负荷和冲击 负荷条件下的工作。
摩擦系数低
由于润滑膜的存在,滑动轴承具 有较低的摩擦系数,能够减少能 量损耗和磨损。
滑动轴承的摩擦学性能
1 摩擦系数
2 温度特性
3 磨损机理
滑动轴承的摩擦系数取决于 材料、润滑方式和摩擦副表 面粗糙度等因素。
摩擦系数随温度的变化而变 化,需要在设计中考虑温度 因素。
磨损机理包括热磨损、疲劳 磨损和磨料磨损等,对滑动 轴承的寿命和性能有重要影 响。
滑动轴承的寿命预测
滑动轴承的寿命预测基于统计和试验数据,考虑负荷、转速、润滑条件和材料等因素,以估算其可靠运行的时间。
滑动轴承
两工件之间的间隙必须有楔形间隙;
A
两工件表面必须有相对滑动速度。 其运动方向必须保证润滑油从大截面 流进,从小截面出来;
τ Bp
两工件表面之间必须连续充满润滑
油或其它液体。
.
y
x p+dp
τ+dτ
二、径向滑动轴承形成流体动力润滑的过程
1、动压油膜的形成过程
∑ Fy =F
静止 →爬升 →将轴起抬
∑ Fx = 0 F
.
整体式 结构形式
对开式
一、轴瓦的形式和构造
整体轴套 单层材料 双层材料 多层材料 厚壁轴瓦 薄壁轴瓦
制造方法:铸造 内表面:可附有轴承衬 轴承衬材料:轴承合金 瓦背材料:铸.铁、钢或青铜
一、轴瓦的形式和构造
整体式
整体轴套 单层材料 双层材料
结构形式
多层材料
对开式
厚壁轴瓦 薄壁轴瓦
制造方法:双金属板连续轧制批量生产
§12-4 轴瓦结构
.
整体式 结构形式
对开式
一、轴瓦的形式和构造
整体轴套 单层材料 双层材料 多层材料 厚壁轴瓦 薄壁轴瓦
.
整体式 结构形式
对开式
一、轴瓦的形式和构造
整体轴套 单层材料 双层材料 多层材料 厚壁轴瓦 薄壁轴瓦
.
整体式 结构形式
对开式
一、轴瓦的形式和构造
整体轴套 单层材料 双层材料 多层材料 厚壁轴瓦 薄壁轴瓦
静压轴承
.
§12-2 滑动轴承的主要结构形式
.
一、整体式径向滑动轴承
1、作用:主要承受径向载荷。
2、组成: 轴承座
减摩材料制成
整体轴套
3、优点:
结构简单
动压滑动轴承工作原理
动压滑动轴承工作原理动压滑动轴承,这个名字听起来是不是有点复杂,其实它就像一个机械界的小精灵,默默地在我们的生活中发挥着重要作用。
想象一下,咱们平常用的那些机器、汽车,甚至是飞行器,都离不开它的帮助。
它的工作原理就像在参加一场滑雪比赛,滑得那叫一个顺畅,几乎感觉不到摩擦。
说到动压滑动轴承,首先得聊聊它的构造。
一般来说,里面有个轴和一个承载的部分。
轴就像个主角,而承载部分则是它的舞台。
它们之间的配合相当密切,就像是两口子,互相依赖,又各自发挥自己的作用。
轴转起来的时候,承载部分的表面形成了一层油膜,哎,这可不是普通的油,这可是动压油。
它在转动过程中,通过压缩的方式产生了一种压力,让轴和承载部分之间保持一个绝妙的距离,减少摩擦,这样一来,机器就能高效运转了。
大家可能会想,这个油膜究竟有什么神奇之处呢?其实啊,这个油膜不仅仅是个润滑剂,它还像一位高明的调解者,把主角和舞台之间的距离掌握得恰到好处。
想象一下,如果没有这层油膜,轴和承载部分直接接触,那就跟两个朋友没话说,一见面就打起来,摩擦得不可开交,最后损坏的肯定是机器。
这种事情可不罕见,动压滑动轴承的存在恰好避免了这样的悲剧。
说到这里,动压滑动轴承的工作原理真是妙不可言。
它在旋转的过程中,借助油膜的力量,持续地为轴提供支持,就像是一位无形的守护者,默默地承担起重任。
这个过程其实是动态的,随着转速的变化,油膜的厚度也会随之变化,简直就像个聪明的小孩,时刻调节着自己的状态,确保每一次转动都不会出错。
这种轴承的耐磨性也让人赞叹。
想象一下,一台机器如果频繁出故障,维修就像是无底洞,根本停不下来。
而动压滑动轴承的出现,真的是帮了大忙。
它的耐磨性让机器能在恶劣的环境下依然稳定工作,这就好比一位老将军,经历了风风雨雨,依然屹立不倒。
人们常说“兵马未动,粮草先行”,而在这里,动压滑动轴承就是那不可或缺的“粮草”。
不过呢,动压滑动轴承虽然好,但也不是万能的。
对于一些高负荷、高转速的场合,它也会感到吃力。
滑动轴承的详细信息
滑动轴承的认真信息概况滑动轴承(slidingbearing),在滑动摩擦下工作的轴承。
滑动轴承工作平稳、牢靠、无噪声。
在液体润滑条件下,滑动表面被润滑油分开而不发生直接接触,还可以大大减小摩擦损失和表面磨损,油膜还具有肯定的吸振本领。
但起动摩擦阻力较大。
轴被轴承支承的部分称为轴颈,与轴颈相配的零件称为轴瓦。
为了改善轴瓦表面的摩擦性质而在其内表面上浇铸的减摩材料层称为轴承衬。
轴瓦和轴承衬的材料统称为滑动轴承材料。
常用的滑动轴承材料有轴承合金(又叫巴氏合金或白合金)、耐磨铸铁、铜基和铝基合金、粉末冶金材料、塑料、橡胶、硬木和碳—石墨,聚四氟乙烯(特氟龙、PTFE)、改性聚甲醛(POM)、等。
滑动轴承应用场合一般在低速重载工况条件下,或者是维护保养及加注润滑油困难的运转部位。
原理依据轴承的工作原理可分:滚动摩擦轴承(滚动轴承)和滑动摩擦轴承(滑动轴承)。
滑动轴承:在滑动轴承表面若能形成润滑膜将运动副表面分开,则滑动摩擦力可大大降低,由于运动副表面不直接接触,因此也避开了磨损。
滑动轴承的承载本领大,回转精度高,润滑膜具有抗冲击作用,因此,在工程上获得广泛的应用。
润滑膜的形成是滑动轴承能正常工作的基本条件,影响润滑膜形成的因素有润滑方式、运动副相对运动速度、润滑剂的物理性质和运动副表面的粗糙度等。
滑动轴承的设计应依据轴承的工作条件,确定轴承的结构类型、选择润滑剂和润滑方法及确定轴承的几何参数。
分类滑动轴承种类很多。
①按能承受载荷的方向可分为径向(向心)滑动轴承和推力(轴向)滑动轴承两类。
②按润滑剂种类可分为油润滑轴承、脂润滑轴承、水润滑轴承、气体轴承、固体润滑轴承、磁流体轴承和电磁轴承7类。
③按润滑膜厚度可分为薄膜润滑轴承和厚膜润滑轴承两类。
④按轴瓦材料可分为青铜轴承、铸铁轴承、塑料轴承、宝石轴承、粉末冶金轴承、自润滑轴承和含油轴承等。
⑤按轴瓦结构可分为圆轴承、椭圆轴承、三油叶轴承、阶梯面轴承、可倾瓦轴承和箔轴承等。
滑动轴承
一、径向滑动轴承的计算
已知条件 外加径向载荷F (N)、 轴颈转速n(r/mm) 轴颈直径d (mm) 验算设计内容 验算轴承的平均压力 验算轴承pv值
验算滑动速度
一、径向滑动轴承的计算
1、验算轴承的平均压力p
目的:限制轴承压强p,以保证润滑油不被过大的压力 挤出,从而避免轴瓦产生过渡的磨损。
F p= ≤[p] Bd
塑料轴承
具有摩擦系数低、可塑性、跑合性良好、耐磨、耐腐蚀、 可用水、油及化学溶液等润滑的优点。 但导热性差、膨胀系数大、容易变形。 轴瓦常用材料有( 轴承合金)、( 青铜 )、( 黄铜 ) ( 铸铁 )、(非金属材料 )。
§12-4
轴瓦结构
一、轴瓦的形式和构造
整体轴套 整体式 结构形式 对开式 单层材料 双层材料 多层材料 厚壁轴瓦 薄壁轴瓦
F
单轴向油槽开在非承载区 (在最大油膜厚度处)
双轴向油槽开在非承载区 (在轴承剖分面上)
双斜向油槽 (用于不完全液体润滑轴承)
§12-5
滑动轴承润滑剂的选用
一、润滑脂及其选择
1、特点:
无流动性,可在滑动表面形成一层薄膜。
2、适用场合 :
要求不高、难以经常供油,或者低速重载以及作摆动运动 的轴承中。
验算轴承的平均压力
验算轴承pv值
F
d1 d2
二、止推滑动轴承的计算
1、验算轴承的平均压力p
Fa Fa p ≤[p] 2 A z (d 2 d12 ) 4
F
F
d2
z----轴环数 2、 验算轴承的pv值 pvm≤[pv]
d1 d2
d1
对于多环止推轴承,考虑承载的不均匀性, [p]、[pv]应降低 50%
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初始状态
稳定工作状态
轴承的孔径D和轴颈的直径d名义尺寸相等;直径间隙Δ是公差形成的。 轴颈上作用的液体压力与F相平衡,在与F垂直的方向,合力为零。 轴颈最终的平衡位置可用φa和偏心距e来表示。 轴承工作能力取决于hlim,它与η、ω、Δ和F等有关,应保证 hlim≥[ h ]。
三、径向滑动轴承的几何关系和承载量系数:
形式的流体动力平衡方程。这些假设条件是 :
流体为牛顿流体,即
。( u )
y
流体的流动是层流,即层与层之间没有物质和能量的交换;
忽略压力对流体粘度的影响,实际上粘度随压力的增高而增加; 略去惯性力及重力的影响,故所研究的单元体为静平衡状态或匀速直线 运动,且只有表面力作用于单元体上;
流体不可压缩,故流体中没有“洞”可以“吸收”流体;
验算及设计 :
1.验算轴承的平均压力p (MPa):
p F [ p] dB
2.验算摩擦热:
B—轴承宽度,mm(根据宽径比B/d确定) [p]—轴瓦材料的许用压力,MPa。
pv F dn Fn [ pv]
Bd 601000 19100B
v—轴颈圆周速度,m/s; [pv]—轴承材料的pv许用值,MPa·m/s
一、滑动轴承常见失效形式有: 磨粒磨损、刮伤、咬粘(胶合)、疲劳剥落、腐蚀。 其它失效形式:气蚀、电侵蚀、流体侵蚀和微动磨损等。
故障原因 比率/% 故障原因 比率/%
汽车用滑动轴承故障原因的平均比率
不干净 38.3
腐蚀 5.6
润滑油不足 11.1
制造精度低 5.5
安装误差 15.9 气蚀 2.8
对中不良 8.1
动压滑动轴承 流体动力润滑。
静压滑动轴承 流体静压润滑。
利用相对运动副表面的相对运动和几
动压滑动轴承(多油楔)
何形状,借助液体粘在性滑,动把轴润承滑与剂轴带颈进表摩面之间输入高 擦面之间,依靠自压然润建滑立剂起以来承的受流外体载压荷力,使运动副表 膜,将运动副表面面分分开离的的方润法铸造 轧制
结构示意图
铸造工艺性好,单件、大批生产均可,适用于厚壁轴瓦。 只适用于薄壁轴瓦,具有很高的生产率。
单材料、整体式 厚壁铸造轴瓦
滑动轴承的轴瓦结构2
多材料、对开式厚壁铸造轴瓦
多材料、整体式、薄壁轧制轴瓦
多材料、对开式 薄壁轧制轴瓦
二、轴瓦的定位:
目的:防止轴瓦相对于轴承座产生轴向和周向的相对移动。
其它 6.7
超载 6.0
二、滑动轴承的材料:
(1)、轴承材料性能应满足的要求:
轴承材料是指在轴承结构中直接参与摩擦部分的材料,如轴瓦和轴承 衬的材料。轴承材料性能应满足以下要求: ◆ 减摩性:材料副具有较低的摩擦系数。
◆ 耐磨性:材料的抗磨性能,通常以磨损率表示。
◆ 抗咬粘性:材料的耐热性与抗粘附性。
形式:按油槽走向分—沿轴向、绕周向、斜向、螺旋线等。 按油槽数量分—单油槽、多油槽等。
F
单轴向油槽开在非承载区 (在最大油膜厚度处)
双(轴在向轴油槽承剖开在分面非上承)载区(用于不完双全斜液向体油润槽滑轴承)
§12-4 滑动轴承润滑剂的选择
一、润滑脂及其选择:
特 点:无流动性,可在滑动表面形成一层薄膜。
c x
b
v
a
o
导,此处不再重复
ho
流体动力润滑的必要条件是:
y
相对运动的两表面间构成楔形空间。 楔形空间中充满具有粘性的液体。 两板相对运动的结果,应使液体在粘性力的作用下由楔形空间的大端 流向楔形空间的小端 。
二、径向滑动轴承形成流体动力润滑时的状态:
F △
o1 D od
F
o1 o
hmin
F
a
o1 oe
第十二章 滑动轴承
§12-1 滑动轴承概述
§12-2 滑动轴承的失效形式及常用材料 §12-3 滑动轴承轴瓦结构 §12-4 滑动轴承润滑剂的选择 §12-5 不完全液体润滑滑动轴承的设计计算 §12-6 液体动力润滑径向滑动轴承的设计计算 §12-7 其它形式滑动轴承简介
§12-1 滑动轴承概述
在温度较高处应选用钠基或复合钙基润滑脂。
润滑脂牌号表
滑动轴承润滑脂的选择
§12-4 滑动轴承润滑剂的选择
二、润滑油及其选择:
滑动轴承润滑剂的选择2
特 点: 有良好的流动性,可形成动压、静压或边膜界润滑膜。
适用场合:不完全液体滑动轴承和完全液体润滑滑动轴承。
选择原则:主要考虑润滑油的粘度。
转速高、压力小时,油的粘度应低一些;反之,粘度应高一些。
(2)、常用轴承材料有:
金属材料 —轴承合金(巴氏合金、白合金)由锡、铅、锑、铜等组成。 —铜合金分为青铜和黄铜两类。 —铸铁有普通灰铸铁、球墨铸铁等。
粉末冶金材料 —铜、铁、石墨等粉末经压制、烧结而成的多孔隙轴瓦材料。
非金属材料 —有塑料、硬木、橡胶和石磨等,其中塑料用的最多。
滑动轴承的材料,注意p、pv、v值
实心式
空心式
单环式
多环式
油楔形状结构
§12-2 滑动轴承的失效形式及常用材料
一、滑动轴承常见失效形式有: 磨粒磨损、刮伤、咬粘(胶合)、疲劳剥落、腐蚀。 其它失效形式:气蚀、电侵蚀、流体侵蚀和微动磨损等。
常见失效形式:
磨粒磨损刮伤
刮伤
咬粘(胶合)
疲劳剥落
腐蚀
§12-2 滑动轴承的失效形式及常用材料
积分一维雷诺方程
p 6v
x
h3
(h h0 )
并考虑到压力沿轴承宽度方向分布不均匀,
dB 可得: F 2 CP
或
CP
F 2 dB
F 2 2vB
Cp—— 承载量系数,与轴承包角α,宽径比B/d和偏心率χ有关。 F——外载荷,N; η—— 油在平均温度下的粘度,N·s/m2。 B—— 轴承宽度,m;v—— 圆周速度,m/s。
2.验算摩擦发热pv≤[pv],fpv是摩擦力,限制pv即间接限制摩擦发热。
3.验算滑动速度v≤[v] ,p,pv的验算都是平均值。考虑到轴瓦不同心, 受载时轴线弯曲及载荷变化等的因素,局部的p或pv可能不足,故应校核 滑动速度v 。
二、径向滑动轴承的设计计算:
已知条件:外加径向载荷F (N)、轴颈转速n(r/mm)及轴颈直径d (mm)
设计思路: 1、根据已知条件计算求得 Cp。 2、根据Cp由承载量系数表查取偏心率χ。
3、计算最小油膜厚度
4、校核最小油膜厚度条件hmin≥[h]
有限宽度轴承的载量系数Cp
四、最小油膜厚度 hmin:
动力润滑轴承的设计应保证:hmin≥[h] 其中: [h]=S(Rz1+Rz2)
Rz1、Rz2—— 分别为轴颈和轴承孔表面粗糙度十点高度。 对于一般轴承可取为3.2μm和6.3μm,1.6 μm和3.2μm。 对于重要轴承可取为0.8μm和1.6μm,或0.2μm和0.4μm。
流体中的压力在各流体层之间保持为常数。
§12-6 液体动力润滑径向滑动轴承的设计计算
在以上假设下,从两平板所构成的楔形空间中,取液体某动力一润滑径层向滑液动轴承体的设的计计算一2 部
分作为单元体,通过建立平衡方程和给定边界条件,可得一维雷诺方程:
p x
6v
h3
(h h0 )
F
此式在流体力学中有推
根据摩擦(润滑)状态可分:
液体摩擦轴承(完全液体润滑轴承) 完全液体摩擦。
非液体摩擦轴承(不完全液体润滑轴承) 边界摩擦、干摩擦。
完全液体摩擦
边界摩擦
干摩擦
五、滑动轴承的结构形式:
(1)、向心滑动轴承的结构形式: 整体式:
剖分式(对开式):
自动调心式:
间隙可调式 :
(2)、推力滑动轴承的结构形式 :
3.验算滑动速度v (m/s):
v [v] [v]—材料的许用滑动速度
[p]、[v]、[ pv ]从 材料表中查取
4.选择配合: 一般可选H9/d9或H8/f7、H7/f6
§12-6 液体动力润滑径向滑动轴承的设计计算
一、流体动力润滑基本方程的建立:
对流体平衡方程(Navier-Stokes方程)作如下假设,以便得到简化
◆ 摩擦顺应性:材料通过表层弹塑性变形来补偿轴承滑动表面初始配合不 良的能力。
◆ 嵌入性:材料容纳硬质颗粒嵌入,从而减轻轴承滑动表面发生刮伤或磨 粒磨损的性能。
◆ 磨合性:轴瓦与轴颈表面经短期轻载运行后,形成相互吻合的表面形状 和粗糙度的能力(或性质)。
此外还应有足够的强度和抗腐蚀能力、良好的导热性、工艺性和经济性。
工作状态:因采用润滑脂、油绳或滴油润滑,故无法形成完全的承载 油膜,工作状态为边界润滑或混合摩擦润滑。
失效形式:边界油膜破裂。
设计准则:保证边界膜不破裂。因边界膜强度与温度、轴承材料、轴 颈 和轴承表面粗糙度、润滑油供给等有关,目前尚无精确 的计算方法,但一般可作条件性计算。
校核内容:
1.验算平均压力 p ≤[ p ],以保证强度要求。
方法:
轴瓦一端或两端做凸缘
定位唇(凸耳)
凸缘
轴向定位:
定位唇
周向定位:
紧定螺钉 (也可做轴向定位)
紧定螺钉
销钉 (也可做轴向定位)
轴瓦
圆柱销
轴承座
三、轴瓦的油孔及油槽:
目的:把润滑油导入轴颈和轴承所构成的运动副表面。
原则:尽量开在非承载区,尽量不要降低或少降低承载区油膜的承载 能力;轴向油槽不能开通至轴承端部,应留有适当的油封面。
最小油膜厚度:hmin= δ-e = rψ(1-χ) 其中:ψ—相对间隙,ψ = δ / r = Δ / d
χ—偏心率, χ= e / δ e —为偏心距 Δ 为直径间隙,Δ= D- d δ为半径间隙,δ= R- r = Δ/ 2 r 和 d 分别为轴颈的半径和直径。 R 和 D 分别为轴承的半径和直径。