三角函数的平移与伸缩变换-整理

合集下载

三角函数中的平移与伸缩变换

三角函数中的平移与伸缩变换

三角函数中的平移与伸缩变换三角函数是数学中的重要概念之一,通过平移和伸缩变换可以对三角函数图像进行调整和变化。

本文将探讨三角函数中的平移与伸缩变换,并说明它们对函数图像的影响。

一、平移变换平移变换是指将函数图像沿着坐标轴平行移动的过程。

在三角函数中,平移变换会改变函数的水平位置。

具体而言,对于三角函数y = f(x),平移变换可以表示为y = f(x ± b),其中b为平移量。

1. 正弦函数的平移变换正弦函数y = sin(x)在平移变换下,可以写作y = sin(x ± b)。

当b为正值时,图像向左平移;当b为负值时,图像向右平移。

平移量b的绝对值越大,图像平移的距离越远。

2. 余弦函数的平移变换余弦函数y = cos(x)的平移变换形式为y = cos(x ± b)。

与正弦函数类似,当b为正值时,图像向左平移;当b为负值时,图像向右平移。

平移量b的绝对值越大,图像平移的距离越远。

3. 正切函数的平移变换正切函数y = tan(x)在平移变换下,可以写作y = tan(x ± b)。

与正弦函数和余弦函数不同,正切函数的平移变换会导致图像的水平拉伸与压缩。

当b为正值时,图像向左平移;当b为负值时,图像向右平移。

平移量b的绝对值越大,图像平移的距离越远。

二、伸缩变换伸缩变换是指将函数图像在x轴或y轴上进行拉伸或压缩的过程。

在三角函数中,伸缩变换会改变函数图像的形状和振幅。

具体而言,对于三角函数y = f(x),伸缩变换可以表示为y = af(bx),其中a为纵向伸缩因子,b为横向伸缩因子。

1. 正弦函数的伸缩变换正弦函数y = sin(x)在伸缩变换下,可以写作y = a sin(bx)。

纵向伸缩因子a决定了函数图像的振幅,a越大,则振幅越大;a越小,则振幅越小。

横向伸缩因子b决定了函数图像的周期,b越大,则周期越短;b越小,则周期越长。

2. 余弦函数的伸缩变换余弦函数y = cos(x)的伸缩变换形式为y = a cos(bx)。

三角函数图象的平移和伸缩

三角函数图象的平移和伸缩

3得 y =A sin(x +)的图象⎯向⎯上平(⎯移kk⎯个)或单向⎯位下长⎯(k度⎯)→ 得 y = A sin(x +)+k 的图象.y = sin x纵坐标不变横坐标向左平移 π/3 个单位 纵坐标不变 横坐标缩短 为原来的1/2y = sin(x + )y = sin(2 x + )横坐标不变纵坐标伸长为原 来的3倍先伸缩后平移纵坐标伸长(A 1)或缩短(0A 1)y =sin x 的图象 ⎯⎯⎯⎯⎯⎯⎯⎯⎯→y = 3sin(2x +三角函数图象的平移和伸缩函数y = A sin(x +) + k 的图象与函数 y = sin x 的图象之间可以通过变化 A ,,,k 来相互转 化. A ,影响图象的形状,,k 影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由引起的变 换称周期变换,它们都是伸缩变换;由引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都 是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩 向左(>0)或向右(0)y = sin x 的图象⎯⎯平⎯移⎯个单⎯位长⎯度⎯→得 y = sin(x +)的图象横坐标伸长(0<<1)或缩短(>1)到原来的1(纵坐标不变)得 y = sin(x +)的图象 纵坐标伸长(A 1)或缩短(0<A <1) 为原来的A 倍(横坐标不变)横坐标伸长(01)或缩短(1)⎯⎯⎯⎯⎯⎯⎯⎯→ 到原来的1(纵坐标不变)向左(0)或向右(0)得 y = A sin(x ) 的图象 ⎯⎯⎯平移⎯个⎯单位⎯⎯→得 y = A sin x (x +)的图象⎯⎯平⎯移k ⎯个单⎯位长⎯度⎯→得 y = A sin(x +)+k 的图象.纵坐标不变 y = sin x横坐标缩短 为原来的1/2 纵坐标不变 横坐标向左平移 π/6 个单位横坐标不变y = 3sin(2x + )纵坐标伸长为原 3来的3倍例1 将y = sin x 的图象怎样变换得到函数y = 2sin2x + π+1的图象.解:(方法一)①把y = sin x 的图象沿x 轴向左平移π个单位长度,得y = sin x + π的图象;②将所得 图象的横坐标缩小到原来的1,得y =sin2x +π的图象;③将所得图象的纵坐标伸长到原来的 2 倍,得 y = 2sin2x + π的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到y = 2sin2x + π+1的图象.方法二)①把y = sin x 的图象的纵坐标伸长到原来的2倍,得y = 2sin x 的图象;②将所得图象的横坐标缩小到原来的1 ,得y = 2sin2x 的图象;③将所得图象沿x 轴向左平移π个单位长度得y = 2sin2x + π的2 8 8 图象;④最后把图象沿y 轴向上平移1个单位长度得到y = 2sin2x + π+1的图象.得 y = A sin x 的图象y = sin2 xy = sin(2x + )说明:无论哪种变换都是针对字母x 而言的.由y =sin2x 的图象向左平移8π个单位长度得到的函数图象 的解析式是y = sin 2 x + π 而不是y = sin 2x + π ,把y = sin x + π 的图象的横坐标缩小到原来的1 ,得到 的函数图象的解析式是y = sin 2x + π 而不是y = sin 2 x + π .对于复杂的变换,可引进参数求解.例2 将y =sin2x 的图象怎样变换得到函数 y = cos 2x - π的图象.分析:应先通过诱导公式化为同名三角函数.=cos 2x -2a - π = cos 2 -2 - 2根据题意,有 2 x - 2a - π = 2 x - π ,得 a =-π .24 8 所以将y = sin 2x 的图象向左平移π 个单位长度可得到函数y = cos 2x - π 的图象.解: 有y = cos2( x - a ) - π y = sin2 x = cos在y =中以 x - a 代 x ,。

复习三角函数图象的平移和伸缩

复习三角函数图象的平移和伸缩

三角函数图象的平移和伸缩函数s i n()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩sin y x =的图象 得sin()y x ϕ=+的图象得sin()y x ωϕ=+的图象 得sin()y A x ωϕ=+的图象 得sin()y A x k ϕ=++的图象.先伸缩后平移 sin y x =的图象 得sin y A x =的图象 得sin()y A x ω=的图象得sin ()y A x x ωϕ=+的图象 得sin()y A x k ωϕ=++的图象.例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.xy sin =)3s in(π+=x y )32sin(π+=x y )32sin(3π+=x y)32sin(3π+=x y xy sin =xy 2sin =)32sin(π+=x y例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.练习1.(2009山东卷理)将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ). A.cos 2y x = B.22cos y x = C.)42sin(1π++=x y D.22sin y x =2.(2009天津卷理)已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象A 向左平移8π个单位长度 B 向右平移8π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度3.(07山东文)4.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( )A .向右平移π6个单位 B .向右平移π3个单位C .向左平移π3个单位 D .向左平移π6个单位 4.(06江苏卷)为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点 (A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)5、(2010全国卷2理数)(7)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像(A )向左平移4π个长度单位 (B )向右平移4π个长度单位(C )向左平移2π个长度单位 (D )向右平移2π个长度单位6、(2010辽宁文数)(6)设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是(A )23 (B ) 43(C )32(D ) 37(2010福建)将函数()()ϑω+=x x f sin 的图像向左平移2个单位,若所得图像与原图重合,则ω的值不可能是( )(A )423 (B ) 643 (C ) 832(D ) 12作业 1.为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像( )(A )向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位2.函数f (x )=2sin x cos x 是( )(A)最小正周期为2π的奇函数 (B )最小正周期为2π的偶函数 (C)最小正周期为π的奇函数(D )最小正周期为π的偶函数3.设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是( )(A )23 (B ) 43 (C ) 32(D ) 34.将函数y=sin(x+π/6) (x 属于R)的图象上所有的点向左平行移动π/4个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得到的图象的解析式为( )(A) y=sin(2x+5π/12) (x 属于R) (B) y=sin(x/2+5π/12) (x 属于R) (C) y=sin(x/2+π/12) (x 属于R) (D) y=sin(x/2+5π/24) (x 属于R)5.将函数y=sin(x-π/3)的图像上所有的点的横坐标伸长带原来的2倍(纵坐标不变),再将所得的图象向左平移π/3个单位,得到的图象对应的解析式为( )(A)y=sin(x/2)(B)y=sin(x/2-π/2)(C) y=sin(x/2-π/6) (D)sin(2x-π/6) 6.将函数sin y x =的图像上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是( )(A )sin(2)10y x π=-(B )sin(2)5y x π=- (C )1sin()210y x π=-(D )1sin()220y x π=-7.5yAsin x x R 66ππωϕ⎡⎤=∈⎢⎥⎣⎦右图是函数(+)()在区间-,上的图象,为了得到这个函数的图象,只要将y sin x x R =∈()的图象上所有的点( )12(A)向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变 (B) 向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变(C) 向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 (D) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变8、将函数y=sin2x 的图象向左平移π/4个单位,再向上平移1个单位所得到函数解析式( ) y=cos2x y=2(cosx)*(cosx) y=1+sin(2x+π/4) y=2(sinx)*(sinx)。

高中数学中的三角函数的基本变换规律

高中数学中的三角函数的基本变换规律

高中数学中的三角函数的基本变换规律在高中数学的学习过程中,三角函数是一个重要的内容。

它们在解决几何问题、物理问题以及工程问题中发挥着重要的作用。

而要理解三角函数的性质和应用,我们首先需要掌握它们的基本变换规律。

一、平移变换规律平移是指将函数图像沿着横坐标或纵坐标方向进行平移。

对于三角函数而言,平移变换规律可以用以下形式表示:1. 正弦函数的平移变换规律:y = a*sin(b(x-c)) + d其中,a表示振幅的变化,b表示周期的变化,c表示横坐标方向的平移量,d表示纵坐标方向的平移量。

2. 余弦函数的平移变换规律:y = a*cos(b(x-c)) + d同样地,a、b、c、d分别表示振幅、周期、横坐标方向平移量和纵坐标方向平移量。

通过平移变换规律,我们可以将函数图像在平面上进行移动,从而观察到函数图像的变化。

二、伸缩变换规律伸缩是指将函数图像沿着横坐标或纵坐标方向进行拉伸或压缩。

对于三角函数而言,伸缩变换规律可以用以下形式表示:1. 正弦函数的伸缩变换规律:y = a*sin(b(x-c)) + d其中,a表示纵坐标方向的伸缩倍数,b表示横坐标方向的伸缩倍数,c表示横坐标方向的平移量,d表示纵坐标方向的平移量。

2. 余弦函数的伸缩变换规律:y = a*cos(b(x-c)) + d同样地,a、b、c、d分别表示纵坐标方向的伸缩倍数、横坐标方向的伸缩倍数、横坐标方向平移量和纵坐标方向平移量。

通过伸缩变换规律,我们可以观察到函数图像在平面上的形状发生变化,从而更好地理解函数的性质。

三、反射变换规律反射是指将函数图像沿着横坐标或纵坐标方向进行镜像。

对于三角函数而言,反射变换规律可以用以下形式表示:1. 正弦函数的反射变换规律:y = -a*sin(b(x-c)) + d其中,a表示振幅的变化,b表示周期的变化,c表示横坐标方向的平移量,d表示纵坐标方向的平移量。

2. 余弦函数的反射变换规律:y = -a*cos(b(x-c)) + d同样地,a、b、c、d分别表示振幅、周期、横坐标方向平移量和纵坐标方向平移量。

三角函数的基本变换平移伸缩和反射

三角函数的基本变换平移伸缩和反射

三角函数的基本变换平移伸缩和反射三角函数的基本变换:平移、伸缩和反射三角函数是数学中非常重要且广泛应用的概念之一。

它们在几何、物理、工程学等领域中起着关键作用。

在学习三角函数时,我们经常会遇到一些基本的函数变换,比如平移、伸缩和反射。

本文将介绍三角函数的这些基本变换,帮助读者更好地理解和应用这些概念。

一、平移变换平移是指图形在平面内沿着某个方向移动一段距离。

在三角函数中,平移变换是指将函数图像沿着横轴或纵轴方向移动,改变函数的位置。

对于正弦函数sin(x)来说,平移变换可以表示为sin(x-a),其中a为平移的距离和方向。

当a为正数时,函数图像向右平移 |a| 个单位;当a为负数时,函数图像向左平移 |a| 个单位。

对于余弦函数cos(x)来说,平移变换可以表示为cos(x-a),同样地,当a为正数时,函数图像向右平移 |a| 个单位;当a为负数时,函数图像向左平移 |a| 个单位。

二、伸缩变换伸缩是指图形的尺寸在某个方向上改变。

在三角函数中,伸缩变换是指将函数图像在横轴或纵轴方向上进行拉伸或压缩,改变函数的振幅和周期。

对于正弦函数sin(x)来说,伸缩变换可以表示为a*sin(x),其中a为正实数。

当a大于1时,函数图像在纵轴方向上被拉伸;当0 < a < 1时,函数图像在纵轴方向上被压缩。

对于余弦函数cos(x)来说,伸缩变换可以表示为a*cos(x),同样地,当a大于1时,函数图像在纵轴方向上被拉伸;当0 < a < 1时,函数图像在纵轴方向上被压缩。

伸缩变换还可以改变函数的周期。

对于正弦函数和余弦函数来说,原本的周期是2π。

通过伸缩变换,可以改变函数的周期为2π/a,其中a为正实数。

三、反射变换反射变换是指图形关于某个轴线对称。

在三角函数中,反射变换是指将函数图像关于横轴或纵轴进行翻转,改变函数的正负号。

对于正弦函数sin(x)来说,反射变换可以表示为-sin(x)。

三角函数角的变换总结

三角函数角的变换总结

三角函数角的变换总结三角函数是数学中重要的一部分,它们能够描述直角三角形中的各种关系以及周期性现象。

三角函数角的变换是指将一个角按照一定的规律进行平移、伸缩、翻转等操作,得到新的角。

这些变换可以帮助我们更好地理解三角函数的性质、图像以及应用。

一、平移变换平移变换是指将角按照一定的规律在坐标平面上沿着横轴或者纵轴进行移动。

平移变换可以通过改变角的坐标来实现。

具体来说,设原始角为θ,平移后的角为θ+a。

对于三角函数来说,平移变换的规律如下:1. 正弦函数的平移变换:y = sin(θ+a) = sinθcosa + sinacosθ平移量a的正负方向决定了平移的方向,平移量a的大小决定了平移的距离。

2. 余弦函数的平移变换:y = cos(θ+a) = cosθcosa - sinasina平移量a的正负方向决定了平移的方向,平移量a的大小决定了平移的距离。

3. 正切函数的平移变换:y = tan(θ+a) = (tanθ + tana) / (1 - tanθtanα)平移量a的正负方向决定了平移的方向,平移量a的大小决定了平移的距离。

二、伸缩变换伸缩变换是指将角按照一定的规律进行拉伸或者收缩操作。

伸缩变换可以通过改变角度的系数来实现。

具体来说,设原始角为θ,伸缩后的角为kθ。

对于三角函数来说,伸缩变换的规律如下:1. 正弦函数的伸缩变换:y = sin(kθ) = sinθ / k伸缩系数k大于1时,表示角度增加,图像上下收缩;伸缩系数k小于1时,表示角度减小,图像上下拉伸。

2. 余弦函数的伸缩变换:y = cos(kθ) = cosθ / k伸缩系数k大于1时,表示角度增加,图像左右收缩;伸缩系数k小于1时,表示角度减小,图像左右拉伸。

3. 正切函数的伸缩变换:y = tan(kθ) = tanθ / k伸缩系数k大于1时,表示角度增加,图像上下收缩;伸缩系数k小于1时,表示角度减小,图像上下拉伸。

三角函数的平移伸缩变换

三角函数的平移伸缩变换

三角函数的平移伸缩变换
三角函数可以通过平移、伸缩来进行变换。

平移指的是将函数图像沿着横轴或纵轴方向移动一定的距离。

伸缩指的是将函数图像沿着横轴或纵轴方向拉伸或缩小。

以正弦函数为例,设其图像为y=sin(x),则有以下几种变换:
1. 平移
平移指的是将函数图像沿着横轴或纵轴方向移动一定的距离。

这种变换可以用一个参数来表示,记为h和k。

其中h表示横向平移的距离,k表示纵向平移的距离。

平移后的函数为y=sin(x-h)+k。

2. 垂直伸缩
垂直伸缩指的是将函数图像沿着纵轴方向拉伸或缩小。

这种变换可以用一个参数来表示,记为a。

垂直伸缩后的函数为y=a*sin(x)。

当a>1时,函数图像沿着纵轴方向被拉伸,函数的振幅增大;当0<a<1时,函
数图像沿着纵轴方向被缩小,函数的振幅减小。

3. 水平伸缩
水平伸缩指的是将函数图像沿着横轴方向拉伸或缩小。

这种变换可以用一个参数来表示,记为b。

水平伸缩后的函数为y=sin(b*x)。

当b>1时,函数图像沿着横轴方向被缩短,函数的周期变小;当0<b<1时,函数图像沿着横轴方向被拉长,函数的周期变大。

4. 综合变换
完整的三角函数平移伸缩变换包含了垂直伸缩、水平伸缩、横向平移、纵向平移四种变换。

对于正弦函数而言,其综合变换的表达式为:
y=a*sin(b*(x-h))+k
其中,a表示垂直伸缩的参数,b表示水平伸缩的参数,h和k表示横向和纵向平移的参数。

三角函数伸缩变换法则

三角函数伸缩变换法则

三角函数伸缩变换法则
三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。

三角函数平移伸缩变换口诀:左加右减,上加下减。

一个点作左右平移时,纵坐标不发生任何改变,而是横坐标在发生变化。

当点向右平移时,横坐标变大,当点向左平移时,横坐标变小,这就是平移的左加右减。

一个点作上下平移时,横坐标不发生任何改变,而是纵坐标在发生变化。

当点向上平移时,纵坐标变大,当点向下平移时,纵坐标变小,这就是平移的上加下减。

三角函数平移伸缩变换口诀

三角函数平移伸缩变换口诀

三角函数平移伸缩变换口诀
三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。

三角函数平移伸缩变换口诀:左加右减,上加下减。

平移伸缩变换口诀
左加右减
一个点作左右平移时,纵坐标不发生任何改变,而是横坐标在发生变化。

当点向右平移时,横坐标变大,当点向左平移时,横坐标变小,这就是平移的左加右减。

上加下减
一个点作上下平移时,横坐标不发生任何改变,而是纵坐标在发生变化。

当点向上平移时,纵坐标变大,当点向下平移时,纵坐标变小,这就是平移的上加下减。

三角函数图象的平移和伸缩

三角函数图象的平移和伸缩

三角函数图象的平移和伸缩函数 y Asi n ( x) k的图象与函数 y sin x 的图象之间可以通过变化 A,,,k来相互转化. A,影响图象的形状,,k影响图象与x 轴交点的位置.由 A 引起的变换称振幅变换,由引起的变换称周期变换,它们都是伸缩变换;由引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移.变换方法如下:先平移后伸缩y sin x 的图象向左 ( >0) 或向右 (0)平移个单位长度得 y sin( x) 的图象横坐标伸长 (0<<1) 或缩短 ( >1)到原来的1(纵坐标不变 )得 y sin(x) 的图象纵坐标伸长 ( A 1) 或缩短 (0< A <1)为原来的 A倍 (横坐标不变 )得 y Asin(x) 的图象向上 ( k 0) 或向下 ( k 0)平移 k 个单位长度得 y Asin( x) k 的图象.y sin x纵坐标不变横坐标向左平移π/3个单位纵坐标不变横坐标缩短为原来的 1/2横坐标不变纵坐标伸长为原来的 3倍先伸缩后平移y sin x 的图象纵坐标伸长 ( A 1)或缩短 (0 A 1)为原来的 A倍( 横坐标不变 )y sin(x)3y sin(2x)3y 3sin(2x)3得 yAsin x 的图象 横坐标伸长 (0 1) 或缩短 ( 1)到原来的 1(纵坐标不变 )得 yAsin( x) 的图象向左 ( 0)或向右 ( 0)平移个单位得 yAsin x( x ) 的图象向上 ( k 0) 或向下 ( k 0)平移 k 个单位长度得 yA sin( x ) k 的图象.纵坐标不变y sin x横坐标缩短为原来的 1/2纵坐标不变横坐标向左平移π /6个单位横坐标不变纵坐标伸长为原来的 3倍y sin 2xy sin(2x)3y 3sin(2x ) 3例 1 将 y sin x 的图象怎样变换得到函数y 2sin2 xπ1 的图象.4解:(方法一)①把y sin x 的图象沿 x 轴向左平移π个单位长度,得y sin xπ的图象;②将所得44图象的横坐标缩小到原来的1,得 y sin 2xπ的图象;③将所得图象的纵坐标伸长到原来的2 倍,得24y 2sin 2xπ的图象;④最后把所得图象沿y 轴向上平移 1 个单位长度得到y2sin 2xπ 1 的图象.44(方法二)①把 ysin x 的图象的纵坐标伸长到原来的2 倍,得 y 2sin x 的图象;②将所得图象的横坐标缩小到原来的1,得 y 2sin2 x 的图象; ③将所得图象沿 x 轴向左平移 π个单位长度得 y 2sin 2 x π 的 2 88 图象;④最后把图象沿 y 轴向上平移 1 个单位长度得到 y π 1 的图象.2sin 2 x4说明: 无论哪种变换都是针对字母x 而言的.由 ysin 2x 的图象向左平移π个单位长度得到的函数图象8的解析式是 y sin 2xπ而不是 ysin 2 xπ ,把 ysin xπ的图象的横坐标缩小到原来的1,得到884 2的函数图象的解析式是y sin 2xπ而不是y sin 2 x π .44 对于复杂的变换,可引进参数求解.例 2将 y sin 2 x 的图象怎样变换得到函数y cos 2 xπ的图象.4分析:应先通过诱导公式化为同名三角函数.解: y sin 2 x cos π2x cos 2x π ,22在 y cos 2xπ中以 x a 代 x ,有 y cos 2( x a)πcos 2x2a π .222 根据题意,有 2 x 2a π 2x π,得 a π.2 4 8所以将 y sin 2 x 的图象向左平移π个单位长度可得到函数y cos 2xπ 的图象.84。

高一三角函数图象的平移和伸缩

高一三角函数图象的平移和伸缩

三角函数图象的平移和伸缩函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换. 既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移.变换方法如下:先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象.先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. 例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象. 解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的12,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象. 说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+ ⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭.对于复杂的变换,可引进参数求解.例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象. 分析:应先通过诱导公式化为同名三角函数. 解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭, 在πcos 22y x ⎛⎫=- ⎪⎝⎭中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭. 根据题意,有ππ22224x a x --=-,得π8a =-. 所以将sin 2y x =的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象. 练习1、将函数y=3sin (2x+θ)的图象F 1按向量平移得到图象F 2,若图象F 2关于直线对称,则θ的一个可能取值是( )A 、B 、C 、D 、 2、将函数的图象按向量平移,得到y=f (x )的图象,则f (x )=( )A 、B 、C 、D 、sin (2x )+3 3、要得到函数y=cos()24x π-的图象,只需将y=sin 2x 的图象( ) A .向左平移2π个单位 B.同右平移2π个单位 C .向左平移4π个单位 D.向右平移4π个单位 4、若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数1y= sinx 2的图象则y=f(x)是( ) A . 1y=sin(2)122x π++ B. 1y=sin(2)122x π-+ C. 1y=sin(2)124x π++ D. 1sin(2)124y x π=-+ 5.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( A ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位 D .向右平移5π6个长度单位6.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=- ⎪3⎝⎭的图象( D )A .向右平移π6个单位 B .向右平移π3个单位C .向左平移π3个单位 D .向左平移π6个单位7.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( B )(A)向右平移6π个单位长度 (B)向右平移3π个单位长度(C)向左平移6π个单位长度 (D)向左平移3π个单位长度8.已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象AA 向左平移8π个单位长度 B 向右平移8π个单位长度C 向左平移4π个单位长度 D 向右平移4π个单位长度9.把曲线yc os x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是(C ) A .(1-y )sin x +2y -3=0 B .(y -1)sin x +2y -3=0 C .(y +1)sin x +2y +1=0D .-(y +1)sin x +2y +1=0。

三角函数的平移与伸缩规律探究

三角函数的平移与伸缩规律探究

三角函数的平移与伸缩规律探究三角函数是高中数学中的重要内容,它包括正弦函数、余弦函数和正切函数。

在学习三角函数的过程中,我们不仅要了解其定义和性质,还需要深入研究平移与伸缩规律。

本文将就三角函数的平移和伸缩规律展开探究,并给出相应的例子进行说明。

一、平移规律1. 正弦函数的平移正弦函数表示为y = A*sin(Bx+C) + D,其中A、B、C、D为常数。

其中C决定了函数的平移效果,具体规律如下:- 当C > 0时,图像向左平移|C|个单位;- 当C < 0时,图像向右平移|C|个单位;例如,对于y = sin(x+π/2)这个函数,其图像相对于y = sin(x) 的图像向左平移π/2 个单位。

2. 余弦函数的平移余弦函数表示为y = A*cos(Bx+C) + D,其中A、B、C、D为常数。

其中C决定了函数的平移效果,具体规律如下:- 当C > 0时,图像向左平移|C|个单位;- 当C < 0时,图像向右平移|C|个单位;例如,对于y = cos(x-π/3)这个函数,其图像相对于y = cos(x) 的图像向右平移π/3 个单位。

3. 正切函数的平移正切函数表示为y = A*tan(Bx+C) + D,其中A、B、C、D为常数。

其中C决定了函数的平移效果,具体规律如下:- 当C > 0时,图像向左平移|C|个单位;- 当C < 0时,图像向右平移|C|个单位;例如,对于y = tan(x-π/6)这个函数,其图像相对于y = tan(x) 的图像向右平移π/6 个单位。

二、伸缩规律1. 正弦函数的伸缩正弦函数表示为y = A*sin(Bx+C) + D,其中A、B、C、D为常数。

其中A决定了函数的纵向伸缩效果,具体规律如下:- 当|A| > 1时,纵坐标增幅变大,图像纵向收缩;- 当0 < |A| < 1时,纵坐标增幅变小,图像纵向拉伸;例如,对于y = 2*sin(x)这个函数,其图像相对于y = sin(x) 的图像纵向收缩了2倍。

三角函数变换法则

三角函数变换法则

三角函数变换法则引言三角函数是数学中常见的一类函数,它们在几何和物理等领域中具有重要的应用。

三角函数变换法则是指通过一些变换操作,可以将一个三角函数的图像转换为另一个三角函数的图像,从而更好地理解和分析问题。

本文将介绍三角函数变换法则的基本概念和应用。

一、平移变换平移是三角函数图像变换中最常见的操作之一。

平移可以将函数图像沿着横轴或纵轴方向移动一定的距离。

对于正弦函数和余弦函数来说,平移可以用以下的式子表示:y = f(x ± a)其中f(x)表示原始函数的表达式,a表示平移的距离。

当a为正数时,函数图像沿着横轴正方向平移;当a为负数时,函数图像沿着横轴负方向平移。

二、伸缩变换伸缩是指通过改变函数图像在横轴或纵轴方向上的比例关系来改变函数图像的形状。

对于正弦函数和余弦函数来说,伸缩可以用以下的式子表示:y = a * f(bx)其中f(x)表示原始函数的表达式,a和b分别表示纵轴和横轴方向上的伸缩因子。

当a大于1时,函数图像在纵轴方向上被拉伸;当a小于1时,函数图像在纵轴方向上被压缩。

当b大于1时,函数图像在横轴方向上被压缩;当b小于1时,函数图像在横轴方向上被拉伸。

三、反射变换反射是指将函数图像关于横轴或纵轴进行翻转。

对于正弦函数和余弦函数来说,反射可以用以下的式子表示:y = -f(x) 或 y = f(-x)其中f(x)表示原始函数的表达式。

当对称轴为横轴时,函数图像在纵轴方向上进行翻转;当对称轴为纵轴时,函数图像在横轴方向上进行翻转。

四、综合变换在实际应用中,我们可以将平移、伸缩和反射等变换操作进行组合,从而得到更复杂的函数图像。

例如,我们可以将平移和伸缩结合起来,将函数图像沿着横轴平移并在纵轴方向上进行拉伸或压缩。

这样的综合变换可以用以下的式子表示:y = a * f(b(x ± c))其中f(x)表示原始函数的表达式,a、b和c分别表示纵轴方向上的伸缩因子、横轴方向上的伸缩因子和平移的距离。

三角函数的平移与伸缩变换_整理之欧阳美创编

三角函数的平移与伸缩变换_整理之欧阳美创编

函数)sin(A ϕω+=x y 的图像(1)物理意义:sin()y A x ωϕ=+(A >0,ω>0),x∈[0,+ ∞)表示一个振动量时,A 称为振幅,T = ωπ2,1fT=称为频率,x ωϕ+称为相位,ϕ称为初相。

(2)函数sin()y A x k ωϕ=++的图像与sin y x =图像间的关系:① 函数sin y x =的图像纵坐标不变,横坐标向左(ϕ>0)或向右(ϕ<0)平移||ϕ个单位得()sin y x ϕ=+的图像;② 函数()sin y x ϕ=+图像的纵坐标不变,横坐标变为原来的1ω,得到函数()sin y x ωϕ=+的图像;③ 函数()sin y x ωϕ=+图像的横坐标不变,纵坐标变为原来的A 倍,得到函数sin()y A x ωϕ=+的图像;④ 函数sin()y A x ωϕ=+图像的横坐标不变,纵坐标向上(0k >)或向下(0k <),得到()sin y A x k ωϕ=++的图像。

要特别注意,若由()sin y x ω=得到()sin y x ωϕ=+的图像,则向左或向右平移应平移||ϕω个单位。

ϕ对)sin(ϕ+=x y 图像的影响一般地,函数)sin(ϕ+=x y 的图像可以看做是把正弦函数曲线上所有的点向____(当ϕ>0时)或向______(当ϕ<0时)平移ϕ个单位长度得到的注意:左右平移时可以简述成“______________”ω对x y ωsin =图像的影响函数x y ωsin =)10(≠>∈ωω且R x ,的图像可以看成是把正弦函数上所有的点的横坐标______)1(>ω或_______)10(<<ω到原来的ω1倍(纵坐标不变)。

A 对x y sin A =的影响函数x y sin A =,)1A 0A (≠>∈且R x 的图像可以看成是把正弦函数上所有的点的纵坐标_______)1A (>或_______)1A 0(<<到原来的A 倍得到的由x y sin =到)sin(A ϕω+=x y 的图像变换 先平移后伸缩: 先伸缩后平移: 【典型例题】例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.练习:将x y cos =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.例2、把)342cos(3π+=x y 作如下变换: (1)向右平移2π个单位长度;(2)纵坐标不变,横坐标变为原来的31;(3)横坐标不变,纵坐标变为原来的43;(4)向上平移1.5个单位长度,则所得函数解析式为________. 练习:将2)542sin(2++=πx y 做下列变换: (1)向右平移2π个单位长度;(2)横坐标缩短为原来的一半,纵坐标不变;(3)纵坐标伸长为原来的4倍,横坐标不变; (4)沿y 轴正方向平移1个单位,最后得到的函数._________)(==x f y例3、把)(x f y =作如下变换:(1)横坐标伸长为原来的1.5倍,纵坐标不变; (2)向左平移3π个单位长度;(3)纵坐标变为原来的53,横坐标不变;(4)沿y 轴负方向平移2个单位,最后得到函数),423sin(43π+=x y 求).(x f y =练习1:将)48sin(4ππ+=x y 作何变换可以得到.sin x y =练习2:对于)536sin(3x y +=π作何变换可以得到.sin x y =例4、把函数)2||,0)(sin(πϑωϑω<>+=x y 的图象向左平移3π个单位长度,所得曲线的一部分图象如图所示,则( ) A.6,1πϑω== B.6,1πϑω-==C.3,2πϑω== D.3,2πϑω-==练习:7、右图是函数))(sin(R x x A y ∈+=ϑω在区间)65,6(ππ-上的图象,只要将(1)x y sin =的图象经过怎样的变换? (2)x y 2cos =的图象经过怎样的变换? 【课堂练习】1、为了得到函数)63sin(π+=x y 的图象,只需把函数x y 3sin =的图象( )xA 、向左平移6π B 、向左平移18π C 、向右平移6π D 、向右平移18π2、为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( )A 、向左平移5π12个长度单位B 、向右平移5π12个长度单位 C 、向左平移5π6个长度单位 D 、向右平移5π6个长度单位3、要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( )A 、向右平移π6个单位B 、向右平移π3个单位C 、向左平移π3个单位D 、向左平移π6个单位4、为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象()A 、向右平移6π个单位长度B 、向右平移3π个单位长度C 、向左平移6π个单位长度 D 、向左平移3π个单位长度5、把函数sin y x =(x R ∈)的图象上所有点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( )A 、sin(2)3y x π=-,x R ∈ B 、sin()26x y π=+,x R ∈ C 、sin(2)3y x π=+,x R ∈ D 、sin(2)32y x π=+,x R ∈6、为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像( )A 、向左平移4π个长度单位 B 、向右平移4π个长度单位C 、向左平移2π个长度单位 D 、向右平移2π个长度单位7、已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象( )A 、向左平移8π个单位长度B 、 向右平移8π个单位长度C 、 向左平移4π个单位长度 D 、 向右平移4π个单位长度8.将函数y=sinx 的图象向左平移ϕ(0≤ϕ<2π)的单位后,得到函数y=sin ()6x π-的图象,则ϕ等于( )A .6π B .56π C.76π D.116π专练:1.(2009山东卷理)将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ). A.cos 2y x = B.12cos +=x y C.)42sin(1π++=x yD.22sin y x =2.(2009天津卷理)已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象A 向左平移8π个单位长度B 向右平移8π个单位长度C 向左平移4π个单位长度D 向右平移4π个单位长度3.(09山东)要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( )A 、向右平移π6个单位B 、向右平移π3个单位C 、向左平移π3个单位D 、向左平移π6个单位4.(10江苏卷)为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点A 、向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)B 、向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)C 、向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)D 、向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)5、(2010全国卷2理数)(7)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像A 、向左平移4π个长度单位 B 、向右平移4π个长度单位C 、向左平移2π个长度单位 D 、向右平移2π个长度单位6、(2010辽宁)设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是A 、23B 、43C 、 32D 、3。

三角函数图象的平移和伸缩

三角函数图象的平移和伸缩

三角函数图象的平移和伸缩河北 张军红函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象. 先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. 例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的12,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+ ⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭.对于复杂的变换,可引进参数求解.例2 将sin 2y x =的图象怎样变换得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.分析:应先通过诱导公式化为同名三角函数.解:ππsin 2cos 2cos 222y x x x ⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,在πcos 22y x ⎛⎫=- ⎪⎝⎭中以x a -代x ,有ππcos 2()cos 2222y x a x a ⎡⎤⎛⎫=--=-- ⎪⎢⎥⎣⎦⎝⎭.根据题意,有ππ22224x a x --=-,得π8a =-. 所以将sin 2y x =的图象向左平移π8个单位长度可得到函数πcos 24y x ⎛⎫=- ⎪⎝⎭的图象.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

)(A > 0,3> 0) ,
x € [0,+ s)表示一个振动量时,
A
1
图像的纵坐标不变,横坐标变为原来的-,得到函数
)图像的横坐标不变, 纵坐标向上(k 0)或向下(k 0),
要特别注意,若由y sin x 得到y sin x 的图像,则
向左或向右平移应平 移|—|个单位。

对y sin (x )图像的影响
一般地,函数y sin (x )的图像可以看做是把正弦函数曲线上所有的点向 ____ 当>0时)或向 ______ 当 <0时)平移| |个单位长度得到的 注意:左右平移时可以简述成“ _____________ ”_ 对y sin x 图像的影响
函数y sin x x R ( 0且 1),的图像可以看成是把正弦函数上所有的点的
1
横坐标 ______ 1)或 _____ 0 1)到原来的一倍(纵坐标不变)。

A 对y A sin x 的影响
函数y A sinx , x R(A 0且 A 1)的图像可以看成是把正弦函数上所有的点 的纵坐标 ______ (A 1)或 ________ _0 A 1)到原来的A 倍得到的
函数 y A sin( x
)的图

2 称为振幅,T = 一
-称为频率,
x 称为相位,
称为初
相。

T
(2)函数 y Asin( x
)k 的图像与y
sin x 图像间的关
系:
① 函数y sin x 的图像纵坐标不变, 横坐标向左(>0 )或向右(<0 )平移|
|个
(1)物理意义:y Asin ( x
② 函数y sin x
y sin x
的图像;
③ 函数y
sin x
y As in( x
)的图像;
④ 函数y Asin( x
得到 y Asi n x
图像的横坐标不变,纵坐标变为原来的 A 倍,得到函数
k 的图像。

单位得y sin x 的图像;
由y si nx到y A si n( x )的图像变换
先平移后伸缩:
先伸缩后平移:
【典型例题】例1 将y sin x的图象怎样变换得到函数y 2sin 2x n1的图象.
4
练习:将y cosx的图象怎样变换得到函数y cos 2x」的图象.
4
4
例2、把y 3cos(2x )作如下变换:
(1)向右平移一个单位长度;
2
1
(2)纵坐标不变,横坐标变为原来的-;
3
3
(3)横坐标不变,纵坐标变为原来的;
4
(4)________________________________________________ 向上平移1.5个单位长度,则所得函数解析式为_____________________________ .
4
练习:将y 2sin(2x ) 2做下列变换:
(1)向右平移—个单位长度;
2
(2)横坐标缩短为原来的一半,纵坐标不变;
(3)纵坐标伸长为原来的4倍,横坐标不变;
(4)沿y轴正方向平移1个单位,最后得到的函数y f(x) ________________ . 例3、把y f (x)作如下变换:
(1)横坐标伸长为原来的1.5倍,纵坐标不变;
(2)向左平移—个单位长度;
3
3
(3)纵坐标变为原来的-,横坐标不变;
5
3 3
(4)沿y轴负方向平移2个单位,最后得到函数y —sin(—x -),求y f (x).
练习1 :将y
4sin( x
8 才)作何变换可以得到y sinx. 练习2:对于
y 3sin(
6
3
|x)作何变换可以得到y si nx.
例4、把函数y sin( x )(
0,1
1
2)的图象向左平移 A. 1,
B.
6
1, -
6
C.
2,
—D.
2, —
3
3
练习:
7、 右图是函数 y Asin( x )(x R)在区间
5
(-,—)上的图象,只要将 6 6
(1) y si nx 的图象经过怎样的变换?
(2) y cos2x 的图象经过怎样的变换?
【课堂练习】
1、为了得到函数y sin(3x —)的图象,只需把函数y sin 3x 的图象
曲线的一部分图象如图所示,则() 3个单位长度,所得
3、要得到函数y sinx 的图象,只需将函数y cos x —的图象( )
A 、向右平移-个单位
B 、向右平移-个单位
C 、向左平移-个单位
D 、向 左平移-个单位
4、为了得到函数y sin(2x )的图象,可以将函数y cos2x 的图象( )
6
A 、向右平移-个单位长度
B 、向右平移-个单位长度
6
3
C 、向左平移-个单位长度
D 、向左平移-个单位长度
6
3
6、为了得到函数y sin(2x —)的图像,只需把函数y sin(2x —)的图像(
)
g(x) cos x 的图象,只要将y f (x)的图象 ( )
A 、向左平移6
B 向左平移18
C 向右平移云
D 、向右平移18
2、为得到函数y
n
cos 2x
3的图像'只需将函数y
sin 2x 的图像(
A 、向左平移55个长度单位
12
C 、向左平移 乞个长度单位
6
B 、向右平移55个长度单位
12
D 、向右平移55
个长度单位
6
5、把函数y sin x ( x
所得图象上所有点的横坐标缩短到原来的 示的函数是(
)
A 、y sin(2 x
) , x R 3
C 、 y sin(2x ) , x R 3 R )的图象上所有点向左平行移动
个单位长度,再把
3
1
2倍(纵坐标不变),得到的图象所表
x
B 、y sin( ) , x R
2 6 2
D 、 y sin(2x ) , x R
3
A 、向左平移-个长度单位
4 C 、向左平移-个长度单位
2
7、已知函数 f (x) sin( x )(x R,
4
B 、向右平移-个长度单位
4 D 、向右平移-个长度单位
2
0)的最小正周期为,为了得到函数
A 、 向左平移-个单位长度
8
B 、 向右平移一个单位长度
8
C 、 向左平移一个单位长度
4
D 、 向右平移一个单位长度
4
8.将函数 y=s inx 的图象向左平移 (0
V 2
)的单位后,得到函

y=sin (x -)的图象,则等于(
)
A.—
B. 5
C. 7
D.11
6 6 6 6
专练:
1. (2009山东卷理)将函数y sin2x 的图象向左平移;个单位,再向上平移1个 单位,所得图象的函数解析式是( ).
A. y cos2x
B. y cos2x 1
C. y 1 sin (2x )
4
D. y 2sin 2 x
2. (2009天津卷理)已知函数f (x ) sin ( x -)(x R, 0)的最小正周期为
4 为了得到函数g (x ) cos x 的图象,只要将y f (x )的图象
A 、向右平移—个单位
B 、向右平移—个单位
C 、向左平移—个单位
D 、向左平移—个单位
4( ( 10江苏卷)为了得到函数y 2sin (Z ),x R 的图像,只需把函数
3 6
y 2 si nx,x R 的图像上所有的点
A 、向左平移-个单位长度,再把所得各点的横坐标缩短到原来的-倍(纵坐
6
3
标不变)
A 向左平移一个单位长度
8 C 向左平移一个单位长度
4
B 向右平移一个单位长度
8 D 向右平移一个单位长度
4
3.(09山东)要得到函数y sin x 的图象,只需将函数y cos x 的图象()
B、向右平移—个单位长度,再把所得各点的横坐标缩短到原来的-倍(纵坐
6 3
标不变)
C、向左平移-个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)
D、向右平移-个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵
6
坐标不变)
5、(2010全国卷2理数)(7)为了得到函数y sin(2x -)的图像,只需把函
3
数y sin(2x -)的图像
A、向左平移一个长度单位
4
C、向左平移一个长度单位
2
6、( 2010辽宁)设0,函数y sin(
原图像重合,则的最小值是
A、-
3 B、-
3
B、向右平移一个长度单位
4
D、向右平移-个长度单位
2
x -) 2的图像向右平移—个单位后与
3 3
C、-
D、 3
2。

相关文档
最新文档