汽轮机直接空冷系统概述

合集下载

直接空冷系统

直接空冷系统

整理课件
26
喷淋水系统
❖ 为了有效地降低机组的背压,提高机组的效率, 平稳顺利地防暑过夏,二期空冷岛加装了喷淋水 系统,即为每个风机加了10个雾化喷头,使除 盐水经过雾化被风机直接吹到散热管束上,降低 散热管束的温度,从而使管束中的蒸汽能够更好 地被冷却。
整理课件
27
二期化学 除盐水箱
第1列
第1列
整理课件
13
空冷防冻
❖ 在机组处于空负荷或低负荷运行时,蒸汽流量很小,经 试验发现加上旁路系统的蒸汽流量也不能达到空冷凝汽 器全部投入时的设计流量。此时,即使将所有风机全部 停运,由于此时蒸汽流量很小,当蒸汽由空冷凝汽器进 汽联箱进入冷却管束后,在由上而下的流动过程中,冷 却管束中的蒸汽与外界冷空气进行热交换后不断凝结。 由于环境温度很低,远远低于水的冰点温度,其凝结水 在自身重力的作用下,沿管壁向下流动的过程中,其过 冷度不断增加,当到达冷却管束的下部(即冷却管束与 凝结水联箱接口处)时达到结冰点产生冻结现象。在冷 却过程中蒸汽不断凝结并不断在冷却管束的下部冻结,
整理课件
25
冲洗水系统
❖ 系统包括每纵冷凝器两侧的可移动扶梯、安装在扶梯上 的水流分配集管及安装在集管上方的雾化喷嘴。水流通 过一软管供给至扶梯。由於扶梯可平行于管束表面由人 工移动,这样水流分配均匀,清洁工作持续有效。先清 洗冷凝器一侧,然后在清洗另一侧。每一侧应清洗6遍。 (每个扶梯安放6个集管,1/6的管道可被同时清洗。这 样作的目的是为了限制清洁用水的水流量。) 清洁应自 上而下,从顶部母管开始,至中间母管,最后清洁底部 母管。高压水喷嘴均匀分布并与水流分配集管固定,全 部垂直于管束,并通过一软管与供水装置/泵连接。最 好在机组停运、ACC处於真空状态下期间实施清洁,在 机组运作时亦可实施清洁。

空冷风机变频原理及故障分析

空冷风机变频原理及故障分析

空冷风机变频原理及故障分析山西漳山发电有限责任公司刘铉关键词: 直接空冷系统变频器控制回路故障分析摘要: 本文分析了直接空冷系统风机变频技术的原理,同时对应用过程中存在的问题和解决方法进行了介绍,并提供了一些经验和建议一、直接空冷系统概述目前我国火力发电厂多采用水冷技术,面对越来越紧迫的水资源缺乏问题,新建大型火力发电厂都在利用直接空冷技术代替传统的湿冷技术,直接空气系统是利用空气直接冷却汽轮机排汽,汽轮机排汽经布置在空冷岛顶部的散热器后,在散热器下部轴流风机的冷却风作用下,压力降低,温度下降,凝结成水回到凝结水箱中,未凝结的蒸汽和空气从散热器顶部由真空泵抽走,避免在运行中空冷凝汽器内部的某些区域形成死区,导致换热效果降低以及冬季冻结。

空冷技术的核心在于控制汽轮机背压,由于火力发电是一个十分复杂的能量转换过程,汽轮机背压受多种因素影响,变化复杂,因此直接空冷机组多采用变频技术来控制轴流风机转速,达到调节汽轮机背压的目的。

二、空冷风机变频原理分析变频器分为交一交和交一直一交两种形式。

交一交变频器可将工频交流直接变换成频率、电压均可控制的交流,又称直接式变频器,而交一直一交变频器则是先把工频交流通过整流器变成直流,然后再把直流变换成频率、电压均可控制的交流,又称间接式变频器。

我公司采用的空冷风机变频器属于间接式变频器,其原理如图2-1所示,由主回路(包括整流器、中间直流环节、逆变器)和控制回路组成,分述如下:图2-1 变频器结构原理图1、整流器:功率整流器是一个半控式桥式电路,它对三相交流电源电压进行整流并产生恒定的直流传输线电压Vd,如图2-2图2-2 整流器前后波形整流器下部的一个串联的电阻器通过一个二极管与电源端连接,它是一个预充电装置,能够防止浪涌电流。

2、中间直流环节:由于逆变器的负载为异步电动机,属于感性负载,无论电动机处于电动或发电制动状态,其功率因数总不会为1。

因此,在中间直流环节和电动机之间总会有无功功率的交换。

空冷岛简介

空冷岛简介

空冷严密性试验
给所有的安装焊缝和法兰连接涂肥皂。 为 进行泄漏试验 必须在管道的各个点放置盲 进行泄漏试验, 板,例如在汽轮机的前面 ,在安全阀的前面, 在防爆膜的前面 在泵的前面等。 在防爆膜的前面, 在排 气管道安装完成后必须进行空冷凝汽器严密性 试验根据设备厂家图纸设计要求及中华人民共 和国电力行业标准《火力发电厂空冷塔及空冷 凝汽器试验方法》DL/T 552-95中规定的标准 552 95中规定的标准 进行验收。
2、采用空冷,厂址选择不受限 2 采用空冷 厂址选择不受限 制 3、由于空冷器空气侧压力降为 100‾200Pa 左右,所以运行 左右 所以运行 费用低。 4、空气腐蚀性低,不需要采取 任何清垢的措施 5、空冷系统的维护费用一般为 水冷却系统的 20‾30%
4、水的运行费用高,循环泵的 4 水的运行费用高 循环泵的 压头高 5、在水冷器中,某些生物能附 着在换热器表面上 需要停下 着在换热器表面上,需要停下 设备清除,增加了维护费用
国内电站空冷系统供应商现状: 国内电站空冷系统供应商现状




1、美国 美国SPX(斯必克)公司在中国空冷市场上的占有 率约35%,在天津、张家口分别设有两个独资管束生产 中 2、德国GEA(基伊埃)公司德国GEA公司系空冷技术 的创始人,其技术 直处于世界领先地位,在世界空冷 的创始人,其技术一直处于世界领先地位,在世界空冷 市场上的占有率超过60%,在中国空冷市场上的占有率 约35%。 3、首航艾启威冷却技术有限公司。首航艾启威冷却技 术(北京)有限公司是由北京首航波纹管制造有限公司和 瑞士IHW联合设计集团共同投资的中外合资企业。 联合设计集团共同投资的中外合资企业 4、北京龙源冷却技术有限公司、哈尔滨空调股份有限 公司等。 公司等

空冷岛

空冷岛

空冷系统分类:
空气冷却系统采用工艺流程的不同,而又将空气 冷却系统分成三种 : 1、直接空气冷却系统简称 ACC 系统。 (AirCooledCondenser) 2、采用喷射式(混合式)凝汽器的空冷系统又 称海勒式(HL)间接冷却系统。 3、采用表面式凝汽器的间接空冷系统。又称哈 蒙式间接空冷系统
热风回流
减少热风再循环的措施有:
(1)在空冷平台周围设置挡风墙。 (2)在不同的空冷凝汽器单元之间设置分隔墙 (3)降低空冷平台下面进风口的空气流速,减少负 压区。 (4)采用喷雾加湿系统。其主要原理是高气温时段 在空冷凝汽器迎风面喷雾除盐水,一部分与翅片管 束进行热交换,水雾在管束表面升温后蒸发,利用 汽化潜热吸收了热量;另一部分雾化后的小水滴与 环境空气直接换热,降低了环境温度,增大了传热 温差,强化了传热效果。
排气管道、蒸汽分配管及歧管 管径 变化
真空度低,会造成如下情况:
1、真空漏入空气,增加凝结水含氧量,在排气装置除氧及除氧 器除氧过程中就会消耗更多的能量,增加煤耗。凝结水中的 含氧量也越多,从而加速了相关管道、设备的腐蚀速度。 2、当蒸汽在冷凝过程中出现不凝结气体,凝结水液膜热阻将不 再是主要的传热热阻。此时管内换热表面被一层气膜覆盖, 气膜具有更高的传热热阻。此外,随着不凝结气体和蒸汽的 混合汽体的过冷和不凝结气体比例的增大,凝汽器逆流单元 的传热热阻增大。 3、不凝气体的焓值较低,当气温下降到一定极限时,极易造成 空气冷 凝器管束内冻结现象的发生。 4、漏真空后,空气进入凝汽器产生气阻,导致汽轮机背压升高, (汽轮机排气背压设计为15kPa(TMCR/THA工况))汽轮机有 相对应背压裕量,超过这个裕量(低压缸排气温度升高,腐 蚀汽轮机末级叶片,造成低压缸缸体变形)造成机组降负荷, 严重时机组跳闸。

汽轮机直接空冷系统工艺流程

汽轮机直接空冷系统工艺流程

汽轮机直接空冷系统工艺流程汽轮机直接空冷系统是一种用于蒸汽动力发电的冷却系统,其工艺流程如下:1.蒸汽供应:汽轮机的蒸汽来自锅炉或其他蒸汽源。

蒸汽通过管道输送至汽轮机,推动汽轮机转动,从而驱动发电机发电。

2.蒸汽调节:进入汽轮机的蒸汽通过调节阀进行压力和流量的控制。

这些调节阀根据汽轮机的负荷需求和系统压力的变化进行调节。

3.汽轮机转子及叶片:蒸汽在汽轮机内部膨胀并推动转子转动,转子带动叶片旋转,从而将蒸汽的动能转化为转子的旋转动能。

4.冷凝器:从汽轮机排出的蒸汽进入冷凝器,与冷却水进行热交换,使蒸汽中的水蒸气冷凝为水。

这个过程释放出蒸汽的潜热,将蒸汽转化为液态水。

5.冷却水系统:冷却水系统由水泵、冷却塔和循环管道组成。

冷却水被水泵从储水池中抽出,通过循环管道输送到冷却塔进行喷淋,与空气进行热交换,将热量传递给空气,使冷却水温度降低。

6.直接空冷:从冷凝器出来的水蒸气和液态水混合物进入直接空冷系统。

直接空冷系统由一系列空冷散热器组成,液态水混合物在散热器表面蒸发,吸收热量,使散热器冷却。

7.凝结水收集:在直接空冷系统中,液态水混合物在散热器表面蒸发后形成凝结水,凝结水通过凝结水管道收集并输送到储水池。

8.循环利用:从储水池中回收的凝结水经过处理后可以再次用于锅炉供水,实现水资源的循环利用。

9.控制系统:汽轮机直接空冷系统配备了一套控制系统,用于监控系统的运行参数、调节蒸汽流量和压力以及控制凝结水的回收利用。

控制系统由传感器、执行器和控制器组成,可以实现自动化控制和远程监控。

10.维护管理:汽轮机直接空冷系统需要进行定期的维护和保养,确保系统的正常运行。

维护内容包括清洗冷凝器和散热器、检查阀门和管道的密封性、更换损坏的零件等。

总的来说,汽轮机直接空冷系统的工艺流程涉及蒸汽的供应、调节、转化、冷却、空冷散热、凝结水收集、循环利用以及控制系统和维护管理等多个环节。

这些环节相互关联、相互影响,共同保障了汽轮机直接空冷系统的正常运行和发电过程的顺利进行。

直接空冷的概述

直接空冷的概述

一、结构简介:1:直接空冷系统汽轮机的排汽通过大直径的管道进入布置于主厂房A列前的空冷凝汽器,采用轴流风机使冷空气流过空冷凝汽器,以此使蒸汽得到冷凝,冷凝水经过处理后送回到锅炉给水系统。

2:凝汽器构件空冷凝汽器由三排翅片管束,蒸汽分配管,管束下联箱,支撑管束的钢架组成。

3:排汽管道系统汽轮机低压缸排汽装置出口到与连接各空冷凝汽器的蒸汽分配管之间的管道以及在排汽管道上设置的滑动和固定支座,膨胀补偿器,相关的隔断阀门及起吊设施,安全阀,防爆膜,疏水系统等。

4:凝结水回收系统经空冷凝汽器凝结成的水通过凝结水管道收集到汽轮机排汽装置下的热井中,然后通过凝结水泵送入汽轮机热力系统。

补水量为锅炉BMCR工况流量的3∽5%。

5:抽真空系统由三台100%的水环式真空泵以及所需的管道阀门等组成。

是机组启动和正常运行时抽出空冷凝汽器和其他辅助设备和管道中的空气,建立和维护机组真空。

真空泵一用二备,冷态抽空时间40分钟,要求管道系统必须严密不漏。

6:直接空冷系统性能保证的考核点工况在夏季空气干球温度为34℃,外界环境风速≤5m/s时,每台汽轮机的排汽量为692t/h,排汽焓为2530﹒3KJ/kg时,风机100%转速的情况下,应保证汽轮机排汽口处背压不大于32Kpa,这一工况作为直接空冷系统性能的主要考核点。

7:空气通道每台风机对应的冷却管束﹙冷却单元﹚应有其空气通道,以保证冷空气进入及热空气排出。

凝汽器支撑钢架的布置应不影响冷空气进入凝汽器。

不同冷却单元之间应设隔墙,以免相邻冷却单元互相影响和相邻风机的停运而降低通风效率。

并且隔墙要有一定的强度,以免由于振动而损坏。

对整个冷凝器风道以外的缝隙应采用抗腐蚀板进行封堵,以保证空气通过凝汽器时不走旁路,保证通风量和冷却效果,减少风机电耗。

8:冷却风机风机﹙包括电机减速机风扇叶片变频柜﹚为德国斯必克公司生产,单台功率110KW,台数30台﹙其中顺流24台,逆流6台﹚,叶片旋转直径10﹒363米。

直接空冷与间接空冷

直接空冷与间接空冷

空冷系统介绍摘要:电厂采用空冷系统可以大幅度降低电厂耗水量,在节水方面有显著的效果,因而空冷机组得到了越夹越多的应用。

本文以2X3OOMW机组为例介绍了直接空冷系统及其控制;以2×2OOMW机组为例介绍了间接空冷系统及其控制。

一、概述空冷系统主要指汽轮机的排汽通过一定的装置被空气冷却为凝结水的系统,它与常规湿式冷却方式(简称湿冷系统)的主要区别是避免了循环冷却水在湿塔中直接与空气接触所带来的蒸发、风吹损失以及开式循环的排污损失,消除了蒸发热、水雾及排污水等对环境造成的污染。

由于空冷方式用空气直接冷却汽轮机排汽或用空气冷却循环水再间接冷却汽轮机排汽构成了密闭的系统,所以在理论上它没有循环冷却水的上述各种损失,从而使电厂的全厂总耗水量降低80%左右。

用于电厂机组末端冷却的空冷系统主要有直接空冷系统和间接空冷系统,间接空冷系统又分为带表面式凝汽器和带混合式凝汽器的两种系统。

三种空冷方式在国际上都得到广泛的应用,技术均成熟可靠,在国际上三种空冷方式单机容量均已达到600MW。

我国目前己有60OMW直冷机组投运,两种间冷方式在国内运行机组均为200MW。

采用空冷机组大大减少了电厂耗水,为水源的落实和项目的成立提供了便利条件。

特别对缺水地区,有着重要的意义。

内蒙古地区煤资源丰富,近几年投产的机组,基本都采用了空冷系统,而且大部分为直接空冷系统。

二、空冷系统2.1直接空冷系统电厂直接空冷系统是汽机的排汽直接用空气冷却,汽机排出的饱和蒸汽经排汽管道排至安置在室外的空冷凝汽器中,冷凝后的凝结水,经凝结水泵升压后送至汽机回热系统,最后送至锅炉。

电厂直接空冷系统主要包括以下系统:空冷凝汽器(ACC,Aircooledcondenser),空气供给系统、汽轮机排汽管道系统、抽真空系统、空冷凝汽器清洗系统、空冷凝汽器平台及土建支撑。

蒸汽从汽轮机出来,经过蒸汽管道流向空冷凝汽器,由蒸汽分配管道间空冷冷凝器分配蒸汽。

空冷汽轮机

空冷汽轮机

4、系统特点
优点:设备少,系统简单, 优点:设备少,系统简单,基建投资 占地少;空气量的调节灵活. 少,占地少;空气量的调节灵活 缺点:排汽管道密封困难, 缺点:排汽管道密封困难,维持真空 启动时建立真空困难( 低,启动时建立真空困难(需很长时 间)。
5、空冷岛的结构 、
组成: 组成: 排汽管道、 排汽管道、 冷却装置、 冷却装置、 轴流风机、 轴流风机、 凝结水回 水管道、 水管道、 抽气管道、 抽气管道、 电气进出 线管、 线管、 支撑柱、 支撑柱、 桁架等。 桁架等。
(三)带表面式凝汽器间接空冷系统
系统组成: 1、系统组成:亦称哈蒙系 由表面式凝汽器、 统,由表面式凝汽器、空 冷散热器、 冷散热器、循环水泵以及 充氮保护系统、 充氮保护系统、循环水补 充水系统、 充水系统、散热器清洗等 系统与空冷塔构成。 系统与空冷塔构成。 该系统与常规的湿冷系统 基本相仿, 基本相仿,不同之处是用 空冷塔代替湿冷塔, 空冷塔代替湿冷塔,用密 闭式循环冷却水系统代替 敞开式循环冷却水系统, 敞开式循环冷却水系统, 循环水采用除盐水。 循环水采用除盐水。
2、末级叶片容积流量变化大 、
(1)气温低、背压低、负荷大时,汽轮机 )气温低、背压低、负荷大时, 容积流量大,将导致以下不利后果: 容积流量大,将导致以下不利后果: 余速损失增大; 1)余速损失增大; 汽流作用力增大,使叶片弯曲应力增大; 2)汽流作用力增大,使叶片弯曲应力增大; 汽轮机轴向推力增大。 3)汽轮机轴向推力增大。
空冷汽轮机
一、发电厂空冷系统简介
(一)直 接空冷系 统 1、原则 性热力系 统
2、空冷凝汽器工作原理 、
汽轮机排汽通过粗 大的排汽管道送到 空冷凝汽器内, 空冷凝汽器内,轴 流风机使空气流过 空冷凝汽器的外表 面带走热量, 面带走热量,使排 汽凝结为水。 汽凝结为水。

直接空冷系统

直接空冷系统

空冷凝汽器电厂汽轮机排汽冷却有水冷与空冷两种。

水冷机组直接从流量较大的河流取水,到凝汽器冷却排汽后直接排到河流中。

电厂采用的空冷系统主要有三种方式,即直接空冷系统、表面式凝汽器间接空冷系统和混合式凝汽器间接空冷系统。

如图8-3-1所示,直接空冷系统亦称为ACC(Air Cooled Condencer)系统,它是指汽轮机的排汽引入室外空冷凝汽器内直接用空气来冷凝。

其工艺流程为汽轮机排汽通过大直径的排气管道引至室外的空冷凝汽器内,布置在空冷凝汽器下方的轴流冷却风机驱动空气流过冷却器外表面,将排汽冷凝为凝结水,凝结水再经泵送回汽轮机的回热系统。

之所以称直接空冷因为是将蒸汽直接送入散热管,而不象间接空冷送入冷却塔的是热水、因蒸汽体积比水大得多,所以送汽管特别粗,直径约为间接空冷的三倍多。

图8-3-1 直接空冷系统原理图国外在30年代末就开始研究电厂利用直接空冷技术,随着困扰直接直接空冷系统空冷系统的大直径排汽管和大容积真空系统等问题的解决,直接空冷系统在大容量机组上的应用也得到了迅速的发展,到80年代末,国外己投运多台300~600MW的直接空冷机组的电厂,如南非Matinmba电厂、美国的Wyodak电厂、伊朗的Touss电厂,这些电厂投产以来运行良好,尤其是美国的Wyodak电站的气温与我国北方寒冷地区的气温接近,为严寒季节的运行如防冻问题提供了经验基于防冻的要求,直接空冷系统设置顺流凝汽器和逆流凝汽器,大部分的蒸汽在顺流凝汽器中被冷凝,小部分蒸汽再通过逆流凝汽器被冷凝。

在逆流凝汽器中,由于蒸汽和凝结水的运动方向相反,凝结水不易冻结。

在逆流凝汽器的顶部设有抽真空系统,可将系统内的空气和不凝结气体抽出。

该系统冷却效率高(取消了二次换热所需要的中间冷却介质)、占地面积小、投资较省、系统调节灵活,冬季运行防冻性能好,可通过调整风机转速或风机数量来调节进风量,以适应热负荷及气温的变化,并防止空冷器内部结冰。

汽轮机冷端系统-空冷系统简介

汽轮机冷端系统-空冷系统简介
部地 区许 多火 电机组 采 用 直接 空气 冷却 系统 ,发 电厂 的 发 电成 本和 发 电用 水大 幅 降低 , 直接 空气 冷却 系 统得 到 了推广 和 应用 。但 目前我 国直 接 空气 冷却 系统 机 组在 这 方 面还 处 于摸 索和 起 步阶 段 。因 此 ,国 内直 接空 气冷 却
2 0 1 5 年第2 1 期 ( 总第3 3 6 期 )
悯南 熬 揍
( C u m u l a t i v N e t o y N . 2 O 1 . 2 0 1 5 统—— 空冷 系统简介
刘 东
( 甘 肃电投 金 昌发 电有 限责任公 司 ,甘肃 永 昌 7 3 7 1 0 9 )
l 概 述
我 国南方水资源较丰富 ,但 中西部地区水资源 比较 匮乏,随着中西部地区经济建设的发展,水资源逐渐成 为制约我国中西部地区发展的重要因素。火电机组采用
空 冷 技术 后 , 电厂 的耗水 量 比湿 式循 环 冷却 系统 耗 水量
分 为 以下三类 :
2 . 2 . I 汽轮机做 完功 的乏汽与冷却水混合换热的 间接空气冷却系统。汽轮机做完功的乏汽排入混合式凝
过 凝 汽 器 中 不锈 钢 管 与 管 内流 动 的 冷 却 水 进 行 表 面 换 热 , 乏汽 冷 凝 后 , 用凝 结 水 泵送 至 热 力 系 统 中 进 行 循 环 。管 内流 动 的冷却 水 带走 热量 ,通 过 循环 泵升 压后 ,
送入 间冷塔 内的热水环管,通过热水环管将热水再送入
2 发电厂空冷系统的方式
2 . 1 直接空气冷却系统 直接 空 气 冷 却 系 统 , 又 称 为 直 接 空 气 冷 却 凝 结 系
统 。汽轮 机 作完 功 的乏汽 经 排汽 大 管道 送至 布置 在 室外 的 空气凝 汽 器 的空 冷散 热器 中, 由冷却 风扇 将 空气 送至 空 冷 散 热 器 外 流 动 ,冷 却 管 内 的排 汽 ,使 排 汽 凝 结成

空冷系统讲义

空冷系统讲义
取并记录2只压力表及2支温度计的显示值。 ❖ 试验持续24小时,以便开始和结束时环境温度大致相同,从而得到正确的试
验结论。 ❖ 空冷系统气密性试验历时24小时压降不应大于50mbar。此结果应为对环境
温度进行修正之后的数据。 ❖ 完成气密性试验后,打开临时放气阀将系统泄压。
TS 2.5.3空冷凝汽器清洗
质要求高。另外一个特点是,经冷却塔冷却后的水仍有较大的余压,在送入
凝汽器以前,先用小型水轮发电机口收能量。
TS
直接空冷系统的组成
直接空冷系统主要由蒸汽分配管、空冷凝汽器,空冷风机组、 凝结水回收管、抽真空管、空冷清洗装置等组成。 •空冷凝汽器( Air Cooled Condenser 简称ACC ):直接空冷系 统中的空冷装置,将汽轮机的排汽直接排到该装置中冷凝成凝 结水,故称为空冷凝汽器。 •管束(bundles)::组成空冷凝汽器工厂供货的基本元件。
TS 2.5.1空冷风机单体试运
试运前应具备的条件 ❖ 清除风筒防护网和风机的杂物,保持风机和冷却单元内清洁。 ❖ 就地和远传监视设备完好。 ❖ 电机以及变频器接线正确、可靠。接地装置完好。 ❖ 各风机的变频电机经过单体试运,转向正确。 ❖ 叶片安装角度调整完毕、合格;方向一致。 ❖ 同一风机内叶片高低差调整完毕、合格。 ❖ 叶片叶尖与风筒内壁的间隙调整完毕、合格。 ❖ 减速箱内润滑油加注到位 ❖ 手转动叶轮,应灵活无卡涩现象。
TS 2、调试流程
系统和相关设备资料的收集 调试文件的编写 系统的检查 设备的传动 空冷风机的试运 空冷系统气密性试验 空冷系统冷态冲洗 空冷系统热态冲洗 验评表及调试报告的编写
TS 2.1 系统和相关设备资料的收集
PI图、系统图 空冷风机运行维护说明书 空冷逻辑说明

空冷系统概述

空冷系统概述

1.•直接空冷是干空冷系统概述式冷却(空冷)系统的一种方式,区别于间接空冷。

汽轮机排汽经过排汽管道直接送入散热器(空冷凝汽器)冷却后凝结成水,散热器的热量由管外流过的空气带走,这种系统叫直接空冷系统。

众所周知,我区以丰富的煤炭资源、广阔的土地资源,邻近北京及京、津、唐电网等诸多优势,被国家列为能源、电力生产基地。

但是由于我区水资源相对匮乏,以及国家要求建设内蒙古绿色生态防线的要求,走可持续发展的道路,节约用水、提高水资源利用率已成为新世纪内蒙电力工业发展的重大课题。

最近几年,国家审批的电场项目反复强调优先批准空冷机组,现在我区在建和准备建设的工程项目几乎全部为直接空冷机组,(国家政策导向)所以大力推广、应运空冷直接空冷技术迫在眉睫,也是大势所趋。

直接空冷机组特点:1.节水:全厂性耗水量可节约65%以上,即由1m3/GWh降到0。

3~0。

35 2.建厂条件:从已建成厂来看,不受限制,纬度高、低,气候干燥、湿润,厂址选择自由度大。

3.环抱性能:无冷却塔汽水蒸发,电厂周围无飘滴,废水排放可以达到0排放的要求。

4.维护费用:一空冷机组的维护费用低一些,为其30%。

单排管优点哈蒙公司生产的单排管散热器性能先进,防冻性好,由特殊工艺将蛇型铝翅片与钢管表面渗透致密结合,使散热性能大大提高,且比热镀锌钢翅片抗腐蚀性能好,结构强度高,用高压水冲洗,压差小,清洗效果好,不会对散热器产生损坏。

另外从环保考虑,由于不采用锌材料,不对土壤或周围环境产生污染。

国外应用发展情况电站使用直接空冷技术已有60多年的历史,期间经历了容量由小到大、技术逐渐成熟、应用地区逐步扩大的过程。

1938年,世界上第一台直接空冷机组安装于德国一个坑口电站,1.5W;1958年,意大利的Citta di Roma 电站2×36MW机组投运;1968年,西班牙Utrillas 燃煤电站160MW空冷机组投运;到目前为止,直接空冷机组超过800多台。

浅谈空冷岛系统的防冻处理

浅谈空冷岛系统的防冻处理

浅谈空冷岛系统的防冻处理发布时间:2021-06-23T02:30:05.189Z 来源:《中国电业》(发电)》2021年第5期作者:王贵文[导读] 1.1直接空冷系统,又称空冷岛,是指将汽轮机的乏气直接用空气来冷凝,所需冷却空气通常由机械通风方式供应,其散热器是由外表面镀锌的椭圆形钢管外套矩形钢翅片的若干个管束组成的。

晋能控股电力集团阳高热电公司山西阳高 038100摘要:北方地区缺水情况比较严重,针对缺水问题北方火电厂凝汽器排汽冷却系统采用空冷岛系统。

直接空冷系统具有环保、节能、节水等主要特点,空冷技术在北方大型火电厂应用比较广泛。

由于空冷机组在启动初期和低负荷运行期间,蒸汽流量较少,翅片管存在不同程度的冻结现象,给运行调整带来较大安全隐患。

本文主要对350MW空冷机组空冷岛防寒防冻进行分析探讨以提高机组经济性和安全性。

关键词:空冷岛防冻措施汽轮机;翅片管1、空冷岛系统概述1.1直接空冷系统,又称空冷岛,是指将汽轮机的乏气直接用空气来冷凝,所需冷却空气通常由机械通风方式供应,其散热器是由外表面镀锌的椭圆形钢管外套矩形钢翅片的若干个管束组成的。

采用直接空冷系统的优点为大幅减少了需水量,一次性投资低,易于在所有大气温度下实现冷却空气的均匀和稳定分布。

其缺点是风机消耗电力,冷却空气与汽轮机乏气直接进行热交换。

1.2阳高热电公司空冷系统采用直接空冷系统,空冷岛的主要组成部分包括:(1)汽轮机低压缸排汽管道;(2)空冷凝汽器管束;(3)凝结水系统;(4)抽气系统;(5)疏水系统;(6)通风系统;(7)直接空冷支撑结构;(8)自控系统;(9)清洗装置。

主要运行原理为:把由蒸汽轮机的低压缸内做完功后的乏气从汽轮机的尾部引入大口径的蒸汽管道,输送到汽轮机房之外的空冷平台上,再经过配气管送到众多翅片管换热管束内,外界的空气由大径轴流风机驱动穿越翅片管束的翅片间隙,继而把翅片管束内的蒸汽冷凝成凝结水,使其重力回流到凝汽器内。

空冷岛概述

空冷岛概述
夏/冬主要风向:东北/东北



空冷岛平台紧靠主厂房A排外,以单元群形式成矩阵布置,
每台机组共30个单元划分为5行、6列,全钢结构。砼柱顶标
高33.8m,平台顶部标高为35.00m,蒸汽分配管中心标高
47.53m,平面尺寸,73.5m X 62.81m, 安装在9根混凝土柱
子上,平台钢桁架连接而成,采用大六角高强螺栓连接。
公司等。
空冷系统主要设计参数:











最低及最高环境温度:—28.9℃至43.2℃
平均环境温度: +10℃
夏季平均温度:+26.6℃
冬季平均温度:—10.4℃
平均环境大气压力:930.0hPa
平均相对湿度为:44%
平均降雨量:38.6mm
平均风速2.0m/s
最大设计风速:31m/s
全年盛行风向:东北
气膜具有更高的传热热阻。此外,随着不凝结气体和蒸汽的
混合汽体的过冷和不凝结气体比例的增大,凝汽器逆流单元
的传热热阻增大。
3、不凝气体的焓值较低,当气温下降到一定极限时,极易造成
空气冷 凝器管束内冻结现象的发生。
4、漏真空后,空气进入凝汽器产生气阻,导致汽轮机背压升高,
(汽轮机排气背压设计为15kPa(TMCR/THA工况))汽轮机有
离设备中,气体从下往上流动。当气体的流
速增大至某一数值,液体被气体阻拦不能向
下流动,愈积愈多,最后从塔顶溢出,称为
液泛。产生液泛时的气体速度或连续相速度
称为液泛速度。
对于空冷凝汽器来说,当液泛现象出现时,
流动压降显著增加,且不利于凝结水的排除。

直接空冷机组与间接空冷机组性能的比较

直接空冷机组与间接空冷机组性能的比较
直接空冷机组与间接空冷机组性能的比较
202X
单击此处添加正文,文字是您思想的提炼, 请尽量言简意赅的阐述观点。
演讲人姓名
目录
01
02
直接空冷系统
直接空冷系统,又称空气冷凝系统,直接空冷汽轮机的排汽直接由空气冷凝,是蒸汽和空气之间进行热交换,没有循环水系统。
图1 直接空冷机组原则性汽水系统
风机耗发电功率的1.6%
泵耗发电功率的0.3%
占地面积(m2/MW)
15
40~60
散热器面积(m2)
基数f
(1.3~1.4)f
冷却系统投资
100%
150%
谢谢大家!
202X
汇报人姓名
直接空冷与间接空冷性能的比较
冷却系统
直空冷
间接空冷
混合式凝汽器
表面式凝汽器
运行效果
良好
适带负荷
不宜带尖峰负荷
可带尖峰负荷
哈蒙式不宜带尖峰负荷
防冻经验
经受-43℃
有一定防冻经验
热风再循环


国内使用情况
有600MW机组运行
有200 MW机组运行
有SCAL式600MW及哈蒙式200MW机组运行
厂用电
混合式凝汽器的间接空冷系统
与其它方式的空冷系统相比较具有如下优缺点。 其优点是: (1)混合式凝汽器体积小,由于传热充分,传热端温差较小,造价低,运行维护方便; (2)汽轮机排汽管道短,真空系统小,保持了水冷的特点; (3)可与中背压汽轮机配套,煤耗率较低; (4)为了保持循环水系统处于微正压状态,避免空气渗入封闭系统,便于发现泄漏点。 其缺点是: (1)设备多,系统复杂,布置困难; (2)由于采用了混合式凝汽器,系统中的冷却水量相当于锅炉给水的40倍,增加了水处理费用; (3)自动控制复杂,全铝制散热器的防冻性能差,冷却效果受风的影响大; (4)循环水泵功耗较大。

空冷系统简介

空冷系统简介

1空冷系统简介空冷技术方案介绍在火力发电厂中采用的空冷系统形式有:直接空冷系统、混凝式间接空冷系统、表凝式间接空冷系统。

直接空冷系统是将汽轮机排汽由管道送入称之为空冷凝汽器的钢制散热器中,直接由空气冷却。

混凝式空冷系统由于有水轮机和喷射式凝汽器等系统设备,设备多系统复杂,使得整套系统实行自动控制较难;而表凝式间接空冷系统与常规的湿冷系统比较接近,也是通过两次换热,以循环冷却水作为中间冷却介质,循环冷却水由水泵加压后,进入凝汽器冷却汽轮机排汽,热水进入自然通风冷却塔由空气冷却。

表凝式间接空冷系统与湿冷系统不同之处是在冷却塔内(外)布置着钢(铝)制散热器,热水与空气不接触,进行表面对流散热。

1.1.1 直接空冷系统直接空冷系统主要由排汽装置、大排汽管道(包括大直径膨胀节、大口径蝶阀等)、钢制空冷凝汽器、风机组(包括轴流风机、电动机、减速机、变频器等)、凝结水系统、抽真空系统(包括水环式真空泵)、清洗系统等设备构成。

空冷凝汽器布置在汽机房A列外的高架空冷平台上。

直接空冷系统是将汽轮机排出的乏汽,通过排汽管道引入钢制空冷凝汽器中,由环境空气直接将其冷却为凝结水,多采用机械通风方式。

其特点是:设备较少,系统简单,调节灵活,占地少,防冻性能好,冷却效率高;直接空冷受环境风的影响较大,运行费用较高,煤耗较大,风机群产生一定噪声污染,厂用电较高。

1.1.2 表凝式间接空冷系统表凝式间接空冷系统是指汽轮机排汽以水为中间介质,将排汽与空气之间的热交换分两次进行:一次为蒸汽与冷却水之间在表面式凝汽器中换热;一次为冷却水和空气在空冷塔里换热。

该系统主要由表面式凝汽器与空冷塔构成,采用自然通风方式。

表凝式间接空冷与直接空冷相比,其特点是:冬季运行背压较低,所以煤耗较低;由于采用了表面式凝汽器,循环冷却水和凝结水分成两个独立系统,其水质可按各自的水质标准和要求进行处理,使水处理系统简单、便于操作;表凝式间接空冷塔基本无噪声,满足环保要求;空冷塔占地大,冬季运行防冻性能较差。

直接空冷技术解读

直接空冷技术解读

汽轮机排汽温度与设计环境温度之差。
• ITD值应优化选择:取值大小对机组运行、初期投
资影响甚大。
• 初始温差ITD的取值特点:国外ITD取值都较
高,VODAK=41.7 ℃,MATIBA=39.2 ℃ 。
1.3直接空冷技术发展、应用概况
国外:
• 电站使用直接空冷技术已有60多年的历史,期间经历了容量由小 到大、技术逐渐成熟、应用地区逐步扩大的过程。 • 1938年,世界上第一台直接空冷机组安装于德国一个坑口电站, 1.5MW ;1958年,意大利的Citta di Roma 电站2×36MW机组投运; 1968年,西班牙Utrillas 燃煤电站160MW空冷机组投运; • 到目前为止,直接空冷机组超过800多台。 • 最早投入运行大型直接空冷机组的是德国GEA公司生产的1978年装 于美国怀俄达克电站的365MW机组,是当时世界上单机容量最大的 直接空冷机组。这台直接空冷机组已安全运行20多年。 • 目前,世界上已投运的最大的直接空冷机组也是由德国GEA公司生 产,已于 1991 年建成的南非 Matimba 电站 6×665MW 机组,最后投 产的一台机组也已安全运行10年多。
GEA 散热器管排
风机
凝结水泵
间接空冷系统示意图(海勒式)
LP
LP
G
空冷塔
去 锅 炉
凝汽器
水轮机
凝结水泵
循环水泵
汽轮机
汽轮机膨胀节
`
汽轮机排汽过渡段

`
排水坑
1.2为何要采用直接空冷技术?
• 众所周知,我区以煤炭资源丰富、土地资源广阔,以及 邻近北京及京、津、唐电网等诸多优势,被国家列为能源、 电力生产基地。 • 但是我区水资源相对匮乏,以及国家要求建设内蒙古绿色 生态防线的要求,走可持续发展的道路,节约用水、提 高水资源利用率已成为新世纪内蒙电力工业发展的重大课 题。 • 最近几年,国家审批的电厂项目反复强调优先批准空冷 机组,现在我区在建和准备建设的工程项目几乎全部为直 接空冷机组,所以大力推广、应运空冷直接空冷技术迫在 眉睫,也是大势所趋。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽轮机直接空冷系统概述直接空冷系统亦称为ACC(Air Cooled Condencer)系统,它是指汽轮机的排汽引入室外空冷凝汽器内直接用空气来将排汽凝结。

其工艺流程为汽轮机排汽通过大直径的排气管道引至室外的空冷凝汽器内,布置在空冷凝汽器下方的轴流冷却风机驱动空气流过冷却器外表面,将排汽冷凝为凝结水,凝结水再经凝结水泵送回汽轮机的回热系统。

直接空冷机组原则性汽水系统1—锅炉;2—过热器;3—汽轮机;4—空冷凝汽器;5—凝结水泵;6—凝结水精处理装置;8—低压加热器;9—除氧器;10—给水泵;11—高压加热器;12—汽轮机排汽管道;13—轴流冷却风机;14—立式电动机;15—凝结水箱;17—发电机直接空冷系统的空冷岛部分直接空冷系统的特点直接空冷系统是将汽轮机排出的乏汽,由管道引入称之为空冷凝汽器的钢制散热器中,由环境空气直接将其冷却为凝结水,减少了常规二次换热所需要的中间冷却介质,换热温差大,效果好。

该系统的主要特点还有:1、自然界大风的影响比较严重。

在夏季,自然气温普遍较高,如在这一时段再受到自然大风的影响,必然对机组的运行产生影响。

各电厂在夏季高温段遇到外界大风时,均有不同程度的降负荷现象,特别是山西漳山电厂、大一电厂、大二电厂在夏季高温时段皆因受到大风的影响,出现过机组跳闸现象。

自然大风影响是一个世界性难题,对直接空冷机组影响是很大的。

但是,自然大风的影响又是很难人为克服的。

因此,大一电厂在厂房顶部安装了测风装置采集数据,准备在进行相关数据分析的基础上,做出空冷机组应对自然大风的预案,尽量将因大风影响造成的损失降至最低。

榆社电厂、漳山电厂也准备采取同样的措施。

这种方法是否行之有效,还有待进一步探讨。

2、机组的真空系统严密性是一个普遍存在的问题。

特别是有一个奇怪的现象,就是有些电厂在机组刚投运时,空冷系统的严密性较好,但通过运行一年半载后,出现了反常现象。

由于空冷机组的真空容积庞大,汽轮机泄漏、安装焊接等原因,都会在很大程度上影响真空系统的严密性,致使机组背压提高,增大了煤耗,降低了机组带负荷的能力。

针对上述情况,各电厂都采取了一些措施,如通过查漏检查,找到漏点并补漏;调整汽轮机轴端汽封等措施,尽量减小泄漏量,这些措施都取得了很好的效果。

3、空冷凝汽器污垢问题。

北方地区风沙大、污染较为严重,再加上夏季电厂周边树木的飞絮、昆虫等(站在风机桥架上,可看到翅片管、风筒和钢结构上沾有柳絮、蜻蜓、飞蛾、灰尘),使空冷凝汽器翅片管的翅片间间隙减小,甚至堵塞,严重影响了空冷凝汽器的通风能力,导致背压升高。

所以,必须通过清洗系统严格、细致、频繁的冲洗,才能保证空冷凝汽器的性能。

现在,电厂技术人员对清洗系统的使用持非常肯定的态度,但对清洗系统清洗次数、所用水质有些看法,参照国外经验,清洗次数一般每年2-3次,而这几个电厂实际环境空气质量均较差,冲洗次数必然相应增多。

如某电厂运行一个月后进行了一次清洗,可以简单的说冲洗后的水非常脏。

4、汽轮机背压变幅大。

汽轮机排汽直接由空气冷凝,其背压随空气温度变化而变化,我国北方地区一年四季乃至昼夜温差都较大,故要求汽轮机要有较宽的背压运行范围。

真空系统庞大。

汽轮机排汽要有大直径的管道引出,用空气作为直接冷却介质通过钢制散热器进行表面换热,冷凝排汽需要较大的冷却面积,因而导致真空系统的庞大。

5、电厂整体占地面积小。

由于空冷凝汽器一般都布置在汽机房前的高架平台上,平台下仍可布置电气设备等,空冷凝汽器占地得到综合利用,使得电厂整体占地面积减少。

6、对于直接空冷机组,由于经汽轮机做完功的蒸汽经过大型的管道及散热片被强制冷却后变成凝结水,其内表面积十分庞大,在这一水汽循环过程中与大量的钢表面接触,在运行过程中凝结水中必然会携带一些铁的腐蚀产物,如不及时除去,将会在锅炉水管内形成沉积造成危害。

故需设置凝结水精处理装置。

7、直接空冷系统是将汽轮机排出的乏汽,由管道引入称之为空冷凝汽器的钢制散热器中,由环境空气直接将其冷却为凝结水,减少了常规二次换热所需要的中间冷却介质,换热温差大,效果好。

直接空冷汽轮机的排汽直接由空气冷凝,是蒸汽和空气之间进行热交换,没有循环水系统,与其它方式的空冷系统相比较具有如下优缺点。

其优点是:(1)不需要冷却水等中间冷却介质,初始温差大;(2)设备少,系统简单,基建投资较少,占地少;(3)空气量的调节灵活,冬季防冻措施比较可靠。

该系统的缺点是:(1)空冷凝汽器体积比水冷凝汽器体积大的多,庞大的真空系统容易漏气;(2)大直径的排汽管道加工比较困难;(3)直接空冷大多采用强制通风,因而增加了厂用电量,同时也增加了噪声源。

直接空冷系统的组成直接空冷系统主要由空冷散热器、风机组(风机、电机、减速箱和变频装置等)、排气管道系统、凝结水系统、抽真空系统、风机配电室、控制系统以及支撑结构等组成。

一期湿冷机组的汽轮机排汽凝结是用循环水的对流换热在凝汽器内交换余热,循环水的热量再经过冷却塔的蒸发散热和对流换热把余热带入大气中,冷却后的水温取决于冷却塔性能及大气湿球温度,冷却塔出水温度一般在10℃~33℃之间,汽轮机背压在4~11kPa之间。

二期直接空冷机组汽轮机排汽凝结是用空气对流换热交换余热,排汽的余热经过空冷凝汽器与空气对流换热的方式将余热带入大气中的,干冷系统冷却后温度是趋近大气干球温度,由于整个换热过程是在密闭的环境下完成的,所以工质流失少,节水效果好,但传热效果受环境温度影响较大。

空冷汽轮机的设计背压高于湿冷系统汽轮机的设计背压,而且背压在运行中随环境温度的变化而变化。

间接空冷系统的水温与大气干球温度密切相关。

当大气干球温度变化40℃,冷却水温也变化约40℃。

当工作背压在5~28kPa时,汽轮机能达到额定功率;汽轮机在最高背压28kPa以上时,则要根据背压减低机组负荷。

河曲典型年气象条件厂址标高:951m;大气压力:908.6hPa(平均值);年平均气温:8.2℃;典型年最高气温:38.0℃;典型年最低气温:-25.9℃;设计空气温度:18℃;极端最高气温38.4℃出现时间:1955.7.23极端最低气温-32.8℃出现时间:1998最大冻土深度141cm 出现时间:1967.2最大积雪厚度13cm 出现时间:1972.年最大降水量715.3mm 出现时间:1967.年最小降水量211.4mm 出现时间:1965一日最大降水量100.0mm一小时最大降水量42.4mm五十年一遇10米高十分钟平均最大风速V=21.2m/s二期工程的风向、风速、风频统计结果来看。

厂址处夏季及全年主导风向为S、SSE,夏季出现频率较多的风向有S,其次为SSE风向。

由于本期空冷凝汽器平台距一期冷却塔相隔仅30多米,对本期直接空冷系统产生一定影响;除此而外也会受到炉后和炉后侧向的风的影响。

厂址环境对空冷的影响地理位置的影响空冷系统所在的海拔高度将影响空气密度、环境温度和降雨量。

在海拔高度高的地区兴建空冷电厂时,由于空气密度小,要求有更多的空气通过散热器进行热交换,若采用自然通风,就不得不增加塔高;若采用强制通风,则需增加风机所耗功率。

气象条件的影响1.环境温度影响发电厂采用直接空冷系统的气象条件参数之一是大气干球温度t a,采用强制通风的直接空冷系统在空冷凝汽器入口蒸汽温度t i一定时,大气干球温度t a值的高低影响两侧温差的大小,在直接空冷系统设计中用一个重要参数——初始温差ITD(Initial Temperature Difference)表述,初始温差ITD 的值越大,所需传热面积就越小,对传热越有利;另外,大气干球温度的月变化还会影响逐月发电量与发电煤耗率的变化。

因此,大气干球温度有着双重意义,一是设计选用的大气干球温度t d直接影响空冷塔的塔高与空冷散热器的造价;二是机组在运行时,大气干球温度的高低直接影响发电标准煤耗率。

在自然环境中,由于大气干球温度处于高温段的持续时间短暂,若采用所能观测到的最高大气干球温度作为设计干球温度t d,虽然在全年任何时间都能使汽轮机达到额定功率,但是使空冷散热器装设数量过多,投资激增,经济效益反而下降。

若采用较低设计空气温度,虽然空冷散热器数量可以减少,投资减少,但又会使机组在夏季高温期不能达到额定功率(出力受限)。

因此,在直接空冷系统的设计中,把ITD 作为优化对象,恰当地选择设计空气温度有着重要意义。

适宜的气象条件对空冷机组的运行有利,年平均气温较低,机组运行比较经济。

但气温低时,也随之带来空冷散热器内水体容易冻结的问题。

寒冷季节环境气温在0℃及以下时,散热器有可能由于内部水体冰冻膨胀而破裂,严重时系统循环中断及机组停运。

因此,空冷系统的散热器在寒冷的冬季,必须有完备的防冻措施。

2.风的影响直接空冷系统多采用机械强制通风,当今大型机组呈A 型的空冷散热器布置在紧靠汽机厂房A列柱外侧的高架独立平台上,它与厂房的主要联系是配汽管道、凝结水管道及抽真空管道系统,故有人将其称为“空冷岛”。

空冷岛的布置与风向、风速、主厂房朝向及周围建筑物都有密切关系。

风影响直接空冷凝汽器性能的主要因素有:空冷凝汽器平台通风形状;空冷凝汽器热排气出口离地面高度;风速大小及主风向;强风在空冷凝汽器等周围均匀分布程度等。

不同风速和不同风向对直接空冷凝汽器性能的影响比较敏感,当风速达到3 m/s时,由于发生热风再循环现象(经上风向热源加热的空气被风机吸入并加压后再次冷却空冷凝汽器的现象),导致散热器冷却效果下降,机组运行背压升高。

有先例表明,在不利风向及高风速的作用下会导致机组停运事故。

3.大气逆温层影响大气逆温层是指从地面至高空的大气对流层,在通常情况下,每升高100米,大气温度约降低0.6℃,离地面越高,大气温度越低。

若在某一高度处大气温度反而高于地面温度,则称该空气层为大气逆温层。

大气逆温层的存在,将导致空冷岛排热受阻,使得自然通风的抽力减小,空冷岛初始温差ITD增大,冷却后水温升高,塔出力降低。

相关文档
最新文档