工业大数据采集特点及技术应用介绍
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工业大数据采集特点及技术应用价值介绍大数据应用的第一步就是采集数据。巧妇难为无米之炊,数据采集的完整性、准确性,决定了数据应用是否能真实可靠的发挥作用。大数据时代的数据采集有如下三个特点:
1)数据采集以自动化手段为主,要尽量摆脱人工录入的方式;
2)采集内容以全量采集为主,要摆脱对数据进行采样的方式;
3)采集方式多样化、内容丰富化,摆脱以往只采集基本数据的方式。
从采集数据的类型上看,不仅要涵盖基础的结构化交易数据,还将逐步包括半结构化的用户行为数据,网状的社交关系数据,文本或音频类型的用户意见和反馈数据,设备和传感器采集的周期性数据,网络爬虫获取的互联网数据,以及未来越来越多有潜在意义的各类数据。
2.常见数据采集技术
传统的数据采集方法包括人工录入、调查问卷、电话随访等方式,大数据时代到来后,一个突出的变化是数据采集的方法有了质的飞跃,下面所介绍的数据采集方式的突破直接改变着大数据应用的场景。
移动互联网的兴起让面向移动设备的数据采集技术有了迅速发展,目前使用最多的常称为Android或iOS的采集SDK,这种技术能帮助统计APP的基础数据,包括用户数、活跃情况、流失比例、使用时长等;用户的位置、安装列表、通讯情况等通过授权也可以采集。网络爬虫是
另一类广泛使用的互联网采集技术,常被用于进行大规模全网信息采集、舆情监控、竞品分析等领域。
物联网也和大数据息息相关,因为物联网的关键技术之一是无线射频标签:当安装有RFID微型标签的读卡器在近距离发出信号时,带有RFID的物品能自动返回其唯一的序列号,这样就能实现自动大批量辨识物品信息的工作。RFID技术解决了物品信息与互联网实现自动连接的问题,结合后续的大数据挖掘工作,能发挥其强大的威力。
在工业制造业里,传感器是另一类常见的大数据采集装置,它能将测量到的信息按一定规律变换为电信号输出,通常用于自动检测和控制等环节。传感器的种类极为丰富:大到机械设备、汽车、飞机、建筑物,小到一部智能手机、一个智能设备,都可以安装很多种传感器,传递温度、压力、位置、位移、光敏、距离、化学感应、生物、磁场等各类信号。未来携带传感器大数据平台的智能设备将越来越多,基于传感器数据的大数据应用才刚刚起步,如智能医疗,智慧城市等,这方面有着广阔的前景。
3.数据存储技术的发展和演进
传统企业信息化系统采用关系数据库来进行数据存储,其中规模较大的通常被称为“数据集市”。随着采集数据的种类越来越多,部分行业领先的公司看到了把不同数据集市集中到一个大系统中的价值,这
个大系统称为企业级数据仓库,由专门的数据团队(或称为数据中心)负责集中式的数据管理和维护。
随着数据量的惊人增长,已经使用了20余年的传统数据库再也无法支撑起新的存储需求了,所以被Google称为BigTable和GFS的新型存储技术在过去的几年里被发明出来,并在行业中广泛应用,这些技术通过自动调配上万台服务器协同工作,能完成高性能和高可靠的数据存储任务,为大数据的运用铺平了道路。
工业大数据采集与应用管理平台价值:
全球领先的数网星远程数据采集及应用管理平台系统,作为基于云平台的工业物联解决方案,可最低成本实现云解析通道打通,利用超大数据处理能力的软件平台,实现对设备的远程诊断维护、远程监控、远程诊断和故障预警,再通过对数据的大量收集和分析处理,实现设备优化,帮助企业根据现有数据预测未来的发展趋势,给企业带来了更快的速度、更高的效率和更具远见的洞察力,提高了企业生产效率、降低了经营成本,从而使企业更好的“把握现在,预知未来”。
北京天拓四方科技有限公司