多边形面积ppt课件
合集下载
多边形面积 ppt课件

19
6 2
4
8
(6+8)×4 ÷2 -2 ×(8 - 6) ÷2 = 14×4 ÷2 -2 ×2÷2 =28-2 =26(平方厘米)
ppt课件
20
通过本节课的学习,你 有哪些收获?
ppt课件
21
ppt课件
9
解决问题: 1. 有一块平行四边形稻田,底是20
米,高是10米,平均每平方米收稻谷1.2 千克。这块稻田共收稻谷多少千克?
20x10=200(平方米)
1.2x200=240(千克)
答:这块稻田共收稻谷240千克。
ppt课件
10
2、 一个梯形停车场,上底是60米,下底是 90米,高是60米,如果每个车位占地15平方米, 这个停车场最多能同时停多少辆车?
8 6×2+(6+8)×(4-2)÷2 =12+14×2÷2 =26(平方厘米)
ppt课件
17
6 2
4
8
(2+4)×6÷2+8×(4-2)÷2 =18+8 =26(平方厘米)
ppt课件
18
6 2
4
8
8×4-(2+4)×(8-6)÷2 =32-6 ×2÷2 =32-6 =26(平方厘米)
ppt课件
底
ppt课件
底6
细心判断
2、面积相等的两个梯形一定能
拼成一个平行四边形。(×)
3
3
4
4
∟
5
ppt课件
5
7
细心判断
3、面积相等的两个三角形,形
状也一定相同。(×)
4
4
∟
3
3 ppt课件
8
细心判断
4. 等底等高的两个三角形面积一定相等。 (√ ) 5、两个三角形的高相等,它们的面积就相等。 (× ) 6、梯形的面积是平行四边形面积的一半。 (× )
《不规则图形的面积》多边形面积的计算PPT课件 (共15张PPT)

下面是市民广场一块草坪的 平面图,你能算出它的面积 吗?
60m
20m 20m 20m
20m
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
6.1
9.7
多边形面积计算公式
平行 三角形 四边形
文字 公式
梯形
平行四边 三角形的 梯形的面 形的面积 面积=底 积=(上底 =底×高 ×高÷2 +下底)× 高÷2 S=ah
S=ah÷2
S=(a+b)h÷2
字母 公式
学校有一块空地,想在这块 地上植草皮,你能帮忙算出这块 地的面积吗?
可以看成由一个长方 形和梯形组成。
可以看成从一个长方形 里去掉一个梯形。
可以看成由一个长方 形和三角形组成。
校园里还有两块花圃,你能算 出它们的面积各是多少吗?
求下图阴影部分的面积。
求下图阴影部分的面积。
求下图阴影部分的面积。
求下图阴影部分的面积。
45°
已知下图中平行四边形的面积 是225平方厘米,求阴影部分的面 积。
多边形面积的计算
不规则图形的面积
1.综合应用学过的面积公式 计算一些稍复杂的图形面 积。 2.在校园中进行一些实 际的测量和计量。以此 提高自己的计算能力和 实际动手能力。
教学目标
口算下列图形的面积,再说说 它们的面积公式。(单位:厘米)
1.1 8.2 8.2
13.2
3 11.2
苏教版五年级上册数学多边形的面积课件(共17张PPT)

练练 校园里有一块花圃(如下图),你
能算出它的面积是多少平方米吗?
24平方米
闯关练习
8
6
单位:米(m)
S组合=S平+S三
S平:6×8=48(m2) S三: 10×4÷2=20(m2) S组合:48+20=68(m2)
闯关练习
单位:米(m)
S组合=S长-S梯
S长: 10×8=80(m2) S梯: (10+6)×2÷2=16(m2) S组合:80-16=64(m2)
组合图形
面积计算
复习旧知
b
a
S =a×b
a
a
S =a×a
h
a
S =a×h
a
h
S =a×h÷2
b
S =(a+b)×h÷2
由两个或两个以上的简单图形拼成的图形称为组合图形
例10
华丰小学校园里有一块草坪(如下图), 它的面积是多少平方米?
你打算怎样算? 小组交流。
ct
cs
zj
fg
st
tc
4m
10m
S长: 12×10=120(m2) S组合: 9+120=129(m2)
FH
4m
10m
例10
12m
15m
S组合=S三+S梯
S三: 高:10-4=6(m)
15×6÷2=45(m2)
S梯:(10+4)×12÷2
=14×12÷2 =168÷2 =84(m2)
S组合:45+84=129(m2)
FH
分割法 FH
例10
12m
15m
S组合=S长+S梯
S长: 12×4=48(m2) S梯: 高:10-4=6(m)
苏教版最新五年级上册数学第二单元《多边形的面积》省公开课获奖课件市赛课比赛一等奖课件

高/㎝
14
4
56
4
10
4
28
13
2
26
4
9
2
13
18
4
72
6
12
4
36
拼成平行四边形旳底与梯形旳上底和下底有什么关系?
上底+下底=平行四边形旳底
新知讲解
把梯形转化成平行四边形,求出面积,完毕下表。
拼成旳平行四边形
梯形
底/㎝
高/㎝
上底/㎝
下底/㎝
高/㎝
14
4
56
4
10
4
28
13
2
26
4
9
2
13
18
4
周长没有变,面积边小了。
练习二
6.
8×600=
400×5=
4800
2023
300÷50=
240÷60=
6
4
2×25=
68÷4=
50
17
练习二
7.哪几种三角形旳面积是平行四边形旳二分之一?为何?
12
6
8
4
6
练习二
8.一块三角形菜地,底30米,高46米。这块菜地旳面积是多少平方米?
30×46÷2=690(平方米)
平行四边形
长/㎝
宽/㎝
底/㎝
高/㎝
6
4
24
6
4
24
新知讲解
把平行四边形转化成长方形,求出面积,完毕下表。
转化成旳长方形
平行四边形
长/㎝
宽/㎝
底/㎝
高/㎝
10
5
50
10
5
50
14
4
56
4
10
4
28
13
2
26
4
9
2
13
18
4
72
6
12
4
36
拼成平行四边形旳底与梯形旳上底和下底有什么关系?
上底+下底=平行四边形旳底
新知讲解
把梯形转化成平行四边形,求出面积,完毕下表。
拼成旳平行四边形
梯形
底/㎝
高/㎝
上底/㎝
下底/㎝
高/㎝
14
4
56
4
10
4
28
13
2
26
4
9
2
13
18
4
周长没有变,面积边小了。
练习二
6.
8×600=
400×5=
4800
2023
300÷50=
240÷60=
6
4
2×25=
68÷4=
50
17
练习二
7.哪几种三角形旳面积是平行四边形旳二分之一?为何?
12
6
8
4
6
练习二
8.一块三角形菜地,底30米,高46米。这块菜地旳面积是多少平方米?
30×46÷2=690(平方米)
平行四边形
长/㎝
宽/㎝
底/㎝
高/㎝
6
4
24
6
4
24
新知讲解
把平行四边形转化成长方形,求出面积,完毕下表。
转化成旳长方形
平行四边形
长/㎝
宽/㎝
底/㎝
高/㎝
10
5
50
10
5
50
8.3 多边形的面积课件(30张PPT)

总面积:240+800+608=1648(m2)
重点1:面积计算公式的应用
2.一块广告牌的形状是平行四边形,底是12.5 m,高是 6.4 m。如果要涂刷这块广告牌,每平方米用油漆0.6 kg, 共需要多少千克油漆?
可根据平行四边形的 面积公式先求出广告 牌的面积。
再求需要多少千克的油漆。
(教材第113页第7题)
(教材第113页第9题)
重点3:组合图形的面积
7. 把一张边长4 cm的正方形纸,沿相邻两边中点的连 线剪去一个角(如下左图),剩下的面积是多少?
方法二 分割成长方形和梯形。
4×2+(2+4)×2÷2=14(cm2)
答:剩下的面积是14cm2 。
重点3:组合图形的面积
7. 把一张边长4 cm的正方形纸,沿相邻两边中点的连 线剪去一个角(如下左图),剩下的面积是多少?
S红 = 5 2 = 25 ( cm2) S绿 = 12 2 = 144( cm2) S黄 = 13 2 = 169( cm2)
两个小正方形的面积的和等于大正方形的面积。
重点解析 重点1:面积计算公式的应用
1. 下面这块地种了三种蔬菜,茄子、黄瓜和西红柿各
种了多少平方米?这块地共有多少平方米?
利用面积公式可以分 别求出它们的面积。
15m 25m 15m
三角形 茄 黄 西 子瓜 红
32m
柿
再求总面积。
平2行5m四 梯23形m 边形
(教材第110页第2题)
重点1:面积计算公式的应用
重点1:面积计算公式的应用
2.一块街头广告牌的形状是平行四边形,底是12.5 m, 高6.4 m。如果要油饰这块广告牌,每平方米用油漆0.6 kg,共需要多少千克油漆?
小学五年级上册数学第五单元多边形的面积PPT课件

3cm
7cm
3cm
3cm
2021/5/9
多邊形的面積是_______平方厘6 米
30
2021/5/9
7
2021/5/9
5cm
3cm 4cm
8
(2) 多邊形的面積是多少?
3cm 4cm 5cm
2021/5/9
多邊形的面積是_____平方厘9 米
27.5
2021/5/9
10
3米 8米
2021/5/9
2021/5/9
1
多边形周长、面积计算公式:
C=2(a+b) S=ab
2021/5/9
C=4a S=a2
S=ah
S=ah÷2
S=(a+b)h÷2
2
长 方 形: S=ab a=S÷b
b=S÷a
平行四边形: S=ah a=S÷h
h=S÷a
三 角 形: S=ah÷2 a=2S÷h
h=2S÷a
梯 形: S=(a+b)h÷2 a=2S÷h-b
12米
4米
11
(3) 多邊形的面積是多少?
3米
8米
4米
12米
2021/5/9
多邊形的面積是_____平方米12
93
2021/5/9
13
2cm
4cm
5cm
6cm
2021/5/914Βιβλιοθήκη (4) 多邊形的面積是多少?
2cm 4cm 5cm 6cm
2021/5/9
多邊形的面積是_____平方厘15 米
27
5cm 3cm
8cm 3cm
2021/5/9
粉紅色部分的面積
是_____平方厘米
7cm
3cm
3cm
2021/5/9
多邊形的面積是_______平方厘6 米
30
2021/5/9
7
2021/5/9
5cm
3cm 4cm
8
(2) 多邊形的面積是多少?
3cm 4cm 5cm
2021/5/9
多邊形的面積是_____平方厘9 米
27.5
2021/5/9
10
3米 8米
2021/5/9
2021/5/9
1
多边形周长、面积计算公式:
C=2(a+b) S=ab
2021/5/9
C=4a S=a2
S=ah
S=ah÷2
S=(a+b)h÷2
2
长 方 形: S=ab a=S÷b
b=S÷a
平行四边形: S=ah a=S÷h
h=S÷a
三 角 形: S=ah÷2 a=2S÷h
h=2S÷a
梯 形: S=(a+b)h÷2 a=2S÷h-b
12米
4米
11
(3) 多邊形的面積是多少?
3米
8米
4米
12米
2021/5/9
多邊形的面積是_____平方米12
93
2021/5/9
13
2cm
4cm
5cm
6cm
2021/5/914Βιβλιοθήκη (4) 多邊形的面積是多少?
2cm 4cm 5cm 6cm
2021/5/9
多邊形的面積是_____平方厘15 米
27
5cm 3cm
8cm 3cm
2021/5/9
粉紅色部分的面積
是_____平方厘米
《三角形的面积》多边形的面积PPT优秀课件

长方形的面积 = 长 × 宽 三角形的面积 = 底 ×(高÷2)
高
三角形的面积 = 底×高÷2
底
探究三角形面积计算公式的其他方法
长方形的面积 = 长 × 宽 三角的形一的半面积=(底÷2)×(高÷2) 三角形的面积 = 底×高÷2
说一说 如何解决平行三角形的面积问题
高
高
高
底
底
底
只要是运用相应的方法把一个三角形剪拼或
直角三角形
高
长方形面积 = 长 × 宽
相
等
相
相
2 个完全一样的 直角三角形面积
=
底
等
×
高
等
底
直角三角形面积 = 底 × 高 ÷ 2
用两个完全一样的钝角三角形拼成一个平形四边形。
钝角三角形
高 底
平行四边形面积 = 底 × 高
相
等
相
相
2 个完全一样的 钝角三角形面积
=
底
等
×
高
等
钝角三角形面积 = 底 × 高 ÷ 2
相
相
2 个完全一样的 锐角三角形面积
=
底
等
×
高
等
锐角三角形面积 = 底 × 高 ÷ 2
用两个完全一样的直角三角形拼成一个平行四边形。
直角三角形
高 底
平行四边形面积 = 底 × 高
相
等
相
相
2 个完全一样的 直角三角形面积
=
底
等
×
高
等
直角三角形面积 = 底 × 高 ÷ 2
用两个完全一样的直角三角形拼成一个长方形。
120 cm
39.8 cm
= 120×39.8÷2
高
三角形的面积 = 底×高÷2
底
探究三角形面积计算公式的其他方法
长方形的面积 = 长 × 宽 三角的形一的半面积=(底÷2)×(高÷2) 三角形的面积 = 底×高÷2
说一说 如何解决平行三角形的面积问题
高
高
高
底
底
底
只要是运用相应的方法把一个三角形剪拼或
直角三角形
高
长方形面积 = 长 × 宽
相
等
相
相
2 个完全一样的 直角三角形面积
=
底
等
×
高
等
底
直角三角形面积 = 底 × 高 ÷ 2
用两个完全一样的钝角三角形拼成一个平形四边形。
钝角三角形
高 底
平行四边形面积 = 底 × 高
相
等
相
相
2 个完全一样的 钝角三角形面积
=
底
等
×
高
等
钝角三角形面积 = 底 × 高 ÷ 2
相
相
2 个完全一样的 锐角三角形面积
=
底
等
×
高
等
锐角三角形面积 = 底 × 高 ÷ 2
用两个完全一样的直角三角形拼成一个平行四边形。
直角三角形
高 底
平行四边形面积 = 底 × 高
相
等
相
相
2 个完全一样的 直角三角形面积
=
底
等
×
高
等
直角三角形面积 = 底 × 高 ÷ 2
用两个完全一样的直角三角形拼成一个长方形。
120 cm
39.8 cm
= 120×39.8÷2
《多边形的面积》课件

《多边形的面积》 ppt课件
目录
CONTENTS
• 多边形的定义与分类 • 面积计算公式 • 面积计算方法 • 面积计算实例 • 面积计算中的常见错误及纠正方法
01 多边形的定义与分类
定义
总结词
明确多边形的定义
详细描述
多边形是由至少三条直线段依次首尾顺次连接围成的平面图形。
分类(三角形、四边形、五边形等)
四边形面积计算方法
总结词
对角线乘积的一半
详细描述
四边形的面积可以通过其对角线的长 度乘积再除以2来计算。这种方法适用 于平行四边形、矩形、正方形等四边 形。
五边形面积计算方法
总结词
分割成三角形求和
详细描述
五边形的面积可以通过将其分割成若干个三角形,然后求出 这些三角形的面积之和来计算。这种方法适用于任意五边形 。
05 面积计算中的常见错误及 纠正方法
常见错误
误用面积公式
学生在计算多边形面积时,可 能会错误地将公式应用于不适 用规则图 形,而忽视了其不规则性,导 致面积计算错误。
计算错误
学生在进行面积计算时,可能 会因为粗心或计算能力不足而 犯错。
培养图形识别能力
教师应教导学生如何识别多边形的特征,以 便选择正确的面积计算方法。
感谢您的观看
THANKS
五边形面积计算公式
总结词:较为复杂
详细描述:五边形面积计算公式相对复杂,需要将其划分为多个三角形或四边形 进行计算。常见的五边形包括正五边形和不规则五边形,其面积计算方法也有所 不同。
03 面积计算方法
三角形面积计算方法
总结词
基乘高的一半
详细描述
三角形的面积可以通过基乘高再 除以2来计算。基是指三角形的底 ,高是指从基边到顶点的垂直距 离。
目录
CONTENTS
• 多边形的定义与分类 • 面积计算公式 • 面积计算方法 • 面积计算实例 • 面积计算中的常见错误及纠正方法
01 多边形的定义与分类
定义
总结词
明确多边形的定义
详细描述
多边形是由至少三条直线段依次首尾顺次连接围成的平面图形。
分类(三角形、四边形、五边形等)
四边形面积计算方法
总结词
对角线乘积的一半
详细描述
四边形的面积可以通过其对角线的长 度乘积再除以2来计算。这种方法适用 于平行四边形、矩形、正方形等四边 形。
五边形面积计算方法
总结词
分割成三角形求和
详细描述
五边形的面积可以通过将其分割成若干个三角形,然后求出 这些三角形的面积之和来计算。这种方法适用于任意五边形 。
05 面积计算中的常见错误及 纠正方法
常见错误
误用面积公式
学生在计算多边形面积时,可 能会错误地将公式应用于不适 用规则图 形,而忽视了其不规则性,导 致面积计算错误。
计算错误
学生在进行面积计算时,可能 会因为粗心或计算能力不足而 犯错。
培养图形识别能力
教师应教导学生如何识别多边形的特征,以 便选择正确的面积计算方法。
感谢您的观看
THANKS
五边形面积计算公式
总结词:较为复杂
详细描述:五边形面积计算公式相对复杂,需要将其划分为多个三角形或四边形 进行计算。常见的五边形包括正五边形和不规则五边形,其面积计算方法也有所 不同。
03 面积计算方法
三角形面积计算方法
总结词
基乘高的一半
详细描述
三角形的面积可以通过基乘高再 除以2来计算。基是指三角形的底 ,高是指从基边到顶点的垂直距 离。
《多边形的面积复习》课件

详细描述
多边形在生活中的应用广泛,如建筑、艺术、科技等领 域都有涉及,举例说明多边形的应用场景和价值。
02
多边形面积的基础公式
三角形面积公式
总结词
基础且常用
详细描述
三角形面积公式是计算三角形面积的标准方法,其公式为“底乘以高再除以2” 。这个公式适用于任何类型的三角形,是几何学中最基础和常用的公式之一。
详细描述
多边形的面积和周长是两个不同的几何量,它们之间存在一定的关系。一般来说,对于 给定的多边形,其面积越大,周长也越大。这是因为随着多边形形状的变化(保持面积 不变),其周长也会相应地发生变化。了解这一关系有助于更好地理解几何形状的变化
规律。
如何应用多边形面积公式解决实际问题?
总结词
多边形面积公式的实际应用
分类
总结词
阐述多边形的分类标准
详细描述
根据不同的分类标准,如边数、内角大小、平面或立体 等,将多边形进行分类,如三角形、四边形、五边形等 。
总结词
列举不同类型多边形的特点
详细描述
针对不同类型多边形,分别介绍其特点,如三角形具有 稳定性,四边形可以分为平行四边形和梯形等。
总结词
强调多边形在生活中的应用
03
多边形面积的推导与证明
三角形面积的推导
01
02
03
04
三角形面积公式:基底乘高的 一半。
推导方法:通过将两个相同的 三角形拼成一个矩形,然后利 用矩形面积公式进行推导。
适用范围:适用于任何三角形 ,包括直角三角形、等腰三角
形等。
注意事项:在计算三角形面积 时,需要特别注意基底和高度 的选择,以确保计算结果的准
总结词
不规则多边形的面积计算方法
多边形在生活中的应用广泛,如建筑、艺术、科技等领 域都有涉及,举例说明多边形的应用场景和价值。
02
多边形面积的基础公式
三角形面积公式
总结词
基础且常用
详细描述
三角形面积公式是计算三角形面积的标准方法,其公式为“底乘以高再除以2” 。这个公式适用于任何类型的三角形,是几何学中最基础和常用的公式之一。
详细描述
多边形的面积和周长是两个不同的几何量,它们之间存在一定的关系。一般来说,对于 给定的多边形,其面积越大,周长也越大。这是因为随着多边形形状的变化(保持面积 不变),其周长也会相应地发生变化。了解这一关系有助于更好地理解几何形状的变化
规律。
如何应用多边形面积公式解决实际问题?
总结词
多边形面积公式的实际应用
分类
总结词
阐述多边形的分类标准
详细描述
根据不同的分类标准,如边数、内角大小、平面或立体 等,将多边形进行分类,如三角形、四边形、五边形等 。
总结词
列举不同类型多边形的特点
详细描述
针对不同类型多边形,分别介绍其特点,如三角形具有 稳定性,四边形可以分为平行四边形和梯形等。
总结词
强调多边形在生活中的应用
03
多边形面积的推导与证明
三角形面积的推导
01
02
03
04
三角形面积公式:基底乘高的 一半。
推导方法:通过将两个相同的 三角形拼成一个矩形,然后利 用矩形面积公式进行推导。
适用范围:适用于任何三角形 ,包括直角三角形、等腰三角
形等。
注意事项:在计算三角形面积 时,需要特别注意基底和高度 的选择,以确保计算结果的准
总结词
不规则多边形的面积计算方法
人教版五年级上册多边形的面积课件(13张ppt)

4、若一个平行四边形与一个三角形面积相等,高也相等,
则平行四边形的底是三角形底的2倍。( × )
我会算
请同学们选择喜欢的方式计算下图的面积。(只列式不计算,画好辅助线)
(单位:厘米)
10
6 5
12
我会画
2、结合本单元学习的知识,请在方格纸上 画出一个面积为12平方厘米的图形,你会怎 么画?(每个小格的边长是1厘米)
构建知识网络
三角形面积计算公式的推导:
┑
三角形的面积=底×高÷2 S = ɑh÷ 2
两个“完全一样”的三角形经过“旋转”,“平移” 转化成公式的推导:
构建知识网络
梯形面积计算公式的推导:
梯形上底+梯形下底(a+b)
h
梯形的面积=(上底+下底)×高÷2
S=(a+b)h÷2
两个“完全一样”的梯形,经过“旋转”、“平移”转化成一个 平行四边形,平行四边形的底等于梯形的(上底+下底)的和
小结:转化—推导
我们学习新知识的时候,可以把它转化成 我们已经学过的旧知识。而反过来,利用旧知 识推导出新知识。
1、面积相等的两个梯形一定能拼成一个平行四边形。( × ) 2、三角形的高越长,则面积越大。( × ) 3、把一个长方形框架拉成一个平行四边形,面积减少了。(√)
总结交流
通过这节课,你有哪些收获?
不规则图形
估算
小组研究
请小组长拿出学具,小组成员借助学具,选择 一种图形在小组内拼一拼、摆一摆、说一说这 个平面图形的面积公式是怎样推导出来的。
构建知识网络
平行四边形面积计算公式的推导:
平行四边形的面积=底×高
S = ɑh
把平行四边形沿着它的“高”剪下来,分成两部分, 经过平移,把平行四边形“转化”成长方形
则平行四边形的底是三角形底的2倍。( × )
我会算
请同学们选择喜欢的方式计算下图的面积。(只列式不计算,画好辅助线)
(单位:厘米)
10
6 5
12
我会画
2、结合本单元学习的知识,请在方格纸上 画出一个面积为12平方厘米的图形,你会怎 么画?(每个小格的边长是1厘米)
构建知识网络
三角形面积计算公式的推导:
┑
三角形的面积=底×高÷2 S = ɑh÷ 2
两个“完全一样”的三角形经过“旋转”,“平移” 转化成公式的推导:
构建知识网络
梯形面积计算公式的推导:
梯形上底+梯形下底(a+b)
h
梯形的面积=(上底+下底)×高÷2
S=(a+b)h÷2
两个“完全一样”的梯形,经过“旋转”、“平移”转化成一个 平行四边形,平行四边形的底等于梯形的(上底+下底)的和
小结:转化—推导
我们学习新知识的时候,可以把它转化成 我们已经学过的旧知识。而反过来,利用旧知 识推导出新知识。
1、面积相等的两个梯形一定能拼成一个平行四边形。( × ) 2、三角形的高越长,则面积越大。( × ) 3、把一个长方形框架拉成一个平行四边形,面积减少了。(√)
总结交流
通过这节课,你有哪些收获?
不规则图形
估算
小组研究
请小组长拿出学具,小组成员借助学具,选择 一种图形在小组内拼一拼、摆一摆、说一说这 个平面图形的面积公式是怎样推导出来的。
构建知识网络
平行四边形面积计算公式的推导:
平行四边形的面积=底×高
S = ɑh
把平行四边形沿着它的“高”剪下来,分成两部分, 经过平移,把平行四边形“转化”成长方形
《多边形的面积复习》PPT课件

(
).
3.一个平行四边形的底是14厘米,高是9厘米,它的面积是
(
);与它等底等高的三角形面积是(
).
4.一个梯形的上底是3米,下底2米,高2米,这个梯形的面积是
(
)平方米;与它等上、下底之和等高的平行四边形的面
积是(
).
5.工地上有一堆钢管,横截面是一个梯形,已知最上面一层有2根,
最下面一层有12根,共堆了11层,这堆钢管共有( )根。
()
3.长是a,宽是b的长方形,底是a,高是b的平行
四边形,底是2a,高是b的三角形,这三个图形的
面积必相等。( )
4.只要知道梯形的两底之和的长度和它的高,就
可以求出它的面积。( )
5.两个周长相等的等边三角形,面积必相等。
()
6.梯形的面积比平行四边形的面积小。( )
7.梯形的上底一定比下底短。(
6.一个三角形比与它等底等高的平行四边的面积少30平方厘米,
则这个三角形的面积是( )。
7.一个三角形的面积是4.5平方分米,底是5分米,高是( )分米。
8.一个等边三角形的周长是18厘米,高是3.6厘米,它的面积是( )
平方厘米。
二、判定题
1.两个面积相等的三角形,一定能拼成一
个平行四边形.(
)
):
个三角形的面积是( )。
A.21 B. 30 C.14
1.在推导平行四边形面积计算公式时,可把平行四边形通过割补平移转化为(
)
形去
推导,推导三角形面积计算公式时,可把两个完全一样的三角形拼成一个(
)形
去推
导,推导梯形面积计算公式时,可把两个完全一样的梯形拼成一个(
)形进行推导。
五年级上册数学教学课件《多边形面积的计算》

• 9厘米
4
5厘米
厘
米
3厘米
三.操作题。
• 1.将下面的多边形分割成两个简单的图形。
四.应用题。
• 1.李家用篱笆围成一个养鸡场(如图),一 边利用房屋墙壁,篱笆长是60米,养鸡场 的面积是多少平方米?
20米
(60 - 20)× 15÷ 2
• 2.如下图,三角形ABE的面积是AECD面积 的一半,求BE的长是多少?
A 9分米 D 5分米
B
EC
平行四边形面积的计算
S=ah
•高 •底
三角形面积的计算 S=ah÷2
高 底
梯形面积的计算 S=(a+b)h÷2
ab h ba
智能训练
• 用一张长1.7米,宽0.8米的红纸能做多少面 底和高都是0.4米的三角形小红旗?
(0.8÷0.4)×(1.7÷0.来自)×2综合训练• 一.判断.
• 1.平行四边形的面积等于三角形面积的2倍.
( ×)
• 2.两个面积相等的三角形可以拼成一个平行四边
形.
(× )
• 3.两个面积相等的三角形,它们的底和高也一定相
等.
( ×)
• 4.把一个活动的长方形框架,拉成一个平行四边形
后,面积变小了.
(√ )
二.填空.
• 1.一个三角形和一个平行四边形的面积相等, 底也相等,那么三角形的高是平行四边形 高的( ).2倍
• 2.将一块上底是6厘米,下底是9厘米,高是6 厘米的梯形铁皮剪去一个最大的正方形, 所剩下的面积是( 9)平方厘米.
• 3.一个直角三角形的三条边分别是3厘米,4 厘米和5厘米,那么它的面积是( 6)平方厘米.
3厘米
6 厘 米
4
5厘米
厘
米
3厘米
三.操作题。
• 1.将下面的多边形分割成两个简单的图形。
四.应用题。
• 1.李家用篱笆围成一个养鸡场(如图),一 边利用房屋墙壁,篱笆长是60米,养鸡场 的面积是多少平方米?
20米
(60 - 20)× 15÷ 2
• 2.如下图,三角形ABE的面积是AECD面积 的一半,求BE的长是多少?
A 9分米 D 5分米
B
EC
平行四边形面积的计算
S=ah
•高 •底
三角形面积的计算 S=ah÷2
高 底
梯形面积的计算 S=(a+b)h÷2
ab h ba
智能训练
• 用一张长1.7米,宽0.8米的红纸能做多少面 底和高都是0.4米的三角形小红旗?
(0.8÷0.4)×(1.7÷0.来自)×2综合训练• 一.判断.
• 1.平行四边形的面积等于三角形面积的2倍.
( ×)
• 2.两个面积相等的三角形可以拼成一个平行四边
形.
(× )
• 3.两个面积相等的三角形,它们的底和高也一定相
等.
( ×)
• 4.把一个活动的长方形框架,拉成一个平行四边形
后,面积变小了.
(√ )
二.填空.
• 1.一个三角形和一个平行四边形的面积相等, 底也相等,那么三角形的高是平行四边形 高的( ).2倍
• 2.将一块上底是6厘米,下底是9厘米,高是6 厘米的梯形铁皮剪去一个最大的正方形, 所剩下的面积是( 9)平方厘米.
• 3.一个直角三角形的三条边分别是3厘米,4 厘米和5厘米,那么它的面积是( 6)平方厘米.
3厘米
6 厘 米
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ppt课件.
9
解决问题: 1. 有一块平行四边形稻田,底是20
米,高是10米,平均每平方米收稻谷1.2 千克。这块稻田共收稻谷多少千克?
20x10=200(平方米)
1.2x200=240(千克)
答:这块稻田共收稻谷240千克。
ppt课件.
10
2、 一个梯形停车场,上底是60米,下底是 90米,高是60米,如果每个车位占地15平方米, 这个停车场最多能同时停多少辆车?
(60+90) × 60 ÷2 =150 × 60 ÷2 =9000 ÷2 =4500(平方米)
4500 ÷15=300(辆)
答:这个停车场最多能同时停300辆车。
ppt课件.
11
3、李大伯用篱笆围成一个梯形养鸡场
(如图),其中一条边靠墙,篱笆总长 36米,求养鸡场面积。
36-6=30(米) 30×8÷2 =240÷2 =120(平方米) 答:养鸡场面积是120平方米。
ppt课件.
19
6 2
4
8
(6+8)×4 ÷2 -2 ×(8 - 6) ÷2 = 14×4 ÷2 -2 ×2÷2 =28-2 =26(平方厘米)
ppt课件.
20
通过本节课的学习,你 有哪些收获?
ppt课件.
21
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
借助学具,在小组里说一说平 行四边形、三角形和梯形的面积公 式是如何推导出来的。
ppt课件.
3
计算下面每个图形的面积
10cm 8m 3dm
10cm
6dm S=ah
=6×3
=18(平方分米) 8cm
5m S=ah÷2
=5×8 ÷2
=20(平方米)
12cm S=(a+b)h÷2
=(8+12)×10 ÷2 =100(平方厘p米pt课)件.
人教版五年级数学上册第六单元
《多边形的面积》整理与复习
ppt课件.
1
面积公式
用字母表示
长方形的面积=长X宽
正方形的面积=边长X边长 平行四边形的面积=底X高
三角形的面积=底X高÷2
梯形的面积=(上底+下底) X高÷2
S=ab S=a 2 S=ah
S=ah÷2 S=(a+b)h÷2
ppt课件.
2
小组合作:
ppt课件.
6
12
10
4、
20
第一种方法:
20×10-1×10 =200-10 =190(m²) 190×20 =3800(元) 答:铺这块草坪大约需要
3800 元。
ppt课件.
第二种方法:
(20-1)×10
=19×10 =190(m²)
190×20 =3800(元)
答:铺这块草坪大约需要
3800 元。
底6
细心判断
2、面积相等的两个梯形一定能
拼成一个平行四边形。(×)
3
3
4
4
∟
、面积相等的两个三角形,形
状也一定相同。(×)
4
4
∟
3 ppt课件.
3
8
细心判断
4. 等底等高的两个三角形面积一定相等。 (√ ) 5、两个三角形的高相等,它们的面积就相等。 (× ) 6、梯形的面积是平行四边形面积的一半。 (× )
6 2
4
8 6×2+(6+8)×(4-2)÷2 =12+14×2÷2 =26(平方厘米)
ppt课件.
17
6 2
4
8
(2+4)×6÷2+8×(4-2)÷2 =18+8 =26(平方厘米)
ppt课件.
18
6 2
4
8
8×4-(2+4)×(8-6)÷2 =32-6 ×2÷2 =32-6 =26(平方厘米)
5cm S=ah÷2
=10×5 ÷2 =25(平方厘米)
4
选择有用的条件求以下图形的面积。(单位:厘米)
S=(a+b)h÷2
S=ah÷2
=(4+8)x6÷2
=30x20÷2
=36(平方厘米)
=300 (平方厘米)
ppt课件.
5
细心判断
1、平行四边形的底越长,它的
面积就越大。(× )
底
ppt课件.
13
2m
4m
阴影部分的面积是多少平方米?
2×2+4×4 - 4×(4+2)÷2
=4+16-12
=8(m2)
ppt课件.
14
6
2 4
8
你能用几种方法解答上面这个图形的面积? (单位:厘米)
ppt课件.
15
6 2
4
8
6×4+(8-6)×(4-2)÷2 =24+2 =26(平方厘米)
ppt课件.
16