一元二次方程题型分类总结.
(完整版)一元二次方程归纳总结

一元二次方程归纳总结1、一元二次方程的一般式:20 (0)ax bx c a ++=≠,a 为二次项系数,b 为一次项系数,c 为常数项。
2、一元二次方程的解法(1)直接开平方法 (也可以使用因式分解法) ①2(0)xa a =≥解为:x = ②2()(0)x a b b +=≥解为:x a += ③2()(0)ax b c c +=≥解为:ax b += ④22()()()ax b cx d a c +=+≠ 解为:()ax b cx d +=±+(2)因式分解法:提公因式分,平方公式,平方差,十字相乘法(3)公式法:一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+= ①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:1,22b x a-=② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=-③ 当240bac ∆=-<时,右端是负数.因此,方程没有实根。
注意:虽然所有的一元二次都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用。
备注:公式法解方程的步骤:①把方程化成一般形式:一元二次方程的一般式:20 (0)ax bx c a ++=≠,并确定出a 、b 、c②求出24bac ∆=-,并判断方程解的情况。
③代公式:1,2x =3、一元二次方程的根与系数的关系法1:一元二次方程20 (0)axbx c a ++=≠的两个根为:1222b b x x a a-+-==所以:12bx x a+=+=-,221222()422(2)4b b b ac cx x a a a a a-+----⋅=⋅===定理:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ,那么:1212,b cx x x x a a+=-=法2:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么2120()()0ax bx c a x x x x ++=⇔--= 两边同时除于a ,展开后可得:2212120()0b c x x x x x x x x a a++=⇔-++= 12b x x a ⇒+=-;12cx x a •=法3:如果一元二次方程20 (0)axbx c a ++=≠定的两个根为12,x x ;那么21122200ax bx c ax bx c ⎧++=⎪⎨++=⎪⎩①-②得:12bx x a+=-(余下略) 常用变形:222121212()2x x x x x x +=+-,12121211x x x x x x ++=,22121212()()4x x x x x x -=+-,12||x x -=2212121212()x x x x x x x x +=+,22111212121222212()4x x x x x x x x x x x x x x ++-+==等 练习:【练习1】若12,x x 是方程2220070xx +-=的两个根,试求下列各式的值:(1)2212x x +;(2)1211x x +;(3)12(5)(5)x x --;(4)12||x x -.【练习2】已知关于x 的方程221(1)104xk x k -+++=,根据下列条件,分别求出k 的值.(1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.【练习3】已知12,x x 是一元二次方程24410kxkx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在, 请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值. 4、应用题(1)平均增长率的问题:(1)n a x b += 其中:a 为基数,x 为增长率,n 表示连续增长的次数,①②b 表示增长后的数量。
一元二次方程题型

一元二次方程四种常见题型一元二次方程在初中代数中占有重要的地位,是进一步学好其它知识的基础,也是各类考试中必考内容之一,常见题型有如下四类:一、一元二次方程的有关概念知识要点:1.一元二次方程满足的条件:(1)是整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2;(4)系数不能为0.2.一元二次方程的一般形式:20(0)ax bx c a ++=≠,其中a 是二次项系数,b 是一次项系数,c 是常数项.典例分析:例1下列方程中,是关于x 的一元二次方程的是()A .)1(2)1(32+=+x x B .02112=-+x x C .02=++c bx ax D .1222-=+x x x 分析:根据一元二次方程需满足的条件可知,B中的未知数在分母中,是分式方程;C中二次项系数a 有可能为0;D整理后最高次项是一次,都不是一元二次方程,故选A.例2关于x 的一元二次方程01)1(22=-++-a x x a 的一个根是为0,则a 的值为()A .1B .–1C .1或–1D .21分析:由方程根的定义,将0x =代入原方程中,则原方程变为关于a 的一元二次方程.解:.把0x =代入原方程中,得012=-a ,∴1a =±,∵10a -≠,即1a ≠,∴1a =-故应选B .评注:(1)判断一个方程是不是一元二次方程,有时需要将其化简后再判断,如例1中的D ;(2)在求一元二次方程中的参数时,不要忽视二次项系数不等于0这一内含条件,如例2中10a -≠.二、一元二次方程的解法知识要点:一元二次方程的一般解法有:直接开平方法、配方法、因式分解法、公式法,其中公式法是解一元二次方程的“万能”方法.典例分析:例3解方程0999162=--x x .分析:观察方程的特点:其常数项“–9991”是一个绝对值很大的数,若用公式法求解,其计算量比较大,注意到二次项的系数为1,一次项的系数是偶数,所以用配方法求解则十分简单.解:移项,得999162=-x x ,配方得99991962+=+-x x ,即10000)3(2=-x ,所以1003±=-x ,所以1031=x ,972-=x .评注:(1)一元二次方程的四种解法各有特点,解方程时应根据方程的特点依次选择:直接开平方法→因式分解法→公式法→配方法;(2)应用求根公式解一元二次方程时应注意要化方程为一元二次方程的一般形式再确定a 、b 、c 的值;(3)解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握.三、列一元二次方程解决实际问题1.列一元二次方程解应用问题的一般步骤可归纳为:审、设、列、解、检验、答.2.常见题型:(1)面积问题;(2)平均增长率问题;(3)销售利润问题;(4)其它问题.例4商场某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件.据此规律,请回答:(1)当每件商品售价定为170元时,每天可销售多少件商品?商场获得的日盈利是多少?(2)在上述条件不变、商品销售正常的情况下,每件商品的销售价定为多少元时,商场日盈利可达到1600元?(提示:盈利=售价-进价)分析:(1)根据所调查的市场信息分析;(2)利用“每件利润×件数=总利润”相等关系列方程.此题体现了数学与市场的关系.解:(1)当每件商品售价为170元时,比每件商品售价130元高出170-130=40元,则每天可销售商品70-40=30件,商场可获日盈利为(170-120)×30=1500(元).(2)设商场日盈利达到1600元时,每件商品售价为x 元,则每件商品比130元高出(x-130)元,每件可盈利(x-120)元,每日销售商品为70-(x-130)=200-x(件).依题意得(200-x)(x-120)=1600,解得x=160.答:每件商品的销售价定为160元时,商场日盈利可达到1600元.例5某校办工厂今年元月份生产课桌椅1000套,二月份因春节放假减产10%,三月份、四月份产量逐月上升,四月份产量达到1296套,求三、四月份产量的平均增长率.分析:本题属于增长率问题,只要把二月份的产量表示出来,根据题意很容易列出方程.解:设三、四月份产量的平均增长率为x ,依题意,得1296)1%)(101(10002=+-x ,解得%202.01==x ,2.22-=x (舍)答:三、四月份产量的平均增长率为20%.评注:解决实际问题的关键是认真审题,分析数量之间的关系,建立适当的数学模型,从而将实际问题转化为数学问题,如增长(降低)率问题中,增长(降低)前的量为a,增长(降低)率为x,增长(降低)后的量为b,则a、x、b 关系为2(1)a x b ±=.还要注意有的问题中需要根据实际情况舍去不合题意的解.四、一元二次方程的综合应用一元二次方程通过与不等式、统计、几何等知识相整合解决实际问题,这样的应用题背景更丰富、更贴近生活实际.例4:下表是我国近几年的进口额与出口额数据(近似值)统计表年份198519901995199820002002出口额(亿美元)2746211500180025003300进口额(亿美元)4235341300140023003000(1)下图是描述这两组数据折线图,请你将进口额折线图补充完整;(2)计算2000年到2002年出口额年平均增长率.15.132.1≈(3)观察折线图,你还能得到什么信息,写出两条。
一元二次方程应用题总结归类及典型例题库

一元二次方程应用题总结分类及经典例题1、列一元二次方程解应用题的特点列一元二次方程解应用题是列一元一次方程解应用题的继续和发展,从列方程解应用题的方法来讲,列出一元二次方程解应用题与列出一元一次方程解应用题是非常相似的,由于一元一次方程未知数是一次,因此这类问题大部分都可通过算术方法来解决.如果未知数出现二次,用算术方法就很困难了,正由于未知数是二次的,所以可以用一元二次方程解决有关面积问题,经过两次增长的平均增长率问题,数学问题中涉及积的一些问题,经营决策问题等等.2、列一元二次方程解应用题的一般步骤和列一元一次方程解应用题一样,列一元二次方程解应用题的一般步骤是:“审、设、列、解、答”.1“审”指读懂题目、审清题意,明确已知和未知,以及它们之间的数量关系.这一步是解决问题的基础;2“设”是指设元,设元分直接设元和间接设元,所谓直接设元就是问什么设什么,间接设元虽然所设未知数不是我们所要求的,但由于对列方程有利,因此间接设元也十分重要.恰当灵活设元直接影响着列方程与解方程的难易;3“列”是列方程,这是非常重要的步骤,列方程就是找出题目中的等量关系,再根据这个相等关系列出含有未知数的等式,即方程.找出相等关系列方程是解决问题的关键;4“解”就是求出所列方程的解;5“答”就是书写答案,应注意的是一元二次方程的解,有可能不符合题意,如线段的长度不能为负数,降低率不能大于100%等等.因此,解出方程的根后,一定要进行检验.3、数与数字的关系两位数=十位数字×10+个位数字三位数=百位数字×100+十位数字×10+个位数字4、翻一番翻一番即表示为原量的2倍,翻两番即表示为原量的4倍.5、增长率问题1增长率问题的有关公式:增长数=基数×增长率实际数=基数+增长数2两次增长,且增长率相等的问题的基本等量关系式为:原来的×1+增长率增长期数=后来的说明:1上述相等关系仅适用增长率相同的情形;2如果是下降率,则上述关系式为:原来的×1-增长率下降期数=后来的6、利用一元二次方程解几何图形中的有关计算问题的一般步骤1整体地、系统地审读题意;2寻求问题中的等量关系依据几何图形的性质;3设未知数,并依据等量关系列出方程;4正确地求解方程并检验解的合理性;5写出答案.7、列方程解应用题的关键1审题是设未知数、列方程的基础,所谓审题,就是要善于理解题意,弄清题中的已知量和未知数,分清它们之间的数量关系,寻求隐含的相等关系;2设未知数分直接设未知数和间接设未知数,这就需根据题目中的数量关系正确选择设未知数的方法和正确地设出未知数.8、列方程解应用题应注意:1要充分利用题设中的已知条件,善于分析题中隐含的条件,挖掘其隐含关系;2由于一元二次方程通常有两个根,为此要根据题意对两根加以检验.即判断或确定方程的根与实际背景和题意是否相符,并将不符合题意和实际意义的一传播问题1.市政府为了解决市民看病难的问题,决定下调药品的价格;某种药品经过连续两次降价后,由每盒200元下调至128元,则这种药品平均每次降价的百分率为2.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了个人;3.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出小分支;4.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有个队参加比赛;5.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有个队参加比赛;6.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学7.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人8.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台二平均增长率问题变化前数量×1 x n=变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长率为;2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是;3.周嘉忠同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的60%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.利息税为20%,只需要列式子;4.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为元,求2、3月份价格的平均增长率;5.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率6.为了绿化校园,某中学在2007年植树400棵,计划到2009年底使这三年的植树总数达到1324棵,求该校植树平均每年增长的百分数;7.王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.假设不计利息税三商品销售问题售价—进价=利润单件利润×销售量=总利润单价×销售量=销售额1.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P件与每件的销售价X元满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元每天要售出这种商品多少件2.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R元,售价每只为P元,且R、P与x的关系式分别为R=500+30X,P=170—2X;1当日产量为多少时每日获得的利润为1750元2若可获得的最大利润为1950元,问日产量应为多少3.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克;现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元4. 服装柜在销售中发现某品牌童装平均每天可售出20件,每件盈利40元;为了迎接“六一”儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存;经市场调查发现,如果每件童装每降价4元,那么平均每天就可多售出8件;要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元5. 西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克;为了促销,该经营户决定降价销售;经调查发现,这种小型西瓜每降价元/千克,每天可多售出40千克;另外,每天的房租等固定成本共24元;该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元6. 益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a 元,则可卖出350-10a 件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件每件商品应定价多少7. 利达经销店为某工厂代销一种建筑材料这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理;当每吨售价为260元时,月销售量为45吨;该经销店为提高经营利润,准备采取降价的方式进行促销;经市场调查发现:当每吨售价每下降10元时,月销售量就会增加吨;综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元;1当每吨售价是240元时,计算此时的月销售量;2在遵循“薄利多销”的原则下,问每吨材料售价为多少时,该经销店的月利润为9000元;3小静说:“当月利润最大时,月销售额也最大;”你认为对吗请说明理由;8. 国家为了加强对香烟产销的宏观管理,对销售香烟实行征收附加税政策. 现在知道某种品牌的香烟每条的市场价格为70元,不加收附加税时, 每年产销100万条,若国家征收附加税,每销售100元征税x 元叫做税率x%, 则每年的产销量将减少10x 万条.要使每年对此项经营所收取附加税金为168万元,并使香烟的产销量得到宏观控制,年产销量不超过50万条,问税率应确定为多少9. 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准.某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游四面积问题判断清楚要设什么是关键1. 一个直角三角形的两条直角边的和是14cm,面积是24cm 2,两条直角边的长分别是;2.一个直角三角形的两条直角边相差5㎝,面积是7㎝2,斜边的长是; 3.一个菱形两条对角线长的和是10㎝,面积是12㎝2,菱形的周长是;结果保留小数点后一位 4. 为了绿化学校,需移植草皮到操场,若矩形操场的长比宽多14米,面积是3200平方米则操场的长为米,宽为米;5. 若把一个正方形的一边增加2cm,另一边增加1cm,得到的矩形面积的2 倍比正方形的面积多11cm 2,则原正方形的边长为cm.6. 如图,在长为10cm,宽为8cm 的矩形的四个角上截去四个全等的正方形,使得留下的图形图中阴影部分面积是原矩形面积的80%,所截去的小正方形的边长是;7. 张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已购买这种铁皮每平方米需20元如果人数超过25人,每增加1人,人均旅游费用降低20元,但人均旅游费用不得低700元. 如果人数不超过25人,人均旅游费用为1000元.钱,问张大叔购买这张铁皮共花了是元钱8.如图,在宽为20m ,长为30m ,的矩形地面上修建两条同样宽且互相垂直的道路,余分作为耕地为551㎡;则道路的宽为是;9.如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙墙长18m,另三边用木栏围成,木栏长35m;①鸡场的面积能达到150m2吗②鸡场的面积能达到180m2吗如果能,请你给出设计方案;如果不能,请说明理由;3若墙长为a m,另三边用竹篱笆围成,题中的墙长度a m对题目的解起着怎样的作用五工程问题1.某公司需在一个月31天内完成新建办公楼的装修工程.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成.1求甲、乙两工程队单独完成此项工程所需的天数.2如果请甲工程队施工,公司每日需付费用2000元;如果请乙队施工,公司每日需付费用1400元.在规定时间内:A.请甲队单独完成此项工程出.B请乙队单独完成此项工程;C.请甲、乙两队合作完成此项工程.以上三种方案哪一种花钱最少2.搬运一个仓库的货物,如果单独搬空,甲需10小时完成,乙需12小时完成,丙需15小时完成,有货物存量相的两个仓库A和B,甲在A仓库,乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙,最后两个仓库的货物同时搬完,丙帮助甲乙各多少时间列式子3.乙两人都以不变的速度在环形路上跑步,相向而行,每隔2分钟相遇一次;同向而行,每隔6分钟相遇一次,已知甲比乙跑得快,求甲、乙每分钟各跑几圈4.某油库的储油罐有甲、乙两个注油管,单独开放甲管注满油罐比单独开放乙管注满油罐少用4小时,两管同时开放3小时后,甲管因发生故障停止注油,乙管继续注油9小时后注满油罐,求甲、乙两管单独开放注满油罐时各需多少小时六行程问题1、A、B两地相距82km,甲骑车由A向B驶去,9分钟后,乙骑自行车由B出发以每小时比甲快2km的速度向A驶去,两人在相距B点40km处相遇;问甲、乙的速度各是多少甲、乙二人分别从相距20千米的A、B两地以相同的速度同时相向而行,相遇后,二人继续前进,乙的速度不变,甲每小时比原来多走1千米,结果甲到达B地后乙还需30分钟才能到达A地,求乙每小时走多少千米.3、甲、乙两个城市间的铁路路程为1600公里,经过技术改造,列车实施了提速,提速后比提速前速度增加20公里/小时,列车从甲城到乙城行驶时间减少4小时,这条铁路在现有的安全条件下安全行驶速度不得超过140公里/小时.请你用学过的数学知识说明在这条铁路现有的条件下列车还可以再次提速.4、甲、乙两人分别骑车从A,B两地相向而行,甲先行1小时后,乙才出发,又经过4小时两人在途中的C地相遇,相遇后两人按原来的方向继续前进;乙在由C地到达A地的途中因故停了20分钟,结果乙由C地到达A地时比甲由C地到达B地还提前了40分钟,已知乙比甲每小时多行驶4千米,求甲、乙两人骑车的速度;七、增长率问题:1、恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了万元,求这两个月的平均增长率.2、某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台3、王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.假设不计利息税4、周嘉忠同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的60%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.利息税为20%,只需要列式子5、市政府为了解决市民看病难的问题,决定下调药品的价格;某种药品经过连续两次降价后,由每盒200元下调至128元,则这种药品平均每次降价的百分率为七、动态几何:1、已知:如图3-9-3所示,在△ 中, .点从点开始沿边向点以1cm/s的速度移动,点从点开始沿边向点以2cm/s的速度移动.1如果分别从同时出发,那么几秒后,△ 的面积等于4cm22如果分别从同时出发,那么几秒后, 的长度等于5cm3在1中,△ 的面积能否等于7cm2说明理由.八、其他类型题:1、象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个选手参加.2、机械加工需要用油进行润滑以减少摩擦,某企业加工一台大型机械设备润滑用油量为90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲、•乙两个车间都组织了人员为减少实际耗油量进行攻关.1甲车间通过技术革新后,加工一台大型机械设备润滑油用油量下降到70千克,用油的重复利用率仍然为60%.问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克2乙车间通过技术革新后,不仅降低了润滑用油量,•同时也提高了用油的重复利用率,并且发现在技术革新的基础上,润滑用油量每减少1千克,用油量的重复利用率将增加%.这样乙车间加工一台大型机械设备的实际耗油量下降到12千克.问乙车间技术革新后,加工一台大型机械设备润滑用油量是多少千克用油的重复利用率是多少。
一元二次方程知识归纳与题型突破(12类题型清单)(解析版)—2024-2025学年九年级数学上册

一元二次方程知识归纳与题型突破(12类题型)一、一元二次方程的定义(1)一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.(2)概念解析:一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.(3)判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高01 思维导图02 知识速记次数是2”;“二次项的系数不等于0”;“整式方程”.二、一元二次方程的一般形式(1)一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;c叫做常数项.一次项系数b和常数项c可取任意实数,二次项系数a是不等于0的实数,这是因为当a=0时,方程中就没有二次项了,所以,此方程就不是一元二次方程了.(2)要确定二次项系数,一次项系数和常数项,必须先把一元二次方程化成一般形式.三、一元二次方程的解(1)一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.(2)一元二次方程一定有两个解,但不一定有两个实数解.这x1,x2是一元二次方程ax 2+bx+c=0(a≠0)的两实数根,则下列两等式成立,并可利用这两个等式求解未知量.ax12+bx1+c=0(a≠0),ax22+bx2+c=0(a≠0).四、解一元二次方程-直接开平方形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.如果方程化成x2=p的形式,那么可得x=±;如果方程能化成(nx+m)2=p(p≥0)的形式,那么nx+m=±.注意:①等号左边是一个数的平方的形式而等号右边是一个非负数.②降次的实质是由一个二次方程转化为两个一元一次方程.③方法是根据平方根的意义开平方.五、解一元二次方程-配方法(1)将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.六、解一元二次方程-公式法(1)把a acbbx24 2-±-=(b2﹣4ac≥0)叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.(2)用求根公式解一元二次方程的方法是公式法.(3)用公式法解一元二次方程的一般步骤为:①把方程化成一般形式,进而确定a,b,c的值(注意符号);②求出b2﹣4ac的值(若b2﹣4ac<0,方程无实数根);③在b2﹣4ac≥0的前提下,把a、b、c的值代入公式进行计算求出方程的根.注意:用公式法解一元二次方程的前提条件有两个:①a≠0;②b2﹣4ac≥0.七、解一元二次方程-因式分解法(1)因式分解法解一元二次方程的意义因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).(2)因式分解法解一元二次方程的一般步骤:到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.八、由实际问题抽象出一元二次方程在解决实际问题时,要全面、系统地申清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.九、一元二次方程的应用1、列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.2、列一元二次方程解应用题中常见问题:(1)数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.(2)增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.(3)形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.【规律方法】列一元二次方程解应用题的“六字诀”1.审:理解题意,明确未知量、已知量以及它们之间的数量关系.2.设:根据题意,可以直接设未知数,也可以间接设未知数.3.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.4.解:准确求出方程的解.5.验:检验所求出的根是否符合所列方程题型一 利用一元二次方程的定义判断是否是一元二次方程例1.(23-24八年级下·黑龙江哈尔滨·阶段练习)下列方程是关于x 的一元二次方程的是( )A .20ax bx c ++=B .212xx +=C .221x x y +=+D .()()22131x x+=+ 1.(2023·江苏盐城·模拟预测)下列方程是一元二次方程的是( )A .20ax bx c ++=B x=C .21220x x ++=D .()22134m x x +-=【答案】D【分析】此题主要考查了一元二次方程定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.根据一元二次方程的定义进行判断即可03 题型归纳【详解】解:A 、当0a =时不是一元二次方程,故本选项不符合题意;B 、该方程不是整式方程,故本选项不符合题意;C 、该方程不是整式方程,故本选项不符合题意;D 、该方程符合一元二次方程的定义,是一元二次方程,故本选项正确;故选:D .2.(23-24八年级下·山东烟台·期中)下列方程中,关于x 的一元二次方程是( )A .7x y -=B .220x x ++=C .120x x +=D .()232x x x -=+3.(23-24八年级下·山东烟台·期中)下列方程中:①2210x x -+=;②20ax bx c ++=;③22350x x +-=;④20x -=;⑤()2212x y -+=;⑥()()22132x x x --=,一元二次方程的个数为( )A .1B .2C .3D .4⑥()()22132x x x --=,即730x -+=,未知数的最高次不是2,不是一元二次方程;∴一元二次方程有2个,故选:B .题型二 一元二次方程的一般形式例2. (23-24八年级下·黑龙江哈尔滨·阶段练习)方程()()320x x +-=化为一元二次方程的一般形式是 .【答案】260x x +-=【分析】此题考查了一元二次方程的一般形式,即20(0)ax bx c a ++=¹.其中a 是二次项系数,b 是一次项系数,c 是常数项.去括号合并同类项整理即可.【详解】解:∵()()320x x +-=∴22360x x x -+-=∴260x x +-=故答案为:260x x +-=巩固训练1.(23-24八年级下·广西崇左·期中)把方程()()223243x x +=-化为一元二次方程的一般形式是 .2.(23-24八年级下·山东东营·阶段练习)把一元二次方程()()112x x x +-=化成一般形式后得到二次项系数是 ,一次项系数是 ,常数项是 .【答案】 1 2 1-【分析】此题主要考查了一元二次方程的一般形式.首先利用平方差公式进行计算,再整理得到2210x x +-=,然后再确定二次项、一次项系数和常数项.【详解】解:方程()()112x x x +-=整理为一般形式为2210x x +-=,∴二次项系数是1,一次项系数是2,常数项是1-,故答案为:1,2,1-.3.(23-24九年级上·四川南充·阶段练习)方程2(21)(3)1x x x +-=-化为一般形式为,二次项系数、一次项系数、常数项的和为.题型三 利用一元二次方程的定义求参数例3.(23-24八年级下·安徽六安·阶段练习)若关于x 的方程()211450mm x x +++-=是一元二次方程,则m 的值是( )A .0B .1-C .1D .1±【答案】C【分析】本题考查一元二次方程的定义,掌握一元二次方程的定义是解题的关键.理解一元二次方程的定义,需要抓住两个条件:①二次项系数不为0;②未知数的最高次数为2;结合一元二次方程的定义,可以得到关于m 的方程和不等式,求解即可得到m 的值.【详解】解:Q 关于x 的方程()211450m m x x +++-=是一元二次方程,\21012m m +¹ìí+=î,解得1m =.故选:C .巩固训练1.(2024八年级下·安徽·专题练习)关于x 的方程||(2)23m m x mx -++=是一元二次方程,则m 值为( )A .2或2-B .2C .2-D .0m ³且2m ¹【答案】C【分析】此题主要考查了一元二次方程的定义,根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.【详解】解:∵关于x 的方程||(2)23m m x mx -++=是一元二次方程,∴||2m =且20m -¹,解得2m =-.故选:C .2.(23-24八年级下·安徽亳州·期中)若()22210mm x mx ---+=是一元二次方程,则m 的值为( )A .2B .2-C .2或2-D .3.(23-24八年级下·安徽池州·期末)若关于x 的方程22(2)430kk x x --+-=是一元二次方程,则k = .【答案】2-【分析】本题考查了一元二次方程,熟记定义是解题关键.根据一元二次方程的定义(只含有一个未知数,并且未知数的最高次数2的整式方程,叫做一元二次方程)即可得.【详解】解:∵关于x 的方程22(2)430k k x x --+-=是一元二次方程,∴22220k k ì-=í-¹î,解得2k =-,故答案为:2-.题型四 一元二次方程的解求参数的值例4. (2024·江苏镇江·二模)已知2x =是方程230x x c -+=的一个根,则实数c 的值是.【答案】2【分析】本题主要考查了一元二次方程的解,把2x =代入230x x c -+=即可求出c 的值.【详解】解:把2x =代入230x x c -+=,可得出22320c -´+=,解得:2c =,故答案为:2.巩固训练1.(23-24八年级下·浙江杭州·期中)关于x 的一元二次方程2320x x m ++-=有一个根为0,则m 的值是( )A .1B .1±C .2D .2±2.(2024·山东济南·三模)关于x 的一元二次方程2420x x m -+=的一个根14x =,则m =.【答案】0【分析】本题考查了一元二次方程,把14x =代入方程2420x x m -+=,解关于m 的方程即可.【详解】解:把14x =代入方程2420x x m -+=得161620m -+=解得:0m =故答案为:0.3.(2024·山东济南·二模)已知关于x 的一元二次方程2260x mx +-=的一个根是3,则m 的值是 .【答案】4-【分析】根据一元二次方程2260x mx +-=的一个根是3,将3x =代入原方程得到关于m 的一元一次方程进而即可解答.本题考查了一元二次方程的根,一元一次方程的解,理解一元二次方程的根是解题的关键.【详解】解:∵关于x 的一元二次方程2260x mx +-=的一个根是3,∴将3x =代入方程2260x mx +-=得:223360m ´+-=,解得:4m =-,故答案为:4-.题型五 一元二次方程的解求代数式的值例5. (2024·青海玉树·三模)若3x =是关于x 的方程26ax bx -=的解,则202493a b -+的值为.1.(2024·四川南充·中考真题)已知m 是方程2410x x -=+的一个根,则(5)(1)m m +-的值为.【答案】4-【分析】本题主要考查了二元一次方程的解,以及已知式子的值求代数式的值,根据m 是方程2410x x -=+的一个根,可得出241m m +=,再化简代数式,整体代入即可求解.【详解】解:∵m 是方程2410x x -=+的一个根,∴241m m +=(5)(1)m m +-255m m m =-+-245m m =+-15=-4=-,故答案为:4-.2.(2024·江苏常州·二模)已知m 为方程 ²360x x --=的一个根,则代数式²36m m -+-的值是.3.(2024·福建·模拟预测)已知m 为方程2320240x x +-=的根,那么32220272024m m m +-+的值为【答案】0【分析】本题考查了一元二次方程的解的定义;将方程的根代入方程,化简得232024m m +=,将代数式变形,整体代入求值即可.【详解】∵m 为方程2320240x x +-=的根,∴2320240m m +-=,∴232024m m +=,∴原式3223320242024m m m m m =+---+223320242024()()m m m m m m =+-+-+2024202420242024m m =--+0=.故答案为:0.题型六 一元二次方程的解的估算例6. (23-24八年级下·黑龙江大庆·阶段练习)根据表格中的数据:估计一元二次方程20ax bx c ++=(a ,b ,c 为常数,0a ¹)一个解x 的范围为( )x 0.51 1.5232ax bx c++28181042-A .0.51x <<B .1 1.5x <<C .1.52x <<D .23x <<1.(23-24八年级下·浙江杭州·阶段练习)已知2310x x -+=,依据下表,它的一个解的范围是( )x 2.52.6 2.7 2.8231x x -+0.25-0.04-0.190.44A .2.5 2.6x <<B .2.6 2.7x <<C .2.7 2.8x <<D .不确定【答案】B 【分析】本题主要考查了一元二次方程根的估算,由表格可知,231x x -+的值随着x 的增大而增大,那么在2.6与2.7之间必然有一个数使得代数式231x x -+的值为0,据此可得答案.【详解】解:由表格可知,231x x -+的值随着x 的增大而增大,当 2.6x =时,2310.040x x -+=-<,当 2.7x =时,2310.190x x -+=>,那么在2.6与2.7之间必然有一个数使得代数式231x x -+的值为0,∴方程2310x x -+=的一个解的范围为2.6 2.7x <<.故选:B .2.(23-24八年级下·江苏苏州·期中)观察表格,一元二次方程22 1.10x x --=的一个解的取值范围是.x 1.3 1.4 1.51.6 1.7 1.8 1.922 1.1x x --0.71-0.54-0.35-0.14-0.090.340.61【答案】1.6 1.7x <<【分析】本题考查了估算一元二次方程的近似解.根据图表数据找出一元二次方程等于0时,未知数的值的范围,即可得到答案.【详解】解: 1.6x =时,0.14y =-, 1.7x =时,0.09y =,∴一元二次方程22 1.10x x --=的解的范围是1.6 1.7x <<.故答案为:1.6 1.7x <<题型七 用配方法配一元二次方程例7.(23-24八年级下·浙江金华·221x x -=,配方后得到的方程是( )A .2(1)2x -=B .()212x +=C .2(1)0x +=D .2(1)0x -=【答案】A【分析】本题考查了配方法解一元二次方程,将方程两边同时加上一次项系数一半的平方,再写成完全平方式即可得出答案.【详解】解:∵221x x -=,∴22111x x -+=+,即2(1)2x -=,故选:A .巩固训练1.(2024·山西阳泉·三模)用配方法解一元二次方程28100x x -+=配方后得到的方程是( )A .()2854x +=B .()2854x -=C .()246x +=D .()246x -=【答案】D【分析】本题主要考查了一元二次方程的配方法.把常数项移到等式右边后,利用完全平方公式配方得到结果,即可做出判断.【详解】解:28100x x -+=,移项得:2810x x -=-,配方得:28161016x x +=-+-,整理得:()246x -=,故选:D .2.(2024·内蒙古呼和浩特·模拟预测)用配方法解一元二次方程22510x x --=,配方正确的是( )A .2533416x æö-=ç÷èø B .2541416x æö-=ç÷èø C .252724x æö-=ç÷èø D .252924x æö-=ç÷èø3.(23-24八年级下·安徽淮北·阶段练习)用配方法解方程23430x x --=,应把它先变形为( )A .221339x æö-=ç÷èø B .2203x æö-=ç÷èø C .21839x æö-=ç÷èø D .211039x æö-=ç÷èø题型八 解一元二次方程例8.(23-24九年级·江苏·假期作业)解关于x 的方程(因式分解方法):(1)230x =;(2)7(3)39x x x -=-.1.(2024八年级下·浙江·专题练习)解方程:(1) 2490x -=;(2)()221491x +-=.【答案】(1)17x =,27x =-(2)14x =,26x =-【分析】本题考查解一元二次方程:(1)利用直接开平方法求解;(2)先移项,再利用直接开平方法求解.【详解】(1)解:2490x -=,249x =,∴7=±x ,∴17x =,27x =-;(2)解:()221491x +-=,()2125x +=,∴15x +=±,∴14x =,26x =-.2.(23-24九年级上·安徽芜湖·期中)用适当的方法解方程:()()22325x x -=+3.(23-24八年级下·广西崇左·期中)解方程:(1)22350x x --=;(2)()2326x x +=+.【答案】(1)17x =,25x =-(2)13x =-,21x =-【分析】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键,解一元二次方程的方法有直接开平方法、因式分解法、配方法、公式法等.(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】(1)解:22350x x --=,因式分解得()()750x x -+=,即70x -=或50x +=,解得17x =,25x =-.(2)解:()2326x x +=+,移项得()()23230x x +-+=,因式分解得()()3320x x ++-=,即30x +=或320x +-=,解得13x =-,21x =-.4.(23-24八年级下·全国·假期作业)用公式法解下列方程:(1)2120x x --=;(2)22530x x +-=;(3)22770x x -+=.5.(23-24九年级上·海南省直辖县级单位·期末)用配方法解方程:(1)242x x+=;(2)27304x x--=;(3)2483x x-=-;(4)2441018x x x++=-题型九 解一元二次方程中错解复原问题例9:(2024·江西吉安·三模)小明解一元二次方程2++=的过程如下,请你仔细阅读,并回答问题:x x2530(1)小明解此方程使用的是______法;小明的解答过程是从第______步开始出错的.(2)请写出此题正确的解答过程.1.(23-24八年级下·全国·2+=解:∵a =b =c =∴(2244320b ac D =-=-=>,∴2x ==,∴12x =,22x =-.请你分析以上解答过程有无错误,如有错误,指出错误的地方,并写出正确的结果.2.(23-24八年级下·广西百色·期中)小涵与小彤两位同学解方程()()2366x x x -=-的过程如下:小涵的解题过程:第1步:两边同时除以()6x -得36x x =-,第2步:移项,得36x x =-,第3步:解得2x =-.小彤的解题过程:第1步:移项,得()()23660x x x ---=,第2步:提取公因式,得()()6360x x x ---=.第3步:则60x -=或360x x --=,第4步:解得16x =,22x =.(1)小涵和小彤的解法都不正确,小涵第一次出错在第_____步,小彤第一次出错在第_____步;(2)请你给出正确的解法,并结合你的经验提出一条解题注意事项.【答案】(1)1,2(2)正确的解法见解析,16x =,23x =-.注意事项:移项时要注意改变符号,或(除数不能为0)【分析】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.(1)根据等式的性质和因式分解法则即可得出答案;(2)利用因式分解法解答即可.【详解】(1)解:小涵的解法中,因为()6x -可能为0,所以不能两边同时除以()6x -,即第一次出错错在第1步;小彤的解法中,第1步移项没错,第2步提取公因式后有一项忘记变号,即第一次出错错在第2步;故答案为:1;2;(2)解:正确的解法是:()()2366x x x -=-,移项,得()()23660x x x ---=,提取公因式,得()()6360x x x --+=,则60x -=或360x x -+=,解得1263x x ==-,,注意事项:在利用因式分解法解一元二次方程时,注意把方程一边的多项式正确因式分解.题型十 根据判别式判断一元二次方程根的情况例10.(23-24九年级下·云南昆明·阶段练习)已知关于x 的一元二次方程2550x x -+=的根的情况,下列说法正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定【答案】A【分析】本题考查了一元二次方程20(0)ax bx c a ++=¹根的判别式24=b ac D -与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当0D >时,一元二次方程有两个不相等的实数根;当Δ0=时,一元二次方程有两个相等的实数根;当Δ0<时,一元二次方程没有实数根.【详解】解:∵2550x x -+=,∴()2541550D =--´´=>,∴方程两个不相等的实数根.故选A .巩固训练1.(2024·河南周口·三模)关于x 的一元二次方程2220x mx +-=的根的情况是( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根2.(2024·上海·中考真题)以下一元二次方程有两个相等实数根的是( )A .260x x -=B .290x -=C .2660x x -+=D .2690x x -+=【答案】D【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=¹,当240b ac D =->时,方程有两个不相等实数根;当240b ac D =-=时,方程的两个相等的实数根;当24<0b ac D =-时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=--´´=> ,该方程有两个不相等实数根,故A 选项不符合题意;B .()2Δ0419360=-´´-=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=--´´=> ,该方程有两个不相等实数根,故C 选项不符合题意;D .()2Δ64190=--´´= ,该方程有两个相等实数根,故D 选项不符合题意;故选:D .3.(23-24八年级下·安徽六安·阶段练习)下列方程中,没有实数根的是( )A .22x x=B .2210x x -+=C .260x x --=D .224x x =-【答案】D【分析】本题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程()200ax bx c a ++=¹,当240b ac D =->时,方程有两个不相等的实数根;当240b ac D =-=时,方程有两个相等的实数根;当24<0b ac D =-时,方程没有实数根是解题的关键.分别计算四个方程的根的判别式,然后根据判别式的意义判断根的情况.【详解】解:A 、22x x =可化为:220x x -=2(1)42010D =--´´=>Q ,\方程有两个不相等的实数根;B 、2210x x -+=()2Δ24110=--´´=Q ,\方程有两个相等的实数根;C 、260x x --=()2Δ141(6)250=--´´-=>,\方程有两个不相等的实数根;D 、224x x =-可化为:2240x x -+=2(2)414120D =--´´=-<Q ,\方程没有实数根;故选:D .题型十一 利用一元二次方程根与系数的关系求值例11.(2024·江西宜春·模拟预测)一元二次方程2310x x --=的两根分别为a ,b ,则()ab a b += .1.(2024·江西吉安·一模)已知方程2430x x --=的两个根分别为1x ,2x ,则12x x 的值为 .2.(2024·广东深圳·模拟预测)若1x ,2x 是方程2210x x --=的两个根,则121222x x x x +-的值为 .∴121x x =-,122x x +=,∴()()121212122222215x x x x x x x x +-=+-=´--=,故答案为:5.3.(2024·江苏南京·三模)设12x x 、是方程2320210x x --=的两个根,则21122x x x -+= .【答案】2024【分析】本题主要考查一元二次方程根与系数关系,方程解的定义,掌握一元二次方程根与系数关系,方程解的定义是解题的关键.根据根与系数关系得到123x x +=,之后将1x 代入方程中得到211320210x x -=-,变形为21132021x x -=,两式相加即可得到答案.【详解】解:Q 12x x 、是方程2320210x x --=的两个根,\ 123x x +=,211320210x x -=-,\ 21132021x x -=,\ 22112111220213230224x x x x x x x -+=-+=+=+.故答案为:2024.4.(2024·山东济宁·一模)设a ,b 是一元二次方程23170x x +-=的两个根,则252a a b ++=.题型十二 用一元二次方程解决与图形有关的问题例12:(23-24八年级下·黑龙江哈尔滨·期末)一个矩形蔬菜大棚长32m ,宽20m ,其中有两横两竖四条小路,横竖小路的宽度相同,小路的面积占整个大棚面积的532.(1)小路的宽度是多少?(2)蔬菜的种植需要两组工人来完成,甲组每平方米50元,乙组每平方米60元,若完成此大棚的种植不超过30000元,至少安排甲组种植多少平方米?1.(23-24八年级下·黑龙江哈尔滨·期末)李大爷用30米的栅栏围成一个菜园,围成的菜地是如图所示的矩形ABCD.设边AD的长为x(单位:米),矩形ABCD的面积为S(单位:平方米).(1)求S与x之间的函数解析式(不要求写出自变量x的取值范围);<,请求出此时AD的长.(2)若矩形ABCD的面积为54平方米,且AB AD2.(重庆市两江新区2023-2024学年八年级下学期期末考试数学试题)新高考采用“312++”的模式,对生物学科提出了更高的要求.某学校生物组为培养同学们观察、归纳的能力,组建了生物课外活动小组.在一次野外实践时,同学们发现一种水果黄瓜的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是21.(1)这种水果黄瓜每个支干长出多少小分支?(2)学校打算建立一块矩形的生物种植田来种植这种水果黄瓜,一面利用学校的墙(墙的最大可用长度为10米),其余部分需要用总长为22米的栅栏围成,且矩形中间需用栅栏隔开,栅栏因实验需要,有两个宽为1米的门(门无需栅栏,如图所示).设种植田的宽AB 为m 米.若该种植田的面积为36平方米(栅栏的占地面积忽略不计),求该种植田的宽m .【答案】(1)4个(2)6米【分析】本题考查一元二次方程的实际应用:(1)设这种水果黄瓜每个支干长出的小分支个数是x ,根据主干、支干和小分支的总数是21,即可得出关于x 的一元二次方程,解之取其正值即可得出答案.(2)设种植田的宽AB 为m 米,则长BC 为()2232m -+米,根据题意列一元二次方程组,解方程组,再根据10BC £对求出的根进行取舍.【详解】(1)解:设这种水果黄瓜每个支干长出x 个小分支,由题意得:2121x x ++=,解得14x =,25x =-(舍),即这种水果黄瓜每个支干长出4个小分支;(2)解:设种植田的宽AB 为m 米,则长BC 为()2232m -+米,由题意得:()223236m m ×-+=,整理得:28120m m -+=,解得12m =,26m =,当2m =时,223221810BC =-´+=>,不合题意,舍去;当6m =时,22362610BC =-´+=<,符合题意;综上可知,该种植田的宽m 为6米.。
一元二次方程经典题型汇总

一元二次方程经典题型汇总将一元二次方程化为完全平方形式,然后两边开平方根,得到方程的解。
2、因式分解法:将一元二次方程化为两个一次因式的乘积形式,然后根据乘积为零的性质求解。
3、配方法:通过添加或减少一个适当的常数,将一元二次方程化为完全平方形式,然后利用完全平方公式求解。
4、公式法:利用求根公式,直接求解一元二次方程的解。
三、例题解析1、用直接开平方法求解方程x2+6x+9=0.解:将方程变形为(x+3)2=0,然后两边开平方根,得到x=-3.所以方程的解为x=-3.2、用因式分解法求解方程x2-5x+6=0.解:将方程因式分解为(x-2)(x-3)=0,然后根据乘积为零的性质得到x=2或x=3.所以方程的解为x=2或x=3.3、用配方法求解方程2x2-5x+2=0.解:为了将方程化为完全平方形式,需要在方程两边同时加上一个适当的常数,使得方程的左边成为一个完全平方。
可以发现,2x2-5x+2=2(x-1)(x-2)+2,所以方程可以化为2(x-1)2=0.然后利用完全平方公式,得到x=1或x=2.所以方程的解为x=1或x=2.4、用公式法求解方程3x2-4x+1=0.解:根据求根公式,方程的解为x=[4±√(16-4*3*1)]/(2*3),化简可得到x=1/3或x=1.所以方程的解为x=1/3或x=1.四、练题1、用直接开平方法求解方程2x2-12x+18=0.2、用因式分解法求解方程x2+7x+10=0.3、用配方法求解方程x2+4x-5=0.4、用公式法求解方程x2-2x+1=0.5、求解方程2x2-5x-3=0的解法有哪些?分别求出方程的解。
答案:1、将方程变形为x2-6x+9=0,然后利用直接开平方法,得到x=3.所以方程的解为x=3.2、将方程因式分解为(x+5)(x+2)=0,然后根据乘积为零的性质,得到x=-5或x=-2.所以方程的解为x=-5或x=-2.3、为了将方程化为完全平方形式,需要在方程两边同时加上一个适当的常数,使得方程的左边成为一个完全平方。
一元二次方程的应用题分类题型汇总

一元二次方程的应用(设未知数——找等量关系——求解——检验)一、商品销售问题售价—进价=利润单价×销售量=销售额一件商品的利润×销售量=总利润1、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?2、某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价3、某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P(件)与每件的销售价X(元)满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元?每天要售出这种商品多少件?4、某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R(元),售价每只为P(元),且RP与x的关系式分别为R=500+30X,P=170—2X。
(1)当日产量为多少时每日获得的利润为1750元?(2)若可获得的最大利润为1950元,问日产量应为多少?二、行程问题路程=速度*时间相遇路程=速度和*相遇时间追及问题=速度差*追及时间顺水速度=船速(静水中的速度)+ 水流速度逆流速度=船速(静水中的速度)—水流速度1、甲乙二人分别从相聚20千米的A、B两地以相同的速度同时相向而行,相遇后,二人继续前进,乙的速度不变,甲每小时比原来多走1千米,结果甲到达B地后乙还需30分钟才能到达A地,求乙每小时走多少千米?2、甲、乙两个城市间的铁路路程为1600公里,经过技术改造,列车实施了提速,提速后比提速前速度增加20公里/小时,列车从甲城到乙城行驶时间减少4小时,这条铁路在现有的安全条件下安全行驶速度不得超过140公里/小时.请你用学过的数学知识说明在这条铁路现有的条件下列车还可以再次提速.3、一个自行车队进行训练,训练时所有队员都以35千米/时的速度前进,突然,1号队员以45千米/时的速度独自前进,行进10千米后调转车头,仍以45千米/时的速度往回骑,直到与其他队员会合,1号队员从离队开始到与队员重新会合,经过了多少时间。
一元二次方程应用题七大题型

一元二次方程应用题七大题型
1. 求解物体运动距离
题型:一个物体从静止开始运动,加速度为 a,运动时间为 t。
求物体运动的距离。
公式:距离 = (1/2) 加速度时间²
2. 求解物体最终速度
题型:一个物体从静止开始运动,加速度为 a,运动时间为 t。
求物体最终速度。
公式:最终速度 = 加速度时间
3. 求解物体运动时间
题型:一个物体从静止开始运动,最终速度为 v,加速度为 a。
求物体运动的时间。
公式:时间 = 最终速度 / 加速度
4. 求解物体加速度
题型:一个物体从静止开始运动,运动时间为 t,最终速度为v。
求物体加速度。
公式:加速度 = 最终速度 / 时间
5. 求解运动物体速度
题型:一个物体从静止开始运动,在 t1 时刻速度为 v1,在
t2 时刻速度为 v2。
求物体在 t3 时刻的速度。
公式:速度 = (最终速度 - 初始速度) / (最终时间 - 初始
时间)
6. 求解运动物体加速度变化率
题型:一个物体的加速度从 a1 变化到 a2,时间间隔为Δt。
求加速度的变化率。
公式:加速度变化率 = (最终加速度 - 初始加速度) / 时间间隔
7. 求解运动物体速度变化率
题型:一个物体的速度从 v1 变化到 v2,时间间隔为Δt。
求速度的变化率。
公式:速度变化率 = (最终速度 - 初始速度) / 时间间隔。
一元二次方程的应用题型归类

一元二次方程的应用题型归类一、动点(面积)问题1、如图,在边长为12cm的等边△ABC中,点P从点A开始沿AB边向点B以每秒钟1cm的速度移动,点Q 从点B开始沿BC边向点C以每秒钟2cm的速度移动.若P、Q分别从A、B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:(1)经过6秒后,BP=______ cm,BQ=______cm;(2)经过几秒后,△BPQ是直角三角形?(3)经过几秒△BPQ的面积等于10 3 cm22、已知:如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s 的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于6cm2?(2)如果P,Q分别从A,B同时出发,那么几秒后,PQ的长度等于5cm?(3)在(1)中,△PQB的面积能否等于8cm2?说明理由.3、如图,一次函数y=-2x+3的图象交x轴于点A,交y轴于点B,点P在线段AB上(不与点A,B重合),过点P分别作OA和OB的垂线,垂足为C,D。
设点P的横坐标为a;(1)当点P在何处时,矩形OCPD的面积为1?(2)矩形OCPD的面积是否存在最大值,若存在,求出a的值;若不存在,说明理由。
二、营销问题1、某商店准备进一批季节性小家电,单价40元.经市场预测,若销售定价为52元时,可售出180个;定价每增加1元,销售量将减少10个,定价每减少1元,销售量将增加10个.商店若准备获利2000元,则定价为多少元?应进货多少个?2、一学校为了绿化校园环境,向某园林公司购买力一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?3、东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?4、水果批发市场有一种高档水果,如果每千克盈利(毛利润)10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20千克.(1)若以每千克能盈利18元的单价出售,问每天的总毛利润为多少元?(2)现市场要保证每天总毛利润6000元,同时又要使顾客得到实惠,则每千克应涨价多少元?(3)现需按毛利润的10%交纳各种税费,人工费每日按销售量每千克支出0.9元,水电房租费每日102元,若剩下的每天总纯利润要达到5100元,则每千克涨价应为多少?5、某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?6、某商店经销一种销售成本为每千克40元的水产品;据市场分析,若按每千克50元销售,一个月能售出500千克,销售单价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,请你回答以下问题:(1)当销售单价定为每千克55元时,计算月销售量和月销售利润。
一元二次方程常见题型总结

一元二次方程常见题型总结一元二次方程常见题型总结题型1:一元二次方程的概念1.若方程$(a-1)x^2-3x+2=0$是关于$x$的一元二次方程,则$a$的取值范围为【】(A)$a\neq1$(B)$a>1$(C)$a\neq1$(D)$a>1$答案:$a\neq1$2.若$1-3$是方程$x^2-2x+c=0$的一个根,则$c$的值为【】(A)$-2$(B)$4/3$(C)$3/2$(D)$4$答案:$4/3$3.已知关于$x$的一元二次方程$(k+4)x^2+3x+k^2+3k-4=0$的一个根为$0$,且$k$的值为【】答案:$k=-4$或$k=1$题型2:一元二次方程的解法4.一个等腰三角形的底边长是$6$,腰长是一元二次方程$x^2-7x+12=0$的一个根,则此三角形的周长是【】(A)$12$(B)$13$(C)$14$(D)$12$或$14$答案:$14$5.方程$(x+3)^2=5(x+3)$的解为__________。
答案:$x=-2$或$x=2$6.用适当的方法解下列方程:1)$4x^2-144=0$;(2)$2x^2+3x=3$;(3)$x^2-2x-24=0$;(4)$x(2x-5)=4x-10$。
题型3:一元二次方程根的判别式及根与系数的关系定理7.已知$a,b,c$为常数,点$P(a,c)$在第二象限,则关于$x$的方程$ax^2+bx+c=0$的根的情况是【】(A)有两个相等的实数根(B)有两个不相等的实数根(C)没有实数根(D)无法判断答案:$B$8.若关于$x$的一元二次方程$x^2+(2k-1)x+k^2-1=0$没有实数根,则$k$的取值范围为__________。
答案:$k1$9.已知关于$x$的一元二次方程$x^2+(2k+1)x+k^2=0$有两个不相等的实数根。
1)求$k$的取值范围;2)设方程的两个实数根分别为$x_1,x_2$,当$k=1$时,求$x_1^2+x_2^2$的值。
一元二次方程各类题型汇总

一元二次方程题型汇总一、填空题: 1、方程(x –1)(2x +1)=2化成一般形式是 ,它的二次项系数是 .2、关于x 的方程是(m 2–1)x 2+(m –1)x –2=0,那么当m 时,方程为一元二次方程; 当m 时,方程为一元一次方程.3、方程0322=+x x 的根是 .4、当k = 时,方程0)1(2=+++k x k x 有一根是0.5、若方程kx 2–6x +1=0有两个实数根,则k 的取值范围是 .6、设x 1、x 2是方程3x 2+4x –5=0的两根,则=+2111x x .x 12+x 22= . 7、关于x 的方程2x 2+(m 2–9)x +m +1=0,当m = 时,两根互为倒数; 当m = 时,两根互为相反数.8、若x 1 =23-是二次方程x 2+ax +1=0的一个根,则a = , 该方程的另一个根x 2 = .9、方程x 2+2x +a –1=0有两个负根,则a 的取值范围是 .10、若p 2–3p –5=0,q 2-3q –5=0,且p ≠q ,则=+2211pq . 11、分解因式:122--x x = ,2232y xy x --= .12、请写出一个一元二次方程使它有一个根为3 , .13、如果把一元二次方程 x 2–3x –1=0的两根各加上1作为一个新一元二次方程的两根, 那么这个新一元二次方程是 .14、已知方程0)1(2=+++k x k x 的两根平方和是5,则k = .二、选择题:1、方程012=--kx x 的根的情况是( )(A )方程有两个不相等的实数根 (B )方程有两个相等的实数根(C )方程没有实数根 (D )方程的根的情况与k 的取值有关2、已知方程22=+x x ,则下列说中,正确的是( )(A )方程两根和是1 (B )方程两根积是2(C )方程两根和是-1 (D )方程两根积是两根和的2倍3、已知方程062=--kx x 的两个根都是整数,则k 的值可以是( )(A )—1 (B )1 (C )5 (D )以上三个中的任何一个4、若一元二次方程 2x (kx -4)-x 2+6 = 0 无实数根,则k 的最小整数值是( )(A )-1 (B )2 (C )3 (D )4 5、若c 为实数,方程x 2-3x +c =0的一个根的相反数是方程x 2+3x -3=0的一个根,那么方程x 2 -3x +c =0的根是( )(A )1,2 (B )-1,-2 (C )0,3 (D )0,-3 6、若一元二次方程ax 2+bx +c = 0 (a ≠0) 的两根之比为2:3,那么a 、b 、c 间的关系应当是( ) (A )3b 2=8ac (B )a c a b 2325922= (C )6b 2=25ac (D )不能确定 三、解下列方程:(1)9)12(2=-x (2)42)2)(1(+=++x x x(3) 3x 2–4x –1=0 (4)4x 2–8x +1=0(用配方法)四、求证:不论k 取什么实数,方程x 2-(k+6)x+4(k- 3)=0一定有两个不相等的实数根.五、若方程 x 2+mx -15 = 0 的两根之差的绝对值是8,求m的值.六、某商店4月份销售额为50万元,第二季度的总销售额为182万元,,求月平均增长率.七、 已知a 、b 、c 为三角形三边长,且方程b (x 2-1)-2ax+c (x 2+1)=0有两个相等的实数根.试判断此三角形形状,说明理由.八、综合应用题1. 分式1872---x x x 的值是0,则__________=x 2. 已知053)23(6522=+++-+-x x m m m m ,是关于x 的二次方程, 则m =图1图233. 设b a ,是一个直角三角形两条直角边的长,且12)1)((2222=+++b a b a ,则这个直角三角形的斜边长为4. 如果两个连续整数的积为210,那么这两个数是5. 已知实数x 满足+++x x x 22101=x ,那么x x 1+的值为 6.如图中的每个图是由若干盆花组成的形如三角形的图案,每条边(包括两个顶点)有n(n>1)盆花,每个图案花盆的总数是s 按此推断s 与n 的关系是 .n=2,s=3n=3,s=6n=4,s=9 7.观察下列一组图形,根据其变化规律,可得第10个图形中三角形的个数为8.等腰三角形的两边的长是方程091202=+-x x 的两个根,则此三角形的周长为 ( )A. 27B. 33C. 27和33D.以上都不对9. 合肥百货大搂服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十•一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利1200元,那么每件童装因应降价多少元?10. 解答题:方程01)3()1(12=--+++x m x m m ;(1)m 取何值时是一元二次方程,并求出此方程的解;(2)m 取何值时是一元一次方程;11.已知a 、b 、c 均为实数且0)3(11222=+++++-c b a a ,求方程02=++c bx ax 的根;12.试证明关于x 的方程012)208(22=+++-ax x a a 无论a 取何值,该方程都是一元二次方程;13.两个正方形,小正方形的边长比大正方形的边长的一半多4cm ,大正方形的面积比小正方形的面积的2倍少32cm2,求大小两个正方形的边长。
一元二次方程常考题型

一元二次方程常考题型在数学中,一元二次方程是一种常见的方程形式,以"x"作为未知数,可用一般形式表示为:ax^2 + bx + c = 0,其中a、b、c为已知数且a≠0。
解一元二次方程的方法有多种,包括因式分解法、配方法、求根公式等。
下面将介绍常见的一元二次方程考题类型及解题方法。
一、因式分解法1. 完全平方当一元二次方程可经过因式分解后(如(ax + b)(cx + d))形成完全平方时,可以直接利用完全平方公式进行求解。
例题1:求解方程x^2 + 6x + 9 = 0。
解析:将方程左侧进行因式分解得到(x+3)^2=0,利用完全平方公式可以解得x=-3。
2. 利用特殊因式公式在一元二次方程中,如果出现常见特殊因式公式,也可以通过因式分解法进行求解。
例题2:求解方程x^2 + 8x + 15 = 0。
解析:观察方程右侧的常数项15,找到两个数的乘积等于15且和等于8,可以得到因式分解为(x+5)(x+3)=0,解得x=-5或x=-3。
二、配方法1. 配方法对于一元二次方程ax^2 + bx + c = 0,如果其中a、b为整数,可以通过"配方"的方法将方程转化为一个完全平方的形式。
例题3:求解方程x^2 + 7x + 12 = 0。
解析:先找到方程中二次项系数为7的一半,即7/2=3.5,然后用3.5^2=12.25减去加法常数项12,得到所需的差值0.25。
将这个差值作为新的常数项加入到方程中,即得到(x + 3.5)^2 = 0.25。
再开根号得到x + 3.5 = ±0.5,解得x=-3或x=-4。
三、求根公式一元二次方程的求根公式是一种常用的解法,它可以用来求解任何一元二次方程。
求根公式可表示为:x = (-b ± √(b^2-4ac)) / 2a例题4:求解方程x^2 - 5x + 6 = 0。
解析:根据求根公式,将方程的系数代入公式得到x = (5 ± √(5^2-4*1*6)) / (2*1),化简后得到x = 2 或 x = 3。
1元2次方程题型

1元2次方程题型题型一:利润问题【常用公式】【例题】某商场销售一批名牌衬衫,现在平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价措施。
经调查发现,如果这种衬衫的售价每降低1元,那么衬衫平均每天多售出2件,商场若要平均每天盈利1200元,每件衬衫应降价多少元?【解析】假设每件衬衫应降价x元,现每件盈利为(40-x)元,现每天销售衬衫为(20+2x)件,根据等量关系:每件衬衫的利润×销售衬衫数量=销售利润,可列出方程。
解:设每件衬衫应降价x元,根据题意,得(40- x)(20+2x)=1200解得X1=10,X2=20。
因尽快减少库存,故取x =20答:每件应降价20元。
题型二:利息问题【常用公式】【例题】某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行。
若存款的利率不变,到期后本金和利息共1320元。
求这种存款方式的年利率(本题不计利息税)?【解析】假设这种存款方式的年利率为x,2000元存一年后本息和为2000(1+x)元,支取1000元后,还剩[2000(1+x)-1000]元。
将所剩[2000(1+x)-1000]元再存入银行一年,到期后本息共1320元。
根据本息和=本金×(1+利率)等量关系可列出方程。
解:设这种存款方式的年利率为x。
根据题意得,[2000(1+x)-1000](1+ x)=1320整理可得:2000x2+3000x-320=0解得:x1=-1.6(舍去),x2=0.1=10%答:这种存款方式的年利率为10%。
题型三:与几何图形的面积问题①几何图形的面积问题【等量关系】面积公式是此类问题的等量关系。
【例题】如图1-1所示,某小区规划在一个“长为40m,宽为26m”的矩矩形场地A B C D上修建三条同样宽的道路,使其中两条与A B平行,另一条与A D平行,其余部分种草。
新人教版21章一元二次方程知识点及典型题目总结

一元二次方程知识题型总结一、知识与技能的总结(一)概念一元二次方程--“整式方程”;“只含一个未知数,且未知数的最高次数是2".一元二次方程的一般形式-—,按未知数x降幂排列方程的根(解)—-是使方程成立的未知数的取值,了解一元二次方程的根的个数.(二)一元二次方程的解法-—把一元二次方程降次为一元一次方程求解1.直接开平方法-—适用于的方程.2.配方法——适用于所有的一元二次方程;(1)“移项”-—使得(2)“系数化1”——使得(3)“配方”——使得(4)“求解”—-利用解方程3.公式法—-适用于的方程.反映了一元二次方程的根与系数的关系,(1)一元二次方程首先必须要把方程化为一般形式,准确找出各项系数a、b、c;(2)先求出的值,若,则代入公式.若,则;4.因式分解法--适用于的方程.用因式分解法解一元二次方程的依据是:.通过将二次三项式化为两个一次式的乘积,从而达到降次的目的,将一元二次方程转化为求两个方程的解.(三)其它知识方法1.根的判别式: ,(1)若,则方程有解;(2)若,则方程有解;(3)若,则方程有解;2.换元法(1);(2)(3).3.可化为一元二次方程的分式方程解方程二、典型题型的总结(一)一元二次方程的概念1.(一元二次方程的项与各项系数)把下列方程化为一元二次方程的一般形式:(1);(2);(3);(4) ;(5);2.(应用一元二次方程的定义求待定系数或其它字母的值)(1)= 时,关于的方程是一元二次方程。
(2)若分式,则3.(由方程的根的定义求字母或代数式值)(1)关于的一元二次方程有一个根为0,则(2)已知关于的一元二次方程有一个根为1,一个根为,则,(3)已知2是关于的方程的一个根,则的值是(4)已知c为实数,并且关于的一元二次方程的一个根的相反数是方程的一个根,则方程的根为,c=(二)一元二次方程的解法4.开平方法解下列方程:(1)(2)(3) (4)(5);(6);(7).(8)5.用配方法解下列各方程:(1); (2);(3) (4)(5);(6).6.用公式法解下列各方程:(1); (2);(3);(4).(5)(6)(7)(8)(9)7.用因式分解法解下列各方程:(1);(2)(3)(4)(5) (6)(7);(8).(9)(10)(11)8.用适当方法解下列方程(解法的灵活运用):(1)(2)(3)(4)(5)9.解关于x的方程(含有字母系数的方程):(1)(2)(3)()(4)(三)一元二次方程的根的判别式10.不解方程,判别方程根的情况:(1)4 —-(2)-—(3)—-11.为何值时,关于x的二次方程(1)满足时,方程有两个不等的实数根(2)满足时,方程有两个相等的实数根(3)满足时,方程无实数根12.已知关于的方程,如果,那么此方程的根的情况是().A.有两个不相等的实根B.有两个相等的实根C.没有实根D.不能确定13.关于的方程的根的情况是().A.有两个不相等的实根B.有两个相等的实根C.没有实根D.不能确定14.已知关于的方程有实根,则的取值范围是().A.B.且C.D.15.已知,且方程有两个相等实根,那么的值等于().A.B.C.3或D.316.若关于的方程有实根,则的非负整数值是().A.0,1 B.0,1,2 C.1 D.1,2,317.已知关于x的方程有两个相等的实数根.求m的值和这个方程的根.18.方程有实数根,求正整数a.19.对任意实数m,求证:关于x的方程无实数根。
一元二次方程常见题型

一元二次方程常见题型
一元二次方程是数学中常见的一种形式,下面列举几种常见的一元二次方程题型:
1.求根:给定一个一元二次方程,要求求出方程的根。
可以
有实根、复数根以及无解的情况。
2.完全平方:给定一个一元二次方程,要求将其转化为完全
平方的形式,即配方。
3.平移、伸缩与翻折:考察一元二次方程在平移、伸缩和翻
折等变换中的性质。
例如,给定一个二次函数的图像,要
求求出对应的方程。
4.方程组与二次方程:考察一元二次方程与其他线性或非线
性方程的关系。
例如,给定一个二次函数的图像和一条直
线,要求求出二者的交点。
5.题目应用:将实际问题转化为一元二次方程,并求解问题。
例如,给出一个抛物线的方程和一个物体的运动轨迹,要
求求出物体的落地时间和距离等相关信息。
6.图像性质:通过对一元二次函数的图像性质的分析来得出
方程的特征。
例如,给定一个二次函数的图像,要求判断
方程的开口方向、对称轴、顶点等。
这些题型旨在让学生巩固和应用一元二次方程的知识,掌握求解一元二次方程、理解二次函数图像性质以及将问题转化为一元二次方程的能力。
通过解这些题目,学生可以加深对一元二
次方程的理解,并提高解决实际问题的能力。
一元二次方程常考题型

一元二次方程是数学中的一个重要概念,它在中考数学中也是一个常见的考点。
以下是中考数学中常考的一元二次方程的题型及解题方法:
1.直接开平方法:对于形如$x^2=p$或$(x-\alpha)^2=p$的一元二次方程,
可以通过直接开平方的方法求解。
首先移项,等式两边同加或同减一个常数,使常数项移到等式的另一边,然后两边同时开平方,最后得出解。
2.因式分解法:对于形如$x^2-px+q=0$的一元二次方程,可以通过因式分
解法求解。
首先移项并提公因式,然后根据完全平方公式或平方差公式进行因式分解,最后根据因式分解的结果得出解。
3.配方法:对于形如$x^2-px+q=0$的一元二次方程,也可以通过配方的方
法求解。
首先移项并提公因式,然后配方使左边成为一个完全平方三项式,右边为一个常数,最后得出解。
4.公式法:对于任何一元二次方程$ax^2+bx+c=0$,都可以通过公式法求
解。
首先计算判别式$\Delta=b^2-4ac$,然后根据判别式的值判断方程的根的情况,最后根据根的性质求出方程的解。
5.综合法:综合法通常是根据题目的具体条件和图形的几何意义,将问题转
化为与一元二次方程有关的问题,通过解一元二次方程得出答案。
综上所述,中考数学中常考的一元二次方程的题型及解题方法有多种,需要根据具体题目选择合适的方法进行求解。
一元二次方程(知识点+考点+题型总结)

一元二次方程(知识点+考点+题型总结)类型三、配方法()002≠=++a c bx ax 222442a acb a b x -=⎪⎭⎫ ⎝⎛+⇒※在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。
典型例题:例1、 试用配方法说明322+-x x 的值恒大于0。
例2、 已知x 、y 为实数,求代数式74222+-++y x y x 的最小值。
例3、 已知,x、y y x y x 0136422=+-++为实数,求y x 的值。
例4、 分解因式:31242++x x针对练习:★★1、试用配方法说明47102-+-x x 的值恒小于0。
★★2、已知041122=---+x x x x ,则=+x x 1.★★★3、若912322-+--=x x t ,则t 的最大值为 ,最小值为 。
★★★4、如果4122411-++-=--++b a c b a ,那么c b a 32-+的值为 。
类型四、公式法⑴条件:()04,02≥-≠ac b a 且⑵公式: a acb b x 242-±-=,()04,02≥-≠ac b a 且典型例题:例1、选择适当方法解下列方程:⑴().6132=+x ⑵()().863-=++x x ⑶0142=+-x x⑷01432=--x x ⑸()()()()5211313+-=+-x x x x例2、在实数范围内分解因式:(1)3222--x x ; (2)1842-+-x x . ⑶22542y xy x --说明:①对于二次三项式c bx ax ++2的因式分解,如果在有理数范围内不能分解,一般情况要用求根公式,这种方法首先令c bx ax ++2=0,求出两根,再写成c bx ax ++2=))((21x x x x a --.②分解结果是否把二次项系数乘进括号内,取决于能否把括号内的分母化去.类型五、 “降次思想”的应用⑴求代数式的值; ⑵解二元二次方程组。
一元二次方程与实际问题题型归纳

实际问题与一元二次方程题型归纳总结一、列一元二次方程解应用题的一般步骤:与列一元一次方程解应用题的步骤类似,列一元二次方程方程解实际问题的一般步骤也可归纳为:“审、找、设、列、解、验、答”七个步骤。
(1)审:审清题意,弄清已知量与未知量;(2)找:找出等量关系;(3)设:设未知数,有直接和间接两种设法,因题而异;(4)列:列出一元二次方程;(5)解:求出所列方程的解;(6)验:检验方程的解是否正确,是否符合题意;(7)答:作答。
二、典型题型1.数字问题例1、有两个连续整数,它们的平方和为25,求这两个数。
例2、有一个两位数,它的个位上的数字与十位上的数字的和是6,如果把它的个位上的数字与十位上的数字调换位置,所得的两位数乘以原来的两位数所得的积就等于1008,求调换位置后得到的两位数。
练习:1、两个连续的整数的积是156,求这两个数。
2、一个两位数等于它个位上数字的平方,个位上的数字比十位上的数字大3,则这个两位数为()A. 25B. 36C. 25或36D. -25或-362.传播问题:公式:(a+x)n=M其中a为传染源(一般a=1),n为传染轮数,M 为最后得病总人数例3、有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?练习:有一个人患了流感,经过两轮传染后共有196人患了流感,每轮传染中平均一个人传染了几个人?如果按照这样的传染速度,三轮传染后有多少人患流感?3.相互问题(循环、握手、互赠礼品等)问题循环问题:又可分为单循环问题1n(口-1),双循环问题n(n-1).2例4、(1)参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有多少个队参加比赛?(2)参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有多少个队参加比赛?例5、一次会上,每两个参加会议的人都相互握手一次,一共握手66,请问参加会议的人数共有多少人?例6、生物兴趣小组的同学,将自己收集的标本向本组其他同学各赠送1件,全组共互赠了 182件,设全组有x个同学,则根据题意列出的方程是( ) A. x(x +1)= 182 B. x(x -1)= 182 C. 2x Q +1)= 182 D. x Q-1)= 182 x 2练习:1、甲A联赛中的每两队之间都要进行两次比赛,若某一赛季共比赛110 场,则联赛中共有多少个队参加比赛?2、参加一次聚会的每两人都握了一次手,所有人共握手 15次,有多少人参加聚会?3、初三毕业晚会时每人互相送照片一张,一共要90张照片,有多少人?4.平均增长率问题:b=a(1±x)n,n为增长或降低次数,b为最后产量,a为基数,x为平均增长率或降低率例7、某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。
一元二次方程的应用题型总结

一元二次方程的应用题型总结
一元二次方程是数学中常见的方程形式,可以用来描述很多实际问题。
以下是一些常见的一元二次方程应用题型总结:
1. 求解问题:给定一个一元二次方程,要求求解方程的根。
这种类型的问题可能涉及到物理、几何或经济等领域。
2. 几何问题:一元二次方程可以用来描述物体在空间中的运动轨迹。
例如,当一个物体沿着抛物线运动时,可以建立一个一元二次方程来描述其位置随时间变化的关系。
3. 经济问题:一元二次方程可以用来解决经济学中的一些问题。
例如,当讨论某个公司销售量与价格之间的关系时,可以建立一个一元二次方程来描述这种关系。
4. 优化问题:一元二次方程可以用来解决一些最优化问题。
例如,当我们希望找到一个长度为固定值的矩形的最大面积时,可以建立一个一元二次方程来表示这个问题。
5. 物理问题:一元二次方程可以用来解决一些物理问
题,如自由落体、抛射等。
例如,当我们希望计算一个物体从一定高度自由落下所需的时间时,可以建立一个一元二次方程来解决这个问题。
无论是哪种类型的应用问题,我们需要首先建立一个符合实际情况的一元二次方程,然后通过求解方程的根或者利用方程的性质来得出问题的答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程题型分类总结知识梳理一元二次方程⎪⎩⎪⎨⎧*⇒韦达定理根的判别解与解法考点类型一 概念只含有一个未知数........,并且②未知数的最高次数是.........2.,这样的③整式方程....就是一元二次方程。
)0(02≠=++a c bx“未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
例1、下列方程中是关于x 的一元二次方程的是( )A ()()12132+=+x xB 02112=-+x xC 02=++c bx axD 1222+=+x x x 变式:当k 时,关于x 的方程3222+=+x x kx 是一元二次方程。
例2、方程()0132=+++mx x m m 是关于x 的一元二次方程,则m 的值为。
★1、方程782=x 的一次项系数是 ,常数项是 。
★2、若方程()021=--m x m 是关于x 的一元一次方程,⑴求m 的值;⑵写出关于x 的一元一次方程。
★★3、若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。
★★★4、若方程nx m +x n -2x 2=0是一元二次方程,则下列不可能的是( )A.m=n=2B.m=3,n=1C.n=2,m=1D.m=n=1考点类型二 方程的解例1、已知322-+y y 的值为2,则1242++y y 的值为 。
例2、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
例3、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。
例4、已知b a ,是方程042=+-m x x 的两个根,c b ,是方程0582=+-m y y 的两个根,则m 的值为 。
★1、已知方程0102=-+kx x 的一根是2,则k 为 ,另一根是 。
★2、已知关于x 的方程022=-+kx x 的一个解与方程311=-+x x 的解相同。
⑴求k 的值; ⑵方程的另一个解。
★3、已知m 是方程012=--x x 的一个根,则代数式=-m m 2 。
★★4、已知a 是0132=+-x x 的根,则=-a a 622。
★★5、方程()()02=-+-+-a c x c b x b a 的一个根为( ) A 1- B 1 C c b - D a -★★★6、若=•=-+y x 则y x 324,0352 。
考点类型三 解法()m x m m ±=⇒≥=,02※※对于()m a x =+2,()()22n bx m ax +=+等形式均适用直接开方法例1、解方程:();08212=-x ()216252x -=0; ()();09132=--x例2、若()()2221619+=-x x ,则x 的值为 。
)A.12322-=+x xB.()022=-x C.x x -=+132 D.092=+x)()021=--x x x x 21,x x x x ==⇒或0”,()()22n bx m ax +=+,()()()()c x a x b x a x ++=++ , 0222=++a ax x例1、()()3532-=-x x x 的根为( )A 25=xB 3=xC 3,2521==x x D 52=x 例2、若()()044342=-+++y x y x ,则4x+y 的值为 。
变式1:()()=+=-+-+2222222,06b 则a b a b a 。
变式2:若()()032=+--+y x y x ,则x+y 的值为 。
变式3:若142=++y xy x ,282=++x xy y ,则x+y 的值为 。
例3、方程062=-+x x 的解为( )A.2321=-=,x xB.2321-==,x xC.3321-==,x xD.2221-==,x x例4、解方程: ()04321322=++++x x例5、已知023222=--y xy x ,则yx y x -+的值为 。
变式:已知023222=--y xy x ,且0,0>>y x ,则y x y x -+的值为 。
★1、下列说法中:①方程02=++q px x 的二根为1x ,2x ,则))((212x x x x q px x --=++② )4)(2(862--=-+-x x x x .③)3)(2(6522--=+-a a b ab a ④ ))()((22y x y x y x y x -++=-⑤方程07)13(2=-+x 可变形为0)713)(713(=-+++x x正确的有( )A.1个B.2个C.3个D.4个★2、以71+与71-为根的一元二次方程是()A .0622=--x xB .0622=+-x xC .0622=-+y yD .0622=++y y★★3、⑴写出一个一元二次方程,要求二次项系数不为1,且两根互为倒数: ⑵写出一个一元二次方程,要求二次项系数不为1,且两根互为相反数: ★★4、若实数x 、y 满足()()023=++-+y x y x ,则x+y 的值为( )A 、-1或-2B 、-1或2C 、1或-2D 、1或25、方程:2122=+xx 的解是 。
★★★6、已知06622=--y xy x ,且0>x ,0>y ,求y x y x --362的值。
★★★7、方程()012000199819992=-⨯-x x 的较大根为r ,方程01200820072=+-x x 的较小根为s ,则s-r 的值为 。
()002≠=++a c bx 222442a ac b a b x -=⎪⎭⎫ ⎝⎛+⇒ ※在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。
例1、 试用配方法说明322+-x x 的值恒大于0。
例2、 已知x 、y 为实数,求代数式74222+-++y x y x 的最小值。
例3、 已知,x、y y x y x 0136422=+-++为实数,求y x 的值。
例4、 分解因式:31242++x x★★1、试用配方法说明47102-+-x x 的值恒小于0。
★★2、已知041122=---+x x x x ,则=+x x 1 . ★★★3、若912322-+--=x x t ,则t 的最大值为 ,最小值为 。
★★★4、如果4122411-++-=--++b a c b a ,那么c b a 32-+的值为 。
)04,02≥-≠ac b a 且a acb b x 242-±-=,()04,02≥-≠ac b a 且例1、选择适当方法解下列方程:⑴().6132=+x ⑵()().863-=++x x ⑶0142=+-x x⑷01432=--x x ⑸()()()()5211313+-=+-x x x x例2、在实数范围内分解因式:(1)3222--x x ; (2)1842-+-x x . ⑶22542y xy x --说明:①对于二次三项式c bx ax ++2的因式分解,如果在有理数范围内不能分解, 一般情况要用求根公式,这种方法首先令c bx ax ++2=0,求出两根,再写成 c bx ax ++2=))((21x x x x a --.②分解结果是否把二次项系数乘进括号内,取决于能否把括号内的分母化去.⑴求代数式的值; ⑵解二元二次方程组。
例1、 已知0232=+-x x,求代数式()11123-+--x x x 的值。
例2、如果012=-+x x ,那么代数式7223-+x x 的值。
例3、已知a 是一元二次方程0132=+-x x 的一根,求1152223++--a a a a 的值。
例4、用两种不同的方法解方程组⎩⎨⎧=+-=-)2(.065)1(,6222y xy x y x说明:解二元二次方程组的具体思维方法有两种:①先消元,再降次;②先降次,再消元。
但都体现了一种共同的数学思想——化归思想,即把新问题转化归结为我们已知的问题.考点类型四 根的判别式b 2-4ac①定根的个数;②求待定系数的值;③应用于其它。
例1、若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是 。
例2、关于x 的方程()0212=++-m mx x m 有实数根,则m 的取值范围是( )A.10≠≥且m mB.0≥mC.1≠mD.1>m例3、已知关于x 的方程()0222=++-k x k x(1)求证:无论k 取何值时,方程总有实数根;(2)若等腰∆ABC 的一边长为1,另两边长恰好是方程的两个根,求∆ABC 的周长。
例4、已知二次三项式2)6(92-++-m x m x 是一个完全平方式,试求m 的值.例5、m 为何值时,方程组⎩⎨⎧=+=+.3,6222y mx y x 有两个不同的实数解?有两个相同的实数解?★1、当k 时,关于x 的二次三项式92++kx x 是完全平方式。
★2、当k 取何值时,多项式k x x 2432+-是一个完全平方式?这个完全平方式是什么?★3、已知方程022=+-mx mx 有两个不相等的实数根,则m 的值是 .★★4、k 为何值时,方程组⎩⎨⎧=+--+=.0124,22y x y kx y (1)有两组相等的实数解,并求此解;(2)有两组不相等的实数解;(3)没有实数解.★ ★★5、当k 取何值时,方程04234422=+-++-k m m x mx x 的根与m 均为有理数?考点类型五 方程类问题中的“分类讨论”例1、关于x 的方程()03212=-++mx x m⑴有两个实数根,则m 为 ,⑵只有一个根,则m 为 。
例2、 不解方程,判断关于x 的方程()3222-=+--k k x x 根的情况。
例3、如果关于x 的方程022=++kx x 及方程022=--k x x 均有实数根,问这两方程是否有相同的根?若有,请求出这相同的根及k 的值;若没有,请说明理由。
考点类型六 应用解答题⑴“碰面”问题;⑵“复利率”问题;⑶“几何”问题;⑷“最值”型问题;⑸“图表”类问题1、五羊足球队的庆祝晚宴,出席者两两碰杯一次,共碰杯990次,问晚宴共有多少人出席?2、某小组每人送他人一张照片,全组共送了90张,那么这个小组共多少人?3、北京申奥成功,促进了一批产业的迅速发展,某通讯公司开发了一种新型通讯产品投放市场,根据计划,第一年投入资金600万元,第二年比第一年减少31,第三年比第二年减少21,该产品第一年收入资金约400万元,公司计划三年内不仅要将投入的总资金全部收回,还要盈利31,要实现这一目标,该产品收入的年平均增长率约为多少?(结果精确到0.1,61.313≈)4、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克,销售单价每涨1元,月销售量就减少10千克,针对此回答:(1)当销售价定为每千克55元时,计算月销售量和月销售利润。