高考数学等差数列专题复习(专题训练) 百度文库

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题

1.在数列{}n a 中,129a =-,()

*

13n n a a n +=+∈N ,则1220a a a ++

+=( )

A .10

B .145

C .300

D .320

2.中国古代数学著作《九章算术》中有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问次一尺各重几何?” 意思是:“现有一根金锤,长五尺,一头粗一头细.在粗的一端截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为( ) A .3斤

B .6斤

C .9斤

D .12斤

3.设等差数列{}n a 的前n 项和为n S ,公差1d =,且62

10S S ,则34a a +=( )

A .2

B .3

C .4

D .5

4.定义

12n

n p p p ++

+为n 个正数12,,

,n p p p 的“均倒数”,若已知数列{}n a 的前

n 项的“均倒数”为

12n

,又2n n a b =,则

1223910

111

b b b b b b +++

=( ) A .

8

17 B .

1021

C .

1123 D .

919

5.已知数列{}n a 是等差数列,其前n 项和为n S ,若454a a +=,则8S =( ) A .16 B .-16 C .4

D .-4

6.已知等差数列{a n }的前n 项和为S n ,则下列判断错误的是( )

A .S 5,S 10-S 5,S 15-S 10必成等差数列

B .S 2,S 4-S 2,S 6-S 4必成等差数列

C .S 5,S 10,S 15+S 10有可能是等差数列

D .S 2,S 4+S 2,S 6+S 4必成等差数列

7.《周髀算经》是中国最古老的天文学和数学著作,它揭示日月星辰的运行规律.其记载“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁”.现恰有30人,他们的年龄(都为正整数)之和恰好为一遂(即1520),其中年长者年龄介于90至100,其余29人的年龄依次相差一岁,则最年轻者的年龄为( ) A .32

B .33

C .34

D .35

8.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n n

n S a b n =---⨯+,*n N ∈,则

存在数列{}n b 和{}n c 使得( )

A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列

B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列

C .·

n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·

n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 9.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高

阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161

B .155

C .141

D .139

10.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺 A .

47

B .

1629

C .

815

D .

45

11.设等差数列{}n a 的前n 项和为n S ,若7916+=a a ,则15S =( ) A .60

B .120

C .160

D .240

12.已知等差数列{}n a 的公差d 为正数,()()111,211,

n n n a a a tn a t +=+=+为常数,则

n a =( )

A .21n -

B .43n -

C .54n -

D .n 13.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( )

A .9

B .12

C .15

D .18

14.“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余2且被7除余2的数按由小到大的顺序排成一列,构成数列{} n a ,则5a =( ) A .103

B .107

C .109

D .105

15.在等差数列{}n a 中,已知前21项和2163S =,则25820a a a a ++++的值为( )

A .7

B .9

C .21

D .42

16.若等差数列{a n }满足a 2=20,a 5=8,则a 1=( )

A .24

B .23

C .17

D .16

17.在1与25之间插入五个数,使其组成等差数列,则这五个数为( )

A .3、8、13、18、23

B .4、8、12、16、20

C .5、9、13、17、21

D .6、10、14、18、22

18.已知数列{x n }满足x 1=1,x 2=23

,且

11112n n n x x x -++=(n ≥2),则x n 等于( ) A .(

23

)n -1

B .(

23

)n C .

21

n + D .

1

2

n + 19.等差数列{}n a 中,若26a =,43a =,则5a =( ) A .

32

B .

92

C .2

D .9

20.《周碑算经》有一题这样叙述:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、

相关文档
最新文档