管理运筹学02线性规划
管理运筹学第二章 线性规划的图解法
B、约束条件不是等式的问题:
若约束条件为 ai1 x1+ai2 x2+ … +ain xn ≤ bi 可以引进一个新的变量si ,使它等于约束右 边与左边之差 si=bi–(ai1 x1 + ai2 x2 + … + ain xn ) 显然,si 也具有非负约束,即si≥0, 这时新的约束条件成为 ai1 x1+ai2 x2+ … +ain xn+si = bi
第二章 线性规划 的图解法
一、线性规划的概念 二、线性规划问题的提出 三、线性规划的数学模型 四、线性规划的图解法 五、线性规划解的情况 六、LP图解法的灵敏度分析
一、线性规划的概念
线性规划Linear Programming 简称LP,是一 种解决在线性约束条件下追求最大或最小的 线性目标函数的方法。 线性规划的目标和约束条件都可以表示成线 性的式子。
max z 3 x1 2 x2
2 x1 x2 ≤ 10 设备B台时占用 s.t. x1 x2 ≤ 8 x , x ≥ 0 产量非负 1 2
决策变量 (decision variable) 目标函数 (objective function) 约束条件 (subject to)
-ai1
x1-ai2 x2- … -ain xn = -bi 。
例1.3:将以下线性规划问题转化为标准形式 Min f = 3.6 x1 - 5.2 x2 + 1.8 x3 s. t. 2.3 x1 + 5.2 x2 - 6.1 x3 ≤15.7 4.1 x1 + 3.3 x3 ≥8.9 x1 + x2 + x3 = 38 x 1 , x 2 , x3 ≥ 0
管理运筹学课件第2章 线性规划
x1 x2 ≤ 8
产量非负 x 1 , x 2 ≥ 0
决策变量
(decision variable)
总利润表三达要式素
目标函数 (objective function)
约束条件 生产能力,不 (subject to) 允许超过 当目标函数与约束条件均为决策变
量的线性函数,且变量取连续值时,
当xk的值由0增加到θ时,原来的基变 量xl取值首先变成零,选择其为出基变 量。称θ的表达式为最小比值原则。
如果所有aik ≤0, xk的值可以由0增加到 无穷,表示可行域是不封闭的,且目 标函数值随进基变量的增加可以无限 增加,此时不存在有限最优解。
下面对以上讨论进行总结.
2019/8/31
课件
15
称为线性规划LP;变量取整称为整
数线性规划ILP;变量取二进制为
0-1规划BLP。
2019/8/31
课件
5
2.1.2 线性规划的数学模型
【例2.1】(合理配料问题)由下表建立一个LP模型求解满足动物成长 需要又使成本最低的饲料配方。
饲料 营养甲(g/kg) 营养乙(g/kg) 营养丙(g/kg) 成本(g/kg)
x1+x2=8
x1
2019/8/31
课件
11
2.2.3 线性规划几何解的讨论
线性规划几何解存在四种情况:唯一最优解、无穷 多最优解、无界解、无可行解。 可行域为封闭有界区域时,可能存在唯一最优解, 无穷多最优解两种情况; 可行域为非封闭无界区域时,可能存在唯一最优解, 无穷多最优解,无界解三种情况; 可行域为空集时,没有可行解,原问题没有最优解。
1
0.5
0.1
0.08
128499-管理运筹学-第二章线性规划-习题
128499-管理运筹学-第⼆章线性规划-习题11(2),12,14,18 习题2-1 判断下列说法是否正确:(1)任何线性规划问题存在并具有惟⼀的对偶问题; T (2)对偶问题的对偶问题⼀定是原问题;T(3)根据对偶问题的性质,当原问题为⽆界解时,其对偶问题⽆可⾏解,反之,当对偶问题⽆可⾏解时,其原问题具有⽆界解;F(4)若线性规划的原问题有⽆穷多最优解,则其对偶问题也⼀定具有⽆穷多最优解;(5)若线性规划问题中的b i ,c j 值同时发⽣变化,反映到最终单纯形表中,不会出现原问题与对偶问题均为⾮可⾏解的情况;(6)应⽤对偶单纯形法计算时,若单纯形表中某⼀基变量x i <0,⼜x i 所在⾏的元素全部⼤于或等于零,则可以判断其对偶问题具有⽆界解。
(7)若某种资源的影⼦价格等于k ,在其他条件不变的情况下,当该种资源增加5个单位时,相应的⽬标函数值将增⼤5k ;(8)已知y i 为线性规划的对偶问题的最优解,若y i >0,说明在最优⽣产计划中第i 种资源已经完全耗尽;若y i =0,说明在最优⽣产计划中的第i 种资源⼀定有剩余。
2-2将下述线性规划问题化成标准形式。
≥≥-++-≤+-+-=-+-+-+-=⽆约束43214321432143214321,0,,232142224.5243max )1(x x x x x x x x x x x x x x x x st x x x x z2-3分别⽤图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基可⾏解对应图解法中可⾏()≥≤≤-+-=++-+-=⽆约束321321321321,0,0624.322min 2x x x x x x x x x st x x x z 域的哪⼀顶点。
()≥≤+≤++=0,825943.510max 121212121x x x x x x st x x z ()≥≤+≤++=0,24261553.2max 221212121x x x x x x st x x z 2-4已知线性规划问题,写出其对偶问题:543212520202410max x x x x x z ++++=≥≤++++≤++++057234219532..5432154321j x x x x x x x x x x x t s≥≥+≥+≥+++≥++0226332..31434321421j x x x x x x x x x x x x t s≥≤≤-+-=++-⽆约束321321321,0,064..x x x kx x x x x x t s (1)(2)2-5运⽤对偶理论求解以下各问题:(1)已知线性规划问题:其最优解为(a )求k 的值;(b )写出并求出其对偶问题的最优解。
管理运筹学第二章线性规划的图解法
02
图解法的基本原理
图解法的概念
图解法是一种通过图形来直观展示线性规划问题解的方法。它通过在坐标系中绘 制可行域和目标函数,帮助我们理解问题的结构和最优解的位置。
图解法适用于线性规划问题中变量和约束条件较少的情况,能够直观地展示出最 优解的几何意义。
图解法的步骤
确定决策变量和目标函数
明确问题的决策变量和目标函数,以便在图 形中表示。
目标函数是要求最小化或最大化的函数,通常表示为 $f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
04
约束条件是限制决策变量取值的条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。
LINDO是一款开源的线性规划求解器,用 户可以免费使用。
软件工具的使用方法
Excel
用户需要先在Excel中设置好线性规划模型,然后使 用“数据”菜单中的“规划求解”功能进行求解。
Gurobi/CPLEX/LINDO
这些软件通常需要用户先在软件界面中输入线性规划 模型,然后通过点击“求解”按钮进行求解。
实例三:分配问题
总结词
分配问题是指如何根据一定的分配原则 或目标,将有限的资源分配给不同的需 求方,以最大化整体效益。
VS
详细描述
分配问题在实际生活中广泛存在,如物资 分配、任务分配等。通过图解法,可以将 分配问题转化为线性规划模型,并利用图 形直观地展示最优解的资源分配方案。在 分配问题中,通常需要考虑不同需求方的 重要性和优先级,以及资源的有限性等因 素,以实现整体效益的最大化。
管理运筹学_第二章_线性规划的图解法
线性规划中超过约束最低限的部分,称为剩余量。 记s1,s2为剩余变量,s3为松弛变量,则s1=0, s2=125,
s3=0,加入松弛变量与剩余变量后例2的数学模型变为 标准型: 目标函数: min f =2x1+3x2+0s1+0s2+0s3 约束条件: x1+x2-s1=350, x1-s2=125, 2x1+x2+s3=600, x1, x2, s1,s2,s3≥0.
阴影部分的每 一点都是这个线 性规划的可行解, 而此公共部分是 可行解的集合, 称为可行域。
B
X2=250
100
100
300
x1
B点为最优解, X1+X2=300 坐标为(50, 250), Z=0=50x1+100x2 此时Z=27500。 Z=10000=50x1+100x2 问题的解: 最优生产方案是生产I产品50单位,生产Ⅱ产品250单位,可得 最大利润27500元。
Z=10000=50x1+50x2
线段BC上的所有点都代表了最优解,对应的最优值相 同: 50x1+50x2=15000。
10
3. 无界解,即无最优解的情况。对下述线性规划问题:
目标函数:max z =x1+x2 约束条件:x1 - x2≤1 -3x1+2x2≤6 x1≥0, x2≥0.
x2 -3x1+2x2=6 3
其中ci为第i个决策变量xi在目标函数中的系数, aij为第i个约束条件中第j个决策变量xj的系数, bj(≥0)为第j个约束条件中的常数项。
16
灵敏度分析
灵敏度分析:求得最优解之后,研究线性规划的
管理运筹学02线性规划
2019/10/28
14
用图解法求解例2-1
x2
4 3 2 1 0 1 2 3 4 5 6 7 8 x1
2019/10/28
15
用图解法求解例2-2
x2 15
10
5
0
5 10 15 x1
2019/10/28
16
图解法所反应出的一般结论
1.线性规划问题的可行域是凸多边形;
2.如果线性规划问题有最优解,其最优解一定可 以在其可行域的顶点上得到,而不会在可行域 的内部;
代数式;和式;向量式;矩阵式 3. 标准形式的转化
2019/10/28
18
线性规划的标准型:代数式
min z =c1x1+c2x2+…+cnxn a11x1+a12x2+…+a1nxn=b1 a21x1+a22x2+…+a2nxn=b2 ……… am1x1+am2x2+…+amnxn=bm xj ≥0 j =1,2,…,n
2019/10/28
19
线性规划的标准型:和式
n
min z =∑cjxj
j=1 n
∑aijxj=bi i=1,2,…,m
j=1
xj ≥0 j=1,2,…,n
2019/10/28
20
线性规划的标准型:向量式
min z = CX n
∑pjxj=bi i=1,2,…,m
j=1
xj ≥0 j=1,2,…,n
b
0 -10/3
1
0
0 1/6
0 -1/2
20 16
3
Z=9
2019/10/28
《管理运筹学》(第二版)课后习题答案
《管理运筹学》(第二版)课后习题参考答案第1章 线性规划(复习思考题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(Linear Programming ,LP )是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。
线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。
建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。
决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。
2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解;(3)无界解:可行域无界,目标值无限增大; (4)没有可行解:线性规划问题的可行域是空集。
当无界解和没有可行解时,可能是建模时有错。
3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项0≥i b ,决策变量满足非负性。
如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。
4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。
答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。
基可行解:满足非负性约束的基解,称为基可行解。
可行基:对应于基可行解的基,称为可行基。
最优解:使目标函数最优的可行解,称为最优解。
最优基:最优解对应的基矩阵,称为最优基。
它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。
32124max x x x Z ++=s .t . ⎪⎩⎪⎨⎧≥≤++≤++0,,86238321321321x x x x x x x x x解:标准化 32124max x x x Z ++=s .t . ⎪⎩⎪⎨⎧≥=+++=+++0,,,,862385432153214321x x x x x x x x x x x x x 列出单纯形表故最优解为T X )6,0,2,0,0(*=,即2,0,0321===x x x ,此时最优值为4*)(=X Z . 6.表1—15中给出了求极大化问题的单纯形表,问表中d c c a a ,,,,2121为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以1x 代替基变量5x ;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。
管理运筹学第二版习题答案
12-2《管理运筹学》课后习题详解 第2章 线性规划的图解法1. ( 1)可行域为0, 3, A ,3围成的区域。
(2) 等值线为图中虚线所示。
(3) 如图,最优解为 A 点(12/7,15/7 ),对应最 优目标函数值 Z=69/7。
2.( 1)有唯一最优解 A 点,对应最优目标函数 值 Z=3.6。
(2)无可行解。
(3)有无界解。
40.7 0-33X 1+ X2(4)无可行解。
9y -F 2.r, + 6 = 30 3x x+2X2 + s2 =13 2x{—2xi+6=9 gx”片宀宀二0max f = 一4形—— 0町—Os2(5)无可行解。
X22max最优解A点最优函数值3. (1)标准形式(2)标准形式Xj + 2X2 H-S2 = 107,v:—6.v* = 4M , .Y2 , % 出> O(3)标准形式|!_|_fifmax f = —x 1 + 2 屯—2 込—0® — 0^2—3x x * 5X 2 — 5X 2 + s x = 70 2x x — 5X 2 + 5X 2 = 50 3xj + 2X 2 — 2X 2 —=305x ;,歩1 .s 2 土 0max z = 10.^! + 5.Y 2 \ 0^t 1 0©3x 】十 4X 2 + S J = 95.巧 +2.Y 2 -b >s 2 = 8 x t ,x 2 ^s lr>s 2 > 04.解: (1)标准形式求解:3X 〔 4X 2 9 5X 〔 2X 28X , 1 X 21.5S , S 25.标准形式:x , x 2 6 x , 3.6 S 3 S 2 0 4x , 9x 2 16x 2 2.4s , 11.27. 模型: (1) X 1=150, X 2=150;最优目标函数值 Z=103000。
(2) 第2、4车间有剩余。
剩余分别为: 330、15,均为松弛变量。
《管理运筹学》(第二版)课后习题参考答案汇总
《管理运筹学》(第二版)课后习题参考答案第1章线性规划(复习思考题)1.什么是线性规划线性规划的三要素是什么答:线性规划(Linear Programming,LP)是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。
线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。
建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。
决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。
2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误答:(1)唯一最优解:只有一个最优点;(2)多重最优解:无穷多个最优解;(3)无界解:可行域无界,目标值无限增大;(4)没有可行解:线性规划问题的可行域是空集。
当无界解和没有可行解时,可能是建模时有错。
3.什么是线性规划的标准型松弛变量和剩余变量的管理含义是什么答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项,决策变量满足非负性。
如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。
4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。
答:可行解:满足约束条件的解,称为可行解。
基可行解:满足非负性约束的基解,称为基可行解。
可行基:对应于基可行解的基,称为可行基。
最优解:使目标函数最优的可行解,称为最优解。
最优基:最优解对应的基矩阵,称为最优基。
它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。
.解:标准化.列出单纯形表412b02[8]2 /80868 /641241/41/81/8]/8(1/4/(1/813/265/4/43/4(13/2/(1/4 0-1/23/21/222806-221-12-502故最优解为,即,此时最优值为.6.表1—15中给出了求极大化问题的单纯形表,问表中为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以代替基变量;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。
管理运筹学 02线性规划(1)
生产50
900元/单位
x3
单位 F1 400元/单位
200 x1
x2
元/ 单位 最多10单
位
D C
200元/单位 100元/单位
生产40 单位 F2
300元/单位 x4
最多80单位 x5
图2-1 美佳公司的配送网络
线性规划问题的一般形式通常表现为以下几种形式
max(min) z c1x1
s.t.
a11x1
a 21x1
c2x2 a12x2 a22x2
cjx j a1jx j a2jx j
cnxn a1n xn a2nxn
(, )b1 (, )b2
图2-9 凸集与非凸集
2. 线性规划问题解的概念
(1)可行解
满足线性规划问题所有约束条件的一组变量的取值,称为线性
规划问题的可行解。可行解的集合称为可行域。
(2)最优解
使线性规划问题的目标函数达到最优的可行解称为最优解。
(3)基本解
对于线性规划的约束条件
AX=b ,X≥0
设B是A矩阵中的一个非奇异的m×m子矩阵,则称B为线性规
第 二 章 线性规划
Linear Programming
-1-
第二章 线性规划
第一节:线性规划问题及其建模 第二节:线性规划模型与图解法 第三节:单纯形法 第四节:对偶问题 第五节:灵敏度分析 第六节:运输问题 第七节:数据包络分析 第八节:线性规划的应用
《管理运筹学》02-1线性规划的数学模型及相关概念
03 线性规划的求解方法
单纯形法
1
单纯形法是一种求解线性规划问题的经典算法, 其基本思想是通过不断迭代来寻找最优解。
2
单纯形法的基本步骤包括:建立初始单纯形表格、 确定主元、进行基变换、更新单纯形表格和判断 是否达到最优解。
3
单纯形法在处理大规模线性规划问题时,由于其 迭代次数与问题规模呈指数关系,因此计算量较 大。
06 线性规划的案例分析
生产计划问题
总结词
生产计划问题是一个常见的线性规划应用场景,通过合理安排生产计划,企业可以优化资源利用,降低成本并提 高利润。
详细描述
生产计划问题通常涉及确定不同产品组合、生产数量、生产批次等,以满足市场需求、资源限制和利润目标。线 性规划模型可以帮助企业找到最优的生产计划,使得总成本最低或总利润最大。
最优性条件由单纯形法推导得出,是判断线性规划问题是否达到最优解的 重要依据。
解的稳定性
解的稳定性是指最优解在参数变化时保持相对稳定的能力。
在实际应用中,由于数据的不确定性或误差,参数可能会发生变化。因此,解的稳 定性对于线性规划问题的实际应用非常重要。
解的稳定性取决于目标函数和约束条件的性质,以及求解算法的鲁棒性。在某些情 况下,可以通过敏感性分析来评估解对参数变化的敏感性。
输标02入题
决策变量是问题中需要求解的未知数,通常表示为 $x_1, x_2, ldots, x_n$。
01
03
目标函数是需要最大或最小化的函数,通常表示为 $f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
04
约束条件是问题中给定的限制条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$ 或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。
北交大交通运输学院《管理运筹学》知识点总结与例题讲解第2章 线性规划
第二章线性规划教学目的:了解线性规划的基本概念,理解线性规划最优化原理、单纯形法原理,掌握单纯形法及其矩阵描述、人工变量法、,能够对简单的问题建模。
教学重点:线性规划的含义、性质;线性规划问题的求解方法——图解法、单纯形法。
线性规划模型的建立非标准型线性规划问题转化为标准线性规划问题;线性规划问题的图解法;解的存在情况判断;大M法;两阶段法;单纯形法的矩阵表示;教学难点:单纯形法的求解思想、矩阵表示、对偶理论、对偶单纯形法以及灵敏度分析。
学时: 8学时2.1 线性规划(Linear Programming,LP)问题及其数学模型(1学时)我们应用数学规划模型求解实际问题中,将实际问题抽象成数学模型,然后再对其求解。
2.1.1线性规划问题提出我们用一个简单例子来说明如何建立数学规划问题的数学模型。
例2.1 某家具厂生产桌子和椅子两种家具,有关资料见表2-1。
解:用数学语言来描述生产计划安排问题,这个过程称为建立其数学模型,简称建模。
设:①桌子、椅子生产的数量分别为x1,x2,称为决策变量。
因为产量一般是一个非负数,所以有x1,x2≥0,称非负约束。
②限制条件为木工和油漆工的加工时间约束了产品的生产量x1,x2。
约束如下:4x1+3x2≤1202x1+x2≤50③生产桌子、椅子x 1,x 2所得总收入为Z ,显然Z =50x 1+30x 2。
我们希望总收入值能达到最大,这个关系用公式表达为max Z =50x 1+30x 2 把上述所有数学公式归纳如下12121212max .0z 50x 30x 4x 3x 120s t 2x x 50x x =++≤⎧⎪+≤⎨⎪≥⎩,这就是一个最大化的线性规划模型。
例 2.2(运输工具的配载问题)有一辆运输卡车,载重2.5t ,容积183m ,用来装载如下的两种货物:箱装件125kg/个、0.43m /个;包装件20kg/个、1.53m /个。
问:如何装配,卡车所装物件个数最多?解 根据题意,设箱装件1x 个,包装件2x 个,那么需要满足条件:体积约束 120.4 1.518x x +≤重量约束 12125202500x x +≤非负约束12,0x x ≥目标要求 max z=12x x +我们对上面的式子稍作整理,便得到下面的形式:max z=12x x +1212120.4 1.518125202500,0x x x x x x +≤⎧⎪+≤⎨⎪≥⎩ 上述两例中所提出的问题,最终都归结为在变量满足线性约束条件的前提下,求使线性目标函数最大或最小的问题,这种问题称为线性规划问题。
管理运筹学讲义 第2 章 线性规划讨论
14
OR:SM
第四节 线性规划灵敏度分析
一、灵敏度分析的必要性
线性规划研究的是一定条件下的最优化问题
• 资源环境和技术条件是可变的 • 基础数据往往是测算估计的数值
• 灵敏度分析的概念
灵敏度分析又称敏感性分析或优化后分析
• 研究基础数据发生波动后对最优解的影响
• 最优解对数据变化的敏感程度 • 在多大的范围内波动才不影响最优基
设备H:
4
经Lindo软件求解,得到最优解为Z=5800,x1=40,x2=60,x3=40。
OR:SM
第二节 线性规划的适用层次
计划链的层次
• 产值计划 或 利润计划 • 绝对数量 或 增长幅度 • 期限:年度 单位:万元 • 大类产品年度生产计划 当前条件 • 确定产品的品种和数量 • 期限:年度 单位:万台
库存管理
物料需求计划MRP 能力需求计划
CRP
预测
经营计划 销售计划 生产计划大纲 主生产计划MPS
• 大类产品销售收入或台套 • 产品品种和数量如何确定 • 期限:年度 单位:万台
粗能力计划
物料清单
• 具体产品在具体 时段的出产计划 • 合同订单和预测 转换为生产任务
• 将产品出产计划 转换成物料需求表
6
OR:SM
第三节 线性规划的典型案例
一、配送中心选择
决策变量:设从供货源Si到分销中心Wj的运输量为 xij ,从分销中 心Wj到需求市场Rk的运输量为 y jk 。选址规划在于二者的实际取值。 如果 x11 x21 0 ,则不设置分销中心W1; 反之,则设置W1,其规模为 x11 x21 如果 x12 x22 0 ,则不设置分销中心W2; 反之,则设置W2,其规模为 x12 x22
管理运筹学线性规划ppt课件
x1 +x2 =300
D
x1
x1 ≥0, x2 ≥0
ห้องสมุดไป่ตู้
O
100 200 300 400
• 五边形ABCDO内(含边界)的任意一点2x1(x+1x,2 =x402)0都是满足所有
约束条件的一个解,称之可行解 。 z=0= 50x1 +100 x2
11
经济管理学院
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
第二节
线性规划的图解法
三 、解的可能性(续) • 无可行解:若约束条件相互矛盾,则可行域为空集
例如
maxZ= 3x1 +2 x2 -2x1 + x2 ≥2
2
经济管理学院
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
第一节
线性规划一般模型
一、线性规划问题的三个要素
•
▪ 决策问题待定的量值称为决策变量。 ▪ 决策变量的取值要求非负。
• 约束条件
第三节
线性规划的标准型
一 、标准型
• 线性规划问题的数学模型有各种不同的形式,如
▪ 目标函数有极大化和极小化; ▪ 约束条件有“≤”、“≥”和“=”三种情况; ▪ 决策变量一般有非负性要求,有的则没有。
《管理运筹学》第2章_线性规划
我们通过画图可以知道该线性规划问题的可行解所在 的范围是无界的,目标函数值可以增大到无穷大,称这种 情况为无界解或无最优解,如下图所示: x2
Z
0
x优解呢?那也不一定,如在(1.3)中,将目 标函数由 Max Z = x1 + x2 改为 Min Z = x1 + x2 , 则可行解所在的范围虽然无界,但有最优解 x1 = x2 = 0 ,即 (0,0)点. 当求解结果出现(2)、(3)两种 情况时,一般均说明线性规划问题的数学模型存在错误 ,前者缺乏必要的约束条件,后者是存在矛盾的约束条 件,在建立数学模型时,应当注意。
可行域D非空有界:(1)有唯一解、(2)有无 穷多最优解 可行域D非空无界:求max(1)无界解。求min (1)有唯一解、 (2)有无穷多组最优解 可行域D空:无可行解
幻灯片 18
从图解法中可直观地看到:
※ 当线性规划问题的可行域非空时, 它是有界或无界凸多面体(形).
※若线性规划问题存在有界最优解,则
无可行解(Infeasibility Solution)
无可行解是指不存在满足全部约束条件 的解。在图形中,无可行解是指可行域不 存在。也就是说,没有任何一个点能够同 时满足所有约束条件。
举例说明这一情况。在2.1中如果我们增加约束条 件,生产Ⅰ、Ⅱ两种产品至少分别需要3千克。
现有的资源无法生产满足需要(3,3)的产品, 此外,我们可以准确地告诉管理者要生产(3,3) 换需要多少资源
1 A B C 价 格 3 1 0.5 2
2 2 0.5 1 7
3 1 0.2 0.2 4
4 6 2 2 9
5 18 0.5 0.8 5
需 求 700 30 200
解:设 x j
管理运筹学 线性规划的图解法课件
线性规划的应用领域
生产计划
线性规划可以用于制定生产计划,优 化资源配置,提高生产效率。
物流优化
线性规划可以用于优化物流配送路线 、车辆调度等问题,降低运输成本。
金融投资
线性规划可以用于金融投资组合优化 ,实现风险和收益的平衡。
资源分配
线性规划可以用于资源分配问题,如 人员、资金、设备等资源的合理分配 ,提高资源利用效率。
束条件。
线性规划的目标是在满足一系列 限制条件下,使某一目标函数达
到最优值。
线性规划问题通常表示为求解一 组变量的最优值,使得这些变量 满足一系列线性等式或不等式约
束。
线性规划的数学模型
线性规划的数学模型由决策变量、目标函数和约束条 件三部分组成。
输标02入题
决策变量是问题中需要求解的未知数,通常表示为 $x_1, x_2, ldots, x_n$。
01
03
约束条件是限制决策变量取值的条件,通常表示为 $a_1x_1 + a_2x_2 + ldots + a_nx_n leq b$或 $a_1x_1 + a_2x_2 + ldots + a_nx_n = b$。
04
目标函数是问题要优化的函数,通常表示为$f(x) = c_1x_1 + c_2x_2 + ldots + c_nx_n$。
03
绿色发展与线性规 划的结合
将可持续发展理念融入线性规划 ,实现资源节约、环境友好的发 展目标。
THANKS
[ 感谢观看 ]
约束条件
生产计划问题通常受到资源限制、市场需求和生 产能力等约束条件的限制。
详细描述
生产计划问题通常涉及到如何分配有限的资源, 以最大化某种目标函数(如利润)。通过图解法 ,我们可以将约束条件和目标函数在二维平面上 表示出来,从而找到最优解。
管理运筹学第2章 线性规划的图解法
i
i
MinZ e1i e2i
i
i
s.t.eβ10i-,eβ21i无 符yi 号 β限0 制β1xi
e1i , e2i 0,i 1,2,, n
还可以加上一些特定的需求.例如,要求必须过某 一点.
16
线性规划问题的应用举例(回归分析)
新标准:最小化最大绝对误差.
–整数规划问题
• 考虑短期排班的问题
–对午休换班进行建模
• 考虑每个工人
–允许工人有不同的偏好
29
套裁下料问题
例某工厂要做100套钢架,每套用长为2.9 m,2.1 m,1.5 m的圆钢
各一根。已知原料每根长7.4 m,问:应如何下料,可使所
用原料最省?
方案 1 方案 2 方案 3 方案 4 方案 5 方案 6 方案 7 方案 8
产品名称
规格要求
单价(元/kg)
甲 原材料 1 不少于 50%,原材料 2 不超过 25%
50
乙 原材料 1 不少于 25%,原材料 2 不超过 50%
35
丙
不限
25
原材料名称
1 2 3
每天最多供应量
100 100 60
单价(元/kg) 65 25 35
9
线性规划应用举例
解:设 xij 表示第 i 种(甲、乙、丙)产品中原料 j 的含量。 这样我们建立数学模型时,要考虑:
x1 + x2 ≥ 70 x2 + x3 ≥ 60 x3 + x4 ≥ 50 x4 + x5 ≥ 20 x5 + x6 ≥ 30 x1,x2,x3,x4,x5,x6 ≥ 0
20
关于决策变量的选择的启示
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
20.02.2021
30
例2-6
Max (2,3) = 3 x2入基 Min (80/20,18/6) = 3 x5出基
B = (p3,p4,p2)
10x1 + x3 - 10/3 x5 = 20
4x1
+ x4
= 16
x2
+ 1/6 x5 = 3
X(1) = (0,3,20,16,0)T
20.02.2021
36
用单纯形法求解例2-6
表1
cj
23
000
CB XB x1 x2
x3
x4
x5
0 x3 10 20 1 0 0
0 x4
40010
0 x5
06001
σ
23000
b
80 16 18 Z=0
20.02.2021
37
用单纯形法求解例2-6
表2
cj
2
CB XB
x1
x5
0
x3
10
0
x4
4
am1 x1+ am2 x2 +…+ amn xn (=,) bm x1 , x2 , …, xn 0
20.02.2021
6
线性规划的图解法
1.局限性:只能求解具有两个变量的线性规划问题。
2.学习目的:图解法只能求解具有两个决策变量的线性 规划问题,其应用具有很大的局限性,因此学习图解法 的目的并非是要掌握一种线性规划问题的求解方法,而 是要通过图解法揭示线性规划问题的内在规律,为学习 线性规划问题的一般算法(单纯形法)奠定基础。
3
x2
0
σ
2
3
0
x2
0
1
0
0
1
0
0
0
0
0
x3
x4
b
0 -10/3
1
0
0 1/6
0 -1/2
20 16
3
Z=9
20.02.2021
38
用单纯形法求解例2-6
表3
cj
2
CB XB x1
x5
2 x1 1
0 x4 0
3 x2 0
σ
0
3
000
x2
x3
x4
0 1/10 0 -1/3
0 -2/5 1 4/3
1
0 0 1/6
20.02.2021
26
凸集的概念与解集的基本定理
1.凸集的概念:设 K 是 n 维欧氏空间的一点集,若任意
两点 X(1) k,X(2) k 的连线上的一切点 X(1) + (1-) X(2) k,(0 < < 1)
则称 k 为凸集。 2.解集的基本定理:
(1) 若线性规划问题存在可行域,则其可行域是凸集; (2) 线性规划问题的基可行解对应其可行域的顶点; (3) 若线性规划问题存在最优解,则其最优解一定能在 基可行解中找到。
20.02.2021
3
资源合理利用问题:第5页例2-1
1. 决策变量:x1和x2
2. 目标函数:max (2 x1+3 x2)
3. 约束条件:10 x1+20 x2 80
4 x1
16
6 x2 18
x1,x2 0
20.02.2021
4
质量检验问题:第6页例2-2
1.决策变量:x1和x2
2.目标函数:min(40 x1+36 x2)
管理运筹学02线性规划
单击此处添加副标题内容
1. 线性规划问题及其数学模型 2. 线性规划的图解法 3. 线性规划问题的标准形式 4. 线性规划的解集特征 5. 线性规划的单纯形法 6. 单纯形法的进一步讨论
20.02.2021
2
线性规划问题及其数学模型
资源合理利用问题:第5页例2-1 质量检验问题:第6页例2-2 线性规划数学模型的一般形式
20.02.2021
29
第12页例2-6
Max z = 2x1 + 3x2
10x1 + 20x2 + x3 = 80
4x1
+ x4 = 16
6x2 + x5 = 18
x1, x2, x3, x4, x5 0 B = (p3,p4,p5) X(0) = (0,0,80,16,18)T
Z(0) = 0,z = 2x1 + 3x2
20.02.2021
9
用图解法求解例2-1
x2
4 3 2 1 0 1 2 3 4 5 6 7 8 x1
20.02.2021
10
用图解法求解例2-1
x2
4 3 2 1 0 1 2 3 4 5 6 7 8 x1
20.02.2021
11
用图解法求解例2-1
x2
4 3 2 1 0 1 2 3 4 5 6 7 8 x1
3.如果线性规划问题在其可行域的两个顶点上得 到最优解,那么两顶点连线上的所有点均为最 优解点;
4.线性规划问题的解可能有四种情况:唯一最优 解;无穷多最优解;无界解和无可行解。
20.02.2021
18
线形规划问题的标准形式
1. 标准形式的基本条件: (1)决策变量非负; (2)目标函数极大化(或极小化); (3)约束条件为严格等式,且右端项非负。 2. 标准形式的表示:
C=(c1,c2,c3,…,cn)
X=(X1,X2,X3,…,Xn) T
20.02.2021
22
线性规划的标准型:矩阵式
min z =CX AX=b,X ≥0 , b ≥0 其中: b=(b1,b2,…,bm)T
a11 a12 ….a1n A= a21 a22 … a2n
… ……
am1 am2 …amn
20.02.2021
12
用图解法求解例2-1
x2
4 3 2 1 0 1 2 3 4 5 6 7 8 x1
20.02.2021
13
用图解法求解例2-1
x2
4 3 2 1 0 1 2 3 4 5 6 7 8 x1
20.02.2021
14
用图解法求解例2-1
x2
4 3 2 1 0 1 2 3 4 5 6 7 8 x1
20.02.2021
20
线性规划的标准型:和式
n
min z =∑cjxj j=1 n ∑aijxj=bi i=1,2,…,m j=1
xj ≥0 j=1,2,…,n
20.02.2021
21
线性规划的标准型:向量式
min z = CX
n
∑pjxj=bi i=1,2,…,m
j=1
xj ≥0 j=1,2,…,n
0 -1/5 0 1/6
b
2 8 3 Z = 13
20.02.2021
39
用单纯形法求解例2-6
表4
cj
2
CB XB x1
2 x1 1 0 x5 0
3 x2 0
σ
0
3
0
00
x2
x3
x4
x5
0
0 1/4 0
0 -3/10 3/4 1
1 1/20 -1/8 0
0 -3/20 -1/8 0
x1
+ 1/4 x 4 = 4
- 3/10 x3 + 3/4 x4 + x5 = 6
x2 + 1/20 x3 - 1/8 x4 = 2
X(3) = (4,2,0,0,6)T
Z(3) = 14,z = 14 - 9/10 x3 - 1/8 x4
20.02.2021
33
最优性检验与解的判别
n
n
Max z = c j x j , p j x j b , x j 0
20.02.2021
27
线性规划的单纯形法
1.单纯形法的基本原理 (1) 单纯形法的基本思路 (2) 第12页例2-6
2.最优性检验与解的判别 3.单纯形表 4.单纯形法的基本步骤 5.用单纯形法求解例2-6 6.课上习题
20.02.2021
28
单纯形法的基本思路
1. 找出一个初始的基可行解; 2. 判断其最优性; 3. 转移至另一个较优的基可行解; 4. 重复2、3两步直至最优。
Z(1) = 9,z = 9 + 2x1 - 1/2 x5
20.02.2021
31
例2-6
Max (2) = 2 x1入基 Min (20/10,16/4) = 2 x3出基
B = (p1,p4,p2)
x1 + 1/10 x3 - 1/3 x5 = 2
- 2/5 x3 + x4 + 4/3 x5 = 8
20.02.2021
8
图解法的基本步骤
1.画出平面直角坐标系; 2.将约束条件逐一反映进平面直角坐标系,用标 号和箭线表明约束条件的顺序和不等号的方向; 3.找出可行域并反映出目标函数直线的斜率; 4.平移目标函数直线找出最优解。 5.例题:第7页例2-3:用图解法求解例2-1 6.习题:第8页例2-4:用图解法求解例2-2
x2
+ 1/6 x5 = 3
X(2) = (2,3,0,8,0)T
Z(2) = 13,z = 13 - 1/5 x3 + 1/6 x5
20.02.2021
32
例2-6
Max (1/6) = 1/6 x5入基 Min (8/(4/3),3/(1/6)) = 6 x4出基
B = (p1,p5,p2)
20.02.2021