《管理运筹学》(第二版)课后习题参考答案汇总

合集下载

卫生管理运筹学第二版第二章课后答案

卫生管理运筹学第二版第二章课后答案

卫生管理运筹学第二版第二章课后答案1、3.高龄产妇中有()都是剖腹产。

[单选题] *A.50%B.60%(正确答案)C.70%D.80%2、92、Ⅲ度烧伤面积达80%的病人,创面处理建议采取(? ?) *A、暴露疗法(正确答案)B、分次实施切痂植皮手术(正确答案)C、功能部位力争恢复功能(正确答案)D、肢体部位采取包扎疗法3、34.不属于全血标本检测的项目的是()[单选题] *A.血常规B.血糖C.肌酐D.脂类(正确答案)4、46. 下列哪项食物不富含维生素A:()[单选题] *A. 动物肝脏B. 全奶C. 豆类(正确答案)D. 水果5、56.使用心电监护最常用于观察的导联是()[单选题] *A.Ⅰ导联B.Ⅱ导联(正确答案)C.Ⅲ导联D.Ⅳ导联6、1.进行口腔护理操作时昏迷、吞咽功能障碍的病人应采取什么体位()[单选题] * A.坐位B.侧卧位(正确答案)C.仰卧位D.头高足低位7、46.乳房发生乳腺癌最常见的部位为(? ) [单选题] *A、乳头部位B、内上象限C、外上象限(正确答案)D、内下象限8、48.对尿失禁患者护理应()*A.加强皮肤与心理护理(正确答案)B.指导患者多饮水,促进排尿反射(正确答案)C.长期尿失禁者可用留置尿管(正确答案)D.可轻轻按摩或热敷下腹部9、381.婴幼儿的1个睡眠周期只有()个小时。

[单选题] *A.1~2(正确答案)B.2~3C.3~4D.4~510、14.尿失禁预防,可进行缩肛锻炼,即做收缩肛门的动作,每天()次左右。

[单选题] *A.20B.30(正确答案)C.40D.5011、37. 成分输血的优点不包括:()[单选题] *A. 一血多用B. 针对性强C. 无须进行交叉配血(正确答案)D. 便于运输和保存12、22.散步一小时可以帮助消耗大约()千卡的能量。

[单选题] *A.200B.300C.400D.500(正确答案)13、15、下列饮食中属于基本饮食的是()[单选题] *A.高热量饮食B.低盐饮食C.半流质饮食(正确答案)D.高纤维饮食14、86.频发室是指每分钟发生室早多于()[单选题] *A. 1次B. 5次(正确答案)C. 10次D. 20次15、73.下列哪类患者的尿液中有烂苹果味: ()[单选题] *A.前列腺炎B.尿道炎C.膀胱炎D.糖尿病酸中毒(正确答案)16、12.关于乳管内乳头状瘤,下列哪一条不正确: ()[单选题] * A.肿瘤小,常不能触及B.多见于经产妇C.可从乳头溢出血性液D.属于良性病变,不会恶变(正确答案)17、33.一般()乳汁充盈最旺盛,是挤母乳的最好时间。

《管理运筹学》第二版习题答案(韩伯棠教授)高等教育出版社,超详细版

《管理运筹学》第二版习题答案(韩伯棠教授)高等教育出版社,超详细版

《管理运筹学》第二版习题答案(韩伯棠教授)高等教育出版社第 2 章 线性规划的图解法11a.可行域为 OABC 。

b.等值线为图中虚线所示。

12c.由图可知,最优解为 B 点,最优解: x 1 = 769 。

7 2、解:15 x 2 =7, 最优目标函数值:a x 210.60.1O1有唯一解x 1 = 0.2函数值为 3.6x 2 = 0.6b 无可行解c 无界解d 无可行解e 无穷多解1 2 2 1 2f 有唯一解20 x 1 =3 8函数值为 92 33、解:a 标准形式:b 标准形式:c 标准形式:x 2 = 3max fmax f= 3x 1 + 2 x 2 + 0s 1 + 0s 2 + 0s 3 9 x 1 + 2x 2 + s 1 = 303x 1 + 2 x 2 + s 2 = 13 2 x 1 + 2x 2 + s 3 = 9 x 1 , x 2 , s 1 , s 2 , s 3 ≥= −4 x 1 − 6x 3 − 0s 1 − 0s 23x 1 − x 2 − s 1 =6x 1 + 2x 2 + s 2 = 10 7 x 1 − 6 x 2 = 4x 1 , x 2 , s 1 , s 2 ≥max f = −x ' + 2x ' − 2 x ''− 0s − 0s'''− 3x 1 + 5x 2 − 5x 2 + s 1 = 70 2 x ' − 5x ' + 5x '' = 50122' ' ''3x 1 + 2 x 2 − 2x 2 − s 2 = 30'' ''4 、解:x 1 , x 2, x 2, s 1 , s 2 ≥ 0标准形式: max z = 10 x 1 + 5x 2 + 0s 1 + 0s 23x 1 + 4 x 2 + s 1 = 9 5x 1 + 2 x 2 + s 2 = 8 x 1 , x 2 , s 1 , s 2 ≥ 0s 1 = 2, s 2 = 0标准形式: min f = 11x 1 + 8x 2 + 0s 1 + 0s 2 + 0s 310 x 1 + 2x 2 − s 1 = 203x 1 + 3x 2 − s 2 = 18 4 x 1 + 9x 2 − s 3 = 36 x 1 , x 2 , s 1 , s 2 , s 3 ≥ 0s 1 = 0, s 2 = 0, s 3 = 136 、解:b 1 ≤c 1 ≤ 3c 2 ≤ c 2 ≤ 6d x 1 = 6 x 2 = 4e x 1 ∈ [4,8]x 2 = 16 − 2x 1f 变化。

《管理运筹学》第2版习题答案_韩伯棠

《管理运筹学》第2版习题答案_韩伯棠

第一章是没有的第 2 章 线性规划的图解法11a.可行域为 OABC 。

b.等值线为图中虚线所示。

12c.由图可知,最优解为 B 点,最优解: x 1 = 769 。

7 2、解:15 x 2 =7, 最优目标函数值:a x 210.60.1O1有唯一解 x 1 = 0.2 函数值为 3.6 x 2 = 0.6 b 无可行解 c 无界解 d 无可行解 e 无穷多解1 2 2 1 2f 有唯一解20 x 1 =3 8函数值为 92 33、解:a 标准形式:b 标准形式:c 标准形式:x 2 =3max fmax f= 3x 1 + 2 x 2 + 0s 1 + 0s 2 + 0s 3 9 x 1 + 2x 2 + s 1 = 30 3x 1 + 2 x 2 + s 2 = 13 2 x 1 + 2x 2 + s 3 = 9 x 1 , x 2 , s 1 , s 2 , s 3 ≥ 0 = −4 x 1 − 6x 3 − 0s 1 − 0s 2 3x 1 − x 2 − s 1 = 6 x 1 + 2x 2 + s 2 = 10 7 x 1 − 6 x 2 = 4x 1 , x 2 , s 1 , s 2 ≥max f = −x ' + 2x '− 2 x '' − 0s − 0s'''− 3x 1 + 5x 2 − 5x 2 + s 1 = 702 x ' − 5x ' + 5x '' = 50122' ' ''3x 1 + 2 x 2 −2x 2 − s 2 = 30 ' ' ''4 、解:x 1 , x 2, x 2, s 1 , s 2 ≥ 0标准形式: max z = 10 x 1 + 5x 2 + 0s 1 + 0s 23x 1 + 4 x 2 + s 1 = 9 5x 1 + 2 x 2 + s 2 = 8 x 1 , x 2 , s 1 , s 2 ≥ 0s 1 = 2, s 2 = 0标准形式: min f = 11x 1 + 8x 2 + 0s 1 + 0s 2 + 0s 310 x 1 + 2x 2 − s 1 = 20 3x 1 + 3x 2 − s 2 = 184 x 1 + 9x 2 − s 3 = 36x 1 , x 2 , s 1 , s 2 , s 3 ≥ 0s 1 = 0, s 2 = 0, s 3 = 136 、解:b 1 ≤c 1 ≤ 3c 2 ≤ c 2 ≤ 6d x 1 = 6 x 2 = 4e x 1 ∈ [4,8]x 2 = 16 − 2x 1f 变化。

《管理运筹学》课后习题答案#(精选.)

《管理运筹学》课后习题答案#(精选.)

第2章 线性规划的图解法1.解:x`A 1 (1) 可行域为OABC(2) 等值线为图中虚线部分(3) 由图可知,最优解为B 点, 最优解:1x =712,7152=x 。

最优目标函数值:7692.解: x 2 10 1(1) 由图解法可得有唯一解 6.02.021==x x ,函数值为3.6。

(2) 无可行解 (3) 无界解 (4) 无可行解 (5)无穷多解(6) 有唯一解 3832021==x x ,函数值为392。

3.解:(1). 标准形式:3212100023m ax s s s x x f ++++=,,,,9221323302932121321221121≥=++=++=++s s s x x s x x s x x s x x(2). 标准形式:21210064m in s s x x f +++=,,,46710263212121221121≥=-=++=--s s x x x x s x x s x x(3). 标准形式:21''2'2'10022m in s s x x x f +++-=,,,,30223505527055321''2'2'12''2'2'1''2'2'11''2'21≥=--+=+-=+-+-s s x x x s x x x x x x s x x x4.解:标准形式:212100510m ax s s x x z +++=,,,8259432121221121≥=++=++s s x x s x x s x x松弛变量(0,0) 最优解为 1x =1,x 2=3/2.标准形式:32121000811m in s s s x x f ++++=,,,,369418332021032121321221121≥=-+=-+=-+s s s x x s x x s x x s x x剩余变量(0.0.13) 最优解为 x 1=1,x 2=5.6.解:(1) 最优解为 x 1=3,x 2=7. (2) 311<<c (3) 622<<c (4)4621==x x(5) 最优解为 x 1=8,x 2=0. (6) 不变化。

《管理运筹学》课后习题答案

《管理运筹学》课后习题答案

《管理运筹学》课后习题答案第2章线性规划的图解法1.解决方案:X25`a1bo1c6x1可行的区域是oabc等值线为图中虚线部分从图中可以看出,最优解是B点,最优解是x1=121569,x2?。

最优目标函数值:7772.解:x21零点六0.100.10.61x1有唯一解、无可行解、无界解、无可行解和无限解x1?0.2x2?0.6,函数值为3.6。

三百六十九20923有唯一解,函数值为。

83x2?3x1?3.解决方案:(1).标准形式:麦克斯夫?3x1?2x2?0s1?0s2?0s39x1?2x2?s1?303x1?2x2?s2?132x1?2x2?s3?9x1,x2,s1,s2,s3?0(2).标准形式:明夫?4x1?6x2?0s1?0s23x1?x2?s1?6x1?2x2?s2?107x1?6x2?4x1,x2,s1,s2?0(3).标准形式:明夫?x1?2x2?2x2?0s1?0s2“”?3x1?5x2?5x2?s1?七十 '''2x1'?5x2?5x2?503x?2x?2x?s2?30'''x1',x2,x2,s1,s2?0'1'2''2标准形式:麦克斯?10x1?5x2?0s1?0s23x1?4x2?s1?95x1?2x2?s2?8x1,x2,s1,s2?0松弛变量(0,0)的最优解为X1=1,X2=3/23705.解决方案:标准形式:明夫?11x1?8x2?0s1?0s2?0s310x1?2x2?s1?203x1?3x2?s2?184x1?9x2?s3?36x1,x2,s1,s2,s3?0剩余变量(0.0.13)最优解为x1=1,x2=5.6.解决方案:(10)最优解为x1=3,x2=7.(11)1?c1?3(12)2?c2?6(13)x1?6x2?四(14)最优解为x1=8,x2=0.(15)不变化。

《管理运筹学》课后习题答案

《管理运筹学》课后习题答案
4.解:设白天调查的有孩子的家庭的户数为x11,白天调查的无孩子的家庭的户数为x12,晚上调查的有孩子的家庭的户数为x21,晚上调查的无孩子的家庭的户数为x22,则可建立下面的数学模型:
min f=25x11+20x12+30x21+24x22
s.t.x11+x12+x21+x22 2000
x11+x12=x21+x22
约束条件2:年回报额增加1个单位,风险系数升高2.167;
约束条件3:基金B的投资额增加1个单位,风险系数不变。
(3)约束条件1的松弛变量是0,表示投资额正好为1200000;约束条件2的剩余变量是0,表示投资回报率正好是60000;约束条件3的松弛变量为700000,表示投资B基金的投资额为370000。
总成本最小为264元,能比第一问节省:320-264=56元。
3.解:设生产A、B、C三种产品的数量分别为x1,x2,x3,则可建立下面的
数学模型:
max z=10 x1+12x2+14x3
s.t. x1+1.5x2+4x3 2000
2x1+1.2x2+x3 1000
x1 200
x2 250
x3 100
3.解:
(1).式:
4.解:
标准形式:
松弛变量(0,0)
最优解为 =1,x =3/2.
5.解:
标准形式:
剩余变量(0.0.13)
最优解为x1=1,x2=5.
6.解:
(1)最优解为x1=3,x2=7.
(2)
(3)
(4)
(5)最优解为x1=8,x2=0.
(6)不变化。因为当斜率 ,最优解不变,变化后斜率为1,所以最优解不变.
(5)约束条件1的右边值在300000到正无穷的范围内变化,对偶价格仍为0.1;

《管理运筹学》第二版习题答案(韩伯棠教授

《管理运筹学》第二版习题答案(韩伯棠教授

x2+x3+x4+x5+1 ≥ 3
x3+x4+x5+x6+2 ≥ 3
x4+x5+x6+x7+1 ≥ 6
x5+x6+x7+x8+2 ≥ 12
x6+x7+x8+x9+2 ≥ 12
x7+x8+x9+x10+1 ≥ 7
x8+x9+x10+x11+1 ≥ 7
x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11≥ 0

3章线性规划问题的计算机求解
1、解:
a x1 =
150 x2 =
70 目标函数最优值
103000
b 1,3使用完 2,4没用完 0,330,0,15
c 50,0,200,0
含义: 1车间每增加
1工时,总利润增加
50元
3车间每增加
1工时,总利润增加
约束条件
2:年回报额增加
1个单位,风险系数升高
2.167
c约束条件
1的松弛变量是
0,约束条件
2的剩余变量是
0
约束条件
3为大于等于,故其剩余变量为
700000
d当
c2不变时,
c1在
3.75到正无穷的范围内变化,最优解不变

c1不变时,
i=1 i=1
S.T
不变
8 、解:
a 模型:
min f =
8xa +
3xb
50xa +100xb ≤
1200000
5xa +
4xb ≥
60000
100xb ≥
300000
xa , xb ≥

管理运筹学第二版习题答案

管理运筹学第二版习题答案

12-2《管理运筹学》课后习题详解 第2章 线性规划的图解法1. ( 1)可行域为0, 3, A ,3围成的区域。

(2) 等值线为图中虚线所示。

(3) 如图,最优解为 A 点(12/7,15/7 ),对应最 优目标函数值 Z=69/7。

2.( 1)有唯一最优解 A 点,对应最优目标函数 值 Z=3.6。

(2)无可行解。

(3)有无界解。

40.7 0-33X 1+ X2(4)无可行解。

9y -F 2.r, + 6 = 30 3x x+2X2 + s2 =13 2x{—2xi+6=9 gx”片宀宀二0max f = 一4形—— 0町—Os2(5)无可行解。

X22max最优解A点最优函数值3. (1)标准形式(2)标准形式Xj + 2X2 H-S2 = 107,v:—6.v* = 4M , .Y2 , % 出> O(3)标准形式|!_|_fifmax f = —x 1 + 2 屯—2 込—0® — 0^2—3x x * 5X 2 — 5X 2 + s x = 70 2x x — 5X 2 + 5X 2 = 50 3xj + 2X 2 — 2X 2 —=305x ;,歩1 .s 2 土 0max z = 10.^! + 5.Y 2 \ 0^t 1 0©3x 】十 4X 2 + S J = 95.巧 +2.Y 2 -b >s 2 = 8 x t ,x 2 ^s lr>s 2 > 04.解: (1)标准形式求解:3X 〔 4X 2 9 5X 〔 2X 28X , 1 X 21.5S , S 25.标准形式:x , x 2 6 x , 3.6 S 3 S 2 0 4x , 9x 2 16x 2 2.4s , 11.27. 模型: (1) X 1=150, X 2=150;最优目标函数值 Z=103000。

(2) 第2、4车间有剩余。

剩余分别为: 330、15,均为松弛变量。

《管理运筹学》(第二版)课后习题参考答案汇总

《管理运筹学》(第二版)课后习题参考答案汇总

《管理运筹学》(第二版)课后习题参考答案第1章线性规划(复习思考题)1.什么是线性规划线性规划的三要素是什么答:线性规划(Linear Programming,LP)是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。

线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。

建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。

决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。

2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误答:(1)唯一最优解:只有一个最优点;(2)多重最优解:无穷多个最优解;(3)无界解:可行域无界,目标值无限增大;(4)没有可行解:线性规划问题的可行域是空集。

当无界解和没有可行解时,可能是建模时有错。

3.什么是线性规划的标准型松弛变量和剩余变量的管理含义是什么答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项,决策变量满足非负性。

如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。

4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。

答:可行解:满足约束条件的解,称为可行解。

基可行解:满足非负性约束的基解,称为基可行解。

可行基:对应于基可行解的基,称为可行基。

最优解:使目标函数最优的可行解,称为最优解。

最优基:最优解对应的基矩阵,称为最优基。

它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。

.解:标准化.列出单纯形表412b02[8]2 /80868 /641241/41/81/8]/8(1/4/(1/813/265/4/43/4(13/2/(1/4 0-1/23/21/222806-221-12-502故最优解为,即,此时最优值为.6.表1—15中给出了求极大化问题的单纯形表,问表中为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以代替基变量;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。

《管理运筹学》(第二版)课后习题参考答案汇总

《管理运筹学》(第二版)课后习题参考答案汇总

《管理运筹学》(第二版)课后习题参考答案汇总《管理运筹学》(第二版)课后习题参考答案第一章线性规划(复习问题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(LP)是运筹学中最成熟的分支,也是运筹学中应用最广泛的分支。

线性规划在规划理论中属于静态规划。

它是解决有限资源优化配置问题的重要优化工具。

建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。

决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。

2.在解决线性规划问题时,可能会有几个结果。

哪个结果表明建模中存在错误?答:(1)唯一最优解:只有一个最佳优势;(2)多重最优解:无限多个最优解;(3)无界解:可行域无界,目标值无限增大;(4)没有可行解:线性规划问题的可行域是空集。

当无界解和没有可行解时,可能是建模时有错。

3.线性规划的标准形式是什么?松弛变量和剩余变量的管理意义是什么?答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项,决策变量满足非负性。

如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。

4.尝试解释线性规划问题的可行解、基本解、基本可行解和最优解的概念及其相互关系。

答:可行解:满足约束条件这个问题的解叫做可行解。

基可行解:满足非负性约束的基解,称为基可行解。

可行基础:与可行解对应的基础称为可行基础。

最优解:使目标函数最优的可行解,称为最优解。

最优基:最优解对应的基矩阵,称为最优基。

它们的相互关系如右图所示:5.使用表格单纯形法求解以下线性规划。

s.t.解决方案:标准化s.t.列出单纯形表00441b二万八千四百一十一/4一3/20-1/2二[8]六2一/81/8]/8六5/4/43/43/21/22/88/6(1/4/(1/8(13/2/(1/422806-221-因此,最佳解决方案是125,即-2.为何值及变,最佳值为6.表1―15中给出了求极大化问题的单纯形表,问表中当数量属于哪种类型时:(1)表中的解是唯一的最优解;(2)表中的解是无限最优解之一;(3)下一次迭代将是代替基变量(4)线性规划问题有无界解;(5)该线性规划问题无可行解。

卫生管理运筹学第二版第三章课后答案

卫生管理运筹学第二版第三章课后答案

卫生管理运筹学第二版第三章课后答案1、31.不属于急性动脉栓塞的早期症状: ()[单选题] *A. 疼痛B. 肢体麻木C.肢体温度低D.患肢紫绀(正确答案)2、73.下列哪类患者的尿液中有烂苹果味: ()[单选题] *A.前列腺炎B.尿道炎C.膀胱炎D.糖尿病酸中毒(正确答案)3、20.乳癌最多见于: C [单选题] *A.25~40 岁,50~54岁(正确答案)B.30~50岁,55~60岁C.45~49岁,60~64岁D.50~54岁4、23.穿隔离衣的正确顺序为()[单选题] *A.扣领扣一穿袖子一系袖带一系腰带B.穿袖子一扣领扣一系袖带一系腰带(正确答案)C.穿袖子一扣领扣一系腰带一系袖带D.穿袖子一系袖带一系腰带一扣领扣5、63、抢救青霉素过敏性休克的首选药物是()[单选题] *A、盐酸异丙嗪B、去甲肾上腺素C、盐酸肾上腺素(正确答案)D、异丙肾上腺素6、50.急性乳腺炎多发于:(? ) [单选题] *A. 青年产妇B. 中年产妇C. 任何哺乳期的妇女D. 产后哺乳期的初产妇(正确答案)7、31.死亡病人最后消失的感知觉是()[单选题] *A.触觉B.听觉(正确答案)C.视觉D.嗅觉8、7.肌肉注射常见并发症有()*A.疼痛(正确答案)B.神经性损伤(正确答案)C.局部或全身感染(正确答案)D.针口渗液(正确答案)9、16、血液病患者最适宜输入()[单选题] *A.新鲜血(正确答案)B.库存血C.血浆D.白蛋白10、17.母婴护理员可以协助产妇用()比例高锰酸钾溶液擦洗会阴。

[单选题] *A.1:1000B.1:4000C.1:5000(正确答案)D.1:1000011、37. 使用无菌容器操作正确的是(A B D )[单选题] *A.检查名称标示、灭菌指示带、灭菌日期、密闭情况(正确答案)B.打开无菌容器盖时,盖的内面向上放置C.用毕立即将容器盖盖好D.无菌容器每周清洁、灭菌一次12、5.产后每月要进行一次乳房自查,()要到医院对乳房进行一次检查,这对乳腺疾病,包括乳腺癌等的早发现、早治疗很有好处。

《管理运筹学》课后习题参考标准答案

《管理运筹学》课后习题参考标准答案

《管理运筹学》(第二版)课后习题参考答案第1章 线性规划(复习思考题)1.什么就是线性规划?线性规划的三要素就是什么?答:线性规划(Linear Programming,LP)就是运筹学中最成熟的一个分支,并且就是应用最广泛的一个运筹学分支。

线性规划属于规划论中的静态规划,就是一种重要的优化工具,能够解决有限资源的最佳分配问题。

建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。

决策变量就是决策问题待定的量值,取值一般为非负;约束条件就是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数就是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。

2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误? 答:(1)唯一最优解:只有一个最优点; (2)多重最优解:无穷多个最优解; (3)无界解:可行域无界,目标值无限增大;(4)没有可行解:线性规划问题的可行域就是空集。

当无界解与没有可行解时,可能就是建模时有错。

3.什么就是线性规划的标准型?松弛变量与剩余变量的管理含义就是什么? 答:线性规划的标准型就是:目标函数极大化,约束条件为等式,右端常数项0≥i b ,决策变量满足非负性。

如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不就是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。

4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。

答:可行解:满足约束条件0≥=X b AX ,的解,称为可行解。

基可行解:满足非负性约束的基解,称为基可行解。

可行基:对应于基可行解的基,称为可行基。

最优解:使目标函数最优的可行解,称为最优解。

最优基:最优解对应的基矩阵,称为最优基。

它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。

《管理运筹学》第二版习题答案(韩伯棠教授)1

《管理运筹学》第二版习题答案(韩伯棠教授)1

3第 2 章 线性规划的图解法1、解:x 26A B1O 01C6x 1a.可行域为 OABC 。

b.等值线为图中虚线所示。

12c.由图可知,最优解为 B 点,最优解: x 1 = 769 。

7 2、解:15 x 2 =7, 最优目标函数值:a x 210.60.1O0.1 0.6x 1有唯一解x 1 = 0.2函数值为 3.6x 2 = 0.6b 无可行解c 无界解d 无可行解e 无穷多解1 2 2 1 2f 有唯一解20 x 1 =3 8函数值为 92 33、解:a 标准形式:b 标准形式:c 标准形式:x 2 = 3max fmax f= 3x 1 + 2 x 2 + 0s 1 + 0s 2 + 0s 3 9 x 1 + 2x 2 + s 1 = 303x 1 + 2 x 2 + s 2 = 13 2 x 1 + 2x 2 + s 3 = 9 x 1 , x 2 , s 1 , s 2 , s 3 ≥= −4 x 1 − 6x 3 − 0s 1 − 0s 23x 1 − x 2 − s 1 =6x 1 + 2x 2 + s 2 = 10 7 x 1 − 6 x 2 = 4x 1 , x 2 , s 1 , s 2 ≥max f = −x ' + 2x ' − 2 x ''− 0s − 0s'''− 3x 1 + 5x 2 − 5x 2 + s 1 = 70 2 x ' − 5x ' + 5x '' = 50122' ' ''3x 1 + 2 x 2 − 2x 2 − s 2 = 30'' ''4 、解:x 1 , x 2, x 2, s 1 , s 2 ≥ 0标准形式: max z = 10 x 1 + 5x 2 + 0s 1 + 0s 23x 1 + 4 x 2 + s 1 = 9 5x 1 + 2 x 2 + s 2 = 8 x 1 , x 2 , s 1 , s 2 ≥ 0s 1 = 2, s 2 = 0标准形式: min f = 11x 1 + 8x 2 + 0s 1 + 0s 2 + 0s 310 x 1 + 2x 2 − s 1 = 203x 1 + 3x 2 − s 2 = 18 4 x 1 + 9x 2 − s 3 = 36 x 1 , x 2 , s 1 , s 2 , s 3 ≥ 0s 1 = 0, s 2 = 0, s 3 = 136 、解:b 1 ≤c 1 ≤ 3c 2 ≤ c 2 ≤ 6d x 1 = 6 x 2 = 4e x 1 ∈ [4,8]x 2 = 16 − 2x 1f 变化。

《管理运筹学》第二版习题答案(韩伯棠教授)

《管理运筹学》第二版习题答案(韩伯棠教授)
约束条件2的右边值在0到1200000的范围内变化,对偶价格仍为-0.06
f600000300000100%故对偶价格不变
900000
4、解:
900000
ax18.5
x21.5
x30
x41
最优目标函数18.5
b约束条件2和3对偶价格为2和3.5 c选择约束条件3,最优目标函数值22
d在负无穷到5.5的范围内变化,其最优解不变,但此时最优目标函数值变化
max z=10x1+12x2+14x2
s.t.x1+1.5x2+4x3≤2000
2x1+1.2x2+x3≤1000
x1≤200
x2≤250
x3≤100
x1,x2,x3≥0
用管理运筹学软件我们可以求得此问题的解为:
x1=200,x2=250,x3=100
最优值为6400。
a、在资源数量及市场容量允许的条件下,生产A200件,B250件,C100
x1=8,x2=0,x3=1,x4=1,x5=0,x6=4,x7=0,x8=6,x9=0,
x10=0,x11=0
最优值为320。
a、在满足对职工需求的条件下,在10时安排8个临时工,12时新安排1个临时工,13时新安排1个临时工,15时新安排4个临时工,17时新安排6个临时工可使临时工的总成本最小。
e在0到正无穷的范围内变化,其最优解不变,但此时最优目标函数值变化
5、解:
a约束条件2的右边值增加1个单位,目标函数值将增加3.622
bx2产品的利润提高到0.703,才有可能大于零或生产
c根据百分之一百法则判定,最优解不变
d因为
15
30−9.189
65
111.25−15
100%根据百分之一百法则二,我们不能判定

管理运筹学第二版 课后习题答案 (韩伯棠主编) 高教版

管理运筹学第二版 课后习题答案 (韩伯棠主编) 高教版

第2 章线性规划的图解法1、解:x26A1O01BC36x1a.可行域为 OABC。

b.等值线为图中虚线所示。

c.由图可知,最优解为 B 点,最优解:x1 =1215x2 =,最优目标函数值:7769。

72、解:a x210.60.1O0.10.6x1有唯一解x1 = 0.2x 2 = 0.6函数值为3.6b c d e 无可行解无界解无可行解无穷多解20x1 =923f 有唯一解函数值为83x2 =33、解:a 标准形式:max f = 3x1 + 2 x 2 + 0s1 + 0 s 2 + 0s 39 x1 + 2 x 2 + s1 = 303x1 + 2 x 2 + s 2 = 132 x1 + 2 x 2 + s3 = 9x1 , x 2 , s1 , s 2 , s3 ≥ 0b 标准形式:max f = −4 x1 − 6 x3 − 0s1 − 0s23x1 − x 2 − s1 = 6x1 + 2 x 2 + s 2 = 107 x1 − 6 x 2 = 4x1 , x 2 , s1 , s 2 ≥ 0c 标准形式:max f = − x1' + 2 x2 − 2 x2 − 0s1 − 0s2'''− 3x1 + 5 x 2 − 5 x 2' + s1 = 70''2 x1' − 5 x 2 + 5 x 2' = 50''3x1' + 2 x 2 − 2 x 2' − s 2 = 30''x1' , x 2 , x 2' , s1 , s 2 ≥ 0''4 、解:标准形式:max z = 10 x1 + 5 x 2 + 0 s1 + 0 s 23x1 + 4 x 2 + s1 = 95 x1 + 2 x 2 + s 2 = 8x1 , x 2 , s1 , s 2 ≥ 0s1 = 2, s2 = 0标准形式:min f = 11x1 + 8 x 2 + 0s1 + 0s 2 + 0s310 x1 + 2 x 2 − s1 = 203x1 + 3x 2 − s 2 = 184 x1 + 9 x 2 − s3 = 36x1 , x 2 , s1 , s 2 , s3 ≥ 0 s1 = 0, s2 = 0, s3 = 136 、解:b 1 ≤ c1 ≤ 3c 2 ≤ c2 ≤ 6d x1 = 6x2 = 4x 2 = 16 − 2 x1e x1 ∈[4,8]f 变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《管理运筹学》(第二版)课后习题参考答案第1章线性规划(复习思考题)1.什么是线性规划?线性规划的三要素是什么?答:线性规划(Linear Programming,LP)是运筹学中最成熟的一个分支,并且是应用最广泛的一个运筹学分支。

线性规划属于规划论中的静态规划,是一种重要的优化工具,能够解决有限资源的最佳分配问题。

建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。

决策变量是决策问题待定的量值,取值一般为非负;约束条件是指决策变量取值时受到的各种资源条件的限制,保障决策方案的可行性;目标函数是决策者希望实现的目标,为决策变量的线性函数表达式,有的目标要实现极大值,有的则要求极小值。

2.求解线性规划问题时可能出现几种结果,哪种结果说明建模时有错误?答:(1)唯一最优解:只有一个最优点;(2)多重最优解:无穷多个最优解;(3)无界解:可行域无界,目标值无限增大;(4)没有可行解:线性规划问题的可行域是空集。

当无界解和没有可行解时,可能是建模时有错。

3.什么是线性规划的标准型?松弛变量和剩余变量的管理含义是什么?答:线性规划的标准型是:目标函数极大化,约束条件为等式,右端常数项,决策变量满足非负性。

如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。

4.试述线性规划问题的可行解、基础解、基可行解、最优解的概念及其相互关系。

答:可行解:满足约束条件的解,称为可行解。

基可行解:满足非负性约束的基解,称为基可行解。

可行基:对应于基可行解的基,称为可行基。

最优解:使目标函数最优的可行解,称为最优解。

最优基:最优解对应的基矩阵,称为最优基。

它们的相互关系如右图所示:5.用表格单纯形法求解如下线性规划。

s.t.解:标准化s.t .列出单纯形表4 12b0 2 [8]2/80 8 68/64 1 241/41/8 1/8] /8(1/4/(1/813/265/4 /4 3/4(13/2/(1/4-1/23/21/22 2 80 6 -22 1-12-52故最优解为,即,此时最优值为.6.表1—15中给出了求极大化问题的单纯形表,问表中为何值及变量属于哪一类型时有:(1)表中解为唯一最优解;(2)表中解为无穷多最优解之一;(3)下一步迭代将以代替基变量;(4)该线性规划问题具有无界解;(5)该线性规划问题无可行解。

表1—15 某极大化问题的单纯形表b0 d40 2 -150 33解:(1);(2);(3);(4);(5)为人工变量,且为包含M的大于零的数,;或者为人工变量,且为包含M的大于零的数,.7.用大M法求解如下线性规划。

s.t.解:加入人工变量,进行人造基后的数学模型如下:s.t . 列出单纯形表53 6 0 0 -Mb181 2 1 18/1162 1[3]6/3 M11 1 1 00/15+M3+M6+M0 0 031/3 5/3 0 18/3 1/38/51 6/3 2/3 1/3 1 0/3 6M14/31/3 [2/3] 0 01/34/20 0 01-1/20 0 1/25/23[1/2] 0 1 0/21/271/2 1 0 01/2 /241/200 0-3/240 0 1 136 1 0 2 0140 1-1100-10-2-1-M故最优解为,即,此时最优值为.8.A,B,C三个城市每年需分别供应电力320,250和350单位,由I,II两个电站提供,它们的最大可供电量分别为400单位和450单位,单位费用如表1—16所示。

由于需要量大于可供量,决定城市A的供应量可减少0~30单位,城市B的供应量不变,城市C的供应量不能少于270单位。

试建立线性规划模型,求将可供电量用完的最低总费用分配方案。

表1—16 单位电力输电费(单位:元)电站城市A BI15 182II 21 256解:设为“第i电站向第j城市分配的电量”(i=1,2; j=1,2,3),建立模型如下:s.t.9.某公司在3年的计划期内,有4个建设项目可以投资:项目I从第一年到第三年年初都可以投资。

预计每年年初投资,年末可收回本利120%,每年又可以重新将所获本利纳入投资计划;项目II需要在第一年初投资,经过两年可收回本利150%,又可以重新将所获本利纳入投资计划,但用于该项目的最大投资不得超过20万元;项目III需要在第二年年初投资,经过两年可收回本利160%,但用于该项目的最大投资不得超过15万元;项目IV需要在第三年年初投资,年末可收回本利140%,但用于该项目的最大投资不得超过10万元。

在这个计划期内,该公司第一年可供投资的资金有30万元。

问怎样的投资方案,才能使该公司在这个计划期获得最大利润?解:设表示第一次投资项目i ,设表示第二次投资项目i ,设表示第三次投资项目i,(i=1,2,3,4),则建立的线性规划模型为s.t.通过LINGO 软件计算得:.10.某家具制造厂生产五种不同规格的家具。

每种家具都要经过机械成型、打磨、上漆几道重要工序。

每种家具的每道工序所用的时间、每道工序的可用时间、每种家具的利润由表1—17给出。

问工厂应如何安排生产,使总利润最大?表1—17 家具生产工艺耗时和利润表生产工序所需时间(小时)每道工序可用时间(小时)12345成型 3 4 6 2 3 3600打磨 4 3 5 6 4 3950上漆 2 3 3 4 3 2800 利润(百元) 2.7 3 4.5 2.5 3解:设表示第i种规格的家具的生产量(i=1,2,…,5),则s.t.通过LINGO软件计算得:.11.某厂生产甲、乙、丙三种产品,分别经过A,B,C三种设备加工。

已知生产单位产品所需的设备台时数、设备的现有加工能力及每件产品的利润如表2—10所示。

表1—18 产品生产工艺消耗系数甲乙丙设备能力A(小时) 1 1 110 0B(小时)10 4 560 0C(小时) 2 2 630 0单位产品利润(元)10 6 4(1)建立线性规划模型,求该厂获利最大的生产计划。

(2)产品丙每件的利润增加到多大时才值得安排生产?如产品丙每件的利润增加到6,求最优生产计划。

(3)产品甲的利润在多大范围内变化时,原最优计划保持不变?(4)设备A的能力如为100+10q,确定保持原最优基不变的q的变化范围。

(5)如合同规定该厂至少生产10件产品丙,试确定最优计划的变化。

解:(1)设分别表示甲、乙、丙产品的生产量,建立线性规划模型s.t.标准化得s.t.列出单纯形表10 6 4 0 0 00 100 1 1 1 1 0 0 1000 600 [10] 4 5 0 1 0 600300 2 2 6 0 0 1 15010 6 4 0 0 00 40 0 [3/5] 1/2 1-1/100 200/310 60 1 2/5 1/2 0 1/10 0 1500180 0 6/5 5 0 -1/51 1500 2 -1 0 -1 06 200/3 0 1 5/6 5/3 -1/610 100/3 1 0 1/6 -2/3 1/6 00100 0 0 4 -2 0 10 0 -8/3 -10/3 -2/3 0故最优解为,又由于取整数,故四舍五入可得最优解为,.(2)产品丙的利润变化的单纯形法迭代表如下:10 6 0 0 0b6 200/3 0 1 5/6 5/3 -1/610 100/3 1 0 1/6 -2/3 1/6 00100 0 0 4 -2 0 10 0 -20/3 -10/3 -2/3 0要使原最优计划保持不变,只要,即.故当产品丙每件的利润增加到大于6.67时,才值得安排生产。

如产品丙每件的利润增加到6时,此时6<6.67,故原最优计划不变。

(3)由最末单纯形表计算出,解得,即当产品甲的利润在范围内变化时,原最优计划保持不变。

(4)由最末单纯形表找出最优基的逆为,新的最优解为解得,故要保持原最优基不变的q的变化范围为.(5)如合同规定该厂至少生产10件产品丙,则线性规划模型变成s.t.通过LINGO软件计算得到:.第2章对偶规划(复习思考题)1.对偶问题和对偶向量(即影子价值)的经济意义是什么?答:原问题和对偶问题从不同的角度来分析同一个问题,前者从产品产量的角度来考察利润,后者则从形成产品本身所需要的各种资源的角度来考察利润,即利润是产品生产带来的,同时又是资源消耗带来的。

对偶变量的值表示第i种资源的边际价值,称为影子价值。

可以把对偶问题的解Y定义为每增加一个单位的资源引起的目标函数值的增量。

2.什么是资源的影子价格?它与相应的市场价格有什么区别?答:若以产值为目标,则是增加单位资源i对产值的贡献,称为资源的影子价格(Shadow Price)。

即有“影子价格=资源成本+影子利润”。

因为它并不是资源的实际价格,而是企业内部资源的配比价格,是由企业内部资源的配置状况来决定的,并不是由市场来决定,所以叫影子价格。

可以将资源的市场价格与影子价格进行比较,当市场价格小于影子价格时,企业可以购进相应资源,储备或者投入生产;当市场价格大于影子价格时,企业可以考虑暂不购进资源,减少不必要的损失。

3.如何根据原问题和对偶问题之间的对应关系,找出两个问题变量之间、解及检验数之间的关系?答:(1)最优性定理:设分别为原问题和对偶问题的可行解,且,则分别为各自的最优解。

(2)对偶性定理:若原问题有最优解,那么对偶问题也有最优解,而且两者的目标函数值相等。

(3)互补松弛性:原问题和对偶问题的松弛变量为和,它们的可行解为最优解的充分必要条件是.(4)对偶问题的最优解对应于原问题最优单纯形表中,初始基变量的检验数的负值。

若对应于原问题决策变量x 的检验数,则对应于原问题松弛变量的检验数。

4.已知线性规划问题s .t .(1)求出该问题产值最大的最优解和最优值。

(2)求出该问题的对偶问题的最优解和最优值。

(3)给出两种资源的影子价格,并说明其经济含义;第一种资源限量由2变为4,最优解是否改变?(4)代加工产品丁,每单位产品需消耗第一种资源2单位,消耗第二种资源3单位,应该如何定价?解:(1)标准化,并列出初始单纯形表4 1 2 0 0b2 [8]3 1 12/88 6 1 1 08/641241/4 1 3/8 [1/8]1/8213/2 6 -5/4 1/4-3/4260 -1/2 3/2 -1/2 022 83 1 16-2-2-1-12-50 -2由最末单纯性表可知,该问题的最优解为:,即,最优值为.(2)由原问题的最末单纯形表可知,对偶问题的最优解和最优值为:.(3)两种资源的影子价格分别为2、0,表示对产值贡献的大小;第一种资源限量由2变为4,最优解不会改变。

相关文档
最新文档