数学建模试验报告-微分方程

合集下载

数学建模实验报告

数学建模实验报告

湖南城市学院数学与计算科学学院《数学建模》实验报告专业:学号:姓名:指导教师:成绩:年月日目录实验一 初等模型........................................................................ 错误!未定义书签。

实验二 优化模型........................................................................ 错误!未定义书签。

实验三 微分方程模型................................................................ 错误!未定义书签。

实验四 稳定性模型.................................................................... 错误!未定义书签。

实验五 差分方程模型................................................................ 错误!未定义书签。

实验六 离散模型........................................................................ 错误!未定义书签。

实验七 数据处理........................................................................ 错误!未定义书签。

实验八 回归分析模型................................................................ 错误!未定义书签。

实验一 初等模型实验目的:掌握数学建模的基本步骤,会用初等数学知识分析和解决实际问题。

实验内容:A 、B 两题选作一题,撰写实验报告,包括问题分析、模型假设、模型构建、模型求解和结果分析与解释五个步骤。

mathematica数学实验报告

mathematica数学实验报告

mathematica数学实验报告本次实验使用Mathematica进行数学建模实验,主要包括以下内容:三角函数、极限和导数、积分和微分方程。

一、三角函数1. 三角函数的绘制使用Mathematica的Plot函数绘制正弦函数和余弦函数的图像。

代码:Plot[{Sin[x], Cos[x]}, {x, -2 Pi, 2 Pi},PlotStyle -> {Blue, Red}, PlotTheme -> "Web"]结果:![trigonometric_functions.png](2. 求三角函数的值使用Mathematica的N函数计算正弦函数和余弦函数在不同角度下的取值。

代码:N[Sin[Pi/6]]N[Cos[Pi/6]]N[Sin[Pi]]N[Cos[Pi]]结果:0.50.8660251.22465*10^-16-1.二、极限和导数1. 求函数的极限使用Mathematica的Limit函数计算函数x^2/(4-x)在x趋近于4时的极限。

代码:Limit[x^2/(4 - x), x -> 4]结果:82. 求函数的导数使用Mathematica的D函数计算函数x^3 - 3x的导数。

代码:D[x^3 - 3x, x]结果:3 x^2 - 3三、积分和微分方程1. 求定积分使用Mathematica的Integrate函数计算函数e^x * cos(x)在0到π/2之间的定积分。

代码:Integrate[E^x * Cos[x], {x, 0, Pi/2}]结果:1/2 (1 + E^(π/2))2. 解微分方程使用Mathematica的DSolve函数求解微分方程y''(x) + 4y(x) = 0。

代码:DSolve[y''[x] + 4 y[x] == 0, y[x], x]结果:y[x] -> C[1] Cos[2 x] + C[2] Sin[2 x]本次实验使用Mathematica进行数学建模实验,主要包括三角函数的绘制、求三角函数的值,函数的极限、导数,积分和微分方程等内容。

数学建模作业、微分方程实验、北京工业大学

数学建模作业、微分方程实验、北京工业大学

2微分方程实验1、微分方程稳定性分析绘出下列自治系统相应的轨线,并标出随 t 增加的运动方向,确定平■衡点, 并按稳定的、渐近稳定的、或不稳定的进行分类:解:(1)由 f (x ) =x=0, f (y ) =y=0;可得平衡点为(0,0),___ 1 0系数矩阵A,求得特征值入1=1,入2=1;0 1p=-(入1+入2)=-2<0 , q=入1入2=1>0;对照稳定性的情况表,可知平■衡点(0, 0) 是不稳定的。

图形如下:(2)如上题可求得平衡点为(0,0 ),特征值入1=-1,入2=2;p=-(入1+入2)=-1<0 , q-入1入2=-2<0;对照稳定性的情况表,可知平■衡点(0, 0) 是不稳定的。

其图形如下:dx⑴dt dtx, y;dxdtdydt dx x, ⑶尸 2y ;晋 dx y, (4) ? 2x;也 dtx+1, 2y.(3) 如上题可求得平■衡点为(0,0 ),特征值入1=0 + 1.4142i,入2=0 -1.4142i; p=-(入1+入2)= 0, q-入1入2=1.4142>0;对照稳定性的情况表,可知平■衡点(0, 0)是不稳定的。

其图形如下:(4) 如上题可求得平衡点为(1,0 ),特征值入1=-1,入2=-2;p=-(入1+入2)= 3>0, q=入1入2=2>0;对照稳定性的情况表,可知平■衡点(1, 0) 是稳定的。

其图形如下:2、种群增长模型一个片子上的一群病菌趋向丁繁殖成一个圆菌落.设病菌的数目为N,单位成员的增长率为r1,则由Malthus生长律有竺r1 N,但是,处丁周界表面的dt那些病菌由丁寒冷而受到损伤,它们死亡的数量与N2成比例,其比例系数为r2, 求N满足的微分方程.不用求解,图示其解族.方程是否有平衡解,如果有,是否为稳定的?解:由题意很容易列出N满足的微分方程:坐r1N r2N; f(N)dt令f(N)=O,可求得方程的两个平■衡点N1=0,N2=「22/r i21 1d2N 1 5 52 (r1 r2N 2) (r1N r2N 2)dt 2进而求得A d2N 令r dt2 2 0可求得N=r2 /4r〔则N=N1 N=N2 N=r22/4r i2可以把第一象限划为三部分,且从下到上三部分中分0,冬dt2.2 2 c dN cdN c dN cdN 0, ;—0, —r 0; —0, ―rdt dt dt dt则可以画出N (t) 的图形,即微分方程的解族,如下图所示:由图形也可以看出,对丁方程的两个平■衡点,其中N1=0是不稳定的;N2=^2 /「;是稳定的o3、有限资源竞争模型1926年Volterra 提出了两个物种为共同的、有限的食物来源而竞争的模型当[b MX h 2X 2)]x dt dX2 电 2(h i X i h 2X 2)]X 2dt假设也 坦,称垣为物种i 对食物不足的敏感度,(1) 证明当x1(t0)>0时,物种2最终要灭亡; (2) 用图形分析方法来说明物种 2最终要灭亡.解:(1)由上述方程组 f (x1) =[b 1〔S' h 2x 2)]x 1=0,f (x2)=电2 (h 1X 1h 2X 2)]X 2=0,可得方程的平■衡点为R (0,0), P 1 (E,0),P 2 (0, M).2 h 2对平衡点P 。

数学建模试验报告-微分方程

数学建模试验报告-微分方程

数学建模试验报告(四)问题:(微分方程)讨论资金积累、国民收入、与人口增长的关系.(1)若国民平均收入x与按人口平均资金积累y成正比,说明仅当总资金积累的相对增长率k 大于人口的相对增长率r时,国民平均收入才是增长的.(2)作出k(x)和r(x)的示意图,分析人口激增会引起什么后果.问题的分析和假设:问题分析:人口增长与国民收入增长的关系决定人均国民收入指标的变化,人均国民收入与人口增长成反比,与国民收入增长成正比。

总资金增长与人口增长都满足指数增长,由题意知:国民平均收入与人口平均资金积累成正比,设此比例系数为a。

在国家统计局网站查询得:2012年,我国大陆总人口数为134735万人,总资金(国内生产总值)总量为万亿元,则a的值约为1。

问题假设:X1(t)为t时刻总资金积累量X2(t)为t时刻的人口数量X3(t)为t时刻国民平均收入量Y(t)为人口平均资金积累k为总资金的相对增长率r为人口的相对增长率建模:由分析及假设可列出如下方程:一定时期后,增长的人口数量为:X2 rx2 ;总资金增长量为x i kx i ; 由题意知:X3(t) a Y(t)Y(t) x i(t) X2(t)由上述公式,微分得:dX3(t) ag[k r)gx3(t) dt所以当k>r时,国民收入x 0,x(t)增加,即国民平均收入增加列微分方程如下:dx1,kgx1dtdx2rgx2dt()ag(k r)gx3(t) dt求解的Matlab程序代码:建立.M文件,,如下:function dx=lab4(t,x)dx=zeros(3,1);k=;r=;a=1;dx(1)=k*x(1);dx(2)=r*x(2);dx(3)=a*(k-r)*x(3);主程序:[t,x]=ode45('lab4',[2011 2100],[134735 00 ]);figure(1),plot(t,x(:,1),'k*')xlabel('时间[年]'),ylabel('总资金积累量[亿元]')figure(2),plot(t,x(:,2),'m-')hold onxlabel('时间[年]'),ylabel('人口总数')figure(3),plot(t,x(:,3),'r+')hold onxlabel('时间[年]'),ylabel('国民平均收入量')计算结果与问题分析讨论:由题意和模型分析知:国民收入量呈指数增长,增长率为(k-r),则当k>r时,国民平均收入量才会呈现增长趋势。

数学建模实验二:微分方程模型Matlab求解与分析

数学建模实验二:微分方程模型Matlab求解与分析

实验二: 微分方程模型Matlab 求解与分析一、实验目的[1] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析; [2] 熟悉MATLAB 软件关于微分方程求解的各种命令;[3] 通过范例学习建立微分方程方面的数学模型以及求解全过程; [4] 熟悉离散 Logistic 模型的求解与混沌的产生过程。

二、实验原理1. 微分方程模型与MATLAB 求解解析解用MATLAB 命令dsolve(‘eqn1’,’eqn2’, ...) 求常微分方程(组)的解析解。

其中‘eqni'表示第i 个微分方程,Dny 表示y 的n 阶导数,默认的自变量为t 。

(1) 微分方程 例1 求解一阶微分方程 21y dxdy+= (1) 求通解 输入:dsolve('Dy=1+y^2')输出:ans =tan(t+C1)(2)求特解 输入:dsolve('Dy=1+y^2','y(0)=1','x')指定初值为1,自变量为x 输出:ans =tan(x+1/4*pi)例2 求解二阶微分方程 221()04(/2)2(/2)2/x y xy x y y y πππ'''++-=='=-原方程两边都除以2x ,得211(1)04y y y x x'''++-= 输入:dsolve('D2y+(1/x)*Dy+(1-1/4/x^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x')ans =- (exp(x*i)*(pi/2)^(1/2)*i)/x^(1/2) +(exp(x*i)*exp(-x*2*i)*(pi/2)^(3/2)*2*i)/(pi*x^(1/2))试试能不用用simplify 函数化简 输入: simplify(ans)ans =2^(1/2)*pi^(1/2)/x^(1/2)*sin(x) (2)微分方程组例3 求解 d f /d x =3f +4g ; d g /d x =-4f +3g 。

微分方程数值解实验报告

微分方程数值解实验报告

微分方程数值解实验报告实验目的:掌握微分方程数值解的基本方法,能够利用计算机编程求解微分方程。

实验原理:微分方程是自然科学与工程技术中常见的数学模型,它描述了变量之间的关系及其随时间、空间的变化规律。

解微分方程是研究和应用微分方程的基础,但有很多微分方程无法找到解析解,只能通过数值方法进行求解。

本实验采用欧拉方法和改进的欧拉方法求解微分方程的初值问题:$$\begin{cases}\frac{dy}{dt}=f(t,y)\\y(t_0)=y_0\end{cases}$$其中,$f(t,y)$是给定的函数,$y(t_0)=y_0$是已知的初值条件。

欧拉方法是最基本的数值解法,其步骤如下:1.给定$t_0$和$y_0$2.计算$t_{i+1}=t_i+h$,其中$h$是步长3. 计算$y_{i+1}=y_i+hf(t_i,y_i)$4.重复步骤2、3直到达到终止条件改进的欧拉方法是对欧拉方法进行改进,通过利用函数$y(t)$在$t+\frac{1}{2}h$处的斜率来更准确地估计$y_{i+1}$,其步骤如下:1.给定$t_0$和$y_0$2.计算$t_{i+1}=t_i+h$,其中$h$是步长3. 计算$y_*=y_i+\frac{1}{2}hf(t_i,y_i)$4. 计算$y_{i+1}=y_i+hf(t_i+\frac{1}{2}h,y_*)$5.重复步骤2、3、4直到达到终止条件实验步骤:1.编写程序实现欧拉方法和改进的欧拉方法2.给定微分方程和初值条件3.设置步长和终止条件4.利用欧拉方法和改进的欧拉方法求解微分方程5.比较不同步长下的数值解与解析解的误差6.绘制误差-步长曲线,分析数值解的精度和收敛性实验结果:以一阶常微分方程$y'=3ty+t$为例,给定初值$y(0)=1$,取步长$h=0.1$进行数值求解。

利用欧拉方法求解微分方程得到的数值解如下:\begin{array}{cccc}t & y_{\text{exact}} & y_{\text{Euler}} & \text{误差} \\ \hline0.0&1.000&1.000&0.000\\0.1&1.035&1.030&0.005\\0.2&1.104&1.108&0.004\\0.3&1.212&1.217&0.005\\0.4&1.360&1.364&0.004\\0.5&1.554&1.559&0.005\\0.6&1.805&1.810&0.005\\0.7&2.131&2.136&0.005\\0.8&2.554&2.560&0.006\\0.9&3.102&3.107&0.006\\1.0&3.807&3.812&0.005\\\end{array}利用改进的欧拉方法求解微分方程得到的数值解如下:\begin{array}{cccc}t & y_{\text{exact}} & y_{\text{Improved Euler}} & \text{误差} \\\hline0.0&1.000&1.000&0.000\\0.1&1.035&1.035&0.000\\0.2&1.104&1.103&0.001\\0.3&1.212&1.211&0.001\\0.4&1.360&1.358&0.002\\0.5&1.554&1.552&0.002\\0.6&1.805&1.802&0.003\\0.7&2.131&2.126&0.005\\0.8&2.554&2.545&0.009\\0.9&3.102&3.086&0.015\\1.0&3.807&3.774&0.032\\\end{array}误差-步长曲线如下:实验结论:通过对比欧拉方法和改进的欧拉方法的数值解与解析解的误差,可以发现改进的欧拉方法具有更高的精度和收敛性。

(完整word版)数学建模实训报告

(完整word版)数学建模实训报告

目录实训项目一线性规划问题及lingo软件求解 (1)实训项目二lingo中集合的应用…………………………………………。

7实训项目三lingo中派生集合的应用 (9)实训项目四微分方程的数值解法一 (13)实训项目五微分方程的数值解法二……………………………………。

.15实训项目六数据点的插值与拟合 (17)综合实训作品 (18)每次实训课必须带上此本子,以便教师检查预习情况和记录实验原始数据。

实验时必须遵守实验规则.用正确的理论指导实践袁必须人人亲自动手实验,但反对盲目乱动,更不能无故损坏仪器设备。

这是一份重要的不可多得的自我学习资料袁它将记录着你在大学生涯中的学习和学习成果.请你保留下来,若干年后再翻阅仍将感到十分新鲜,记忆犹新.它将推动你在人生奋斗的道路上永往直前!项目一:线性规划问题及lingo软件求解一、实训课程名称数学建模实训二、实训项目名称线性规划问题及lingo软件求解三、实验目的和要求了解线性规划的基本知识,熟悉应用LINGO解决线性规划问题的一般方法四:实验内容和原理内容一:某医院负责人每日至少需要下列数量的护士班次时间最少护士数1 6:00—10:00 602 10:00—14:00 703 14:00—18:00 604 18:00—22:00 505 22:00—02:00 206 02:00—06:00 30每班的护士在值班的开始时向病房报道,连续工作8个小时,医院领导为满足每班所需要的护士数,最少需要多少护士。

内容二:内容三五:主要仪器及耗材计算机与Windows2000/XP系统;LINGO软件六:操作办法与实训步骤内容一:考虑班次的时间安排,是从6时开始第一班,而第一班最少需要护士数为60,故x1>=60 ,又每班护士连续工作八个小时,以此类推,可以看出每个班次的护士可以为下一个班次工作四小时,据此可以建立如下线性规划模型:程序编程过程:min=x1+x2+x3+x4+x5+x6;x1〉=60;x1+x2〉=70;x2+x3>=60;x3+x4〉=50;x4+x5〉=20;x5+x6〉=30;编程结果:Global optimal solution found.Objective value:150.0000 Infeasibilities: 0。

建模实验报告

建模实验报告

建模实验报告摘要:本实验主要针对建模方法进行研究与探索,分别采用了数学模型、统计模型和物理模型进行建模实验。

实验结果表明,不同的建模方法对于问题的解决和分析具有不同的优势和适用性,选择合适的建模方法能够有效提高问题的解决效率和精确度。

1.引言建模是指将实际问题转化为数学模型、统计模型或物理模型等形式的一种方法。

通过建模,我们可以抽象出实际问题中的关键因素和变量,进一步分析和解决问题。

本实验将重点研究数学模型、统计模型和物理模型的建模方法,并通过实验验证其有效性和适用性。

2.数学模型的建模方法数学模型是以数学的形式描述实际问题的模型。

在本实验中,我们采用了几种常见的数学建模方法,包括代数方程模型、微分方程模型和最优化模型。

2.1 代数方程模型代数方程模型是一种通过代数方程来描述问题的模型。

我们可以采用一系列代数方程来表示问题中的变量和关系,进而通过求解方程组来得到问题的解。

在实验中,我们以一个简单的线性方程组作为例子,通过代数方程模型计算方程组的解。

2.2 微分方程模型微分方程模型是一种通过微分方程来描述问题的模型。

微分方程可以描述问题中的变量和其变化率之间的关系。

在实验中,我们以一个经典的弹簧振动模型为例,通过微分方程模型求解系统的振动频率和振幅。

2.3 最优化模型最优化模型是一种通过寻找最优解来描述问题的模型。

最优化模型可以用于解决各种优化问题,如线性规划、整数规划等。

在实验中,我们以一个简单的线性规划问题为例,通过最优化模型求解问题的最优解。

3.统计模型的建模方法统计模型是一种通过统计理论和方法来描述问题的模型。

在本实验中,我们主要研究了回归分析和时间序列分析两种常见的统计建模方法。

3.1 回归分析回归分析是一种通过建立变量之间的回归关系来描述问题的模型。

在实验中,我们以一个销售数据的回归分析为例,通过建立销售额和广告投入之间的回归关系,预测未来的销售额。

3.2 时间序列分析时间序列分析是一种通过统计和数学方法来描述时间序列的模型。

数学建模作业实验2微分方程实验

数学建模作业实验2微分方程实验

数学建模作业(实验2微分方程实验)基本实验1.微分方程稳定性分析绘出下列自治系统相应的轨线,并标出随t 增加的运动方向,确定平衡点,并按稳定的、渐近稳定的、或不稳定的进行分类:,,,+1,(1)(2)(3)(4);2;2;2.dx dx dx dxx x y x dt dt dt dt dy dy dy dy y y x y dt dt dt dt ⎧⎧⎧⎧==-==-⎪⎪⎪⎪⎪⎪⎪⎪⎨⎨⎨⎨⎪⎪⎪⎪===-=-⎪⎪⎪⎪⎩⎩⎩⎩解答解:(1)由平衡点的定义可得,f (x )=x=0,f (y )=y=0,因此平衡点为(0,0),微分方程组的系数矩阵为1001A ⎡⎤=⎢⎥⎣⎦,显然其特征值为12=1=1λλ,;由根与系数的关系可得:1212()2010p q λλλλ=-+=-<==>,且24p q >,由平衡点与稳定性的各种情况可知,平衡点(0,0)是不稳定的。

自治系统相应轨线为:(2)由平衡点的定义可得,f (x)=-x=0,f (y )=2y=0,因此平衡点为(0,0),微分方程组的系数矩阵为-1002A ⎡⎤=⎢⎥⎣⎦,显然其特征值为12=-1=2λλ,;由根与系数的关系可得:121210-(2<0)p q λλλλ=-+=-<==,,平衡点(0,0)是不稳定的。

自治系统相应轨线为:(3)由平衡点的定义可得,f (x )=y=0,f (y )=-2x=0,因此平衡点为(0,0),微分方程组的系数矩阵为0120A ⎡⎤=⎢⎥-⎣⎦,显然其特征值为121.4142=4142=-1.i i λλ,;由根与系数的关系可得:12120 1.41420()p q λλλλ=-+===>,,由平衡点与稳定性的各种情况可知,平衡点(0,0)是不稳定的。

自治系统相应轨线为:(4)由平衡点的定义可得,f (x )=-x=0,f (y )=-2y=0,因此平衡点为(0,0),微分方程组的系数矩阵为-100-2A ⎡⎤=⎢⎥⎣⎦,显然其特征值为12==-12-λλ,;由根与系数的关系可得:1212()3020p q λλλλ=-+=>==>,且24p q >,由平衡点与稳定性的各种情况可知,平衡点(0,0)是稳定的。

常微分方程数学建模案例分析

常微分方程数学建模案例分析

常微分方程数学建模案例分析假设我们要研究一个简单的生物系统:一种细菌的生长过程。

我们知道,细菌的生长通常可以描述为以指数速度增长的过程。

为了建立一个数学模型,我们首先需要确定一些基本假设和已知信息。

基本假设:1.我们假设细菌的生长速度与细菌的数量成正比。

2.我们假设细菌的死亡速率与细菌的数量成正比。

已知信息:1.我们已经知道在初始时刻,细菌的数量为N0个。

2.我们已经知道在初始时刻的细菌数量的增长速率为r个/单位时间。

3.我们已经知道在初始时刻的细菌数量的死亡速率为d个/单位时间。

接下来,我们将建立一个常微分方程模型来描述细菌数量的变化。

假设t表示时间,N(t)表示时间t时刻的细菌数量,则我们可以得到以下微分方程:dN/dt = rN - dN这个方程的含义是,细菌数量的变化率等于细菌的增长速率减去细菌的死亡速率。

如果我们将细菌的增长速率和死亡速率设为常数r和d,则上述方程可以进一步简化为:dN/dt = (r-d)N解这个微分方程,我们可以得到细菌数量随时间变化的函数N(t)。

根据初值条件N(0)=N0,我们可以求解该方程并得到解析解:N(t) = N0 * exp((r-d)t)上述解析解告诉我们,细菌数量随时间以指数速度增长。

这与我们的基本假设相符。

然而,对于复杂的系统,往往很难获得精确的解析解。

在这种情况下,我们可以使用数值方法来求解微分方程。

常见的数值方法包括欧拉法、改进的欧拉法和四阶龙格-库塔法等。

这些方法基于近似计算的原理,通过迭代逼近解。

在我们的细菌生长模型中,我们可以使用数值方法来计算细菌数量随时间的变化。

我们可以选择欧拉法,它是一种简单而直观的数值方法。

欧拉法的迭代公式为:N(t+h)=N(t)+h*(r-d)N(t)其中,N(t)是在时间t时刻的细菌数量,N(t+h)是在时间(t+h)时刻的细菌数量,h是时间间隔。

我们可以选择一个足够小的时间间隔h,并迭代使用欧拉法来计算细菌数量的近似解。

专业数学建模实验[1]

专业数学建模实验[1]

《数学建模与数学实验》实验报告实验1 种群生存模型专业、班级 信息1002 学号 201010010205 姓名 董伟星 课程编号 81010240实验类型 验证性学时2实验(上机)地点 教七楼数学实验中心 完成时间 2012年5月24日任课教师谷根代评分一、实验目的及要求1.掌握数学软件Matlab 的基本用法和一些常用的规则,能用该软件进行编程; 2.能够借助数学软件进行常微分方程初始问题的求解和分析;3.理解种群生存的相互竞争、相互依存和弱肉强食的数学模型和机理。

二、借助数学软件,研究、解答以下问题(一)在两种群的相互竞争模型中,给定1212,,,r r N N ,讨论121212,,σσσσσσ=<>的情况下的竞争结果,并给出解释。

【解】: 有甲乙两个种群,当他们独立在一个自然环境中生存时他们的数量服从Logistic 规律即.12111112.12222212()(1)()(1)x x x t r x N N x xx t r x N N σσ⎧⎪=--⎪⎨⎪=--⎪⎩这里1σ表示单位数量的乙消耗的供养甲的食物量为单位数量甲消耗供养甲的食物数量的1σ的倍,2σ表示单位数量的甲消耗的供养乙的食物量为单位数量乙消耗的供养乙的食物数量的2σ倍,当11>σ表示消耗甲供养的资源中乙消耗的多于甲,即乙的竞争力强于甲,一般可假定121==σσ,211σσ>>,211σσ<<三种情况,令N1=150,N2=200,r1=1,r2=0.5。

当12σσ<时,不妨取6.15.021==σσ,的情况 先定义函数:function dy=jz1(t,x) dy=zeros(2,1);N1=150;N2=200;r1=1;r2=0.5; s1=0.5;s2=1.6;dy(1)=r1*x(1)*(1-x(1)./N1-s1*x(2)./N2); dy(2)=r2*x(2)*(1-s2*x(1)./N1-x(2)./N2); end再调用函数,画出图形:[T,Y]=ode45('jz1',[0 40],[10 40]); subplot(1,2,1)plot(T,Y(:,1),'r*-',T,Y(:,2),'bh'),xlabel('t'),ylabel('x(t)') title('竞争模型(竞争力甲强于乙)'),legend('x1(t)','x2(t)') subplot(1,2,2)plot(Y(:,1),Y(:,2),'r'),title('相轨线的图形') 结果如图所示:结果解释:从数学表达式方面:由上图可知,种群乙数量的变化先增加后减少,开始时种群甲、乙数量都很小,使122121x x N N σ-->0,导致种群乙数量不断增加,在种群甲、乙数量变化过程中一直有121121x x N N σ-->0,所以种群甲数量一直增加,当122121x x N N σ--<0时,种群乙数量减少,最终种群乙灭亡,此时121121x x N N σ--趋近于0,种群甲数量基本不变;从生态学解释:刚开始种群甲、乙数量很少,资源相对充足,种群甲、乙数量增加,由于甲的竞争能力大于乙,所以种群甲的数量增长较快,当增长到一定程度,资源相对种群数量匮乏,竞争能力弱的就会逐渐死亡,竞争能力强的生存下来,最后种群甲的数量相对于资源达到动态平衡。

数学建模中的微分方程及其应用研究

数学建模中的微分方程及其应用研究

数学建模中的微分方程及其应用研究随着科技的不断发展,数学建模已经成为了一个不可或缺的工具。

数学建模是指将现实问题抽象为数学模型,通过数学方法来预测和解决问题。

微分方程是数学建模中的关键工具之一。

在本文中,我将介绍微分方程在数学建模中的重要性以及其应用研究。

一、微分方程的定义和分类微分方程是描述一个或多个未知函数及其导数之间关系的方程,通常用来描述自然现象。

微分方程可以分为常微分方程和偏微分方程两种。

常微分方程是指只涉及一个自变量的导数的方程,例如:$\frac{dy}{dx}= f(x,y)$偏微分方程是指涉及多个自变量的导数的方程,例如:$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}=0$二、微分方程在数学建模中的重要性微分方程在数学建模中有着广泛的应用。

它可以用来研究自然现象中的变化关系,例如物理学中的运动规律、化学中的反应过程,甚至是医学中的疾病治疗。

通过微分方程的求解,我们可以得到有关系统的重要信息,比如系统的稳定性、解的性质、系统的动态行为等等。

三、常微分方程在数学建模中的应用常微分方程是数学建模中最常见的工具之一。

在数学建模中,解决一个常微分方程通常需要以下步骤:1. 根据问题描述建立数学模型。

2. 对模型中的常微分方程进行求解。

3. 通过解析解或数值解来得到所需的结果。

以下是常微分方程在数学建模中的一些应用:1. 表示天体运动的牛顿运动定律。

牛顿运动定律可以用一个常微分方程来描述:$m\frac{d^2x}{dt^2}= -G\frac{Mm}{r^2}$其中,$m$ 是天体的质量,$M$ 是太阳的质量,$r$ 是天体和太阳之间的距离,$G$ 是万有引力常数,$x$ 是天体相对太阳的位置。

通过求解这个方程,我们可以得到天体的运动轨迹。

2. 描述弹簧振动的简谐运动。

弹簧振动可以用一个常微分方程来描述:$m\frac{d^2x}{dt^2}= -kx$其中,$m$ 是弹簧质量,$k$ 是弹簧的弹性系数,$x$ 是弹簧相对平衡位置的偏移量。

微分方程实验报告

微分方程实验报告

微分方程实验报告实验名称:不同数值方法解常微分方程的数值精度实验目的:比较同一数值方法不同刨分数解常微分方程的数值精度,比较不同数值方法在相同刨分数下解常微分方程的数值精度,并将他们与理论数值精度相比;求出截断误差。

实验要求:1.编写程序求解微分方程000(,)()du f x u x x b dx u x u ⎧=⎪<≤⎨⎪=⎩其中f 是x 和u 的已知函数,0u 是给定初值。

2.至少用下列方法实验步骤:一. 初值问题:(),5.11,11,222≤<⎪⎩⎪⎨⎧=-='x u u xx u u 解析解:()3122334⎪⎪⎭⎫ ⎝⎛-=x x x u .二. 解:对该问题,10=u ,00=x ,mh x m =。

0125.0=h1. Euler 公式:1(,),0,1,m m m m u u hf x u m +=+=2. 梯形法公式:111[(,)(,)]/2,0,1,m m m m m m u u h f x u f x u m +++=++=3. 三阶Heun 公式:21131132(3)/4(,),(/3,/3),(2/3,2/3),0,1,m m m m m m m m u u hf k k k f x u k f x h u hk k f x h u hk m +=++==++=++=4. 四阶Runge-Kutta 公式:211234113243(22)/6(,),(/2,/2),(/2,/2),(,),0,1,m m m m m m m m m u u hf k k k k k f x u k f x h u hk k f x h u hk k f x h u hk m +=++++==++=++=++=5. 四阶Adams 外插公式:(显式)),(,4,3,24/)9375955/(3211m m m m m m m m m u x f f m f f f f h u u ==-+-+=---+6. 四阶Gear 公式:11231(4836163)/2512/25,3,4,m m m m m m u u u u u hf m +---+=-+-+=理论数值精度p=4;其中,m u 作为()m u x 的近似值(m=1,2,…)三.计算方法的数值精度 首先取步长h 进行计算,得到()u x 在b 点的近似值()h u b ,根据误差估计,得()()ph h e u b u b M h =-≈,其中p 是方法的阶。

数学建模实验5-微分方程求解

数学建模实验5-微分方程求解
取t0=0,tf=500,输入命令:
[x,y]=ode23('zhuiji',[500 1],[0 0]);
y1=y(:,1);
plot(x,y1)
结果如图
五、实验心得(质疑、建议):
plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+')
结果如图
(3)
解:令y1=x,y2=y1’
则微分方程变为一阶微分方程组:
建立M文件
function dy=vdp1000(t,y)
dy=zeros(2,1);
dy(1)=y(2);
dy(2)=1000*(1-y(1)^2)*y(2)-y(1)
湖南第一师范学院数学系实验报告
姓名:
学号:
专业:
数学与应用数学
班级:
课程名称:
线性规划与数学建模
实验名称:
微分方程(组)的Matlab求解
实验类型:
基础实验
实验室名称:
数学建模实验室
实验地点:
实A302
实验时间:
2016年6月14日
指导教师:
成绩评定:
一、实验目的与要求:
1、掌握微分方程(组)的解析解法。
取t0=0,tf=3000,输入命令:
[T,Y]=ode15s('vdp1000',[0 3000],[2 0]);
plot(T,Y(:,1),'-')
结果如图
4.
建立如下微分方程模型:
其中,
转化为一阶微分方程组:

建立M文件:
function f=zhuiji(x,y)

数学建模-- 常微分方程数值解及实验

数学建模-- 常微分方程数值解及实验

注意:
1、在解n个未知函数的方程组时,x0和x均为n维向量, m-文件中的待解方程组应以x的分量形式写成. 2、使用Matlab软件求数值解时,高阶微分方程必须 等价地变换成一阶微分方程组.

d 2x dx 2 x 0 2 ( x 1) dt dt x (0 ) 2; x '(0 ) 0
实际应用时,与欧拉公式结合使用:
0 y i( 1) y i hf ( x i , y i ) h ( k 1) (k ) y i 1 y i [ f ( x i , y i ) f ( x i 1 , y i 1 )] k 0 ,1, 2 , 2
•欧拉法是一阶公式,改进的欧拉法是二阶公式。
•龙格-库塔法有二阶公式和四阶公式。 •线性多步法有四阶阿达姆斯外插公方程的数值解
[t,x]=solver(’f’,ts,x0,options)
自变 量值 函数 值
ode45 ode23 ode113 ode15s ode23s
1、建立m-文件vdp1.m如下: function dy=vdp (t,y) dy=zeros(2,1); dy(1)=y(2); dy(2)=(1-y(1)^2)*y(2)-y(1); 2、取t0=0,tf=20,输入命令: [T,Y]=ode15s('vdp1',[0 20],[2 0]); plot(T,Y(:,1),'-')
y ( x i 1 ) y ( x i )

xi 1
f ( t , y ( t )) dt
x i 1 x i 2
xi
[ f ( x i , y ( x i )) f ( x i 1 , y ( x i 1 ))]

常微分方程--酒驾问题

常微分方程--酒驾问题

东南大学数学建模实验报告实验内容:酒驾问题一实验目的(1)掌握常微分方程建模问题(2)学会使用Matlab进行常微分方程的求解二实验内容与要求国家质量监督检验检疫局 2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒 精含量阈值与检验》国家标准,新标准规定,车辆驾驶人 员血液中的酒精含量大于或等于20毫克/百毫升,小于80 毫克/百毫升为饮酒驾车(原标准是小于100毫克/百毫 升),血液中的酒精含量大于或等于80毫克/百毫升为醉 酒驾车(原标准是大于或等于100毫克/百毫升 )。

在中某人午12点喝了一瓶啤酒,下午6点检查时符合 新的驾车标准,紧接着他在吃晚饭时又喝了一瓶啤酒,为 了保险起见他呆到凌晨2点才回家,又一次遭遇检查时却 被定为饮酒驾车,这让他懊恼又困惑,为什么喝了同样多 的酒,两次检查结果会不一样呢?请你参考下面的数据建立饮酒后 血液中酒精含量的数学模型,并讨论以下问题: 1、对某人碰到的情况作出解释; 2、假设酒是在很短时间内喝的,在喝了3瓶啤酒或半斤低度白酒后多长时间内驾车就会违反上述标准.3、怎样估计血液中酒精含量在什么时候最高。

4、根据你的模型论证:如果天天喝酒,是否能开车? 以下是某人喝了两瓶啤酒后血液酒精浓度(毫克/百毫升)三 假设及建模假设一:机体分为中心室和周边室,两个室的容积在过程中保持不变。

假设二:药物从一室向另一室的转移速率,及向体外的排除速率,与该室的酒精浓度成正比。

假设三:只在中心室一体外有酒精交换,即酒精从体外进入中心室,最后又从中心室排出体外,与转移和排除的数量相比,酒精的吸收可以忽略。

建模:二室模型的示意图如下图所示:饮酒()t f 0两个房室中酒精量)(),(21t x t x 满足的微分方程。

)(1t x 的变化率由一室向二室的转移112x k -,一室向体外排除113xk -,二室向一室的转移221x k 及酒精)(0t f 组成;)(2t x的变化率由一室向二室的转移112x k 及二室向一室的转移221x k -组成,于是有: )(022********t f x k x k x k dtdx ++--=2211122x k x k dtdx -= (1) )(t x i 与血液中酒精含量)(t c i 、房室容积i V 显然有关系式2,1.................................),........()(==i t c V t x i i i (2)将(2)式代入(1)式可得:2211122121022112113121)()(c k c k V V dt dc V t f c k V Vc k k dt dc -=+++-= (3)喝酒相当于在酒精进入中心室之前先有一个将酒精吸收入血液的过程,可以简化为有一个吸收室,如下图,)(0t x 为吸收室的酒精,酒精由吸收室进入中心室的转移速率系数为01k ,于是)(0t x 满足:00010)0(D x x k dt dx =-= (4)当0)0(,)0(,0)(2110===c V D c t f 时,(3)可以化为: t t Be Ae t c βα--+=)(1四 代码及结果format short g% 题中提供的某人喝了两瓶啤酒后血液酒精浓度随时间变化表t=[ 0.25; 0.5; 0.75; 1; 1.5; 2; 2.5; 3; 3.5; 4; 4.5; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15; 16 ];c=[ 30; 68; 75; 82; 84; 77; 70; 68; 58; 51; 50; 41; 38; 35; 28; 25; 18; 15; 12; 10; 7; 7; 4 ];% 根据此变化表拟合求解相关系数ft =fittype('A1*exp(-a*x)+B1*exp(-b*x)');options = fitoptions('Method','NonlinearLeastSquares');options.StartPoint = [0 -1000 0 0];cfit = fit(t,c,ft,options);plot( cfit, t, c, 'o' );A1=cfit.A1B1=cfit.B1a=cfit.ab=cfit.b由此解得:(数值见右图,拟合曲线见下图)A1 = 110.55B1 = -151.46a = 0.17949b = 2.8243%---1---%%问题:某人中午12点喝了一瓶啤酒,下午6点检查合格,晚饭又喝一瓶,次日凌晨2点检查未通过,请对此情况做出解释。

数学实验与数学建模MATLAB实验报告78

数学实验与数学建模MATLAB实验报告78

数学实验与数学建模MATLAB实验报告78数学实验与数学建模实验报告学院:信息科学与⼯程学院专业班级:姓名:学号:习题七1.求下列微分⽅程的通解(1)x y x y dx dy -+=(2)yxx y y +=cos ' (3)(xcosy+sin2y )y`=1 (4)x ey y y x2cos 3=-'+''(5) x y e y y x 2cos 3'''=-+解:(1)dsolve('Dy=(y+x)/(y-x)','x')(2)dsolve('Dy=cos(y/x)+x/y','x')(3)dsolve('(x*cos(y)+sin(2*y))*Dy=1','x')(4)dsolve('D2y+3*Dy-y=exp(x)*cos(2*x)','x')(5)dsolve('D2y+3*Dy-y=exp(x*cos(2*x))','x')ans=exp(1/2*(-3+13^(1/2))*x)*C2+exp(-1/2*(3+13^(1/2))*x)*C1-1/13*13^(1/2)*(-Int(exp (1/2*x*(3-13^(1/2)+2*cos(2*x))),x)*exp(x*13^(1/2))+Int(exp(1/2*x*(3+13^(1/2)+2*cos(2*x))),x))*exp(-1/2*(3+13^(1/2))*x) 2.求下列初值问题的解(1)==-++-+=10)2(212222y x y y x x dx dy xy xy (2)????===++==V dt dx x x a t t x dt dx n dt x d 000222,02解:(1) dsolve('x^2+2*x*y-y^2+(y^2+2*x*y-x^2)*Dy=0','y(1)=1','x')(2) dsolve('D2x+2*n*Dx+a^2*x=0','x(0)=x0','Dx(0)=V0','t')ans =1/2*(n*x0+(n^2-a^2)^(1/2)*x0+V0)/(n^2-a^2)^(1/2)*exp((-n+(n^2-a^2)^(1/2))*t )-1/2*(n*x0-(n^2-a^2)^(1/2)*x0+V0)/(n^2-a^2)^(1/2)*exp((-n-(n^2-a^2)^(1/2))*t)3.求微分⽅程组=--=++t te y x dtdy e y x dtdx 235的通解.解:[x,y]=dsolve('Dx+5*x+y=exp(t)','Dy-x-3*y=exp(2*t)','t')x =-4*exp((-1+15^(1/2))*t)*C2+exp((-1+15^(1/2))*t)*C2*15^(1/2)-4*exp(-(1+15^(1/2))*t)*C1-exp(-(1+15^(1/2))*t)*C1*15^(1/2)+2/11*exp(t)+1/6*exp(2*t) y =exp((-1+15^(1/2))*t)*C2+exp(-(1+15^(1/2))*t)*C1-1/11*exp(t)-7/6*exp(2*t) 4.求下列初值问题的解(1)⽅程组+=+=11x dtdy y dt dx满⾜=-=0)0(2)0(y x 的特解。

数学建模实验报告求微分方程的解

数学建模实验报告求微分方程的解

求微分方程的解一、实验目的及意义1. 归纳和学习求解常微分方程(组)的基本原理和方法;2. 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析;3. 熟悉MATLAB 软件关于微分方程求解的各种命令。

二、实验内容1.微分方程及方程组的解析求解法; 2.微分方程及方程组的数值求解法——欧拉、欧拉改进算法; 3.直接使用MATLAB 命令对微分方程(组)进行求解(包括解析解、数值解); 4. 利用图形对解的特征作定性分析。

三、实验步骤1.开启软件平台——MATLAB ,开启MATLAB 编辑窗口; 2.根据微分方程求解步骤编写M 文件 3.保存文件并运行; 4.观察运行结果(数值或图形); 5. 根据观察到的结果和体会写出实验报告。

四、实验要求与任务根据实验内容和步骤,完成以下实验,要求写出实验报告1. 求微分方程0sin 2')1(2=-+-x xy y x 的通解.2. 求微分方程x e y y y x sin 5'2''=+-的通解.3. 求微分方程组⎪⎪⎩⎪⎪⎨⎧=-+=++00y x dtdy y x dt dx 在初始条件0|,1|00====t t y x 下的特解,并画出解函数()y f x =的图形.4. 分别用 ode23、ode45 求上述第 3 题中的微分方程初值问题的数值解(近似解),求解区间为[0,2]t ∈.利用画图来比较两种求解器之间的差异.5. 用 Euler 折线法求解微分方程初值问题⎪⎩⎪⎨⎧=-=1)0(,12'32y y x y y 的数值解(步长h 取0.1),求解范围为区间[0,2].6. 用四阶 Runge-Kutta 法求解微分方程初值问题⎩⎨⎧=-=1)0(,cos 'y x e y y x 的数值解(步长h 取0.1),求解范围为区间[0,3].五. 程序代码及运行结果(经调试后正确的源程序)1. 求微分方程0sin 2')1(2=-+-x xy y x 的通解.程序代码:syms x yfprintf('通解为')y=dsolve('(x^2-1)*Dy+2*x*y-sin(x)=0','x')运行结果:通解为y =(-cos(x)+C1)/(x^2-1)2. 求微分方程x e y y y x sin 5'2''=+-的通解.程序代码:syms x yfprintf('通解为')y=dsolve('D2y-2*Dy+5*y=exp(x)*sin(x)','x')运行结果:通解为y =-1/4*exp(x)*cos(2*x)*sin(x)+1/12*exp(x)*cos(2*x)*sin(3*x)-1/12*exp(x)*sin(2*x)*cos(3*x)+1/4*exp(x)*sin(2*x)*cos(x)+C1*exp(x)*cos(2*x)+C2*e xp(x)*sin(2*x)3. 求微分方程组⎪⎪⎩⎪⎪⎨⎧=-+=++00y x dtdy y x dt dx 在初始条件0|,1|00====t t y x 下的特解,并画出解函数()y f x =的图形. 程序代码:syms x y t[x,y]=dsolve('Dx+x+y=0','Dy+x-y=0','x(0)=1','y(0)=0','t')ezplot(x,y,[0,2]);运行结果:x =1/2*exp(2^(1/2)*t)+1/4*2^(1/2)*exp(-2^(1/2)*t)-1/4*2^(1/2)*exp(2^(1/2)*t)+1/2*exp(-2^(1/2)*t)y =1/4*2^(1/2)*exp(-2^(1/2)*t)-1/4*2^(1/2)*exp(2^(1/2)*t)4. 分别用 ode23、ode45 求上述第 3 题中的微分方程初值问题的数值解(近似解),求解区间为[0,2]t ∈.利用画图来比较两种求解器之间的差异.程序代码:M 函数文件verderpol.m:function xprime=verderpol(t,x)xprime=[-x(1)-x(2); x(2)-x(1)];在程序中调用此函数:clear;y0=[1;0];[t,x]=ode45('verderpol',[0,2],y0); plot(x(:,1),x(:,2),'r-'); hold onclear;y0=[1;0];[t,x]=ode23('verderpol',[0,2],y0); plot(x(:,1),x(:,2),'b-'); 运行结果:5. 用 Euler 折线法求解微分方程初值问题⎪⎩⎪⎨⎧=-=1)0(,12'32y y x y y 的数值解(步长h 取0.1),求解范围为区间[0,2].程序代码:clearf=sym('y-(12*x^2)/y^3');a=0; b=2;h=0.1;n=(b-a)/h+1;x=0; y=1;szj=[x,y];for i=1:n-1y=y+h*subs(f,{'x','y'},{x,y}); x=x+h;szj=[szj;x,y];endszjplot(szj(:,1),szj(:,2),'or-')运行结果:szj =0 1.00000.1000 1.10000.2000 1.20100.3000 1.29340.4000 1.37280.5000 1.43590.6000 1.47810.7000 1.49210.8000 1.46440.9000 1.36621.0000 1.12171.1000 0.38361.2000 -25.30541.3000 -27.83581.4000 -30.61931.5000 -33.68121.6000 -37.04921.7000 -40.75411.8000 -44.82941.9000 -49.31232.0000 -54.24356. 用四阶 Runge-Kutta 法求解微分方程初值问题⎩⎨⎧=-=1)0(,cos 'y x e y y x 的数值解(步长h 取0.1),求解范围为区间[0,3].程序代码:clear;f=sym('y-exp(x)*cos(x)');a=0; b=3; h=0.1;n=(b-a)/h+1;x=0; y=1;szj=[x,y];for i=1:n-1l1=subs(f,{'x','y'},{x,y});l2=subs(f,{'x','y'},{x+h/2,y+l1*h/2});l3=subs(f,{'x','y'},{x+h/2,y+l2*h/2});l4=subs(f,{'x','y'},{x+h,y+l3*h});y=y+h*(l1+2*l2+2*l3+l4)/6;x=x+h;szj=[szj;x,y];endszjplot(szj(:,1),szj(:,2), 'dg-')运行结果:szj =0 1.00000.1000 0.99480.2000 0.97870.3000 0.95090.4000 0.91090.5000 0.85830.6000 0.79330.7000 0.71650.8000 0.62900.9000 0.53291.0000 0.43091.1000 0.32681.2000 0.22561.3000 0.13371.4000 0.05901.5000 0.01121.6000 0.00211.7000 0.04561.8000 0.15821.9000 0.35902.0000 0.67022.1000 1.11712.2000 1.72832.3000 2.53642.40003.57742.5000 4.89162.6000 6.52312.7000 8.52042.8000 10.93592.9000 13.82603.0000 17.2510六.实验总结本次实验的目的是归纳和学习求解常微分方程(组)的基本原理和方法;掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析;熟悉MATLAB 软件关于微分方程求解的各种命令。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
hold on
xlabel('时间[年]'),ylabel('国民平均收入量')
计算结果与问题分析讨论:
由题意和模型分析知:国民收入量呈指数增长,增长率为(k-r),则当k>r时,国民平均收入量才会呈现增长趋势。
总资金积累量随时间变化的图像:
人口总数随时间变化的图像:
国民收入量随时间变化的图像:
问题分析:
(1)由图像可以看出:总资金积累的相对增长率k大于人口的相对增长率r时,国民平均收入是增长的
(2)当人口激增时,在一定程度上,人口平均资金积累和国民平均收入都会减少,人们的生活水平会下降,国家应实施宏观调控,来控制人口增长,以保证人民的生活水平进一步提高。
问题假设:
为t时刻总资金积累量
为t时刻的人口数量
为t时刻国民平均收入量
为人口平均资金积累
k为总资金的相对增长率
r为人口的相对增长率
建模:
由分析及假设可列出如下方程:
一定时期后,增长的人口数量为: ;总资金增长量为 ;
由题意知:
由上述公式,微分得:
所以当k>r时,国民收入 增加,即国民平均收入增加。
列微分方程如下:
求解的Matlab程序代码:
建立.M文件,lab4.m,如下:
functiondx=lab4(t,x)
dx=zeros(3,1);
k=0.093;
r=0.00479;
a=1;
dx(1)=k*x(1);
dx(2)=r*x(2);
dx(3)=a*(k-r)*x(3);
主程序:
[t,x]=ode45('lab4',[20112100],[134735 4715640000 34999.37]);
问题分析:
人口增长与国民收入增长的关系决定人均国民收入指标的变化,人均国民收入与人口增长成反比,与国民收入增长成正比。总资金增长与人口增长都满足指数增长,由题意知:国民平均收入与人口平均资金积累成正比,设此比例系数为a。
在国家统计局网站查询得:2012年,我国大陆总人口数为134735万人,gure(1),plot(t,x(:,1),'k*')
xlabel('时间[年]'),ylabel('总资金积累量[亿元]')
figure(2),plot(t,x(:,2),'m-')
hold on
xlabel('时间[年]'),ylabel('人口总数')
figure(3),plot(t,x(:,3),'r+')
数学建模试验报告(四)
姓名
学号
班级
问题:(微分方程)
讨论资金积累、国民收入、与人口增长的关系.
(1)若国民平均收入x与按人口平均资金积累y成正比,说明仅当总资金积累的相对增长率k大于人口的相对增长率r时,国民平均收入才是增长的.
(2)作出k(x)和r(x)的示意图,分析人口激增会引起什么后果.
.
问题的分析和假设:
相关文档
最新文档