数字电子技术基础第1章
数字电子技术基础第1章--康华光-第五版

2021/4/9
20
自学部分
5.十进制----八进制 6.十进制----十六进制 7.二进制----八进制 8.二进制----十六进制 9.八进制----十六进制 1.2.2 二进制的波形表示及二进制数据的传输
电子技术基础(数字部分) 第五版
樊冰
2021/4/9
1
主要内容
1 数字逻辑概论 2 逻辑代数与硬件描述语言基础 3 逻辑门电路 4 组合逻辑电路 5 锁存器和触发器 6 时序逻辑电路 7 存储器、复杂可编程器件和现场可编程门阵列 8 脉冲波形的变换与产生 9 数模与模数转换器
2021/4/9
目前主要的设计方式是利用EDA(电 路仿真软件)进行设计。
2021/4/9
8
1.1.3 模拟信号和数字信号
模拟信号:时间、幅度均连续
数字信号:时间、幅度均离散
2021/4/9
9
1.1.4 数字信号的描述方法
二值数字逻辑(二进制)
0和1即可表示数量也可表示两种不同的逻辑状态。
逻辑电平
不是物理量,而是物理量的相对表示。
2
1 数字逻辑概论
1.1 数字电路与数字信号 1.2 数制 1.3 二进制的算术运算 1.4 二进制代码(码制) 1.5 二值逻辑变量与基本逻辑运算 1.6 逻辑函数及其表示方法
2021/4/9
3
1.1 数字电路与数字信号
2021/4/9
4
1.1.1 数字技术的发展及其应用
发展迅速,应用广泛
= (0.101101001)B
误差不大于2-9 保留到-9位
0.706*2=1.412-----1 0.412*2=0.824-----0 0.824*2=1.648-----1 0.648*2=1.296-----1 0.296*2=0.592-----0 0.592*2=1.184-----1 0.184*2=0.368-----0 0.368*2=0.736-----0 0.736*2=1.472-----1
数字电子技术基础(侯建军)

按权展开式 位置计数法 1、十进制 (333.33)10 =3 102 + 3 101+ 3 100+ 3 10-1 +3 10-2
权 权 权 权 权
进位计数制
特点:1)基数10,逢十进一,即9+1=10
表示相对小数点 的位置 2)有0-9十个数字符号和小数点,数码K i从0-9
3)不同数位上的数具有不同的权值10i。 4)任意一个十进制数,都可按其权位数基 展成多项式的形式 (N)10=(Kn-1 K1 K0. K-1 K-m)10 =Kn-1 10n-1++K1101+K0100+K-1 10-1++K-m 10-m n 1 K 10 i i 返 回 i m
原码的性质:
返 回
一、真值与机器数
(数值的绝对值) 最高位: ―1‖表示“-‖
―0‖有两种表示形式 正数:尾数部分与真值形式相同 …0] = 000…0 而 [-00…0] = 111…1 [+00 反 反 负数:尾数为真值数值部分按位取反 数值范围: +(2n –1-1)≤[X]反≤-(2n-1-1) 如n = 反码[X]反: 符号位 + 尾数部分 2. 8,反码范围01111111~10000000,数值范围 为+127~-127 [X1]反 = 00000100 X1 = +4 符号位后的尾数是否为真值取决于符号位 [X2]反 = 11111011 X2 = -4
常用编码
常用的编码:
用一组二进制码按一定规则排列起 来以表示数字、符号等特定信息。
(一)自然二进制码及格雷码 按自然数顺序 排列的二进 常用四位自然二进制码,表示十进 制 码 制数0--15,各位的权值依次为23、 22、21、20。 格雷码 1.任意两组相邻码之间只有一位不同。 注:首尾两个数码即最小数0000和最大 数1000之间也符合此特点,故它可称为 循环码 2.编码还具有反射性,因此又可称其 为反射码。 返 回 自然二进制码
数字电子技术——第1章数字电子技术基础ppt

用一定位数的二进制数来表示十进制数码、字母、符 号等信息称为编码。
用以表示十进制数码、字母、符号等信息的一定位数的 二进制数称为代码。
二-十进制代码:用4位二进制数b3b2b1b0来表示十进 制数中的 0 ~ 9 十个数码。简称BCD码。
用四位自然二进制码中的前十个码字来表示十进制数码, 因各位的权值依次为8、4、2、1,故称8421 BCD码。
整数部分采用基数连除法, 先得到的余数为低位,后得 到的余数为高位。
小数部分采用基数连乘法, 先得到的整数为高位,后得 到的整数为低位。
2 44
余数
2 22 ……… 0=K0 2 11 ……… 0=K1 2 5 ……… 1=K2 2 2 ……… 1=K3 2 1 ……… 0=K4
0 ……… 1=K5
课程说明
主要内容:
• 数字逻辑基础 • 逻辑门电路 • 组合逻辑电路 • 触发器 • 时序逻辑电路 • 半导体存储器 • 脉冲波形的产生与整形 • 可编程逻辑器件和现场可编程门阵列 • 数/模和模/数转换
课程意义:
数字电路是一门硬件方面的重要基础课。 其任务是使同学们获得数字电路的基本理论、 基本知识、基本技能,掌握数字逻辑的基本 分析方法和设计方法,培养学生分析问题、 解决问题能力以及工程实验能力。
学习本门课程应注意的问题:
• ⑴ 应着重抓好基本理论、基本知识、基 本方法的学习。
• ⑵能熟练运用数字电路的分析方法和设 计方法。
• ⑶重视实验技术。
教材及参考书:
1. 数字电子技术基础简明教程 (第二版) 余孟尝 主编 高等教育出版社 1998
数字电子技术基础

1.2 数制
[9998.67]10 9 103 9 102 9 101 8100 6 101 7 102 ❖ 其中,103 ,102 ,101 ,100 ,10-1,10-2称为十进制各位的“权”。 ❖ 任意一个十进制数D均可展开为
[N]D di 10i
❖ 其中,di是第i位的系数,它可以是0~9这十个数码中的任何一个。若整 数部分的位数是n,小数部分的位数是m,则i包含从(n~1)到0的所有正 整数和从-1到-m的所有负整数。
上一页 返回
8.2 数/模转换器(DAC)
❖ 8.2.1 D/A转换器的基本工作原理
❖ D/A转换器用于将输入的二进制数字量转换为与该数字量成 比例的电压或电流。A/D转换的原理有多种,但功能相同, 下面以倒T型电阻网络D/A换器为例,介绍其工作原理。
❖ 8.2.2倒T型电阻网络DAC
❖ 倒T型电阻网络D/A换器的组成框图如图8-2所示。图中,数 据锁存器用来暂时存放输入的数字量,这些数字量控制模拟 电子开关,将参考电压源UREF按位切换到电阻译码网络中 变成加权电流,然后经运放求和,输出相应的模拟电压,完 成D/A转换过程。
上一页 下一页 返回
1.2 数制
❖ 1.2.2 二进制数
❖ 在数字电路中广泛应用的是二进制。在二进制数中,只有0和1两个数码, 所以计数的基数是2,低位和相邻高位间的进位关系是“逢二进一”, 即1+1 =10,同一数码在不同位置上表示的数值不同例如
[1110.11]2 1 23 1 22 1 21 0 20 1 21 1 22 [14.75]10
下一页 返回
8.1 概 述
❖ 用计算机对生产过程进行实时控制,其控制过程原理方框图 如图8-1所示。由A/D转换器把由传感器采集来的模拟信号转 换成为数字信号,送计算机处理,当计算机处理完数据后, 把结果或控制信号输出,由D/A转换器转换成模拟信号,送 执行元件,对控制对象进行控制。可见,ADC和DAC是数字 系统和模拟系统相互联系的桥梁,是数字系统的重要组成部 分。
数字电子技术基础电子课件第一章数制与码制PDF61.pdf

前言第一章数制与码制: “数”在计算机中怎样表示。
第二章逻辑代数基础: 逻辑代数的基本概念、逻辑函数及其标准形式、逻辑函数的化简。
第三章组合逻辑电路: 组合电路的分析与设计。
第四章同步时序逻辑电路:触发器、同步时序电路的分析与设计。
第五章异步时序逻辑电路:脉冲异步电路的分析与设计。
第六章采用中,大规模集成电路的逻辑设计。
绪论一、数字系统1.模拟量:连续变化的物理量2.数字量:模拟→数字量(A/D)3.数字系统:使用数字量来传递、加工、处理信息的实际工程系统4.数字系统的任务:1) 将现实世界的信息转换成数字网络可以理解的二进制语言2)仅用0、1完成所要求的计算和操作3)将结果以我们可以理解的方式返回现实世界5.数字系统设计概况1 ) 层次:从小到大,原语单元、较复杂单元、复杂单元、更复杂单元2)逻辑网络:以二进制为基础描述逻辑功能的网络3)电子线路:物理构成4)形式描述:用硬件描述语言(HDL)描述数字系统的行为6.为什么采用数字系统1)安全可靠性高2)现代电子技术的发展为其提供了可能7.数字系统的特点1)二值逻辑(“0”低电平、“1”高电平)2)基本门电路及其扩展逻辑电路(组成)3)信号间符合算术运算或逻辑运算功能4)其主要方法为逻辑分析与逻辑设计(工具为布尔代数、卡诺图和状态化简)第一章数制与码制学习要求:•掌握二、十、八、十六进位计数制及相互换;•掌握二进制数的原码、反码和补码表示及其加减运算;•了解定点数与浮点数的基本概念;掌握常用的几种编码。
1.1 进位计数制1.1.1 十进制数的表示1、进位计数制数制:用一组统一的符号和规则表示数的方法2、记数法•位置计数法例:123.45 读作一百二十三点四五•按权展形式例:123.45=1×102+2×101+3×100+4×10-1+5×10-23、基与基数用来表示数的数码的集合称为基(0—9), 集合的大小称为基数(十进制10)。
《数字电子技术基础简明教程(第三版)答案》

《数字电子技术基础简明教程(第三版)答案》《数字电子技术基础简明教程(第三版)答案》数字电子技术是现代电子工程中的重要领域之一,它涉及到数字信号的处理和电子电路的设计。
《数字电子技术基础简明教程(第三版)》是一本经典教材,本文将为读者提供此教材的答案,以帮助读者更好地学习和理解数字电子技术的基础知识。
第一章:数字系统基础1.1 数字系统的表示与计数1.1.1 二进制数的表示答案:二进制数是一种使用0和1表示数值的数制。
它与我们日常生活中常用的十进制数不同,但在数字电子技术中却是最基本和常用的表示方式。
1.1.2 进制转换答案:进制转换是指将一个数从一种进制表示转换为另一种进制的表示。
常见的进制转换包括二进制转十进制、十进制转二进制、二进制转八进制、八进制转二进制等。
1.2 逻辑代数与逻辑函数1.2.1 逻辑代数基本概念答案:逻辑代数是一种用于描述和分析逻辑函数的代数系统。
它包括逻辑运算符、逻辑表达式和逻辑常数等基本概念。
1.2.2 基本逻辑函数答案:基本逻辑函数是逻辑代数中的基本构成元素,包括与、或、非等逻辑运算。
常见的基本逻辑函数有与门、或门、非门等。
第二章:组合逻辑电路2.1 组合逻辑电路的基本概念答案:组合逻辑电路是由逻辑门和其他逻辑元件组成的电路,其输出只与当前输入有关,与过去的输入和未来的输入无关。
2.2 组合逻辑电路的设计2.2.1 真值表法答案:真值表法是一种根据逻辑函数的真值表推导出逻辑电路的设计方法。
通过真值表可以清晰地了解逻辑函数的各种输入输出组合。
2.2.2 卡诺图法答案:卡诺图法是一种用于简化逻辑函数的方法。
通过在卡诺图上标示出逻辑函数的主项和次项,可以得到较为简化的逻辑函数,从而减少逻辑门的使用数量。
第三章:时序逻辑电路3.1 时序逻辑电路的基本概念答案:时序逻辑电路是一种具有存储功能的电路,其输出不仅与当前输入有关,还与过去的输入有关。
3.2 触发器与寄存器3.2.1 SR 触发器答案:SR 触发器是一种常见的时序逻辑电路元件,它具有两个输入端(S和R)和两个输出端(Q和Q)。
《数字电子技术》 第1章数字电路基础

第1 章
数字电路基础
1.1 数制与代码
1.2 逻辑函数
1.3 逻辑代数的基本定律和运算规则 1.4 逻辑函数的代数化简法 1.5 逻辑函数的卡诺图化简 1.6 逻辑函数的常用表达形式 返回主目录 退出
1. 1 数制与代 码
1.1.1 常用数制 1.1.2 数制转换 1.1.3 代码 返回上一级 退出
(3)按电路逻辑功能分为组合逻辑电路和时序逻辑电路。
0.3
数字集成电路的发展趋势
1.大规模 。 2.低功耗 。 3.高速度 。 4.可编程 。 5.可测试 。 6.多值化 。
第1章
数字电路基础
学习要点:
•数字电路基本逻辑、复合逻辑
•逻辑函数基本定律、常用公式
•逻辑函数代数化简法 •逻辑函数卡诺图化简法
2. 数字电路的分类
(1)按电路组成结构分为分立元件和集成电路两大类。 其中集成电路按集成度(在一块硅片上包含的逻辑门电 路或元件的数量)可分为小规模(SSI)、中规模 (MSI)、大规模(LSI)和超大规模(VLSI)集成电路。
(2)按电路所用器件分为双极型(如TTL、ECL、I2L、 HTL)和单极型(如NMOS、PMOS、CMOS)电路。
3、八进制 数码为:0~7;基数是8。 运算规律:逢八进一,借一当八 。 下标可用8或O(Octadic的缩写)表示 。 八进制数的权展开式: 八进制 和十六 进制主 要用于 书写程 序、指 令 。十 六进制 数还经 常用来 表示内 存的地 址。
例如,(107.4)8 =1×82 + 0×81 +7×80 +4×8-1 4、十六进制 数码为:0~9、A~F;基数是16。 运算规律:逢十六进一,借一当十六 。 小标可用16或H(Hex的缩写)表示 十六进制数的权展开式:
数字电子技术基础第三版第一章答案

第一章数字逻辑基础第一节重点与难点一、重点:1.数制2.编码(1) 二—十进制码(BCD码)在这种编码中,用四位二进制数表示十进制数中的0~9十个数码。
常用的编码有8421BCD码、5421BCD码和余3码。
8421BCD码是由四位二进制数0000到1111十六种组合中前十种组合,即0000~1001来代表十进制数0~9十个数码,每位二进制码具有固定的权值8、4、2、1,称有权码。
余3码是由8421BCD码加3(0011)得来,是一种无权码。
(2)格雷码格雷码是一种常见的无权码。
这种码的特点是相邻的两个码组之间仅有一位不同,因而其可靠性较高,广泛应用于计数和数字系统的输入、输出等场合。
3.逻辑代数基础(1)逻辑代数的基本公式与基本规则逻辑代数的基本公式反映了二值逻辑的基本思想,是逻辑运算的重要工具,也是学习数字电路的必备基础。
逻辑代数有三个基本规则,利用代入规则、反演规则和对偶规则使逻辑函数的公式数目倍增。
(2)逻辑问题的描述逻辑问题的描述可用真值表、函数式、逻辑图、卡诺图和时序图,它们各具特点又相互关联,可按需选用。
(3)图形法化简逻辑函数图形法比较适合于具有三、四变量的逻辑函数的简化。
二、难点:1.给定逻辑函数,将逻辑函数化为最简用代数法化简逻辑函数,要求熟练掌握逻辑代数的基本公式和规则,熟练运用四个基本方法—并项法、消项法、消元法及配项法对逻辑函数进行化简。
用图形法化简逻辑函数时,一定要注意卡诺图的循环邻接的特点,画包围圈时应把每个包围圈尽可能画大。
2.卡诺图的灵活应用卡诺图除用于简化函数外,还可以用来检验化简结果是否最简、判断函数间的关系、求函数的反函数和逻辑运算等。
3.电路的设计在工程实际中,往往给出逻辑命题,如何正确分析命题,设计出逻辑电路呢?通常的步骤如下:1.根据命题,列出反映逻辑命题的真值表; 2.根据真值表,写出逻辑表达式; 3.对逻辑表达式进行变换化简; 4.最后按工程要求画出逻辑图。
《数字电子技术》知识点

《数字电子技术》知识点《数字电子技术》知识点第1章 数字逻辑基础1.数字信号、模拟信号的定义 2.数字电路的分类 3.数制、编码其及转换 要求:能熟练在10进制、2进制、8进制、16进制、8421BCD 之间进行相互转换。
举例1:(37.25)10= ( )2= ( )16= ( )8421BCD 解:(37.25)10= (100101.01)2= ( 25.4)16= (00110111.00100101)8421BCD 4.基本逻辑运算的特点与运算:见零为零,全1为1; 或运算:见1为1,全零为零;与非运算:见零为1,全1为零; 或非运算:见1为零,全零为1; 异或运算:相异为1,相同为零;同或运算:相同为1,相异为零; 非运算:零变 1, 1变零; 要求:熟练应用上述逻辑运算。
5.数字电路逻辑功能的几种表示方法及相互转换。
①真值表(组合逻辑电路)或状态转换真值表(时序逻辑电路):是由变量的所有可能取值组合及其对应的函数值所构成的表格。
②逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。
③卡诺图:是由表示变量的所有可能取值组合的小方格所构成的图形。
④逻辑图:是由表示逻辑运算的逻辑符号所构成的图形。
⑤波形图或时序图:是由输入变量的所有可能取值组合的高、低电平及其对应的输出函数值的高、低电平所构成的图形。
⑥状态图(只有时序电路才有):描述时序逻辑电路的状态转换关系及转换条件的图形称为状态图。
要求:掌握这五种(对组合逻辑电路)或六种(对时序逻辑电路)方法之间的相互转换。
6.逻辑代数运算的基本规则 ①反演规则:对于任何一个逻辑表达式Y ,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,原变量换成反变量,反变量换成原变量,那么所得到的表达式就是函数Y 的反函数Y (或称补函数)。
这个规则称为反演规则。
②对偶规则:对于任何一个逻辑表达式Y ,如果将表达式中的所有“·”换成“+”,“+”换成“·”,“0”换成“1”,“1”换成“0”,而变量保持不变,则可得到的一个新的函数表达式Y ',Y '称为函Y 的对偶函数。
数字电子技术基础-第一章PPT课件

第一章:数字逻辑基础
【例1-3】将十六进制数8A.3按权展开。 解:(8A.3)16=8×161+10×160+3×16-1
•16
第一章:数字逻辑基础
1.2.2 不同进制数的转换 1. 十进制数转换为二进制、八进制和十六进制数 转换方法: (1) 十进制数除以基数(直到商为0为止)。 (2) 取余数倒读。
•17
第一章:数字逻辑基础
【例1-4】将十进制数47转换为二进制、八进制和十六进制数。 解:
(47)10=(101111)2=(57)8=(2F)16。
•18
第一章:数字逻辑基础
【例1-5】将十进制数0.734375转换为二进制和八进制数。
解:
(1)转换为二进制数。
首先用0.734375×2=1.46875 (积的整数部分为1,积的小数部分为
•25
第一章:数字逻辑基础
按选取方式的不同,可以得到如表1.1所示常用的几种BCD编码。 表1.1 常用的几种BCD编码
•26
第一章:数字逻辑基础
2. 数的原码、反码和补码 在实际中,数有正有负,在计算机中人们主要采用两种
方法来表示数的正负。第一种方法是舍去符号,所有的数字 均采用无符号数来表示。
•7
第一章:数字逻辑基础
2. 数字电路的分类
1) 按集成度划分 按集成度来划分,数字集成电路可分为小规模、中规模、大规模和超大
规模等各种集成电路。 2) 按制作工艺划分
按制作工艺来划分,数字电路可分为双极型(TTL型)电路和单极型(MOS 型)电路。双极型电路开关速度快,频率高,工作可靠,应用广泛。单极型 电路功耗小,工艺简单,集成度高,易于大规模集成生产。 3) 按逻辑功能划分
数字电子技术基础课后习题及答案

第1章习题与参考答案【题1-1】将以下十进制数转换为二进制数、八进制数、十六进制数。
〔1〕25;〔2〕43;〔3〕56;〔4〕78解:〔1〕25=〔11001〕2=〔31〕8=〔19〕16〔2〕43=〔101011〕2=〔53〕8=〔2B〕16〔3〕56=〔111000〕2=〔70〕8=〔38〕16〔4〕〔1001110〕2、〔116〕8、〔4E〕16【题1-2】将以下二进制数转换为十进制数。
〔1〕10110001;〔2〕10101010;〔3〕11110001;〔4〕10001000解:〔1〕10110001=177〔2〕10101010=170〔3〕11110001=241〔4〕10001000=136【题1-3】将以下十六进制数转换为十进制数。
〔1〕FF;〔2〕3FF;〔3〕AB;〔4〕13FF解:〔1〕〔FF〕16=255〔2〕〔3FF〕16=1023〔3〕〔AB〕16=171〔4〕〔13FF〕16=5119【题1-4】将以下十六进制数转换为二进制数。
〔1〕11;〔2〕9C;〔3〕B1;〔4〕AF解:〔1〕〔11〕16=〔00010001〕2〔2〕〔9C〕16=〔10011100〕2〔3〕〔B1〕16=〔1011 0001〕2〔4〕〔AF〕16=〔10101111〕2【题1-5】将以下二进制数转换为十进制数。
〔1〕1110.01;〔2〕1010.11;〔3〕1100.101;〔4〕1001.0101解:〔1〕〔1110.01〕2=14.25〔2〕〔1010.11〕2=10.75〔3〕〔1001.0101〕2=9.3125【题1-6】将以下十进制数转换为二进制数。
〔1〕20.7;〔2〕10.2;〔3〕5.8;〔4〕101.71解:〔1〕20.7=〔10100.1011〕2〔2〕10.2=〔1010.0011〕2〔3〕5.8=〔101.1100〕2〔4〕101.71=〔1100101.1011〕2【题1-7】写出以下二进制数的反码与补码〔最高位为符号位〕。
数字电子技术基础阎石第五版课后答案

数字电子技术基础阎石第五版课后答案第一章:引言1.数字电子技术是现代电子技术的基础,它是将模拟电子技术应用到数字系统中的学科。
数字电子技术的发展对计算机技术、通信技术等领域起到了重要的推动作用。
2.数字电子技术的基本概念包括数字信号、模拟信号、信号采样、量化、编码等。
3.数字电子技术的应用广泛,涵盖数字计算机、数字通信、数字音频、数字视频等多个领域。
第二章:数字逻辑基础1.逻辑代数是数字电子技术的基础,它包括逻辑运算、逻辑表达式、逻辑函数等概念。
2.逻辑代数的基本运算包括与运算、或运算、非运算等。
3.逻辑函数可以用真值表、卡诺图等形式表示。
4.数字逻辑电路是由逻辑门组成的,常见的逻辑门有与门、或门、非门等。
5.在数字逻辑电路中,还有多种逻辑门的组合形式,如与或非门、与非门等。
第三章:组合逻辑电路1.组合逻辑电路是由多个逻辑门组成的电路,逻辑门的输入和输出之间没有时钟信号的约束。
2.组合逻辑电路的设计过程包括确定所需逻辑关系、选择合适的逻辑门、进行逻辑门的连线等。
3.组合逻辑电路常见的应用有加法器、减法器、译码器、多路选择器等。
4.确定组合逻辑电路的最小项和最大项是一种常用的设计方法。
5.组合逻辑电路可以用Karnaugh图来进行化简和优化。
第四章:时序逻辑电路1.时序逻辑电路是由组合逻辑电路和触发器组成的电路,触发器引入了时钟信号来控制电路的状态。
2.触发器的种类有RS触发器、D触发器、JK触发器等。
3.时序逻辑电路中常见的电路有时钟发生器、计数器、寄存器等。
4.时序逻辑电路在数字系统中起到了重要的作用,可以实现状态的存储和传输。
5.时序逻辑电路的设计需要考虑时序条件、逻辑功能、触发器的选择等因素。
第五章:数字系统的设计1.数字系统的设计包括功能设计和硬件设计两个方面。
2.功能设计是根据系统的需求,确定系统所完成的功能和算法。
3.硬件设计是根据功能设计,选择合适的逻辑门、触发器等器件,进行电路图的设计。
数字电子技术基础-第一章-数制和码制

②格雷码
自然二进制码
先将格雷码的最高位直接抄下,做为二进制 数的最高位,然后将二进制数的最高位与格雷码 的次高位异或,得到二进制数的次高位,再将二 进制数的次高位与格雷码的下一位异或,得二进 制数的下一位,如此一直进行下去,直到最后。
奇偶校验码
组成
信 息 码 : 需要传送的信息本身。
1 位校验位:取值为 0 或 1,以使整个代码 中“1”的个数为奇数或偶数。
二、数字电路的特点
研究对象 输出信号与输入信号之间的逻辑关系
分析工具 逻辑代数
信 号 只有高电平和低电平两个取值
电子器件 工作状态
导通(开)、截止(关)
主要优点
便于高度集成化、工作可靠性高、 抗干扰能力强和保密性好等
1.1 数制和码制
主要要求:
掌握十进制数和二进制数的表示及其相互转换。 了解八进制和十六进制。 理解 BCD 码的含义,掌握 8421BCD 码, 了解其他常用 BCD 码。
(10011111011.111011)2 = ( ? )16
0100111111001111.111111001110 0
补 04 F B
E 补C 0
(10011111011.111011)2= (4FB.EC)16
十六进制→二进制 :
每位十六进制数用四位二进
制数代替,再按原顺序排列。
(3BE5.97D)16 = (11101111100101.100101111101)2
0000
0000
0011
1
0001 0001
0001
0001
0100
2
0010 0010
0010
0010
0101
《数字电子技术基础》课后习题答案

《数字电路与逻辑设计》作业教材:《数字电子技术基础》(高等教育出版社,第2版,2012年第7次印刷)第一章:自测题:一、1、小规模集成电路,中规模集成电路,大规模集成电路,超大规模集成电路5、各位权系数之和,1799、01100101,01100101,01100110;11100101,10011010,10011011二、1、×8、√10、×三、1、A4、B练习题:1.3、解:(1)十六进制转二进制:45 C010*********二进制转八进制:010*********2134十六进制转十进制:(45C)16=4*162+5*161+12*160=(1116)10所以:(45C)16=(10001011100)2=(2134)8=(1116)10(2)十六进制转二进制:6D E.C8011011011110.11001000二进制转八进制:011011011110.1100100003336.62十六进制转十进制:(6DE.C8)16=6*162+13*161+14*160+13*16-1+8*16-2=(1758.78125)10所以:(6DE.C8)16=(011011011110. 11001000)2=(3336.62)8=(1758.78125)10(3)十六进制转二进制:8F E.F D100011111110.11111101二进制转八进制:100011111110.1111110104376.772十六进制转十进制:(8FE.FD)16=8*162+15*161+14*160+15*16-1+13*16-2=(2302.98828125)10所以:(8FE.FD)16=(100011111110.11111101)2=(437 6.772)8=(2302.98828125)10 (4)十六进制转二进制:79E.F D011110011110.11111101二进制转八进制:011110011110.1111110103636.772十六进制转十进制:(79E.FD)16=7*162+9*161+14*160+15*16-1+13*16-2=(1950. 98828125)10所以:(8FE.FD)16=(011110011110.11111101)2=(3636.772)8=(1950.98828125)101.5、解:(74)10 =(0111 0100)8421BCD=(1010 0111)余3BCD(45.36)10 =(0100 0101.0011 0110)8421BCD=(0111 1000.0110 1001 )余3BCD(136.45)10 =(0001 0011 0110.0100 0101)8421BCD=(0100 0110 1001.0111 1000 )余3BCD (374.51)10 =(0011 0111 0100.0101 0001)8421BCD=(0110 1010 0111.1000 0100)余3BCD1.8、解(1)(+35)=(0 100011)原= (0 100011)补(2)(+56 )=(0 111000)原= (0 111000)补(3)(-26)=(1 11010)原= (1 11101)补(4)(-67)=(1 1000011)原= (1 1000110)补第二章:自测题:一、1、与运算、或运算、非运算3、代入规则、反演规则、对偶规则 二、 2、×4、× 三、 1、B 3、D5、C练习题:2.2:(4)解:Y =AB̅+BD +DCE +A D =AB̅+BD +AD +A D +DCE =AB̅+BD +D +DCE =AB̅+D (B +1+CE ) =AB̅+D (8)解:Y =(A +B ̅+C )(D ̅+E ̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(A +B ̅+C +DE ) =[(A +B ̅+C )̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅+(D ̅+E ̅)̅̅̅̅̅̅̅̅̅̅](A +B ̅+C +DE ) =(ABC +DE )(ABC ̅̅̅̅̅̅+DE ) =DE2.3:(2)证明:左边=A +A (B +C)̅̅̅̅̅̅̅̅̅̅̅̅ =A +A +(B +C)̅̅̅̅̅̅̅̅̅̅ =A +B̅C ̅ =右式所以等式成立(4)证明:左边= (A B +AB̅)⨁C = (A B +AB ̅)C + (A B +AB̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅C = (A BC +AB ̅C )+A B ̅̅̅̅⋅AB̅̅̅̅⋅C =A BC +AB̅C +(A +B ̅)(A +B )C =A BC +AB̅C +(AB +A B ̅)C =A BC +AB̅C +ABC +A B ̅C 右边= ABC +(A +B +C )AB̅̅̅̅⋅BC ̅̅̅̅⋅CA ̅̅̅̅ =ABC +(A +B +C )[(A +B̅)(B ̅+C )(C +A )]=ABC +(A +B +C )(A B̅+A C +B ̅+B ̅C )(C +A ) =ABC +(A +B +C )(A B̅C +A C +B ̅C +A B ̅) =ABC +AB̅C +A BC +A B ̅C 左边=右边,所以等式成立 2.4(1)Y ′=(A +B̅C )(A +BC) 2.5(3)Y ̅=A B ̅̅̅̅(C +D ̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅ C D ̅̅̅̅̅(A +B ̅)̅̅̅̅̅̅̅̅̅̅̅̅̅̅ 2.6:(1)Y =AB +AC +BC=AB (C +C̅)+AC (B +B ̅)+BC (A +A ̅) =ABC +ABC̅+AB ̅C +A ̅BC 2.7:(1)Y =A B̅+B ̅C +AC +B ̅C 卡诺图如下:所以,Y =B2.8:(2)画卡诺图如下:Y(A,B,C)=A +B̅+C2.9:(1)画Y (A,B,C,D )=∑m (0,1,2,3,4,6,8)+∑d(10,11,12,13,14)如下:Y (A,B,C,D )=A B̅+D ̅2.10:(3)解:化简最小项式:Y =AB +(A B +C )(A B̅+C ) =AB +(A B A B̅+A BC +A B ̅C +C C ) =AB (C +C )+A BC +A B̅C =ABC +ABC ̅+A BC +A B ̅C =∑m (0,3,6,7)最大项式:Y =∏M(1,2,4,5)2.13:(3)Y =AB̅+BC +AB ̅C +ABC D ̅ =AB̅(1+C )+BC (1+AD ̅) =AB ̅+BC =AB ̅+BC ̿̿̿̿̿̿̿̿̿̿̿̿ = AB ̅̅̅∙BC ̅̅̅̅̅̅̅̅̅̅̅技能题:2.16 解:设三种不同火灾探测器分别为A 、B 、C ,有信号时值为1,无信号时为0,根据题意,画卡诺图如下:Y =AB +AC +BC =AB +AC +BC ̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿ =AB ̅̅̅̅⋅AC̅̅̅̅⋅BC ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ =(A +B ̅)(A +C )(B ̅+C )̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ =A +B ̅̅̅̅̅̅̅̅+A +C ̅̅̅̅̅̅̅̅+B ̅+C̅̅̅̅̅̅̅̅第三章:自测题:一、1、饱和,截止7、接高电平,和有用输入端并接,悬空; 二、 1、√ 8、√; 三、 1、A 4、D练习题:3.2、解:(a)因为接地电阻4.7k Ω,开门电阻3k Ω,R>R on ,相当于接入高电平1,所以Y =A B 1̅̅̅̅̅̅=A +B +0=A +B (e) 因为接地电阻510Ω,关门电0.8k Ω,R<R off ,相当于接入高电平0,所以、 Y =A +B +0̅̅̅̅̅̅̅̅̅̅̅̅̅=A ̅⋅B ̅∙1̅̅̅̅̅̅̅̅̅̅=A +B +0=A +B3.4、解:(a) Y 1=A +B +0̅̅̅̅̅̅̅̅̅̅̅̅̅=A +B ̅̅̅̅̅̅̅(c) Y 3=A +B +1̅̅̅̅̅̅̅̅̅̅̅̅̅=1̅=0(f) Y 6=A ⋅0+B ⋅1̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅=B̅3.7、解:(a) Y 1=A⨁B ⋅C =(A B +AB̅)C =A B C +AB ̅C3.8、解:输出高电平时,带负载的个数2020400===IH OH OH I I N G 可带20个同类反相器输出低电平时,带负载的个数78.1745.08===IL OL OL I I N G 反相器可带17个同类反相器3.12EN=1时,Y 1=A , Y 2=B̅ EN=0时,Y 1=A̅, Y 2=B3.17根据题意,设A 为具有否决权的股东,其余两位股东为B 、C ,画卡诺图如下,则表达结果Y 的表达式为:Y =AB +AC =AB +AC ̿̿̿̿̿̿̿̿̿̿̿=AB ̅̅̅̅⋅AC̅̅̅̅̅̅̅̅̅逻辑电路如下:技能题:3.20:解:根据题意,A 、B 、C 、D 变量的卡诺图如下:Y =ABC +ABD =ABC +ABD ̿̿̿̿̿̿̿̿̿̿̿̿̿̿̿=ABC̅̅̅̅̅̅⋅ABD ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅电路图如下:第四章:自测题:一、2、输入信号,优先级别最高的输入信号7、用以比较两组二进制数的大小或相等的电路,A>B 二、 3、√ 4、√ 三、 5、A 7、C练习题:4.1;解:(a) Y =A⨁B +B ̅̅̅̅̅̅̅̅̅̅̅̅̅=A B +AB ̅+B ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅=A B +B ̅̅̅̅̅̅̅̅̅̅̅=A +B ̅̅̅̅̅̅̅̅=AB ,所以电路为与门。
数字电子技术基础(第五版)第一章

6ms q 100% 37.5% 16ms
EXIT
绪论
(3)实际脉冲波形及主要参数 非理想脉冲波形
EXIT
绪论
几个主要参数:
tw
Um
tr
tf
T 脉 冲 幅 度 Um:脉冲电压变化的最大值 脉冲上升时间 tr:脉冲波形从 0.1Um 上升到 0.9Um 所需的时间 脉冲下降时间 tf:脉冲波形从 0.9Um 下降到 0.1Um 所需的时间 脉 冲 宽 度 tw :脉冲上升沿 0.5Um 到下降沿 0.5Um 所需的时间 脉 冲 周 期 T :周期脉冲中相邻两个波形重复出现所需的时间 脉 冲 频 率 f : 1 秒内脉冲出现的次数 f = 1/T 占 空 比 q : 脉冲宽度 tw 与脉冲周期 T 的比值 q = tw/T EXIT
(1)易于电路表达---0、1两个值,可以用管子的导 通或截 止,灯泡的亮或灭、继电器触点的闭合或断开来表示。
VDD Rd
iD/mA 可变电阻区
VCC
vO
iC VCC Rc
Rb vI
Rc vo
vV
I
饱和区
O
截止区
GS4 V GS3 V GS2 V GS1
vCE VCC
v DS / V
(2)二进制数字装置所用元件少,电路简单、可靠 。 (3)基本运算规则简单, 运算操作方便。 EXIT
绪论
第1章
概 述
绪
论
数制与码制 本章小结
EXIT
绪论
1.1 数字电路与数字信号
主要要求:
了解数字电路的特点和分类。 了解脉冲波形的主要参数。
EXIT
绪论
知 识 分 布 网 络
什么是数字 信号 数字电 路基本 概念 什么是数字 电路
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 数制与编码
数字电路的输入、输出逻辑电平随时间变化的波形称 为数字波形。数字波形有两种类型,一种是电位型(或称 非归零型),另一种是脉冲型(或称归零型)。在波形图 中,一定的时间间隔T称为1位(1bit)或一拍。电位型的 数字波形在一拍时间内用高电平表示1,低电平表示0,脉 冲型数字波形则在一拍时间内以脉冲有无来表示1和0。图 1.1.2是表示01001101100序列信号两种数字波形,其中图 (a)为电位型表示的波形,图(b)是脉冲型表示的波形。
第1章 数制与编码
应指出,小数部分乘2取整的过程不一定能使最后乘 积为0,因此转换值存在一定的误差。通常在二进制小数
将一个带有整数和小数的十进制数转换成二进制数 时,必须将整数部分和小数部分分别按除2取余法和乘2
同理,若将十进制数转换成任意R进制(N)R,则整数 部分转换采用除R取余法,小数部分采用乘R
例如,将(0.724)10转换成二进制小数。
第1章 数制与编码
例 将(0.39)D转换成二进制数,精度达到0.1%。 解 要精确到二进制小数10位,1/210=1/1024。
0.39×2 = 0.78 0.78×2 = 1.56 0.56×2 = 1.12 0.12×2 = 0.24 0.24×2 = 0.48
0 ……… 1=K5
低位 高位
0.375
×2
整数
0.750 ……… 0=K-1 0.750
×2
1.500 ……… 1=K-2 0.500
×2
1.000 ……… 1=K-3
高位 低位
所以:(44.375)D=(101100.011)B
第1章 数制与编码
例如,将(57)10转换为二进制数:
故
第1章 数制与编码
b-1= 0 b-2= 1 b-3= 1 b-4= 0 b-5= 0
0.48×2 = 0.96 0.96×2 = 1.92 0.92×2 = 1.84 0.84×2 = 1.68 0.68×2 = 1.36
b-6 = 0 b-7 = 1 b-8 = 1 b-9 = 1 b-10= 1
0.39 D = 0.0110001111 B
(1-2)
im
式中,n代表整数位数,m代表小数位数,ai为第i位数码,它可以是0、
1、 …、(R-1)个不同数码中的任何一个,Ri为第i位数码的权值。
第1章 数制与编码
2.
二进制数的进位规则是“逢二进一”,其进位基数R=2, 每位数码的取值只能是0或1,每位的权是2的幂。表1.2.1列 出了二进制位数、权和十进制数的对应关系。
n1
ai 10i
im
第1章 数制与编码
式中,n代表整数位数,m代表小数位数,ai(-m≤i≤n-1) 表示第i位数码,它可以是0、1、2、3、…、9 中的任意一个, 10i为第i位数码的权值。
上述十进制数的表示方法也可以推广到任意进制数。对
于一个基数为R(R≥2)的R进制计数制,数N可以写为
( N )R an1an2 a1a0 a1a2 am
an1 Rn1 an2 Rn2 a1 R1 a0 R0 a1 R1
a2 R2 am Rm
n1
aiRi
第1章 数制与编码
1.2.2 进位计数制之间的转换
1.2.2 进位计数制之间的转换 1.二进制数与十进制数之间的转换 1)二进制数转换成十进制数——按权展开法 二进制数转换成十进制数时,只要二进制数按式(1-
3)展开,然后将各项数值按十进制数相加,便可得到等 值的十进制数。例如:
(10110 .11)2 1 24 1 22 1 21 1 21 1 22 (22.75)10
表1.2.1二进制位数、权和十进制数的对应关系
二进制位数 13 12 11 10 9 8 7 6 5 4 3 2 1
权
212
211
210
29 28 27 26 25 24 23 22 21 20
( 十进制 表
示)
4096 2048 1024 512 256 128 64 32 16 8 4 2 1
二进制位数
① 采用的 16 个数码为0、 1、 2、 …、 9、 A、 B、 C、 D、 E、 F。 符号A~F分别代表十进制数的10~15。
② 进位规则是“逢十六进一”,基数R=16,每位的 权是16的幂。
任何一个十六进制数,
( N )16
也可n1以a根i16据i 式(1-2)表示为
例如:
im
(3AB 11)16 3 162 10 161 11 160 1161 1162 (939 .0664 )10
第1章 数制与编码
1.2 数 制
1.1.1 按进位的原则进行计数,称为进位计数制。每一种进 位计数制都有一组特定的数码,例如十进制数有 10 个数 码, 二进制数只有两个数码,而十六进制数有 16 个数码。 每种进位计数制中允许使用的数码总数称为基数或底数。 在任何一种进位计数制中,任何一个数都由整数和小 数两部分组成, 并且具有两种书写形式:位置记数法和 多项式表示法。
第1章 数制与编码
图1.1.2 序列信号的两种数字波形 (a) 电位型的数字波形; (b) 脉冲型的数字波形
第1章 数制与编码
数字电路和系统的输入、输出逻辑关系(功能或行为) 通常可以用文字、真值表、逻辑函数表达式、逻辑电路图、 时序图、状态图、状态表和硬件描述语言等多种形式进行 描述。在众多描述中,将文字描述的逻辑命题采用真值表、 状态表(或图)描述的过程称为逻辑抽象,它是逻辑设计 中关键的一步。有关数字系统的各种描述形式我们将在后 续章节介绍。
-1
-2
-3
-4
-5
-6
权
2 1
( 十进制 表 0.5
示)
2 2
2 3
2 4
2 5
2 6
0.25
0.125 0.0625 0.03125 0.015625
第1章 数制与编码
任何一个二进制数可表示为
( N )2 an1an2 a1a0 a1a2 am an1 2n1 an2 2n2 a1 21 a0 20 a1 21 a2 22 am 2m
② 算术运算规则简单。二进制数的算术运算和十进制 数的算术运算规则基本相同,惟一区别在于二进制数是 “逢二进一”及“借一当二”,而不是“逢十进一”及 “借一当十”。
第1章 数制与编码
例如:
第1章 数制与编码
3. 八进制数(Octal)
八进制数的进位规则是“逢八进一”,其基数R=8,采 用的数码是0、 1、 2、 3、 4、 5、 6、 7, 每位的权是 8 的 幂。 任何一个八进制数也可以根据式(1-2)表示为
和数值上离散的二值信号,用数字 0 和 1 来表示。在数字电路和系 统中,可以用 0 和 1 组成的二进制数码表示数量的大小,也可以用 0 和 1 表示两种不同的逻辑状态。当用 0 和 1 表示客观事物两种对 立的状态时,它已不表示数值了,而是表示逻辑 0 和逻辑 1,这两 种对立的逻辑状态称为二值数字逻辑或简称为数字逻辑。数字电路 的输出与输入之间满足一定的逻辑关系,因而数字电路也称为逻辑 电路。
第1章 数制与编码
数字电路系统只能处理用二进制数表示的数字信号, 而人们习惯用的十进制数不能直接被数字电路系统接收。 因此,在进行人与数字电路系统交换信息时,需要把十进 制数转换成二进制数,当数字系统运行结束时,为了便于 人们阅读,又需要将二进制数再转换成十进制数。所以为 了便于信息交换和传输,我们需要研究各种数制之间的转 换及不同的编码方式。
第1章 数制与编码
1. 十进制数(Decimal)
① 采用 10 个不同的数码0、 1、 2、 …、 9和一个小数点(.)。
② 进位规则是“逢十进一”。
若干个数码并列在一起可以表示一个十进制数。例如在 435.86这个数中,小数点左边第一位的5代表个位,它的数值 为5; 小数点左边第二位的 3 代表十位,它的数值为3×101; 左边第三位的 4 代表百位,它的数值为4×102;小数点右边 第一位的值为8×10-1;小数点右边第二位的值为6×10-2。可 见,数码处于不同的位置,代表的数值是不同的。这里102、 101、100、 10-1、10-2 称为权或位权,即十进制数中各位的权 是基数 10 的幂,各位数码的值等于该数码与权的乘积。因此 有
第1章 数制与编码
u
O
u
O
正弦波信号
t
三角波信号
t
数字信号波形
第1章 数制与编码
数字电路的一般框图如图 1.1.1 所示,它有 n 个输入 X 1 ,
X 2 , X n 和 m 个输出 F1, F2 Fm ,此外还有一个定时信号,
即时钟脉冲信号(Clock)。对于每一个输入 X i 和输出 Fj 都是时间
第1章 数制与编码
1.1 数字逻辑电路概述
自然界的各种物理量可分为模拟量和数字量两大类。 模拟量在时间上是连续取值,幅值上也是连续变化的,表 示模拟量的信号称为模拟信号,处理模拟信号的电子电路 称为模拟电路。数字量是一系列离散的时刻取值,数值的 大小和每次的增减都是量化单位的整数倍,即它们是一系 列时间离散、数值也离散的信号。表示数字量的信号称为 数字信号。处理数字信号的电子电路称为数字电路。
第1章 数制与编码
图1.1.1 数字电路系统框图
第1章 数制与编码
数字电路中的电子器件都工作在开关状态,电路的输 出只有高、低两个电平,因而很容易实现二值数字逻辑。 在分析实际电路时,逻辑高电平和逻辑低电平都对应一定 的电压范围,不同系列的数字集成电路,其输入、输出为高电 平或低电平所对应的电压范围是不同的(参看第3章)。一 般用逻辑高电平(或接电源电压)表示逻辑1和二进制数的1, 用逻辑低电平(或接地)表示逻辑0和二进制数的0。在数 字电路中,当用高电平表示逻辑1,低电平表示逻辑0时称 为正逻辑;当用低电平表示逻辑1、高电平表示逻辑0时称 为负逻辑,通常情况下数字电路使用正逻辑。