湖北省武汉市华师一附中自主招生试卷及答案
2019年湖北省武汉市洪山区华师一附中自主招生(理科实验班)预录考试模拟化学试题(解析版)
华师一附中2019 年自主招生(理科实验班)预录考试化学训练试题可能用到的相对原子质量H=1O=16 S=32 C=12Cu=64Mg=24Ca=40Fe=56一、选择题。
(每小题只有1 个答案共20 分)1.核外电子数相同、所显电性和所带电量也相同的微粒称为等电子等质子体。
下列各组内的两种微粒不属于等电子等质子体的是()A. Cl-和HS-B. Na+和NH4+C. F-和OH-D. O2-和S2-【答案】D【解析】【详解】A、Cl-和HS-核外电子数相同,都是18,所显电性相同,所带电量相同,都是带一个单位负电荷,属于等电子等质子体,不符合题意;B、Na+和NH4+核外电子数相同,都是10,所显电性相同,所带电量相同,都是带一个单位正电荷,属于等电子等质子体,不符合题意;C、F-和OH-核外电子数相同,都是10,所显电性相同,所带电量相同,都是带一个单位负电荷,属于等电子等质子体,不符合题意;D、O2-核外电子数是10,S2-核外电子数是18,不属于等电子等质子体,符合题意。
故选D。
2.海洋中有丰富的食品、矿产、能源、药物和水产资源等(如下图所示)下列有关说法不正确的是()A. 从能量转换角度来看,框图中的氯碱工业是一个将电能转化为化学能的过程B. 过程②中结晶出MgCl2·6H2O 要在HCl 氛围中加热脱水制得无水MgCl2C. 在过程③⑤中溴元素均被氧化D. 过程①中除去粗盐中的 SO 42- 、Ca 2+、Mg 2+、Fe 3+等杂质,加入的药品顺序为:Na 2CO 3溶液→NaOH 溶液→BaCl 2溶液→过滤后加盐酸 【答案】D 【解析】【详解】A 、氯碱工业是电解饱和食盐水生成氢气、氢氧化钠和氯气,是在通电条件下发生化学反应,属于电能转化为化学能,该选项说法正确;B 、氯化镁晶体脱水过程中镁离子易水解生成氢氧化镁沉淀,在氯化氢气体中脱水可以抑制镁离子的水解,因此为了防止镁离子水解,则要在HCl 气体中加热脱水制得无水氯化镁,该选项说法正确; C 、在过程③⑤中溴元素的化合价升高,均被氧化,该选项说法正确;D 、Ca 2+用碳酸钠除去,Mg 2+、Fe 3+用氢氧化钠除去,SO 42-用氯化钡除去,最后加入盐酸酸化,但过量的氯化钡要用碳酸钠来除,所以碳酸钠必需放在氯化钡的后面,而氢氧化钠可以随意调整,该选项说法错误; 故选D 。
2022年湖北省武汉市华中师范大学第一附属中学自主招生数学试题(专县生)
2022年华师一附中专县生数学试卷理科综合测试题时限:100分钟满分:150分数学部分(100分)一、选择题(共6小题,每小题5分,共30分)1.新冠疫情对某地区的经济发展造成了巨大影响,为了改善该地区经济发展的现状,政府部门对该地区的经济进行了为期一年的宏观调控,使得该地区的经济收入增加了一倍,实现翻番.为更好地了解调控前后该地区的经济收入变化情况,统计了该地区宏观调控前后的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()。
A.宏观调控后,服务业收入减少B.宏观调控后,农业收入增加了一倍以上C.宏观调控后,工业收入增加了一倍D.宏观调控后,工业收入与其它收入的总和超过了经济收入的一半2.已知a=√2023−√2022,b=√2022−√2021,c=√2021−√2020,则a,b,c的大小关系为()。
A.a>b>cB.c>b>aC.b>a>cD.b>c>a(k⟩0)的图象的交点的横坐标为2,则关于x的不等3.已知二次函数y=ax²+1(a>0)的图象与反比例函数y=kx+ax2+1<0的解集是()。
式kxA.x < -2B.-2< x< 0C.0<x<2D.x>24. 如图,四边形ABCD 中,∠A=∠C=90°,,32,2,30,90===∠=∠=∠CD AD ABC C A oo则BD=()。
A.338 B.3394 C.74 D.845、如图1,点G 是BC 上靠近点C 的三等分点,点H 在AF 上,动点P 以每秒1cm 的速度沿图1的边线运动,运动路径为:G-C-D-E-F-H,相应的△ABP 的面积y(cm²)关于运动时间t(s)的函数图象如图2,若AB=4cm ,则下列四个结论中正确的个数有()。
①图1中的BC 长是9cm;②图2中的M 点表示第6秒时y 的值为18cm²;③图1中的CD 长是3cm;④图2中的N 点表示第19秒时y 的值为14cm².A.1个B.2个C.3个D.4个6、如图,△ABC中∠ACB=90°,点D 在CA 上,CD=1,AD=4,∠BDC=3∠BAC,则BC=()。
武汉华师一附中高中招生试题(语文、数学)
武汉华师一附中高中招生试题(语文、数学)华中师大一附中高中招生文科素质测试卷语文部分考试时间80分钟,卷面满分75分一、选择题(11分)1、选出下列句子中加点的词语的书写及注音、解释全都正确的一项(2分)答案[ ]A、校团委、校学生会组织同学们向河北省张家口市张北、尚义两县地震灾区捐款振灾[振:振济,用钱或衣服、粮食等救灾(灾民)振,音zhèn。
]B、华中理工大学博导王能超教授于1998年3月15日下午莅临我校作学术报告,题为“千古绝技割圆术”。
[莅临:书面语,来到;来临(多用于贵宾)。
莅,音lì]C、在当代,信息在不断“激增”,要学要懂的东西越来越使人眼花缭乱,目不暇接。
[目不暇接:东西太多,眼睛看不过来。
暇,音jiá]D、1997年11月24日,国务院副总理李岚清第二次到华师一附中视察。
在校电视演播室,李副总理以赞赏的眼光观看同学们娴熟地操作摄像机等设备。
[娴熟:熟练,文雅。
娴,音xián]2、选出下列没有语病、句意明确的一项(3分)A、雅琪将士用不屈的斗志和协作的团队精神化作战斗力,使得劲旅申花怏怏而归。
B、梨园绿化广场是武汉市创建山水园林城市的重要项目之一。
该广场位于武昌徐东路、东湖路、环湖路三条交通干道的交汇处。
C、1970年3月18日凌晨,“诺曼底”号邮船在英伦海峡沉没。
船上有28名船员,1名女服务员,31名乘客,12名妇女。
D、外国朋友来武汉作客,往往会盛情约请他们品尝一下汉味小吃。
3、选出文言句子翻译正确的一项(3分)A、“吾与汝毕力平险,指通豫南,达于汉阴,可乎?”译文:“我和你们尽全力铲除险峻的大山,一直通向豫州的南部,到达汉水北岸,可以吗?”B、斯是陋室,惟吾德罄。
译文:这是简陋的屋子,只是我(住屋的人)的品德好(就不感到简陋了)。
C、小大之狱,虽不能察,必以情。
译文:大大小小的监狱,虽然不能一一察看,但一定按照实情处理。
D、孰知赋敛之毒有甚是蛇者乎?译文:谁知道搜刮百姓的毒害有的如同蛇一样厉害呀。
【考试必备】2018-2019年最新华中师范大学第一附属中学初升高自主招生语文模拟精品试卷【含解析】【4套】
2018-2019年最新湖北华中师范大学第一附属中学自主招生语文模拟精品试卷(第一套)(满分:100分考试时间:90分钟)一、语文基础知识(18分,每小题3分)1.下列词语中加点的字,读音全都正确的一组是()A.连累(lěi) 角(juã)色河间相(xiàng) 冠冕(miǎn)堂皇B专横(hâng) 忖(cǔn)度涮(shuàn) 羊肉妄加揣(chuāi)测C.笑靥(yâ) 顷(qīng)刻汗涔(cãn)涔休戚(qì)相关D慨叹(kǎi) 俨(yǎn)然刽子手(kuàì) 刎(wěn)颈之交2、下列各项中字形全对的是()A、橘子州偌大急躁光阴荏苒B、蒙敝犄角慰籍书生意气C、敷衍磕绊笔竿艰难跋涉D、翱翔斑斓屏蔽自怨自艾3、依次填入下列各句横线上的词语,最恰当..的一项是()⑴虽然他尽了最大的努力,还是没能住对方凌厉的攻势,痛失奖杯。
⑵那些见利忘义,损人利己的人,不仅为正人君子所,还很可能滑向犯罪的深渊。
⑶我认为,真正的阅读有灵魂的参与,它是一种个人化的精神行为。
A.遏制不耻必需B.遏止不耻必需C.遏制不齿必须D.遏止不齿必须4、下列句中加点的成语,使用恰当的一句是()A、故宫博物院的珍宝馆里,陈列着各种奇珍异宝、古玩文物,令人应接不暇。
B、任何研究工作都必须从积累资料做起,如果不掌握第一手资料,研究工作只能是空中楼阁....。
C、电影中几处看来是闲笔,实际上却是独树一帜之处。
D、这部精彩的电视剧播出时,几乎万人空巷,人们在家里守着荧屏,街上显得静悄悄的。
5、下列句子中,没有语病的一项是()A 大学毕业选择工作那年,我瞒着父母和姑姑毅然去了西藏支援边疆教育。
B北京奥运会火炬接力的主题是‚和谐之旅‛,它向世界表达了中国人民对内致力于构建和谐社会,对外努力建设和平繁荣的美好世界。
C他不仅是社会的一员,同时还是宇宙的一员。
全网答案解析最全 重点高中初升高自主招生 湖北省武汉市华师一附中自主招生考试数学试卷演示教学
第 2页(共 15页)
萧绯 初升高自主招生收藏卷
15.(12 分)(2005•河南)某公司为了扩大经营,决定购进 6 台机器用于生产某种活塞.现有甲、乙两
种机器供选择,其中每种机器的价格和每台机器日生产活塞的数量如下表所示.经过预算,本次购买机
器所耗资金不能超过 34 万元.
甲
乙
பைடு நூலகம்
价格(万元/台)7
是
.
纸笔测试
实践能力
成长记录
甲
90
83
95
乙
88
90
95
丙
90
88
90
9.已知点 A 是一次函数 y=x 的图象与反比例函数 y= 的图象在第一象限内的交点,点 B 在 x 轴的负半
轴上,且 OA=OB(O 为坐标原点),则△AOB 的面积为
.
10.如果多项式 x2+px+12 可以分解成两个一次因式的积,那么整数 P 的值是
17.如图所示等腰梯形 ABCD 中,AD=BC,AB∥CD,对角线 AC 与 BD 交于 O,∠ACD=60°,点 S、 P、Q 分别是 OD、OA、BC 的中点. 求证:△PQS 是等边三角形.
第 3页(共 15页)
萧绯 初升高自主招生收藏卷
18.如图,直线 OB 是一次函数 y=2x 的图象,点 A 的坐标是(0,2),点 C 在直线 OB 上且△ACO 为 等腰三角形,求 C 点坐标.
萧绯 初升高自主招生收藏卷
湖北省武汉市华师一附中自主招生考试数学试卷
一、选择题(共 5 小题,每小题 6 分,满分 30 分) 1.下列图中阴影部分面积与算式|﹣ |+( )2+2﹣1 的结果相同的是( )
华师一附中2020年自主招生(分配生)数学试题(word版附答案)
华中师大一附中2020年自主招生(分配生)数学试题考试时间:90分钟卷面满分:100分说明:所有答案一律书写在答题卡上,写在试卷上作答无效,其中,将所有选择题答案用2B铅笔也相应位置涂黑。
一、选择题(本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中,有且只有一个是正确的)1.在数轴上和有理数a,b,c对应的点的位置如图所示,有下列四个结论:①a2﹣a﹣2<0;②|a﹣b|+|b﹣c|=|a﹣c|;③(a+b)(b+c)(c+a)>0;④|a|<1﹣bc.其中正确的结论有()个A.4 B.3 C.2 D.12.已知a,b,c分别是Rt△ABC的三条边长,c为斜边长,∠C=90°,我们把关于x的形如y=x+的一次函数称为“勾股一次函数”.若点P(﹣1,)在“勾股一次函数”的图象上,且Rt△ABC的面积是4,则c的值是()A.2B.24 C.2D.123.5G时代悄然来临,为了研究中国手机市场现状,中国信通院统计了2019年手机市场每月出货量以及与2018年当月同比增长的情况,得到如图统计图:根据该统计图,下列说法错误的是()A.2019年全年手机市场出货量中,5月份出货量最多B.2019年下半年手机市场各月份出货量相对于上半年各月份波动小C.2019年全年手机市场总出货量低于2018年全年总出货量D.2018年12月的手机出货量低于当年8月手机出货量4.已知函数y=x2+x﹣1在m≤x≤1上的最大值是1,最小值是﹣,则m的取值范围是()A.m≥﹣2 B.0≤m≤C.﹣2≤m≤﹣D.m≤﹣5.如图,△AOB中,∠AOB=90°,AO=4,BO=8,△AOB绕点O逆时针旋转到△A'OB'处,此时线段A'B'与BO的交点E为BO的中点,则线段B'E的长度为()A.3B.C.D.第5题图第6题图6.如图1,在矩形ABCD中,动点M从点A出发,沿A→B→C方向运动,当点M到达点C时停止运动,过点M作MN⊥AM交CD于点N,设点M的运动路程为x,CN=y,图2表示的是y与x的函数关系的大致图象,则矩形ABCD的面积是()A.24 B.20 C.12 D.10二、填空题(本大题共6小题,每小题4分,共24分)7.2020年某校将迎来70周年校庆,学校安排3位男老师和2位女老师一起筹办大型文艺晚会,并随机地从中抽取2位老师主持晚会,则最后确定的主持人是一男一女的概率为________.8.在△ABC中,AB=AC,若cosA=,则=________.9.如图1是个轴对称图形,且每个角都是直角,长度如图所示,小王按照如图2所示的方法玩拼图游戏,两两相扣,相互不留空隙,那么小王用2020个这样的图形(图1)拼出来的图形的总长度是________.(结果用m,n表示)10.如图,以正六边形ABCDEF的对角线BD为边,向右作等边三角形BDG,若四边形BCDG(图中阴影部分)的面积为6,则五边形ABDEF的面积为________.第10题图第11题图第12题图11.如图,在菱形ABCD中,AB=4,∠BAD=120°,点E、F分别是边AB、BC边上的动点,沿EF折叠△BEF,使点B的对应点B′始终落在边CD上,则A、E两点之间的最大距离为________.12.如图,点A 是反比例函数y =kx 的图象上位于第一象限的点,点B 在x 轴的正半轴上,过点B 作BC ⊥x 轴,与线段OA 的延长线交于点C ,与反比例函数的图象交于点D ,若直线AD 垂直OC ,且使得AC=2OA ,则sinC =________.三、解答题(本大题共4小题,共52分,解答题应写出文字说明、证明过程和演算过程) 13.(本小题满分12分)(1)已知关于x 的方程x 2﹣(2k ﹣1)x+k 2=0有两个实根x 1,x 2,且满足x 1x 2﹣|x 1|﹣|x 2|=2,求实数k 的值;(2)已知a <b <0,且+=6,求()3的值.14.(本小题满分14分)如图,在ABC ∆中,BA BC =,90ABC ∠=︒,以AB 为直径的半圆O 交AC 于点D ,点E 是弧BD 上不与点B ,D 重合的任意一点,连接AE 交BD 于点F ,连接BE 并延长交AC 于点G .(1)求证:ADF BDG ∆≅∆;(2)取弧AE 的中点H ,若四边形OBEH 为菱形,求EAB ∠的大小;(3)若4AB =,且点E 是弧BD 上靠近点B 的一个三等分点,求线段DG 的长.15.(本小题满分12分)习总书记强调,实行垃圾分类,关系广大人民群众生活环境,关系节约使用资源,也是社会文明水平的一个重要体现.为改善城市生态环境,某市决定从6月1日起,在全市实行生活垃圾分类处理,某街道计划建造垃圾初级处理点20个,解决垃圾投放问题.有A、B两种类型垃圾处理点,其占地面积、可供使用居民楼幢数及造价见表:类型占地面积可供使用幢数造价(万元)A 15 18 1.5B 20 30 2.1(1)已知该街道可供建造垃圾初级处理点的占地面积不超过370m2,如何分配A、B两种类型垃圾处理点的数量,才能够满足该街道490幢居民楼的垃圾投放需求,且使得建造方案最省钱?(2)当建造方案最省钱时,经测算,该街道垃圾月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:y=,若每个B型处理点的垃圾月处理量是A型处理点的1.2倍,该街道建造的每个A型处理点每月处理量为多少吨时,才能使该街道每吨垃圾的月处理成本最低?(精确到0.1)16.(本小题满分14分)如图①,已知抛物线y=ax2+x+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A坐标为(﹣1,0),点C坐标为(0,),点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求a,c的值;(2)求线段DE的长度;(3)如图②,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少?华中师大一附中2020年自主招生(分配生)数学试题参考答案与试题解析一、选择题(本大题共6小题,每小题4分,共24分,在每小题给出的四个选项中,有且只有一个是正确的)1.解:根据题意得:a<﹣1<0<b<c<1,则①a2﹣a﹣2=(a﹣2)(a+1)>0;②∵|a﹣b|+|b﹣c|=﹣a+b﹣b+c=﹣a+c,|a﹣c|=﹣a+c,∴|a﹣b|+|b﹣c|=|a﹣c|;③∵a+b<0,b+c>0,c+a<0,∴(a+b)(b+c)(c+a)>0;④∵|a|>1,1﹣bc<1,∴|a|>1﹣bc;故正确的结论有②③,一共2个.故选:C.2.解:∵点P(﹣1,)在“勾股一次函数”y=x+的图象上,∴=﹣+的一次函数,即a﹣b=﹣c,又∵a,b,c分别是Rt△ABC的三条变长,∠C=90°,Rt△ABC的面积是4,∴ab=4,即ab=8,又∵a2+b2=c2,∴(a﹣b)2+2ab=c2,∴(﹣c)2+2×8=c2,解得c=2,故选:A.3.解:对于A,由柱状图可得5月份出货量最高,故A正确;对于B,根据曲线幅度可得下半年波动比上半年波动小,故B正确;对于C,根据曲线上数据可得仅仅4月5月比同比高,其余各月均低于2018,且明显总出货量低于2018年,故C正确;对于D,可计算得2018年12月出货量为:3044.4÷(1﹣14.7%)=3569.05,8月出货量为:3087.5÷(1﹣5.3%)=3260.3,因为3260.3<3569.05,故12月更高,故D错误.故选:D.4.解:∵函数y=x2+x﹣1的对称轴为直线x=﹣,∴当x=﹣时,y有最小值,此时y=﹣﹣1=﹣,∵函数y=x2+x﹣1在m≤x≤1上的最小值是﹣,∴m≤﹣;∵当x=1时,y=1+1﹣1=1,对称轴为直线x=﹣,∴当x=﹣﹣[1﹣(﹣)]=﹣2时,y=1,∵函数y=x2+x﹣1在m≤x≤1上的最大值是1,且m≤﹣;∴﹣2≤m≤﹣.故选:C.5.解:∵∠AOB=90°,AO=4,BO=8,∴AB ===4,∵△AOB 绕顶点O 逆时针旋转到△A ′OB ′处, ∴AO =A ′O =4,A ′B ′=AB =4, ∵点E 为BO 的中点,∴OE =BO =×8=4,∴OE =A ′O =4,过点O 作OF ⊥A ′B ′于F , S △A ′OB ′=×4•OF =×4×8,解得OF =, 在Rt △EOF 中,EF ===, ∵OE =A ′O ,OF ⊥A ′B ′,∴A ′E =2EF =2×=,∴B ′E =A ′B ′﹣A ′E =4﹣=;故选:B .6.解:由图2知:AB+BC =10,设AB =m ,则BC =10﹣m ,如图所示,当点M 在BC 上时,则AB =m ,BM =x ﹣m ,MC =10﹣x ,NC =y , ∵MN ⊥AM ,则∠MAB =∠NMC ,tan ∠MAB =tan ∠NMC ,即,即,化简得:y =﹣x 2+x ﹣10,当x =﹣=时,y =﹣(10+m 2)2+·﹣10=23,解得:m =6,则AM =6,BC =4,故ABCD 的面积=24,故选:A . 二、填空题(本大题共6小题,每小题4分,共24分) 7.解:根据题意画图如下:共有20种等可能的情况数,其中最后确定的主持人是一男一女的有12种, 则最后确定的主持人是一男一女的概率为=.故答案为:.8.解:过B 点作BD ⊥AC 于点D , ∵cosA =,∴,设AD =4x ,则AB =5x ,∴, ∵AB =AC ,∴AC =5x ,∴CD =5x ﹣4x =x , ∴BC =,∴,故答案为:.9.解:由图可得,2个这样的图形(图1)拼出来的图形中,重叠部分的长度为m ﹣n , ∴用2020个这样的图形(图1)拼出来的图形的总长度 =2020m ﹣2019(m ﹣n)=m+2019n ,故答案为:m+2019n . 10.解:如图,连接GC 并延长交BD 于点H ,连接AE , ∵ABCDEF 正六边形,∴AB =BC =CD =DE =EF =AF ,∠F =∠FAB =∠ABC =∠BCD =∠CDE =∠DEF =120°,∴∠CBD =∠CDB =30° ∵△BDG 是等边三角形,∴BG =DG =BD ,∠GBD =∠GDB =60°, 又CG =CG ,∴△BCG ≌△DCG (SSS ), ∵∠GBC =∠DBC =60°﹣30°=30°,∴△GBC ≌△DBC (SAS ),∴S △BCG =S △DCG =S △BCD =3,∴S △AEF =3, 设CH =x ,则BC =CG =2x ,BH =√3x ,∴BD =2√3x ,∴12CG •BH =3, 即12×2x ·√3x =3,∴√3x 2=3,∴S 四边形ABDE =AB •BD =2x •2√3x =4√3x 2=12, ∴五边形ABDEF 的面积为:3+12=15. 11.解:如图,作AH ⊥CD 于H .∵四边形ABCD 是菱形,∠BAD =120°,∴AB ∥CD , ∴∠D+∠BAD =180°,∴∠D =60°, ∵AD =AB =4,∴AH =AD •sin60°=2√3, ∵B ,B ′关于EF 对称,∴BE =EB ′, 当BE 的值最小时,AE 的值最大,根据垂线段最短可知,当EB ′=AH =2√3时,BE 的值最小, ∴AE 的最大值=4−2√3,故答案为4−2√3. 12.解:如图,作AE ⊥BC 于点E ,设A (a ,b ),则C (3a ,3b ),∴OB =3a ,BC =3b , ∴D (3a ,13b ),∴AE =2a ,CE =2b ,DE =23b ,又∵AD ⊥AC ,∴AE 2=CE ·DE ,∴(2a)2=2b ·23b ,∴b 2=3a 2, 又∵Rt △BOC 中,OC =√OB 2+BC 2=3√a 2+b 2, ∴sinC =OBOC =3a 3√a 2+3a 2=3a 3×2a =12.故答案为:12.三、解答题(本大题共4小题,共52分,解答题应写出文字说明、证明过程和演算过程) 13.解:(1)根据题意得△=(2k ﹣1)2﹣4k 2≥0,解得k ≤;(2)x 1+x 2=2k ﹣1,x 1x 2=k 2, ∵k ≤,∴x 1+x 2=2k ﹣1≤0,而x 1x 2=k 2≥0,∴x 1≤0,x 2≤0,∵x 1x 2﹣|x 1|﹣|x 2|=2,∴x 1•x 2+x 1+x 2=2,即k 2+(2k ﹣1)=2, 整理得k 2+2k ﹣3=0,解得k 1=﹣3,k 2=1,而k ≤,∴k =﹣3;(3)∵+=6,∴a 2+b 2=6ab ,∴(a+b)2=8ab ,∴(b ﹣a)2=(a+b)2﹣4ab =4ab ,∴()2==2,∴=±, ∵a <b <0,∴a+b <0,b ﹣a >0,∴<0,∴=﹣,∴()3=﹣2.答:()3的值为﹣2.14.解:(1)证明:如图1,BA BC =,90ABC ∠=︒,45BAC ∴∠=︒ ∵AB 是⊙O 的直径,90ADB AEB ∴∠=∠=︒,90ADF BDG ∴∠=∠=︒, 90DAF BGD DBG BGD ∴∠+∠=∠+∠=︒,DAF DBG ∴∠=∠,90ABD BAC ∠+∠=︒,45ABD BAC ∴∠=∠=︒,AD BD ∴=,()ADF BDG ASA ∴∆≅∆;(2)连接OH ,EH ,点H 是弧AE 的中点,OH AE ∴⊥,90AEB ∠=︒,BE AE ∴⊥, //BE OH ∴,四边形OBEH 为菱形,12BE OH OB AB ∴===, 1sin 2BE EAB AB ∴∠==,30EAB ∴∠=︒. (3)如图2,连接OD 、OE ,点E 是弧BD 上靠近点B 的三等分点,∴∠DOE =23∠DOB , 由(1)知△ADB 是等腰直角三角形,∴∠DOB =2∠DAB =90°,∴∠DOE =60°,∴∠DBE =30°,∴DG =BD ·tan30°, 又∵AB =4,∴BD =2√2,∴DG =2√2×√33=23√6.15.解:(1)设建造A 型处理点x 个,则建造B 型处理点(20﹣x )个. 依题意得:,解得6≤x ≤9.17,∵x 为整数,∴x =6,7,8,9有四种方案;设建造A 型处理点x 个时,总费用为y 万元.则:y =1.5x+2.1(20﹣x )=﹣0.6x+42, ∵﹣0.6<0,∴y 随x 增大而减小,当x =9时,y 的值最小,此时y =36.6(万元), ∴当建造A 型处理点9个,建造B 型处理点11个时最省钱; (2)由题意得:每吨垃圾的处理成本为(元/吨),当0≤x <144时,=(x 3﹣80x 2+5040x )=x 2﹣80x+5040,∵0,故有最小值,当x =﹣=﹣=120(吨)时,的最小值为240(元/吨),当144≤x <300时,=(10x+72000)=10+,当x =300(吨)时,=250,即>250(元/吨),∵240<250,故当x =120吨时,的最小值为240元/吨,∵每个B 型处理点的垃圾月处理量是A 型处理点的1.2倍且A 型处理点9个,建造B 型处理点11个,∴每个A 型处理点每月处理量=×120×≈5.4(吨),故每个A 型处理点每月处理量为5.4吨时,才能使该街道每吨垃圾的月处理成本最低. 16.解:(1)将A(﹣1,0),C(0,)代入抛物线y =ax 2+x+c(a ≠0),,∴a =﹣,c = (2)由(1)得抛物线解析式:y =﹣x 2+x+, ∵点D 是点C 关于抛物线对称轴的对称点,C(0,),∴D(2,),∴DH =,令y =0,即﹣x 2+x+=0,得x 1=﹣1,x 2=3,∴A(﹣1,0),B(3,0),∵AE ⊥AC ,EH ⊥AH ,∴△ACO ∽△EAH ,∴,即,解得:EH=2,则DE=2;(3)找点C关于DE的对称点N(4,),找点C关于AE的对称点G(﹣2,﹣),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,∴直线GN的解析式:y=x﹣,由(2)得E(2,﹣),A(﹣1,0),∴直线AE的解析式:y=﹣x﹣,联立解得,∴F(0,﹣),∵DH⊥x轴,∴将x=2代入直线GN的解析式:y=x﹣,∴P(2,)∴F(0,﹣)与P(2,)的水平距离为2过点M作y轴的平行线交FP于点Q,设点M(m,﹣m2+m+),则Q(m,m﹣)(<m<);∴S△MFP=S△MQF+S△MQP=MQ×2=MQ=(﹣m2+m+)﹣(m﹣),S△MFP==∵对称轴为:直线m=,又∵开口向下,<m<,∴m=时,△MPF面积有最大值为.。
华师一附中自主招生(理科实验班)预录考试模拟化学试题 答案和解析v
操作②向滤出的沉淀中加入足量稀硝酸,沉淀全部溶解,此时所得溶液仍为无色。
(1)M中不能确定是否含有的物质是__________。
(2)上述实验过程中,发生反应的化学方程式为___________、________。
(3)向操作①后所得的无色溶液中滴加溶液AgNO3溶液,一定能发生的反应的化学方程式为_____。
A.Cl-和HS-
B.Na+和NH4+
C.F-和OH-
D.O2-和S2-
2.海洋中有丰富的食品、矿产、能源、药物和水产资源等(如下图所示)下列有关说法不正确的是()
A.从能量转换角度来看,框图中的氯碱工业是一个将电能转化为化学能的过程
B.过程②中结晶出的MgCl2·6H2O要在HCl氛围中加热脱水制得无水MgCl2
(3)医药上可用石膏来固定骨折部位。石膏有熟石膏(CaSO4· H2O,一种白色粉末)和生石膏(CaSO4·2H2O,一种坚硬的固体)两种,固定骨折的石膏是__________________。(填化学式)。固定时发生反应的化学方程式__________________。
(4))CO与PdCl2溶液反应产生黑色金属钯粉末(反应中有水参加),用此来检测CO对环境的污染情况,此反应的化学方程式为:________,反应中中可能看到的现象是________。
B.在气体发生装置上直接点燃乙炔气体时,必须先检验乙炔气体的纯度
C.实验结束后将所有的废液倒入下水道排出实验室,以免污染实验室
D.给试管中的液体加热时不停移动试管或加入碎瓷片,以免暴沸伤人
4.取4份等质量的KClO3,向其中3份中分别加入少量等质量的KMnO4、MnO2和Mn,分别在某温度下加热至质量不再改变,测定产生氧气的质量。然后将剩余固体溶于足量水中,添加过物质的组别中均有相同组成的不溶物。测定结果如下:
2020年湖北省武汉市华中师大一附中自主招生数学试卷-普通用卷
2020年湖北省武汉市华中师大一附中自主招生数学试卷一、选择题(本大题共6小题,共24.0分)1.在数轴上和有理数a,b,c对应的点的位置如图所示,有下列四个结论:①a2−a−2<0;②|a−b|+|b−c|=|a−c|;③(a+b)(b+c)(c+a)>0;④|a|<1−bc.其中正确的结论有()个A. 4B. 3C. 2D. 12.已知a,b,c分别是Rt△ABC的三条边长,c为斜边长,∠C=90°,我们把关于x的形如y=ac x+bc的一次函数称为“勾股一次函数”.若点P(−1,√33)在“勾股一次函数”的图象上,且Rt△ABC的面积是4,则c的值是()A. 2√6B. 24C. 2√3D. 123.5G时代悄然来临,为了研究中国手机市场现状,中国信通院统计了2019年手机市场每月出货量以及与2018年当月同比增长的情况,得到如图统计图:根据该统计图,下列说法错误的是()A. 2019年全年手机市场出货量中,5月份出货量最多B. 2019年下半年手机市场各月份出货量相对于上半年各月份波动小C. 2019年全年手机市场总出货量低于2018年全年总出货量D. 2018年12月的手机出货量低于当年8月手机出货量4.已知函数y=x2+x−1在m≤x≤1上的最大值是1,最小值是−54,则m的取值范围是()A. m≥−2B. 0≤m≤12C. −2≤m≤−12D. m≤−125.如图,△AOB中,∠AOB=90°,AO=4,BO=8,△AOB绕点O逆时针旋转到△A′OB′处,此时线段A′B′与BO的交点E为BO的中点,则线段B′E 的长度为()A. 3√5B. 12√55C. 9√55D. 16√556.如图1,在矩形ABCD中,动点M从点A出发,沿A→B→C方向运动,当点M到达点C时停止运动,过点M作MN⊥AM交CD于点N,设点M的运动路程为x,CN=y,图2表示的是y 与x的函数关系的大致图象,则矩形ABCD的面积是()A. 20B. 18C. 10D. 9二、填空题(本大题共6小题,共24.0分)7.2020年某校将迎来70周年校庆,学校安排3位男老师和2位女老师一起筹办大型文艺晚会,并随机地从中抽取2位老师主持晚会,则最后确定的主持人是一男一女的概率为______.8.在△ABC中,AB=AC,若cosA=45,则BCAB=______.9.如图1是个轴对称图形,且每个角都是直角,长度如图所示,小王按照如图2所示的方法玩拼图游戏,两两相扣,相互不留空隙,那么小王用2020个这样的图形(图1)拼出来的图形的总长度是______.(结果用m,n表示)10.如图,在平面直角坐标系中,矩形MNPQ的顶点M,N分别在x轴,y轴正半轴上滑动,顶点P、Q在第一象限,若MN=8,PN=4,在滑动过程中,点P与坐标原点O的距离的最大值为______.11.如图,已知直线y=kx(k>0)分别交反比例函数y=1x 和y=4x在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=1x的图象于点C,连接AC.若△ABC是等腰三角形,则k 的值是______.12.如图,在正方形ABCD中,AB=4,点M在CD边上,且DM=1,△AEM与△ADM关于AM所在直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为______.三、解答题(本大题共4小题,共52.0分)13.(1)已知关于x的方程x2−(2k−1)x+k2=0有两个实根x1,x2,且满足x1x2−|x1|−|x2|=2,求实数k的值;(2)已知a<b<0,且ab +ba=6,求(a+bb−a)3的值.14.习总书记强调,实行垃圾分类,关系广大人民群众生活环境,关系节约使用资源,也是社会文明水平的一个重要体现.为改善城市生态环境,某市决定从6月1日起,在全市实行生活垃圾分类处理,某街道计划建造垃圾初级处理点20个,解决垃圾投放问题.有A、B两种类型垃圾处理点,其占地面积、可供使用居民楼幢数及造价见表:类型占地面积可供使用幢数造价(万元)A1518 1.5B2030 2.1(1)已知该街道可供建造垃圾初级处理点的占地面积不超过370m2,如何分配A、B两种类型垃圾处理点的数量,才能够满足该街道490幢居民楼的垃圾投放需求,且使得建造方案最省钱?(2)当建造方案最省钱时,经测算,该街道垃圾月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:y={13x3−80x2+5040x,0≤x<14410x+72000,144≤x<300,若每个B型处理点的垃圾月处理量是A型处理点的1.2倍,该街道建造的每个A型处理点每月处理量为多少吨时,才能使该街道每吨垃圾的月处理成本最低?(精确到0.1)15.已知矩形ABCD中,AB=2,AD=5,点E是AD边上一动点,连接BE、CE,以BE为直径作⊙O,交BC于点F,过点F作FH⊥CE于H.(1)当直线FH与⊙O相切时,求AE的长;(2)当FH//BE时,求AE的长;(3)若线段FH交⊙O于点G,在点E运动过程中,△OFG能否成为等腰直角三角形?如果能,求出此时AE的长;如果不能,说明理由.16.如图①,已知抛物线y=ax2+2√3x+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与3y轴交于点C,点A坐标为(−1,0),点C坐标为(0,√3),点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求a,c的值;(2)求线段DE的长度;(3)如图②,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少?答案和解析1.【答案】C【解析】解:根据题意得:a <−1<0<b <c <1, 则①a 2−a −2=(a −2)(a +1)>0;②∵|a −b|+|b −c|=−a +b −b +c =−a +c , |a −c|=−a +c ,∴|a −b|+|b −c|=|a −c|;③∵a +b <0,b +c >0,c +a <0, ∴(a +b)(b +c)(c +a)>0; ④∵|a|>1,1−bc <1, ∴|a|>1−bc ;故正确的结论有②③,一共2个. 故选:C .根据数轴上各数的位置得出a <−1<0<b <c <1,依此即可得出结论.本题考查了数轴、绝对值和有理数的大小比较;弄清数轴上各数的大小是解决问题的关键.2.【答案】A【解析】解:∵点P(−1,√33)在“勾股一次函数”y =ac x +bc 的图象上,∴√33=−a c+b c的一次函数,即a −b =−√33c ,又∵a ,b ,c 分别是Rt △ABC 的三条变长,∠C =90°,Rt △ABC 的面积是4, ∴12ab =4,即ab =8, 又∵a 2+b 2=c 2, ∴(a −b)2+2ab =c 2, 即∴(−√33c)2+2×8=c 2,解得c =2√6, 故选:A .依据题意得到三个关系式:a −b =−√33c ,ab =8,a 2+b 2=c 2,运用完全平方公式即可得到c 的值.考查了一次函数图象上点的坐标特征以及勾股定理的应用,根据题目中所给的材料结合勾股定理和乘法公式是解答此题的关键.3.【答案】D【解析】解:对于A ,由柱状图可得5月份出货量最高,故A 正确; 对于B ,根据曲线幅度可得下半年波动比上半年波动小,故B 正确;对于C ,根据曲线上数据可得仅仅4月5月比同比高,其余各月均低于2018,且明显总出货量低于2018年,故C 正确;对于D ,可计算得2018年12月出货量为:3044.4÷(1−14.7%)=3569.05, 8月出货量为:3087.5÷(1−5.3%)=3260.3, 因为3260.3<3569.05, 故12月更高,故D 错误. 故选:D .根据图象逐一分析即可.本题考查了学生合情推理能力,考查数据分析与图表分析能力,属于基础题.4.【答案】C【解析】解:∵函数y =x 2+x −1的对称轴为直线x =−12, ∴当x =−12时,y 有最小值,此时y =14−12−1=−54, ∵函数y =x 2+x −1在m ≤x ≤1上的最小值是−54, ∴m ≤−12;∵当x =1时,y =1+1−1=1,对称轴为直线x =−12, ∴当x =−12−[1−(−12)]=−2时,y =1,∵函数y =x 2+x −1在m ≤x ≤1上的最大值是1,且m ≤−12; ∴−2≤m ≤−12. 故选:C .先求出二次函数的对称轴,再求得函数在顶点处的函数值,根据已知条件最小值是−54,得出m ≤−12;再求得当x =1时的函数值,发现该值等于已知条件中的最大值,根据二次函数的对称性可得m 的下限.本题考查了二次函数在给定范围内的最值问题,熟练掌握二次函数的性质是解题的关键.5.【答案】B【解析】解:∵∠AOB =90°,AO =4,BO =8, ∴AB =√AO 2+BO 2=√42+82=4√5, ∵△AOB 绕顶点O 逆时针旋转到△A′OB′处, ∴AO =A′O =4,A′B′=AB =4√5, ∵点E 为BO 的中点, ∴OE =12BO =12×8=4, ∴OE =A′O =4, 过点O 作OF ⊥A′B′于F ,S △A′OB′=12×4√5⋅OF =12×4×8,解得OF =8√55, 在Rt △EOF 中,EF =√OE 2−OF 2=(8√55)=4√55,∵OE =A′O ,OF ⊥A′B′, ∴A′E =2EF =2×4√55=8√55, ∴B′E =A′B′−A′E =4√5−8√55=12√55; 故选:B .由勾股定理求出AB ,由旋转的性质可得AO =A′O ,A′B′=AB ,再求出OE ,从而得到OE =A′O ,过点O 作OF ⊥A′B′于F ,由三角形的面积求出OF ,由勾股定理列式求出EF ,再由等腰三角形三线合一的性质可得A′E =2EF ,然后由B′E =A′B′−A′E 代入数据计算即可得解.本题考查了旋转的性质,勾股定理的应用,等腰三角形三线合一的性质,以及三角形面积等知识;熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键.6.【答案】A【解析】解:由图2知:AB +BC =9,设AB =m ,则BC =9−m , 如图所示,当点M 在BC 上时,则AB =m ,BM =x −a ,MC =9−x ,NC =y ,∵MN ⊥AM ,则∠MAB =∠NMC , tan∠MAB =tan∠NMC ,即BMAB =CNCM , 即x−m m=y 9−x ,化简得:y =−1mx 2+9+a ax −9,当x =−b2a =9+m 2时,y =−9+(9+m m )24m=45,解得:m =5, 则AM =5,BC =4, 故ABCD 的面积=20, 故选:A .由图2知:AB +BC =9,设AB =m ,则BC =9−m ,则tan∠MAB =tan∠NMC ,即BMAB =CNCM ,即x−m m=y9−x,化简得:y =−1m x 2+9+a ax −9,当x =−b 2a=9+m 2时,y =−9+(9+m m )24m=45,即可求解.本题考查的是动点的图象问题,涉及到一次函数、二次函数、解直角三角形等知识,从图2中,确定AB +BC =9是本题解题的关键.7.【答案】35【解析】解:根据题意画图如下:共有20种等可能的情况数,其中最后确定的主持人是一男一女的有12种, 则最后确定的主持人是一男一女的概率为1220=35. 故答案为:35.根据题意画出树状图得出所有等可能的情况数,再找出符合条件的情况数,然后根据概率公式即可得出答案.此题考查的是树状图法求概率.树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.8.【答案】√105【解析】解:过B点作BD⊥AC于点D,∵cosA=45,∴ADAB =45,设AD=4x,则AB=5x,∴BD=√AB2−AD2=3x,∵AB=AC,∴AC=5x,∴CD=5x−4x=x,∴BC=√BD2+CD2=√9x2+x2=√10x,∴BCAB =√10x5x=√105,故答案为:√105.过B点作BD⊥AC于点D,设AD=4x,根据三角函数和勾股定理用x表示AB与BD,BC,然后求结果便可.本题主要考查了解直角三角形和,勾股定理,腰三角形的性质,关键是正确构造直角三角形.9.【答案】m+2019n【解析】解:由图可得,2个这样的图形(图1)拼出来的图形中,重叠部分的长度为m−n,∴用2020个这样的图形(图1)拼出来的图形的总长度=2020m−2019(m−n)=m+2019n,故答案为:m+2019n.用2020个这样的图形(图1)的总长减去拼接时的重叠部分2019个(m−n),即可得到拼出来的图形的总长度.本题主要考查了利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.10.【答案】4+4√2【解析】解:如图,取MN 的中点E ,连接OE ,PE ,OP ,∵∠MON =90°,∴Rt △MON 中,OE =12MN =4,又∵∠MQP =90°,MN =8,PN =4,NE =4, ∴Rt △PNE 中,PE =√PN 2+NE 2=4√2, 又∵OP ≤PE +OE =4+4√2, ∴OP 的最大值为4+4√2,即点P 到原点O 距离的最大值是4+4√2, 故答案为:4+4√2.取MN 的中点E ,连接OE ,PE ,OP ,根据勾股定理和矩形的性质解答即可. 此题考查矩形的性质,关键是根据矩形的性质和勾股定理解答.11.【答案】2√55或√22【解析】解:∵点B 是y =kx 和y =4x 的交点,y =kx =4x , ∴点B 坐标为(√k 2√k),同理可求出点A 的坐标为(k √k), ∵BD ⊥x 轴,∴点C 横坐标为√k ,纵坐标为12√k ,∴BA =√1k +k ,AC =√1k +k4,BC =32√k ,∴BA 2−AC 2=34k >0, ∴BA ≠AC ,若△ABC 是等腰三角形,①当AB =BC 时,则√1k +k =32√k , 解得:k =±2√55(舍去负值);②当AC =BC 时,同理可得:k =√22;故答案为:2√55或√22. 根据一次函数和反比例函数的解析式,即可求得点A 、B 、C 的坐标(用k 表示),再讨论①AB =BC ,②AC =BC ,即可解题.本题考查了点的坐标的计算,考查了一次函数和反比例函数交点的计算,本题中用k 表示点A 、B 、C 坐标是解题的关键.12.【答案】5【解析】解:如图,连接BM .∵△AEM 与△ADM 关于AM 所在的直线对称, ∴AE =AD ,∠MAD =∠MAE .∵△ADM 按照顺时针方向绕点A 旋转90°得到△ABF , ∴AF =AM ,∠FAB =∠MAD . ∴∠FAB =∠MAE ,∴∠FAB +∠BAE =∠BAE +∠MAE . ∴∠FAE =∠MAB . ∴△FAE≌△MAB(SAS). ∴EF =BM .∵四边形ABCD 是正方形, ∴BC =CD =AB =4. ∵DM =1, ∴CM =3.∴在Rt △BCM 中,BM =√32+42=5, ∴EF =5, 故答案为:5.连接BM.先判定△FAE≌△MAB(SAS),即可得到EF =BM.再根据BC =CD =AB =4,CM =3,利用勾股定理即可得到,Rt △BCM 中,BM =5,进而得出EF 的长.本题考查了正方形的性质,勾股定理,全等三角形的判定与性质以及旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.13.【答案】解:(1)根据题意得△=(2k −1)2−4k 2≥0,解得k ≤14;(2)x1+x2=2k−1,x1x2=k2,∵k≤14,∴x1+x2=2k−1≤0,而x1x2=k2≥0,∴x1≤0,x2≤0,∵x1x2−|x1|−|x2|=2,∴x1⋅x2+x1+x2=2,即k2+(2k−1)=2,整理得k2+2k−3=0,解得k1=−3,k2=1,而k≤14,∴k=−3;(2)∵ab +ba=6,∴a2+b2=6ab,∴(a+b)2=8ab,∴(b−a)2=(a+b)2−4ab=4ab,∴(a+bb−a )2=(a+b)2(b−a)2=2,∴a+bb−a=±√2,∵a<b<0,∴a+b<0,b−a>0,∴a+bb−a<0,∴a+bb−a=−√2∴(a+bb−a)3=−2√2.答:(a+bb−a)3的值为−2√2.【解析】(1)利用判别式的意义得到△=(2k−1)2−4k2≥0,然后解不等式可得k的取值范围,再根据根与系数的关系可得出x1+x2=2k−1、x1x2=k2,结合x1x2−|x1|−|x2|=2,即可得出关于k的一元一次方程,解之即可求实数k的值;(2)先通分可得a2+b2=6ab,再根据完全平方公式的变形可得a+bb−a 的值,进而可得(a+bb−a)3的值.本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=−ba,x 1x 2=ca .也考查了判别式的值.14.【答案】解:(1)设建造A 型处理点x 个,则建造B 型处理点(20−x)个.依题意得:{15x +20(20−x)≤37018x +30(20−x)≥490,解得6≤x ≤9.17, ∵x 为整数,∴x =6,7,8,9有四种方案;设建造A 型处理点x 个时,总费用为y 万元.则:y =1.5x +2.1(20−x)=−0.6x +42, ∵−0.6<0,∴y 随x 增大而减小,当x =9时,y 的值最小,此时y =36.6(万元), ∴当建造A 型处理点9个,建造B 型处理点11个时最省钱;(2)由题意得:每吨垃圾的处理成本为yx (元/吨),当0≤x <144时,y x =1x (13x 3−80x 2+5040x)=13x 2−80x +5040, ∵13>0,故yx 有最小值,当x =−b 2a =−−802×13=120(吨)时,yx 的最小值为240(元/吨),当144≤x <300时,y x =1x (10x +72000)=10+72000x,当x =300(吨)时,yx =250,即yx >250(元/吨), ∵240<250,故当x =120吨时,yx 的最小值为240元/吨,∵每个B 型处理点的垃圾月处理量是A 型处理点的1.2倍且A 型处理点9个,建造B 型处理点11个, ∴每个A 型处理点每月处理量=9×19×1+11×1.2×120×19≈5.4(吨),故每个A 型处理点每月处理量为5.4吨时,才能使该街道每吨垃圾的月处理成本最低.【解析】(1)首先依据题意得出不等关系即可供建造垃圾初级处理点占地面积<等于370m 2,居民楼的数量大于等于490幢,由此列出不等式组;再根据题意求出总费用为y 与A 型处理点的个数x 之间的函数关系,进而求解;(2)分0≤x <144、144≤x <300两种情况,分别利用二次函数和反比例函数的性质求出函数的最小值,进而求解.本题考查了二次函数、反比例函数和一元一次不等式组的应用,题目有效地将现实生活中的事件与数学思想联系起来,弄懂题意、列出函数关系式是解题的关键.15.【答案】解:(1)如图1,连接EF,FA,∵CE为圆的切线且又和EB垂直,∴CE//AF∴∠CEF=∠AFE;又∵∠AFE=∠FEB,∴∠CEF=∠BEF,∴EF为∠BEC的平分线;∵∠EFB=90°,∴EF⊥BC,∴BE=CE∴△BEC为等腰三角形,∴BF为BC的一半;∵EA//CF,∴四边形CEAF为平行四边形,即AE=CF=2.5;(2)解:∵FH//BE,FH⊥CE,∴BE⊥CE,∴∠AEB+∠DEC=90°,∵∠ABE+∠AEB=90°,∴∠ABE=∠DEC,∵∠A=∠D=90°,∴△ABE∽△CDE,∴ABDE =AECD,∵AB=2,AD=5,∴CD=AB=2,∴25−AE =AE2,∴AE=1或AE=4.(3)连接EF、OF、OG,如图3所示:则∠BFE =90°,设AE =x ,则EF ,=AB =2,BF =AE =x ,CF =DE =5−x , 若△OFG 是等腰直角三角形,则∠FOG =90°, 连接BG 、EG ,设BG 、EF 交于点K , ∴△BFK 和△EGK 都是等腰直角三角形,∴BF =KF =x ,BK =√2x ,EK =2−KF =2−x ,在等腰直角△EGK 中,根据勾股定理得:GK =EG =√22(2−x),BG =GK +BK =√22(2+x),又∵∠EBG =∠EFG =∠FCH , ∴△BEG∽△CEF , ∴BG BE=FCEF,即√22(2+x)√22(2−x)=5−x 2,解得:x =9−√572,或x =9+√572,∴AE 的长度是9−√572或9+√572.【解析】(1)连接EF ,FA ,由CE 为圆的切线且又和EB 垂直,可知CE//FA ,推出∠CEF =∠AFE ,而∠AFE =∠FEB 可得∠CEF =∠BEF ,所以EF 为∠BEC 的平分线.又因为∠EFB 为直角可知EF ⊥BC ,所以△BEC 为等腰三角形,得到BF 为BC 的一半,又因为EA//CF ,可知四边形CEAF 为平行四边形,即AD =BF =2.5;(2)根据平行线的性质得到BE ⊥CE ,由余角的性质得到∠ABE =∠DEC ,证得△ABE∽△CDE ,根据相似三角形的性质即可得到结论;(3)连接EF ,由圆周角定理得出∠BFE =90°,设AE =x ,则EF ,=AB =2,BF =AE =x ,CF =DE =5−x ,由已知条件得出点G 在点F 上方,连接BG 、EG ,设BG 、EF 交于点K ,得出△BFK 和△EGK都是等腰直角三角形,得出BF =KF =x ,BK =√2x ,EK =2−KF =2−x ,GK =EG =√22(2−x),BG =GK +BK =√22(2+x),证明△BEG∽△CEF ,得出BG BE =FCEF ,得出方程,解方程即可.本题是圆的综合题目,考查了圆周角定理、勾股定理、相似三角形的判定与性质、矩形的性质、等腰直角三角形的判定与性质、切线的判定等知识;本题难度较大,综合性强,特别是(2)、(3)中,需要证明三角形相似才能得出结果.16.【答案】解:(1)将A(−1,0),C(0,√3)代入抛物线y =ax 2+2√33x +c(a ≠0), {a −2√33+c =0c =√3,∴a =−√33,c =√3(2)由(1)得抛物线解析式:y =−√33x 2+2√33+√3∵点D 是点C 关于抛物线对称轴的对称点,C(0,√3) ∴D(2,√3), ∴DH =√3, 令y =0,即−√33x 2+2√33x +√3=0,得x 1=−1,x 2=3, ∴A(−1,0),B(3,0), ∵AE ⊥AC ,EH ⊥AH , ∴△ACO∽△EAH , ∴OC AH=OA EH=即=√33=1EH,解得:EH =2√3, 则DE =2√3;(3)找点C 关于DE 的对称点N(4,√3),找点C 关于AE 的对称点G(−2,−√3),连接GN ,交AE 于点F ,交DE 于点P ,即G 、F 、P 、N 四点共线时,△CPF 周长=CF +PF +CP =GF +PF +PN 最小,∴直线GN 的解析式:y =√33x −√33,由(2)得E(2,−√3),A(−1,0), ∴直线AE 的解析式:y =−√33x −√33,联立{y = √33x −√33;y =−√33x −√33 ; 解得{x =0y =−√33 ∴F(0,−√33), ∵DH ⊥x 轴,∴将x =2代入直线AE 的解析式:y =−√33x −√33,∴P(2,√32) ∴F(0,−√33)与P(2,√32)的水平距离为2过点M 作y 轴的平行线交FH 于点Q , 设点M(m,−√33m 2+2√33m +√3),则Q(m,√33m −√33)(1−√172<m <1+√172);∴S △MFP =S △MQF +S △MQP =12MQ ×2=MQ =(−√33m 2+2√33m +√3)−(√33m −√33), S △MFP =−√3m 2+√3m +4√3=−√3(m −1)2+17√3 ∵对称轴为:直线m =12, ∵开口向下,1−√172<m1+√172,∴m =12时,△MPF 面积有最大值为1712√3..【解析】(1):(1)将A(−1,0),C(0,√3)代入抛物线y =ax 2+2√33x +c(a ≠0),求出a 、c 的值;(2)由(1)得抛物线解析式:y =−√33x 2+2√33+√3,点D 是点C 关于抛物线对称轴的对称点,C(0,√3),所以D(2,√3),DH =√3,再证明△ACO∽△EAH ,于是 OCAH =OAEH =即=√33=1EH ,解得:EH =2√3,则DE =2√3;(3)找点C 关于DE 的对称点N(4,√3),找点C 关于AE 的对称点G(−2,−√3),连接GN ,交AE 于点F ,交DE 于点P ,即G 、F 、P 、N 四点共线时,△CPF 周长=CF +PF +CP =GF +PF +PN 最小,根据S △MFP =−√33m 2+√33m +4√33=−√33(m −12)2+1712√3,m =12时,△MPF 面积有最大值1712√3. 本题考查了二次函数,熟练运用相似三角形的性质与二次函数图象的性质是解题的关键.。
湖北华师一附中小升初自主招生语文试题集ABC
华师一附中自主招生语文试题集一、积累运用(10分)1、补写出下列诗文的空缺部分(4分)(1),溪深而鱼肥,酿泉为酒,。
(欧阳修在《醉翁亭记》)(2)气蒸云梦泽,。
(孟浩然《望洞庭湖赠张丞相》)(3),病树前头万木春。
(刘禹锡《酬乐天扬州初逢席上见赠》)(4),只有香如故。
(陆游《卜算子·咏梅》)2、阅读下面一段文言文,按要求做题(6分)温公(司马光)独乐园之读书堂,文史万余卷。
而公晨夕所常阅者,虽累数十年,皆新若手未触者。
尝谓其子公休曰:“贾竖①藏货贝,儒家惟此耳,然当知宝惜。
吾每岁以上伏及重阳间,视天气晴明日,即设几案于当日所,侧群书其上,以暴其脑②,所以年月虽深,终不损动。
至于启卷,必先视几案洁净,藉以茵褥,然后端坐看之。
或欲行看,即承以方版,未尝敢空手捧之。
非惟手汗渍及,亦虑触动其脑。
每至看竟一板,即侧右手大指,面衬其沿,而覆以次指,拈而挟过,故得不至揉熟③其纸。
每见汝辈多以指爪撮起,甚非吾意。
今浮图④、老氏尤知尊敬其书,岂以吾儒反不如乎?汝当志之。
”注释:①贾竖:商人②脑:线装订线的部分③揉熟:揉软④浮图:梵语音译,佛家僧徒(1)解释下列句子中加点的词(3分)①藉.以茵褥藉:②每至看竟.一板竟:③汝当志.之志:(2)把文中画线句子翻译成现代汉语(3分)即设几案于当日所,侧群书其上,以暴其脑二、阅读理解(15分)阅读下面的文章,完成3—6题。
闲敲棋子落灯花王清铭给学生讲赵师秀的诗歌《约客》:“黄梅时节家家雨,青草池塘处处蛙,有约不来过夜半,闲敲棋子落灯花。
”最后一句“闲敲棋子落灯花”,本想按《千家诗》的赏析,照本宣()地说这是描写诗人初夏的雨夜期客不至的焦灼之情。
但我仔细揣摩,觉得其实不然。
黄梅时节雨霏霏,正好有空闲邀约朋友来下棋;朋友来不了,诗人神游户外,听蛙声在池塘边悠然地歌唱,于是有一种宁静随涟漪漾到自己的心里来;拿起棋子,跟自己对弈,灯是唯一的旁观者,灯花落了,突然明亮的灯光充满了整个房间。
【初升高】湖北华中师范大学第一附属中学2020中考提前自主招生数学模拟试卷(9套)附解析
中学自主招生数学试卷一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.(3分)﹣3的相反数是()A.3B.﹣3C.±3D.2.(3分)下列计算正确的是()A.2a+3b=5ab B.=±6C.a2b÷2ab=a2D.(2ab2)3=8a3b63.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差5.(3分)如图,AB是⊙O的直径,直线P A与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0B.C.1D.8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2B.0<x<4C.﹣1<x<4D.x<﹣1 或x>4二、填空题(本大题共10小题,每小题3分,共30分.)9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为.10.(3分)若有意义,则x的取值范围是.11.(3分)分解因式:mx2﹣4m=.12.(3分)若方程x2+kx+9=0有两个相等的实数根,则k=.13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.14.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是.15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=.18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是.三、解答题(本大题有10小题,共96分.)19.(8分)(1)计算:|﹣3|﹣tan30°+20180﹣()﹣1;(2)化简:(1+a)(1﹣a)+a(a﹣2).20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(8分)若关于x的分式方程=1的解是正数,求m的取值范围.22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)24.(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.25.(10分)观察下表:我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.回答下列问题:(1)第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为﹣6.①求x,y的值;②在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.26.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.27.(12分)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由.28.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.参考答案与试题解析一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:A.2.【分析】直接利用合并同类项法则以及算术平方根、整式的除法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、=6,故此选项错误;C、a2b÷2ab=a,故此选项错误;D、(2ab2)3=8a3b6,正确.故选:D.3.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.4.【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差==,添加数字3后的方差==,故方差发生了变化.故选:D.5.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠P AO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线P A与⊙O相切于点A,∴∠P AO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.故选:B.6.【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.7.【分析】根据x﹣y﹣3=0和2y3+y﹣6=0,可以得到x与y的关系和y2﹣的值,从而可以求得所求式子的值.【解答】解:∵x﹣y﹣3=0和2y3+y﹣6=0,∴x=y+3,y2+﹣=0,∴y2﹣=﹣∴﹣y2==1+=1﹣(﹣)=1+=,故选:D.8.【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【解答】解:∵y3=(kx+b)(mx+n),y<0,∴(kx+b)(mx+n)<0,∵y1=kx+b,y2=mx+n,即y1•y2<0,有以下两种情况:(1)当y1>0,y2<0时,此时,x<﹣1;(2)当y1<0,y2>0时,此时,x>4,故选:D.二、填空题(本大题共10小题,每小题3分,共30分.)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528600=5.286×105,故答案为:5.286×10510.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.11.【分析】首先提取公因式m,进而利用平方差公式分解因式即可.【解答】解:mx2﹣4m=m(x2﹣4)=m(x+2)(x﹣2).故答案为:m(x+2)(x﹣2).12.【分析】根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.【解答】解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±6.故答案为±6.13.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.14.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故答案为:﹣8.15.【分析】根据平行线的性质可得出∠3=∠4+∠5,结合对顶角相等可得出∠3=∠1+∠2,代入∠1=30°、∠3=45°,即可求出∠2的度数.【解答】解:给各角标上序号,如图所示.∵∠3=∠4+∠5,∠1=∠4,∠2=∠5,∴∠3=∠1+∠2.又∵∠1=30°,∠3=45°,∴∠2=15°.故答案为:15°.16.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.17.【分析】依据题意可得,A,C之间的水平距离为6,点Q与点P的水平距离为7,A,B之间的水平距离为2,双曲线解析式为y=,依据点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,即可得到mn的值.【解答】解:由图可得,A,C之间的水平距离为6,2018÷6=336…2,由抛物线y=﹣x2+4x+2可得,顶点B(2,6),即A,B之间的水平距离为2,∴点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,由抛物线解析式可得AO=2,即点C的纵坐标为2,∴C(6,2),∴k=2×6=12,∴双曲线解析式为y=,2025﹣2018=7,故点Q与点P的水平距离为7,∵点P'、Q“之间的水平距离=(2+7)﹣(2+6)=1,∴点Q“的横坐标=2+1=3,∴在y=中,令x=3,则y=4,∴点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,∴mn=6×4=24,故答案为:24.18.【分析】以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,连接AC,BC,BQ.∵⊙O的直径为AB,C为的中点,∴∠APC=45°,又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的,又∵AB=8,C为的中点,∴△ACB是等腰直角三角形,∴AC=4,∴△ACQ中,AQ=4,∴BQ==4,∵BD≥BQ﹣DQ,∴BD的最小值为4﹣4.故答案为:4﹣4.三、解答题(本大题有10小题,共96分.)19.【分析】(1)根据实数的混合计算解答即可;(2)根据整式的混合计算解答即可.【解答】解:(1)原式==﹣1.(2)原式=1﹣a2+a2﹣2a=1﹣2a20.【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数;【解答】解:(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为:200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.21.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正数确定出m的范围即可.【解答】解:去分母得:1+m=x﹣2,解得:x=m+3,由分式方程的解为正数,得到m+3>0,且m+3≠2,解得:m>﹣3且m≠﹣1.22.【分析】(1)画树状图列出所有等可能结果,从中找到到第二个路口时第一次遇到红灯的结果数,根据概率公式计算可得.(2)根据在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2可得答案.【解答】解:(1)画树状图如下:由树状图知,共有9种等可能结果,其中到第二个路口时第一次遇到红灯的结果数为2,所以到第二个路口时第一次遇到红灯的概率为;(2)∵在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2,∴到第n个路口都没有遇到红灯的概率为()n,故答案为:()n.23.【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【解答】解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×=2(米),∵DH=1.5,∴CD=2 +1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉线CE的长约为(4+)米.24.【分析】(1)由四边形ABCD为平行四边形,利用平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质得到一对角相等,利用ASA即可得证;(2)过D作DH垂直于AB,在直角三角形ADH中,利用30度所对的直角边等于斜边的一半得到AD=2DH,在直角三角形DEB中,利用斜边上的中线等于斜边的一半得到EB=2DH,易得四边形EBFD为平行四边形,利用平行四边形的对边相等得到EB=DF,等量代换即可得证.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,AD∥CB,AB∥CD,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∵ED⊥DB,FB⊥BD.∴DE∥BF,∵AB∥CD,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF.25.【分析】(1)利用已知表格中x,y个数变化规律得出第2格的“特征多项式”以及第n 格的“特征多项式”;(2)①利用(1)中所求得出关于x,y的等式组成方程组求出答案;②利用二次函数最值求法得出答案.【解答】解:(1)由表格中数据可得:第4格的“特征多项式”为:16x+25y,第n格的“特征多项式”为:n2x+(n+1)2y(n为正整数);故答案为:16x+25y,n2x+(n+1)2y(n为正整数);(2)①由题意可得:,解得:答:x的值为﹣6,y的值为2.②设W=n2x+(n+1)2y当x=﹣6,y=2时:W=﹣6n2+2(n+1)2=,此函数开口向下,对称轴为,∴当时,W随n的增大而减小,又∵n为正整数∴当n=1时,W有最大值,W最大=﹣4×(1﹣)2+3=2,即:第1格的特征多项式的值有最大值,最大值为2.26.【分析】(1)首先连接OD,由BE=EC,CO=OA,得出OE∥AB,根据平行线与等腰三角形的性质,易证得△COE≌△DOE,即可得∠ODE=∠OCE=90°,则可证得ED 为⊙O的切线;(2)只要证明OE∥AB,推出,由此构建方程即可解决问题;【解答】解:(1)证明:连接OD,∵E为BC的中点,AC为直径,∴BE=EC,CO=OA,∴OE∥AB,∴∠COE=∠CAD,∠EOD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠COE=∠DOE,在△COE和△DOE中,,∴△COE≌△DOE(SAS),∴∠ODE=∠OCE=90°,∴ED⊥OD,∴ED是圆O的切线;(2)连接CD;由题意EC、ED是⊙O的切线,∴EC=ED,∵OC=OD,∴OE⊥CD,∵AC是直径,∴∠CDA=90°,∴CD⊥AB,∴OE∥AB,∴,在Rt△ECO中,EO==5,∵∠EOC=∠CAD,∴cos∠CAD=cos∠EOC=,∴AD=,设OG=x,则有,∴x=,∴OG=.27.【分析】(1)求出E、F两点坐标,利用待定系数法即可解决问题;(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.只要证明四边形AOMK 是正方形,证明AE+OA=2AH即可解决问题;(3)如图2中,设F(0,2a),则E(﹣a,a).构建一次函数利用方程组求出交点P 坐标,分三种情形讨论求解即可;【解答】解:(1)∵OE=OA=8,α=45°,∴E(﹣4,4),F(0,8),设直线EF的解析式为y=kx+b,则有,解得∴直线EF的解析式为y=x+8.(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.在Rt△AEO中,tan∠AOE==,OA=8,∴AE=4,∵四边形EOGF是正方形,∴∠EMO=90°,∵∠EAO=∠EMO=90°,∴E、A、O、M四点共圆,∴∠EAM=∠EOM=45°,∴∠MAK=∠MAH=45°,∵MK⊥AE,MH⊥OA,∴MK=MH,四边形KAOM是正方形,∵EM=OM,∴△MKE≌△MHO,∴EK=OH,∴AK+AH=2AH=AE+EK+OA﹣OH=12,∴AH=6,∴AM=AH=6.(3)如图2中,设F(0,2a),则E(﹣a,a).∵A(﹣8,0),E(﹣a,a),∴直线AP的解析式为y=x+,直线FG的解析式为y=﹣x+2a,由,解得,∴P(,).①当PO=OE时,∴PO2=2OE2,则有:+=4a2,解得a=4或﹣4(舍弃)或0(舍弃),此时P(0,8).②当PO=PE时,则有:+=2[(+a)2+(﹣a)2],解得:a=4或12,此时P(0,8)或(﹣24,48),③当PE=EO时,[(+a)2+(﹣a)2]=4a2,解得a=8或0(舍弃),∴P(﹣8,24)综上所述,满足条件的点P的坐标为(0,8),(﹣8,24),(﹣24,48).28.【分析】(1)由点C的坐标为(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO=60°,依据AE为∠BAC的角平分线可求得∠DAO=30°,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D的坐标.设点P的坐标为(,a).依据两点的距离公式可求得AD、AP、DP的长,然后分为AD =P A、AD=DP、AP=DP三种情况列方程求解即可;(3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到AN的长,然后利用特殊锐角三角函数值可求得AM的长,最后将AM和AN的长代入化简即可.【解答】解:(1)∵C(0,3).∴﹣9a=3,解得:a=﹣.令y=0得:ax2﹣2 ax﹣9a=0,∵a≠0,∴x2﹣2 x﹣9=0,解得:x=﹣或x=3.∴点A的坐标为(﹣,0),B(3,0).∴抛物线的对称轴为x=.(2)∵OA=,OC=3,∴tan∠CAO=,∴∠CAO=60°.∵AE为∠BAC的平分线,∴∠DAO=30°.∴DO=AO=1.∴点D的坐标为(0,1)设点P的坐标为(,a).依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2.当AD=P A时,4=12+a2,方程无解.当AD=DP时,4=3+(a﹣1)2,解得a=0或a=2(舍去),∴点P的坐标为(,0).当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4.∴点P的坐标为(,﹣4).综上所述,点P的坐标为(,0)或(,﹣4).(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:﹣m+3=0,解得:m =,∴直线AC的解析式为y=x+3.设直线MN的解析式为y=kx+1.把y=0代入y=kx+1得:kx+1=0,解得:x=﹣,∴点N的坐标为(﹣,0).∴AN=﹣+=.将y=x+3与y=kx+1联立解得:x=.∴点M的横坐标为.过点M作MG⊥x轴,垂足为G.则AG=+.∵∠MAG=60°,∠AGM=90°,∴AM=2AG=+2=.∴+=+=+===.中学自主招生数学试卷一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.(3分)﹣3的相反数是()A.3B.﹣3C.±3D.2.(3分)下列计算正确的是()A.2a+3b=5ab B.=±6C.a2b÷2ab=a2D.(2ab2)3=8a3b63.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差5.(3分)如图,AB是⊙O的直径,直线P A与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0B.C.1D.8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2B.0<x<4C.﹣1<x<4D.x<﹣1 或x>4二、填空题(本大题共10小题,每小题3分,共30分.)9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为.10.(3分)若有意义,则x的取值范围是.11.(3分)分解因式:mx2﹣4m=.12.(3分)若方程x2+kx+9=0有两个相等的实数根,则k=.13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.14.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是.15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=.18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是.三、解答题(本大题有10小题,共96分.)19.(8分)(1)计算:|﹣3|﹣tan30°+20180﹣()﹣1;(2)化简:(1+a)(1﹣a)+a(a﹣2).20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(8分)若关于x的分式方程=1的解是正数,求m的取值范围.22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)24.(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.25.(10分)观察下表:我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.回答下列问题:(1)第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为﹣6.①求x,y的值;②在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.26.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.27.(12分)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由.28.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.参考答案与试题解析一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:A.2.【分析】直接利用合并同类项法则以及算术平方根、整式的除法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、=6,故此选项错误;C、a2b÷2ab=a,故此选项错误;D、(2ab2)3=8a3b6,正确.故选:D.3.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.4.【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差==,添加数字3后的方差==,故方差发生了变化.故选:D.5.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠P AO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线P A与⊙O相切于点A,∴∠P AO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.故选:B.6.【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.7.【分析】根据x﹣y﹣3=0和2y3+y﹣6=0,可以得到x与y的关系和y2﹣的值,从而可以求得所求式子的值.【解答】解:∵x﹣y﹣3=0和2y3+y﹣6=0,∴x=y+3,y2+﹣=0,∴y2﹣=﹣∴﹣y2==1+=1﹣(﹣)=1+=,故选:D.8.【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【解答】解:∵y3=(kx+b)(mx+n),y<0,∴(kx+b)(mx+n)<0,∵y1=kx+b,y2=mx+n,即y1•y2<0,有以下两种情况:(1)当y1>0,y2<0时,此时,x<﹣1;(2)当y1<0,y2>0时,此时,x>4,故选:D.二、填空题(本大题共10小题,每小题3分,共30分.)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528600=5.286×105,故答案为:5.286×10510.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.11.【分析】首先提取公因式m,进而利用平方差公式分解因式即可.【解答】解:mx2﹣4m=m(x2﹣4)=m(x+2)(x﹣2).故答案为:m(x+2)(x﹣2).12.【分析】根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.【解答】解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±6.故答案为±6.13.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.14.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故答案为:﹣8.15.【分析】根据平行线的性质可得出∠3=∠4+∠5,结合对顶角相等可得出∠3=∠1+∠2,代入∠1=30°、∠3=45°,即可求出∠2的度数.【解答】解:给各角标上序号,如图所示.∵∠3=∠4+∠5,∠1=∠4,∠2=∠5,∴∠3=∠1+∠2.又∵∠1=30°,∠3=45°,∴∠2=15°.故答案为:15°.。
2007--2015年湖北华师一附中自主招生物理试题
2007华师一附中自主招生考试物理试题及详细解析一.选择题(共5小题)1.具有相同较高温度A、B两铜块,将它们分别冷却,使之放出相同的热量后,再将它们彼此接触,若m A<m B,则下列说法中正确的是()A.热量一定从A传到B B.热量一定从B传到AC.它们之间不发生热传递D.无法确定热传递的情况解答:质量不相同的铜块,因为B的质量比A大,放出相同的热量后,由Q放=cm△t可知,A铜块的温度降低的快;因为A、B铜块的初温度相同,放出相同的热量后,A铜块温度降低的幅度更大,所以A铜块的末温度更低,因此内能从B铜块传给A铜块.故选B.2.如图所示,A、B两物体所受到的重力分别是G A=3N,G B=4N,A用细线悬挂在顶板上,B放在水平地面上,A、B间轻弹簧中的弹力大小为F=2N,则细线对物体A的拉力T的大小及物体B对地面的压力N的大小()A.一定是5N和2N B.一定是5N和6N C.可能是1N和6N D.可能是1N和2N 解答:当弹簧处于伸长状态,以A为研究对象,由平衡条件得到,细线对A的拉力F=G A+F=3N+2N=5N.对B研究可得,地面对B的支持力为F N=G B﹣F弹=4N﹣2N=2N,则B对地弹面的压力大小等于2N.当弹簧处于压缩状态,以A为研究对象,由平衡条件得到,细线对A的拉力F=G A﹣F弹=3N﹣2N=1N.对B研究可得,地面对B的支持力为F N=G B+F弹=4N+2N=6N,则B对地面的压力大小等于6N,因此只有选项C正确.故选C.3.阻值均为2Ω,额定功率均为10W的三个相同的电阻,其连接如图所示,则AB这一电路能承受的最大电功率为()A.30WB.20WC.15WD.10W解答:由电路图可知,两电阻并联后与第三个电阻并联.假设额定电流为I,则电路中的电流最大值为I,则P额=I2R=10W;∵并联电路中各支路两端的电压相等,且三电阻的阻值相等,∴根据欧姆定律可知,通过两电阻的电流均为I′=,则AB间允许消耗的最大功率:P总=I2R+(I′)2R+(I′)2R=I2R+()2R+()2R=P额=×10W=15W.故选C.4.一辆实验小车可沿水平地面(图中纸面)上的长直轨道匀速向右运动,有一台发出细光束的激光器装在小转台M上,到轨道的距离MN为d=15m,如图所示,转台匀速转动,使激光束在水平面内扫射,扫射一周的时间T=60s,光束转动方向如图中箭头所示,当光束射到P点,与MN的夹角为45°时,光束正好射到小车上,如果再经过△t=2.5s,光束又射在小车上,则小车速度为()A.3 m/s B.2.5 m/s C.1.7 m/s D.3.8 m/s 解答:当光束与MN的夹角为45°时,光束正好射到小车上,根据题意求出经过△t=2.5(s)光束转过的角度;2.5s后光束又射到小车上,根据题意做出光路图,由图求出小车在这段时间内的路程,然后利用速度公式V=计算出小车的速度.5.如图所示,在竖直的xoy平面上,人眼始终位于x轴上+3坐标处,一块平面镜水平放置,两端坐标分别为(﹣1,3)和(0,3).当一发光点P从坐标原点O出发沿着x轴负方向运动过程中,人眼可以从平面镜中观察到P点的像,则相应的P点运动的x轴坐标区间为()A.(0~﹣5)B.(﹣2~﹣4)C.(﹣3~﹣4) D.(﹣3~-5)解答:若要看到物体在平面镜中的像,则需借助于边界光线,边界光线的公共部分即完整像的观察范围,根据平面镜成像特点之一:像与物关于平面镜对称,找出人眼位于坐标点(3,0)上,关于O点对称点和关于﹣1对称点即可.故选D.二.非选择题(共4小题)6.如图所示,有两本完全相同的书A、B,书重均为5N,若将两本书等分成若干份后交叉地叠放在一起置于光滑桌面上,并将书A固定不动,用水平向右的力F把书B匀速抽出,现测得一组数据如下:实验次数 1 2 3 4 5 …将书分成的份数 2 4 8 16 32 …力F的大小(N) 4.5 10.5 22.5 46.5 ……根据以上数据,试求:(1)若将书分成32份,力F的大小为94.5 N;(2)该书任意两张纸之间的动摩擦因数为0.3 。
华师一附中2019年自主招生数学试题(word版附答案)
华中师大一附中2019年高中招生考试数学试题2019.3.31考试时间:70分钟卷面满分:120分说明:所有答案一律书写在答题卡上,在试卷上作答无效.一、选择题(本大题共6小题,每小题6分,共36分.在每小题给出的四个选项中,有且只有一项是正确的.)1.若关于x 的一元二次方程(m -2)x 2+4x -1=0有实数根,则实数m 的取值范围是() A .m ≥-2 B .m>-2或m ≠2 C .m ≥-2且m ≠2 D .m ≠22.已知过点(2,3)的直线y=ax +b(a ≠0)不经过第四象限,设s=a +2b ,则s 的取值范围是() A .32≤s <6B .-6<s ≤−32C .-6≤s ≤32D .32≤s ≤63.已知√(x +1)2+|3-x|=4,则y=2x -1的最大值与最小值的和是() A .1B .2C .3D .44.古希腊数学家欧几里德的《几何原本》记载,形如x 2+2bx=a 2的方程的图解法是:如图,画Rt △ACB ,∠ACB=90°,BC=a ,AC=b ,在斜边AB 上截取AD=b ,则该方程的一个正根是() A .AC 的长B .BC 的长C .CD 的长D .BD 的长5.如图,正方形ABCD 中,E ,F 分别是AB ,BC 上的点,DE 交AC 于点M ,AF 交BD 于点N ;若AF 平分∠BAC ,DE ⊥AF ;记x=BNON,y=CFBF,z=BE OM,则有()A .x >y >zB .x=y=zC .x=y <zD .x=y >z6.设a ,b 为整数,关于x 的一元二次方程x 2+(2a +b +3)x +(a 2+ab +6)=0有两相等实根α,关于x 的一元二次方程2a x 2+(4a -2b -2)x +(2a -2b -1)=0有两相等实根β;那么以α,β为实根的整系数一元二次方程是() A .2x 2+7x +6=0 B .x 2+x -6=0 C .x 2+4x +4=0D .x 2+(a +b)x +ab=0二、填空题(本大题共6小题,每小题6分,共36分) 7.ΔABC 是⊙O 的内接三角形,∠BAC=60°,劣弧BC 的长是4π3,则⊙O 的半径是 .8.若m ,n 是方程x 2-x -2019=0的两实根,则m 2-2m -n 的值为 .9.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是 .10.当a ,b 是正实数,且满足a +b=ab 时,就称点M(a ,ab )为“完美点”;已知点A 是“完美点”且在直线y=-x +5上,则点A 的坐标为 .11.从-3,-2,-1,-12,0,12,1,2,3这9个数中随机抽取一个数,记为m .若数m 使关于x 的不等式组{13(2x +7)≥3x −m <0无解,且使关于x 的分式方程x x +3+m−2x +3=-1有整数解,那么从这9个数中抽到满足条件的m 的概率是 . 12.如图,ΔABC 中,∠ACB=90°,sinA=513,AC=12,将ΔABC 绕点C 顺时针旋转90°得到ΔA'B'C ,P 为线段A'B'上的动点,以点P 为圆心,PA'长为半径作⊙P ,当⊙P 与ΔABC 的边相切时,⊙P 的半径为 .三、解答題(本大题共3小題,共48分,解答应写出文字说明、证明过程和演算步骤.) 13.(本小题满分16分)已知:如图,Rt ΔABC 的三边满足(AB -4)2+|AB -BC|=0,∠ABC=90°. (1)若M 是边AB 上一点,N 是边BC 延长线上一点,且线段AM=CN=m ,mAB−m=ABBC +2,求m 的值;(2)若M 是边AB 上一动点,N 是边BC 延长线上一动点,且线段AM=CN ,判断线段DM 与DN 的大小关系,并说明你的理由;(3)若M 、N 分别是边AB 、BC 延长线上的动点,D 为线段MN 与边AC 延长线的交点,线段AM=CN ,判断线段DM 与DN 的大小关系,并说明你的理由.AMB C DNAM B CD N14.(本小题满分16分)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“特别距离”,给出如下定义:若|x1-x2|≥|y1-y2|,则点P1与点P2的“特别距离”为|x1-x2|;若|x1-x2|<|y1-y2|,则点P1与点P2的“特别距离”为|y1-y2|.例如:点P1(1,2),点P2(3,5),因为|1-3|<|2-5|,所以点P1与点P2的“特别距离”为|2−5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x 轴的直线P2Q交点).,0),B为y轴上的一个动点.(1)已知点A(-12①若点A与点B的“特别距离”为3,写出一个满足条件的点B的坐标;②直接写出点A与点B的“特别距离”的最小值.x+4上的一个动点,如图2,点D的坐标是(0,1),求点C与点D (2)已知C是直线y=43的“特别距离”的最小值及相应的点C的坐标.15.(本小题满分16分)如图,已知抛物线y=x2+2bx+2c(b,c是常数,且c<0)与x轴分别交于点A、B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(-1,0).(1)点B的坐标为____(结果用含c的代数式表示);(2)连接BC,过点A作直线AE∥BC,与抛物线y=x2+2bx+2c交于点E,点D是x轴上的一点,其坐标为(2,0).当C,D,E三点在同一直线上时,求抛物线的解析式;(3)在(2)条件下,点P是x轴下方的抛物线上的一个动点,连接PB,PC,设所得ΔPBC 的面积为S.①S的取值范围;②若ΔPBC的面积S为整数,则这样的ΔPBC共有____个.华中师大一附中2019年高中招生考试数学试题参考答案与试题解析一、选择题1.C .由△≥0,且m -2≠0,得m ≥-2且m ≠2. 2.A .由题意得a >0,b ≥0,且3=2a +b ,当b=0时,s=a=32;当b >0时,s=a +2(3-2a)=6-3a <6.3.B .由题意得x +1≥0,3-x ≥0,∴-1≤x ≤3,当x=-1时,y=2x -1有最小值为-3,当x=3时,y=2x -1有最大值为5,∴和是2.法2:由题意得|x +1|+|3−x |=4,即数轴上一点x 到点(-1,0)、(3,0)的距离之和为4,当x=-1时,y=2x -1有最小值为-3,当x=3时,y=2x -1有最大值为5,∴和是2. 4.D .由勾股定理得AB=√b 2+a 2,∴BD=√b 2+a 2-b ,由求根公式得x=−2b±√(2b)2−4×1×(−a 2)2=±√b 2+a 2-b ,∴该方程的一个正根是BD 的长. 5.C .如图,由角平分线,2BN AB AC CFON AO AB BF====,即x=y=√2,又AME ∆的角分线与高重合,则AME ∆为等腰三角形,AM AE =,作OP ∥AB ,交ED 于P ,则OP 为DBE ∆的中位线,OMP AME ∆∆∽,z=BE OM =BE OP=2,∴x=y <z .6.A .由题意得,(2a +b +3)2-4(a 2+ab +6)=0,即(b +3)2=12(2-a)①, 又(4a -2b -2)2-4×2a(2a -2b -1)=0,即(b +1)2=2a ②, 由①②得,7b 2+18b −9=0,其整根为b=-3,∴a=2;两个方程分别是:x 2+4x +4=0和4x 2+12x +9=0,∴α=−2,β=−32, ∴以α,β为实根的整系数一元二次方程是2x 2+7x +6=0. 二、填空题7.解:连接OB 、OC .,劣弧BC 的长是, ,.故答案为2. 8.解:由题意得:m 2-m -2019=0,m +n=1,∴m 2-m=2019, ∴m 2-2m -n=m 2-m -(m +n)=2019-1=2018.2120BOC BAC ∠=∠=︒43π∴12041803r ππ⋅⋅=2r ∴=9.解:当3x -2=127时,x=43,当3x -2=43时,x=15,当3x -2=15时,x=173,不是整数;所以输入的最小正整数为15.故答案为15.10.解:∵a ,b 是正实数,且满足a +b=ab ,∴a b+1=a ,即ab=a -1,∴M(a ,a -1),即“完美点”A 在直线y=x -1上,又∵点A 是“完美点”且在直线y=-x +5上, ∴{y =x −1y =-x +5,∴{x =3y =2,∴点A 的坐标为(3,2).11.解:整理不等式组得:{x ≥1x <m ,由不等式组无解,得m ≤1,即m 为-3,-2,-1,-12,0,12,1;分式方程去分母得:x +m -2=-x -3,∴x=−m +12,由分式方程有整数解,∴m 为-3,-1,1,3,∴满足条件的m 为-3,-1,1,∴m 的概率是13. 12.解:如图1中,当⊙P 与直线AC 相切于点Q 时,连接PQ . 设PQ=PA'=r ,∵PQ ∥CA',∴,,.如图2中,当⊙P 与AB 相切于点T 时,易证A'、B'、T 三点共线, △,,,,.综上所述,⊙P 的半径为或.13.解:(1)∵(AB -4)2+|AB -BC|=0,∴AB -4=0,且AB -BC=0,∴AB=BC=4,∵mAB−m= AB BC+2,∴m 4−m=3,∴m=3,经检验得,m=3.(注:未检验扣1分)(2)∵DM=DN .理由如下:过M 作ME ⊥AB 交AC 于E , ∴∠AME=∠B=90°,∴ME ∥BC ,∴∠EMD=∠N , ∵AB=BC ,∠B =90°,∴∠A =∠ACB=45°, ∴∠AEM=∠ACB=45°,∴AM=ME ,∵AM=CN , ∴ME=CN ,又∵∠MDE=∠NDC , ∴△MED ≌△NCD(AAS),∴DM=DN .(3)∵DM=DN .理由如下:过M 作MH ⊥AB 交AC 的延长线于H ,同(2)可证△MHD ≌△NCD(AAS),∴DM=DN .(注:其它解法酌情给分,(2)、(3)问只有结论而无证明过程各得1分).PQ PB CA A B '='''∴131213r r -=15625r ∴=A BT ABC '∆∽∴A T AB AC AB''=∴171213A T '=20413A T ∴'=1102213r A T ∴='=1562510213 AM B CD NEAMB C D NH14.解:(1)①∵点B 为y 轴上的一个动点,∴设点B 的坐标为(0,y).∵|−12−0|=12≠3,∴|0−y |=3,∴y=3或y=-3,∴点B 点的坐标为(0,3)或(0,-3).②点A 与B 点的“特别距离”的最小值为12.故答案是:12.(2)设点C(x ,43x +4),D(0,1),则|x 1-x 2|=x ,|y 1-y 2|=|43x +3|,①当|x |≥|43x +3|时,(i)若x ≤-94,则-x ≥−43x −3,x ≥-9,∴-9≤x ≤-94,(ii)若-94<x ≤0,则-x ≥43x +3,73≤x ≤-3,x ≤-94,∴-94<x ≤-97,(iii)若x >0,则x ≥43x +3,x ≤-9(舍),综上,-9≤x ≤-97,∴当x=-97时,|x|min =|-97|=97,②当|x |<|43x +3|时,同理可得,x <-9或x >-97, (i)若x <-9,则|43x +3|=−43x −3,|43x +3|>9, (ii)若x >-97,则|43x +3|=43x +3,|43x +3|>97,综合①②得,点C 与点D 的“特别距离”的最小值为97.相应的点C(-97,167).(注:其它解法酌情给分)15.(1)∵抛物线y=x 2+2bx +2c 过点A(-1,0),∴1-2b +2c=0,∴2b=1+2c , ∵抛物线y=x 2+2bx +2c 与x 轴分别交于点A(-1,0)、B(x B ,0),∴−1、x B 是一元二次方程x 2+2bx +2c 的两个根,∴−1+x B =-2b=-1-2c , ∴x B =-2c ,∴点B 的坐标为(-2c ,0);(2)∵抛物线y=x 2+2bx +2c 与y 轴的负半轴交于点C , ∴当x=0时,y=2c ,即点C 的坐标为(0,2c).设直线BC 的解析式为y=kx +2c ,∵点B 的坐标为(-2c ,0),∴-2ck +2c=0, ∵c ≠0,∴k=1,∴直线BC 的解析式为y=x +2c , ∵AE ∥BC ,∴可设直线AE 的解析式为y=x +m ,∵点A 的坐标为(-1,0),∴-1+m=0,解得m=1,∴直线AE 的解析式为y=x +1. ∵抛物线y=x 2+2bx +2c 过点A(-1,0),∴1-2b +2c=0,∴2b=1+2c ,∴y=x 2+(1+2c)x +2c ,与y=x +1联立,解得x=-1,y=0或x=1-2c ,y=2-2c , ∴E(-1,0)(与点A 重合,舍去),E(1-2c ,2-2c).∵点C 的坐标为(0,2c),点D 的坐标为(2,0),∴直线CD 的解析式为y=-cx +2c . ∵点C ,D ,E 三点在同一直线上,∴2-2c=-c(1-2c)+2c ,∴2c 2+3c -2=0, ∴c 1=12(与c <0矛盾,舍去),c 2=-2,∴b=−32,∴抛物线的解析式为y=x 2-3x -4;(3)①∵A(-1,0),B(4,0),C(0,-4), ∴AB=5,OC=4,直线BC 的解析式为y=x -4, 分两种情况: (i)当-1<x <0时,0<S <S △ACB ,∵S △ACB =12AB ·OC=10,∴0<S <10;(ii)当0<x <4时,过点P 作PG ⊥x 轴于点G ,交CB 于点F , 设PF=y F −y P =(x -4)-(x 2-3x -4)=−x 2+4x ,∴S △PCB =S △PFC +S △PFB =12PF ·OB=12(−x 2+4x)×4=−2x 2+8x=−2(x −2)2+8, ∴当x=2时,S 最大值=8,∴0<S ≤8; 综合(i)(ii)可知:S 的取值范围为0<S <10.②∵S 的取值范围为0<S <10,且S 为整数.∴S=1,2,3,4,5,6,7,8,9. 分两种情况:(i)当-1<x <0时,设△PBC 中BC 边上的高为h .∵B(4,0),C(0,-4),∴BC =4√2,∴S=12BC ·h=2√2h ,∴h =√24S ,又∵0<S <10,即0<2√2h <10,∴0<h <5√22, ∴当S=1,2,3,4,5,6,7,8,9时,√24≤h ≤9√24,此时,满足条件的ΔPBC 有9个;(ii)当0<x <4时,∵S △PCB =−2x 2+8x ,且0<S ≤8;∴当S=1,2,3,4,5,6,7时,均有∆>0,此时P 点共有7×2=14个, 当S=8,有∆=0,此时P 点只有1个;综上可知,满足条件的ΔPBC 共有9+14+1=24个.D A B Oyx ECPFG。
华师一附中自主招生考试物理试题及详细解析
华师一附中自主招生考试物理试题及详细解析华师大一附中高中招生考试理科综合测试物理试题及详细解析一.选择题(共5小题)1.完全相同的物体,分别以相同的速度,从A点和A′点进入并通过光滑圆弧轨道和到达C点和C′点,如图所示.如果两圆弧轨道的半径相同,物体到达C点和C′点的速度分别记为v1、v2,物体在和轨道运动的时间分别记为t1、t2,则()A.v1=v2;t1<t2B.v1>v2;t1=t2C.v1<v2;t1>t2D.v1=v2;t1>t2解答:由速度公式V=可知,由于两个物体的运动路程是相同的,要比较物体的运动时间,只要比较出两物体的运动速度的关系,就可以比较出时间的关系即路程一定,时间与速度成反比.故答案为:D2.如图所示,一个木块A放在长木板B上,长木板B放在水平地面上,在恒力F作用下,长木板B以速度v匀速运动,水平弹簧秤的示数为T.下列关于摩擦力的说法正确的是()A.木块A受到的滑动摩擦力的大小等于TB.木块A受到的静摩擦力的大小等于TC.若长木板B以2v的速度匀速运动时,木块A受到的摩擦力的大小等于2TD.若用2F的力作用在长木板上,木块A受到的摩擦力的大小等于2T解答:A、B稳定时,A保持静止.A水平方向受到弹簧的拉力和B对A的滑动摩擦力,由平衡条件得到,木块A 受到的滑动摩擦力的大小等于弹簧的拉力T.故A正确,B错误.C、若长木板B以2v的速度匀速运动时,AB间动摩擦因数不变,A对B的压力不变,则木块A受到的滑动摩擦力的大小不变,仍等于T.故C错误.D、若用2F的力作用在长木板上,木板加速运动,而木块A受到的滑动摩擦力的大小不变,仍等于T,与F无关.故D错误.故选A3.一物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图所示,在A点物体开始与弹簧接触,到B点时物体速度为零,然后被弹回,下列说法中正确的是()A.物体从A下降到B的过程中,动能不断变小B.物体从A下降到B,以及从B上升到A的过程中,动能都是先增大,后减小C.物体从B上升到A的过程中,动能不断变大D.物体在B点时,所受合力为零解答:首先分析一下,从A点接触弹簧开始到将弹簧压缩到最短B点的过程中,物体的运动过程:在物体刚接触弹簧的时候,弹簧的弹力小于物体的重力,合力向下,小球还是向下加速,当弹簧的弹力和物体的重力相等时,小球的速度达到最大,之后弹力大于了重力,小球开始减速,直至减为零.弹簧从压缩到最短B点到弹簧弹回原长A点的过程中,物体的运动过程:弹簧压缩到最短时弹力最大,大于重力,合力方向向上,物体加速上升,当弹簧的弹力和物体的重力相等小球的速度达到最大,之后弹力小于重力,小球开始减速.A、根据以上分析,物体从A下降到B的过程中,物体的速度先变大后变小,所以动能也是先变大后变小,故A错误.B、由A、C分析知B正确.C、物体从B上升到A的过程中,速度先变大,后变小,所以动能先增大后减小,故C错误.D、物体在B时,弹性形变最大,故物体受到的弹力大于重力,合力向上,故D错误.故选B.4.为了连续改变反射光的方向,并多次重复这个过程,方法之一是旋转由许多反射镜组成的多面体棱镜(简称镜鼓),如图所示.当激光束从固定方向入射到镜鼓上的一块反射镜上时,由于反射镜绕竖直轴旋转,反射光就可在屏幕上扫出一条水平线.每块反射镜都将轮流扫描一次.如果要求扫描的范围θ=45°且每秒钟扫描48次,那么镜鼓的反射镜的数目和镜鼓旋转的转速分别为()A.8;360 r/min B.16;360 r/min C.16;180 r/min D.32;180 r/min解答:已知入射光线不变,根据反射光线转过的角度求出法线转过的角度,然后利用转过一圈的角度和法线转过的角度即可求出镜面的个数;又知道每秒钟扫描的次数和镜面的个数,求出每秒转的圈数,最后转化为一分钟转的圈数即可.故选C.5.图中,电阻R1与R3相等,电阻R2与R4相等.现有一个两端电压为10V的电源,当把该电源接在A、B两个接线端时,电压表的示数为7.5V,电阻R1两端电压为U1.当把该电源接在C、D两个接线端时,电压表的示数为5V,电阻R2两端电压为U2.则下列选项不正确的是()A.R1:R5=1:3 B.U1:U2=1:2 C.R2:R5=1:2 D.R1:R2=1:3解答:分析电路图可知接在A、B两个接线端时,电阻R1与R3,R5串联在电路中,接在C、D两个接线端时,电阻R2与R4、R5串联在电路中,电压表都测R5的电压.根据串联电路电压特点结合欧姆定律可计算电阻R1两端的电压与电阻R2两端的电压和电阻之比.故选A.二.非选择题(共3小题)6.如图为测量电阻的电路,R x为待测电阻,R的阻值已知;R’为滑动变阻器,且滑片位置固定不动;电源电压U 未知.S1、S2均为单刀双掷开关,A为电流表,其内阻不计,测量R x的步骤为:将S2向d闭合,S1向闭合,记下电流表读数I1;再将S2向c闭合,S1向闭合,记下电流表读数I2.计算R x的数学表达式为R x=_____ .解答:①将S2向d闭合、S1向a闭合时,R X与R并联,电流表测通过R X的电流,记下电流表读数I1;②将S2向c闭合,S1向b闭合,R X与R并联,电流表测通过R的电流,记下电流表读数I2.滑动变阻器滑片位置固定不动,滑动变阻器接入电路的阻值不变,两次实验时,R X与R并联的并联电压不变,设并联电压为U,∵I=,∴由②得,并联电压U=I2R,由①得:R X==;故答案为:a;b;.7.小明将一只铝制的水桶浸没在水深为1.3m的大水池中,然后用测力计提着满桶水缓慢离开水面.在此过程中,分别测出对应的弹簧测力计的示数以及水桶上端到水面的距离(水面处记为0,水面下记为负).然后将记录的数据绘成如图所示图象,铝的密度为2.7×103k g/m3,水的密度为1.0×103k g/m3,g=10N/kg.(连接桶和测力计的绳子和受到的浮力不计)。
湖北省武汉市华中师范大学第一附属中学中考自主招生考试化学试题
湖北省武汉市华中师范大学第一附属中学中考自主招生考试化学试题一、选择题1.下列物质提纯或除杂所用试剂和分离方法正确的是物质(括号内为杂质)除杂试剂分离方法A Ca(OH)2(CaCO3)HCl溶液溶解、过滤B NaCl(Na2SO4)适量BaCl2吸附C KCl(MnO2)H2O溶解、过滤、蒸发、结晶D SO2(HCl)NaOH洗气A.A B.B C.C D.D2.将一定量铝粉和氧化铜混合加热,反应的化学方程式为3CuO+2Al3Cu+A12O3.反应结束后,为了检验氧化铜是否完全反应,取少量反应后的固体,加入足量稀硫酸,充分反应后,将铁片插入溶液中.下列叙述的现象中,能够说明氧化铜没有完全反应的是①加入稀硫酸后,有气泡生成②加入稀硫酸后,没有气泡生成③加入稀硫酸后,溶液中有红色不溶物质④插入溶液中的铁片表面有红色物质析出.A.只有④B.②③C.③④D.①③④3.除去下列各物质中的少量杂质,所选用的试剂、方法能达到目的的是选项物质杂质(少量)试剂操作方法A N2O2碳粉将混合气体通过灼热的碳粉B NaOH溶液Na2CO3溶液氢氧化钙溶液加入适量氢氧化钙溶液,过滤C氯化钠固体泥沙水加水溶解,蒸发结晶D KC1溶液K2SO4溶液Ba(NO3)2溶液加入适量Ba(NO3)2溶液,过滤A.A B.B C.C D.D4.下列有关物质的鉴别、检验、除杂所用的试剂或方法正确的是()A.A B.B C.C D.D 5.某单质X能从某溶液中置换出单质Y,由此推断下列说法中正确的是 ( ) A.X是金属时,Y一定比X活泼B.X可能是铁,Y一定是铜C.X是金属时,Y可能是金属,也可能是非金属D.X一定是排在金属活动顺序表中氢以前的金属6.下列有关生产生活中的化学知识整理有错误的是A ①一氧化碳会与血红蛋白结合,使人中毒②煤炉上放一壶水能防止煤气中毒B①人体含量最多的金属元素是Ca②缺Ca会引起骨质疏松C ①灌装汽水时加压,是为了增加气体溶解的量②碎鸡蛋壳加入食醋,会产生二氧化碳气体D①明矾具有净水作用②活性炭能吸附水中的色素和异味A.A B.B C.C D.D 7.图示的四个图像分别对应四个变化过程的一种趋势,下列分析正确的是A.甲图:可能是双氧水溶液制氧气,a未使用催化剂,b使用了催化剂B.乙图:可能是加热一定质量的氯酸钾和二氧化锰固体混合物制取氧气过程C.丙图:可能是硫酸铜溶液中滴加氢氧化钠溶液D.丁图:可能是向一定量的氢氧化钠溶液中加水稀释,溶液的pH变化8.下图所示的四个图像,能正确反映对应变化关系的是A.电解水一段时间B.向二氧化锰中加入一定质量的过氧化氢溶液C.向一定质量铁粉中加入硫酸铜溶液D.等质量的镁、铝分别与质量分数相等且足量的稀硫酸反应9.下列实验方案,不能达到实验目的的是选项实验方案实验目的A分别取气体样品,倒入澄清石灰水比较二氧化碳气体含量B分别取少量液体,各加入二氧化锰鉴别水和过氧化氢溶液C 取一个注射器,吸入一定体积氮气,堵住针筒小孔,将活塞慢慢推入证明分子间存在间隔D分别取样品,滴加足量稀盐酸鉴别碳酸钠溶液和水A.A B.B C.C D.D10.除去下列物质中的少量杂质,所选用的试剂及操作方法错误的是选项物质(括号内为杂质)试剂操作方法A CO(CO2)氧化铜将气体通入灼热的氧化铜B FeCl2 (CuCl2溶液)过量铁粉搅拌、过滤C CuO(炭粉)不用外来试剂在空气中灼烧D Cu粉(Fe粉)足量稀盐酸过滤、洗涤、干燥A.A B.B C.C D.D 11.下列除去物质中所含少量杂质的方法中,错误的是()选项物质杂质除去杂质的方法A CO2气体CO气体通入氧气,点燃.B Na2SO4溶液Na2CO3溶液滴入适量稀硫酸至无气泡产生.C C粉CuO粉加入足量盐酸充分反应后过滤.D Cu(NO3)2溶液AgNO3溶液加足量铜粉充分反应后过滤.A.A B.B C.C D.D12.下列图像中有关量的变化趋势与选项要求相符合的是A.向硝酸溶液中不断加水B.过氧化氢分解生成氧气,一份加入二氧化锰,一份不加入二氧化锰C.在恒温条件下,将饱和NaCl溶液蒸发适量水D.向一定量的稀硫酸和硫酸镁的混合溶液中滴入氢氧化钠溶液至过量13.学习金属单元后,我们知道Zn、Fe、Cu三种金属的活动性顺序为:Zn>Fe>Cu。
2021年华师大一附中自主招生数学试题含详解
2021年华师大一附中自主招生数学试题含详解XXX高中数学招生考试详解本文为XXX高中数学招生考试的题目解析。
考试时间为80分钟,卷面满分为150分。
一、选取题(共6题,每题6分,共36分)1.如果实数a、b、c在数轴上的位置如图所示,那么代数式a-a+b+c-2ac+a可以化简为什么?解析:由图可知b<c<a,因此a=a'=-a,a+b=-(a+b'),c-2ac+a=c-a。
将代数式代入化简得到a^2-a+b+c^2-2ac+a^2=-a+(a+b)+(a-c)=a+b-c,因此选D。
2.反比例函数y=-4x的图像与直线y=-kx+b交于A(-1,m)和B(n,1)两点,那么△OAB的面积是多少?解析:将A(-1,m)代入y=-4x得到-m=-4,因此m=4;将B(n,1)代入y=-4x得到n=-4,因此A(-1,4)、B(-4,1)。
作AE⊥y 轴于E,BD⊥x轴于D,则△AOE≌△BOD,且S△AOE=S△BOD=1×4/2=2.延长EA、DB交于C,则四边形CDOE是边长为4的正方形,且SCDOE=4×4=16.△ABC是腰长为3的等腰直角三角形,且S△ABC=3×2/2=3.因此,△OAB的面积为S△OAB=16-2×2-3/22=323/22.3.设x1、x2是一元二次方程x^2+x-3的两根,那么x1-4x2+15等于多少?解析:由韦达定理,x1+x2=-1,因此x1=-1-x2.又因为x1x2=-3,所以x2^2+(-1-x2)x2-3=0,即x2^2-x2-3=0.解得x2=(1-√13)/2或x2=(1+√13)/2.代入x1=-1-x2得到x1=-(3+√13)/2或x1=-(3-√13)/2.因此,x1-4x2+15=-5(x2+x1^2+x1x2)-4=-4,因此选A。
4.已知a、b、c分别是△ABC三边长,且满足2a+2b+c-2ac+2bc,那么△ABC是什么?解析:将2a+2b+c-2ac+2bc分解得到2(a+b)+c(1-2a+2b),由于a、b、c为三角形的三条边长,因此a+b>c,即2(a+b)>c。