(完整版)《物理专业英语》.doc

合集下载

物理专业英语洛伦兹力原文和翻译

物理专业英语洛伦兹力原文和翻译

物理专业英语组别:19组专业:物理学姓名:9.5 THE LORENTZ FORCEA charge moving in a magnetic field experiences a force which we shall call magnetic . The force is determined by the chang q,its velocity v ,and the magnetic inductionB at the point where the charge is at the moment of time being considered .The simplest assumption is that the magnitude of the force F is proportional to each of the three quantities q,v,and B .In addition ,F can be expected to depend on the mutual orientation of the vectors v and B .The direction of the vector F should be determined by those of vectors v and B.To”construct”che vector F form the scalar q and the vectors v and B ,let us find the vector of v and B and then multiply then multiply the result obtained by the scalar q.The result is the expressionq[vB (9.31)It has been established experimentally that the force F acting on a charge moving in a magnetic field is determined by the formulaFa=kq[vB] (9.32)Where k is a proportionality constant depending on the choice of the units for the quantities in the formula .It must be borne in mind that the reasoning which led us to expression(9.31)must by no means be considered as the derivation of Eq.(9.32)This reasoning does not have conclusive force .Its aim is to help us memorize Eq(9.32).The correctness of this equation can be established only experimentally .We must note that Eq.(9.32)can be considered as a definition of The magnetic induction B.The unit of magnetic induction B -the tesla-is determined so that the proportionality constant k in Eq.(9.32)equals unity .Hence,In SI units ,this equation becomesF=q[vB] (9.33)The magnitude of the magnetic force isF=qvBsin∂(9.34) Where ∂is the angle between the vectors v and B .It can be seen from Eq.(9.34) that a charge moving along the lines of a magnetic field does not experience the action of a magneticforce .The magnetic force is directed at right angles to the plane containing the vectors v and B.If the charge q is positive ,then direction of the force coincides with that of the vector [vB].Where q is negative ,the directions of the vectors F and [vB] are opposite (Fig.9.6).Since the magnetic force is always directed at right angles to the velocity of a charged particle ,it does no work on the particle .Hence ,we cannot change the energy of a charged particle by acting on it with a constant magnetic field .The force exerted on a charged particle that is simultaneously in an electric and a magnetic field isF=qE+q[vB] (9.35)This expression was obtained from the results of experiments by the Dutch physicist Hendrik Lorentz (1853~1928)and is called the Lorentz force.Assume that the charge q is moving with the velocity v parallel to a straight infinite wire along which the current I flows(Fig.9.7).According to Eqs .(9.30)and(9.34),the charge in this case experiences a magnetic force whose magnitude isF=qvB=qv b240I πμ (9.36) Where b is the distance from the charge to the wire .The force is directed toward the wire when charge is positive if the directions of the current and motion of the charge are the same ,and away from the wire if these directions are opposite (see Fig.9.7).When the charge is negative ,the direction of the force is reversed ,the other conditions being equal.Let us consider two like point charges q 1and q2 moving along parallel straight lines with the same velocity v that is much smaller than c (Fig.9.8).When v ∝c,the electric field does not virtually differ form the field of stationary charges (see Sec 。

物理学专业英语(2)2009

物理学专业英语(2)2009

7 six-inch timbers , two 7-man crews,
fifteen 25-watt lamps
4. Estimateຫໍສະໝຸດ numerals spelled in English
The company has enough timber to operate for forty years.
(四)“more” 1. more than 1000,000 people 2. in excess of 2,000 square miles 4. upward of 800 water pumps 5. the hat cost over $5 6. 2 miles and more 7. 2 miles or more (五) “less” 1. below 876 2. less than 3,000 3. under 22 ms
Increased or decreased by… 1. A is by 2 longer than B. A=B+2 2. The prime cost decreased by 60%. A=(1-60%)B 3. The strength of the current is stepped down by sixth. double= 2 times(twice) , triple= 3 times , quadruple =4 times A=(1-1/6)B=5/6B

the exists re for all
p q p impliesq / if p, thenq p q p if and onlyif q /p is equivalent to q
ab a :b 90

物理学专业英语A5

物理学专业英语A5

A5 Magnets and currents
• The region around a magnet where magnetic forces act is sometimes called a magnetic field. However, see B17 for a more precise definition of a magnetic field. In diagrams, a magnetic field is represented by field lines. The stronger the field, the closer the lines. The direction of the field is the direction in which a 'free' N pole would move (though in reality, magnetic poles always exist in pairs).
A5 Magnets and currents
• Generating AC • In the generator above, a coil is rotated in a magnetic field. This induces an EMF in the coil, so a current flows. The current keeps changing direction as the coil faces first one way and then the other: it is alternating current (AC). A generator which produces AC is called an alternator. • 'One way' current from a battery is direct current (DC).

物理学专业英语仲海洋版9.2节

物理学专业英语仲海洋版9.2节

物理学专业英语仲海洋版9.2节Unit ThreeLESSON 99.1 物理学专业英语中的长句分析(一)总的来说,专业英语文献中的句子长度呈现两种趋向: 长难句多,短的简单句也多。

一个句子长达一百来个单词,构成一个完整的段落的现象屡见不鲜。

物理学专业英语用于表达科学理论、原理、规律、概述,以及各事物之间错综复杂的关系,而复杂的科学思维是无法使用简单句来表达的。

为了表示严谨、精确的含义,语法结构复杂的长句有较多的应用,而这种严谨周密、层次分明、重点突出的语言手段也就成了专业英语文体又一重要特征。

长句由基本句型扩展而成,其方式有增加修饰成分如定语、状语的,有用各种短语如介词、分词、动名词或不定式短语充当句子成分的,也可能是通过关联词将两个或两个以上的句子组合成复合句。

从句子结构来看,英语中句子可分简单句,并列复合句和主从复合句。

英语利用形态变化、词序和虚词三大语法手段可构成包孕许多修饰成分或从句的长句,句中各部分顺序灵活多样。

通常英语句中的表态部分(如判断和结论)在先,而叙事部分(如事实和描写)在后,汉语则正好相反;英语句中先短后长,“头轻脚重”,而汉语也正好相反;英语借助形态变化和连接手段而将句中成分灵活排列,汉语则常按时间和逻辑顺序由先到后、由因到果、由假设到推论、由事实到结论这样排列。

在专业英语的学习中,长句的分析是一个非常重要的基础,无论是专业文献阅读、翻译还是严谨精确地写作,都要从长句分析开始。

长句分析既重要也有些难度。

然而,无论多长的句子、多么复杂的结构,它们都是由一些基本的成分组成的。

只要弄清英语原文的句法结构,找出整个句子的中心内容,理解各层意思,然后分析各层意思之间的逻辑关系,再按汉语的特点和方式表达就可以理解或译出原文了。

9.1.1 长句结构的分析抓住主干,添枝加叶。

所谓抓住主干,就是在理解长句时首先要找到主语、谓语这两个主要成分。

添枝加叶,就是在主语、谓语这两个主要成分的基础上,逐个加上各种修饰语,包括定语、状语、补语、非谓语动词结构、各种从句等。

物理学专业英语

物理学专业英语
23

7、省略句

The first treatment would require a minimum of 48 hours, while the second treatment would require only 26 hours. 第一次处理最少需要48小时,而第二次处理只需要26 小时。
11


Dynamics is the study of forces and their effects on the motions of bodies. The cause of acceleration is a force exerted by some external agent or environment. The fundamental properties of force and the relationship between force and acceleration are given by Newton’s three laws of motion. The first of these laws describes the natural state of motion of a free body on which no external forces are acting, whereas the other two laws deal with the behavior of bodies under the influence of force.
3


1. Contents 2. Exams
Classroom participation :50% ; Final exam : 50%
3. Suggestions for You

(完整版)物理化学专业英语词汇

(完整版)物理化学专业英语词汇

一些物理化学专业英语词汇BET公式BET formulaDLVO理论DLVO theoryHLB法hydrophile-lipophile balance methodpVT性质pVT propertyζ电势zeta potential阿伏加德罗常数Avogadro’number阿伏加德罗定律Avogadro law阿累尼乌斯电离理论Arrhenius ionization theory阿累尼乌斯方程Arrhenius equation阿累尼乌斯活化能Arrhenius activation energy阿马格定律Amagat law艾林方程Erying equation爱因斯坦光化当量定律Einstein’s law of photochemical equivalence爱因斯坦-斯托克斯方程Einstein-Stokes equation安托万常数Antoine constant安托万方程Antoine equation盎萨格电导理论Onsager’s theory of conductance半电池half cell半衰期half time period饱和液体saturated liquids饱和蒸气saturated vapor饱和吸附量saturated extent of adsorption饱和蒸气压saturated vapor pressure爆炸界限explosion limits比表面功specific surface work比表面吉布斯函数specific surface Gibbs function比浓粘度reduced viscosity标准电动势standard electromotive force标准电极电势standard electrode potential标准摩尔反应焓standard molar reaction enthalpy标准摩尔反应吉布斯函数standard Gibbs function of molar reaction标准摩尔反应熵standard molar reaction entropy标准摩尔焓函数standard molar enthalpy function标准摩尔吉布斯自由能函数standard molar Gibbs free energy function 标准摩尔燃烧焓standard molar combustion enthalpy标准摩尔熵standard molar entropy标准摩尔生成焓standard molar formation enthalpy标准摩尔生成吉布斯函数standard molar formation Gibbs function标准平衡常数standard equilibrium constant标准氢电极standard hydrogen electrode标准态standard state标准熵standard entropy标准压力standard pressure标准状况standard condition表观活化能apparent activation energy表观摩尔质量apparent molecular weight表观迁移数apparent transference number表面surfaces表面过程控制surface process control表面活性剂surfactants表面吸附量surface excess表面张力surface tension表面质量作用定律surface mass action law波义尔定律Boyle law波义尔温度Boyle temperature波义尔点Boyle point玻尔兹曼常数Boltzmann constant玻尔兹曼分布Boltzmann distribution玻尔兹曼公式Boltzmann formula玻尔兹曼熵定理Boltzmann entropy theorem玻色-爱因斯坦统计Bose-Einstein statistics泊Poise不可逆过程irreversible process不可逆过程热力学thermodynamics of irreversible processes 不可逆相变化irreversible phase change布朗运动brownian movement查理定律Charle’s law产率yield敞开系统open system超电势over potential沉降sedimentation沉降电势sedimentation potential沉降平衡sedimentation equilibrium触变thixotropy粗分散系统thick disperse system催化剂catalyst单分子层吸附理论mono molecule layer adsorption单分子反应unimolecular reaction单链反应straight chain reactions弹式量热计bomb calorimeter道尔顿定律Dalton law道尔顿分压定律Dalton partial pressure law德拜和法尔肯哈根效应Debye and Falkenhagen effect德拜立方公式Debye cubic formula德拜-休克尔极限公式Debye-Huckel’s limiting equation等焓过程isenthalpic process等焓线isenthalpic line等几率定理theorem of equal probability等温等容位Helmholtz free energy等温等压位Gibbs free energy等温方程equation at constant temperature低共熔点eutectic point低共熔混合物eutectic mixture低会溶点lower consolute point低熔冰盐合晶cryohydric第二类永动机perpetual machine of the second kind第三定律熵third-law entropy第一类永动机perpetual machine of the first kind缔合化学吸附association chemical adsorption电池常数cell constant电池电动势electromotive force of cells电池反应cell reaction电导conductance电导率conductivity电动势的温度系数temperature coefficient of electromotive force 电动电势zeta potential电功electric work电化学electrochemistry电化学极化electrochemical polarization电极电势electrode potential电极反应reactions on the electrode电极种类type of electrodes电解池electrolytic cell电量计coulometer电流效率current efficiency电迁移electro migration电迁移率electromobility电渗electroosmosis电渗析electrodialysis电泳electrophoresis丁达尔效应Dyndall effect定容摩尔热容molar heat capacity under constant volume定容温度计Constant voIume thermometer定压摩尔热容molar heat capacity under constant pressure定压温度计constant pressure thermometer定域子系统localized particle system动力学方程kinetic equations动力学控制kinetics control独立子系统independent particle system对比摩尔体积reduced mole volume对比体积reduced volume对比温度reduced temperature对比压力reduced pressure对称数symmetry number对行反应reversible reactions对应状态原理principle of corresponding state多方过程polytropic process多分子层吸附理论adsorption theory of multi-molecular layers 二级反应second order reaction二级相变second order phase change法拉第常数faraday constant法拉第定律Faraday’s law反电动势back E.M.F.反渗透reverse osmosis反应分子数molecularity反应级数reaction orders反应进度extent of reaction反应热heat of reaction反应速率rate of reaction反应速率常数constant of reaction rate范德华常数van der Waals constant范德华方程van der Waals equation范德华力van der Waals force范德华气体van der Waals gases范特霍夫方程van’t Hoff equation范特霍夫规则van’t Hoff rule范特霍夫渗透压公式van’t Hoff equation of osmotic pressure 非基元反应non-elementary reactions非体积功non-volume work非依时计量学反应time independent stoichiometric reactions 菲克扩散第一定律Fick’s first law of diffusion沸点boiling point沸点升高elevation of boiling point费米-狄拉克统计Fermi-Dirac statistics分布distribution分布数distribution numbers分解电压decomposition voltage分配定律distribution law分散系统disperse system分散相dispersion phase分体积partial volume分体积定律partial volume law分压partial pressure分压定律partial pressure law分子反应力学mechanics of molecular reactions分子间力intermolecular force分子蒸馏molecular distillation封闭系统closed system附加压力excess pressure弗罗因德利希吸附经验式Freundlich empirical formula of adsorption 负极negative pole负吸附negative adsorption复合反应composite reaction盖·吕萨克定律Gay-Lussac law盖斯定律Hess law甘汞电极calomel electrode感胶离子序lyotropic series杠杆规则lever rule高分子溶液macromolecular solution高会溶点upper consolute point隔离法the isolation method格罗塞斯-德雷珀定律Grotthus-Draoer’s law隔离系统isolated system根均方速率root-mean-square speed功work功函work content共轭溶液conjugate solution共沸温度azeotropic temperature构型熵configurational entropy孤立系统isolated system固溶胶solid sol固态混合物solid solution固相线solid phase line光反应photoreaction光化学第二定律the second law of actinochemistry光化学第一定律the first law of actinochemistry光敏反应photosensitized reactions光谱熵spectrum entropy广度性质extensive property广延量extensive quantity广延性质extensive property规定熵stipulated entropy过饱和溶液oversaturated solution过饱和蒸气oversaturated vapor过程process过渡状态理论transition state theory过冷水super-cooled water过冷液体overcooled liquid过热液体overheated liquid亥姆霍兹函数Helmholtz function亥姆霍兹函数判据Helmholtz function criterion亥姆霍兹自由能Helmholtz free energy亥氏函数Helmholtz function焓enthalpy亨利常数Henry constant亨利定律Henry law恒沸混合物constant boiling mixture恒容摩尔热容molar heat capacity at constant volume恒容热heat at constant volume恒外压constant external pressure恒压摩尔热容molar heat capacity at constant pressure恒压热heat at constant pressure化学动力学chemical kinetics化学反应计量式stoichiometric equation of chemical reaction化学反应计量系数stoichiometric coefficient of chemical reaction 化学反应进度extent of chemical reaction化学亲合势chemical affinity化学热力学chemical thermodynamics化学势chemical potential化学势判据chemical potential criterion化学吸附chemisorptions环境environment环境熵变entropy change in environment挥发度volatility混合熵entropy of mixing混合物mixture活度activity活化控制activation control活化络合物理论activated complex theory活化能activation energy霍根-华森图Hougen-Watson Chart基态能级energy level at ground state基希霍夫公式Kirchhoff formula基元反应elementary reactions积分溶解热integration heat of dissolution吉布斯-杜亥姆方程Gibbs-Duhem equation吉布斯-亥姆霍兹方程Gibbs-Helmhotz equation吉布斯函数Gibbs function吉布斯函数判据Gibbs function criterion吉布斯吸附公式Gibbs adsorption formula吉布斯自由能Gibbs free energy吉氏函数Gibbs function极化电极电势polarization potential of electrode 极化曲线polarization curves极化作用polarization极限摩尔电导率limiting molar conductivity几率因子steric factor计量式stoichiometric equation计量系数stoichiometric coefficient价数规则rule of valence简并度degeneracy键焓bond enthalpy胶冻broth jelly胶核colloidal nucleus胶凝作用demulsification胶束micelle胶体colloid胶体分散系统dispersion system of colloid胶体化学collochemistry胶体粒子colloidal particles胶团micelle焦耳Joule焦耳-汤姆生实验Joule-Thomson experiment焦耳-汤姆生系数Joule-Thomson coefficient焦耳-汤姆生效应Joule-Thomson effect焦耳定律Joule`s law接触电势contact potential接触角contact angle节流过程throttling process节流膨胀throttling expansion节流膨胀系数coefficient of throttling expansion 结线tie line结晶热heat of crystallization解离化学吸附dissociation chemical adsorption 界面interfaces界面张力surface tension浸湿immersion wetting浸湿功immersion wetting work精馏rectify聚(合)电解质polyelectrolyte聚沉coagulation聚沉值coagulation value绝对反应速率理论absolute reaction rate theory 绝对熵absolute entropy绝对温标absolute temperature scale绝热过程adiabatic process绝热量热计adiabatic calorimeter绝热指数adiabatic index卡诺定理Carnot theorem卡诺循环Carnot cycle开尔文公式Kelvin formula柯诺瓦洛夫-吉布斯定律Konovalov-Gibbs law科尔劳施离子独立运动定律Kohlrausch’s Law of Independent Migration of Ions 可能的电解质potential electrolyte可逆电池reversible cell可逆过程reversible process可逆过程方程reversible process equation可逆体积功reversible volume work可逆相变reversible phase change克拉佩龙方程Clapeyron equation克劳修斯不等式Clausius inequality克劳修斯-克拉佩龙方程Clausius-Clapeyron equation控制步骤control step库仑计coulometer扩散控制diffusion controlled拉普拉斯方程Laplace’s equation拉乌尔定律Raoult law兰格缪尔-欣谢尔伍德机理Langmuir-Hinshelwood mechanism兰格缪尔吸附等温式Langmuir adsorption isotherm formula雷利公式Rayleigh equation冷冻系数coefficient of refrigeration冷却曲线cooling curve离解热heat of dissociation离解压力dissociation pressure离域子系统non-localized particle systems离子的标准摩尔生成焓standard molar formation of ion离子的电迁移率mobility of ions离子的迁移数transport number of ions离子独立运动定律law of the independent migration of ions离子氛ionic atmosphere离子强度ionic strength理想混合物perfect mixture理想气体ideal gas接触电势contact potential接触角contact angle节流过程throttling process节流膨胀throttling expansion节流膨胀系数coefficient of throttling expansion结线tie line结晶热heat of crystallization解离化学吸附dissociation chemical adsorption界面interfaces界面张力surface tension浸湿immersion wetting浸湿功immersion wetting work精馏rectify聚(合)电解质polyelectrolyte聚沉coagulation聚沉值coagulation value绝对反应速率理论absolute reaction rate theory绝对熵absolute entropy绝对温标absolute temperature scale绝热过程adiabatic process绝热量热计adiabatic calorimeter绝热指数adiabatic index卡诺定理Carnot theorem卡诺循环Carnot cycle开尔文公式Kelvin formula柯诺瓦洛夫-吉布斯定律Konovalov-Gibbs law科尔劳施离子独立运动定律Kohlrausch’s Law of Independent Migration of Ions 可能的电解质potential electrolyte可逆电池reversible cell可逆过程reversible process可逆过程方程reversible process equation可逆体积功reversible volume work可逆相变reversible phase change克拉佩龙方程Clapeyron equation克劳修斯不等式Clausius inequality克劳修斯-克拉佩龙方程Clausius-Clapeyron equation控制步骤control step库仑计coulometer扩散控制diffusion controlled拉普拉斯方程Laplace’s equation拉乌尔定律Raoult law兰格缪尔-欣谢尔伍德机理Langmuir-Hinshelwood mechanism兰格缪尔吸附等温式Langmuir adsorption isotherm formula雷利公式Rayleigh equation冷冻系数coefficient of refrigeration冷却曲线cooling curve离解热heat of dissociation离解压力dissociation pressure离域子系统non-localized particle systems离子的标准摩尔生成焓standard molar formation of ion离子的电迁移率mobility of ions离子的迁移数transport number of ions离子独立运动定律law of the independent migration of ions离子氛ionic atmosphere离子强度ionic strength理想混合物perfect mixture理想气体ideal gas理想气体的绝热指数adiabatic index of ideal gases理想气体的微观模型micro-model of ideal gas理想气体反应的等温方程isothermal equation of ideal gaseous reactions理想气体绝热可逆过程方程adiabatic reversible process equation of ideal gases 理想气体状态方程state equation of ideal gas理想稀溶液ideal dilute solution理想液态混合物perfect liquid mixture粒子particles粒子的配分函数partition function of particles连串反应consecutive reactions链的传递物chain carrier链反应chain reactions量热熵calorimetric entropy量子统计quantum statistics量子效率quantum yield临界参数critical parameter临界常数critical constant临界点critical point临界胶束浓度critical micelle concentration临界摩尔体积critical molar volume临界温度critical temperature临界压力critical pressure临界状态critical state零级反应zero order reaction流动电势streaming potential流动功flow work笼罩效应cage effect路易斯-兰德尔逸度规则Lewis-Randall rule of fugacity露点dew point露点线dew point line麦克斯韦关系式Maxwell relations麦克斯韦速率分布Maxwell distribution of speeds麦克斯韦能量分布MaxwelIdistribution of energy毛细管凝结condensation in capillary毛细现象capillary phenomena米凯利斯常数Michaelis constant摩尔电导率molar conductivity摩尔反应焓molar reaction enthalpy摩尔混合熵mole entropy of mixing摩尔气体常数molar gas constant摩尔热容molar heat capacity摩尔溶解焓mole dissolution enthalpy摩尔稀释焓mole dilution enthalpy内扩散控制internal diffusions control内能internal energy内压力internal pressure能级energy levels能级分布energy level distribution能量均分原理principle of the equipartition of energy能斯特方程Nernst equation能斯特热定理Nernst heat theorem凝固点freezing point凝固点降低lowering of freezing point凝固点曲线freezing point curve凝胶gelatin凝聚态condensed state凝聚相condensed phase浓差超电势concentration over-potential浓差极化concentration polarization浓差电池concentration cells帕斯卡pascal泡点bubble point泡点线bubble point line配分函数partition function配分函数的析因子性质property that partition function to be expressed as a product of the separate partition functions for each kind of state碰撞截面collision cross section碰撞数the number of collisions偏摩尔量partial mole quantities平衡常数(理想气体反应)equilibrium constants for reactions of ideal gases平动配分函数partition function of translation平衡分布equilibrium distribution平衡态equilibrium state平衡态近似法equilibrium state approximation平衡状态图equilibrium state diagram平均活度mean activity平均活度系统mean activity coefficient平均摩尔热容mean molar heat capacity平均质量摩尔浓度mean mass molarity平均自由程mean free path平行反应parallel reactions破乳demulsification铺展spreading普遍化范德华方程universal van der Waals equation其它功the other work气化热heat of vaporization气溶胶aerosol气体常数gas constant气体分子运动论kinetic theory of gases气体分子运动论的基本方程foundamental equation of kinetic theory of gases 气溶胶aerosol气相线vapor line迁移数transport number潜热latent heat强度量intensive quantity强度性质intensive property亲液溶胶hydrophilic sol氢电极hydrogen electrodes区域熔化zone melting热heat热爆炸heat explosion热泵heat pump热功当量mechanical equivalent of heat热函heat content热化学thermochemistry热化学方程thermochemical equation热机heat engine热机效率efficiency of heat engine热力学thermodynamics热力学第二定律the second law of thermodynamics热力学第三定律the third law of thermodynamics热力学第一定律the first law of thermodynamics热力学基本方程fundamental equation of thermodynamics热力学几率thermodynamic probability热力学能thermodynamic energy热力学特性函数characteristic thermodynamic function热力学温标thermodynamic scale of temperature热力学温度thermodynamic temperature热熵thermal entropy热效应heat effect熔点曲线melting point curve熔化热heat of fusion溶胶colloidal sol溶解焓dissolution enthalpy溶液solution溶胀swelling乳化剂emulsifier乳状液emulsion润湿wetting润湿角wetting angle萨克尔-泰特洛德方程Sackur-Tetrode equation 三相点triple point三相平衡线triple-phase line熵entropy熵判据entropy criterion熵增原理principle of entropy increase渗透压osmotic pressure渗析法dialytic process生成反应formation reaction升华热heat of sublimation实际气体real gas舒尔采-哈迪规则Schulze-Hardy rule松驰力relaxation force松驰时间time of relaxation速度常数reaction rate constant速率方程rate equations速率控制步骤rate determining step塔费尔公式Tafel equation态-态反应state-state reactions唐南平衡Donnan equilibrium淌度mobility特鲁顿规则Trouton rule特性粘度intrinsic viscosity体积功volume work统计权重statistical weight统计热力学statistic thermodynamics统计熵statistic entropy途径path途径函数path function外扩散控制external diffusion control完美晶体perfect crystalline完全气体perfect gas微观状态microstate微态microstate韦斯顿标准电池Weston standard battery维恩效应Wien effect维里方程virial equation维里系数virial coefficient稳流过程steady flow process稳态近似法stationary state approximation无热溶液athermal solution无限稀溶液solutions in the limit of extreme dilution物理化学Physical Chemistry物理吸附physisorptions吸附adsorption吸附等量线adsorption isostere吸附等温线adsorption isotherm吸附等压线adsorption isobar吸附剂adsorbent吸附量extent of adsorption吸附热heat of adsorption吸附质adsorbate析出电势evolution or deposition potential析因子性质property that partition function to be expressed as a product of the separate partition functions for each kind of state稀溶液的依数性colligative properties of dilute solutions稀释焓dilution enthalpy系统system系统点system point系统的环境environment of system相phase相变phase change相变焓enthalpy of phase change相变化phase change相变热heat of phase change相点phase point相对挥发度relative volatility相对粘度relative viscosity相律phase rule相平衡热容heat capacity in phase equilibrium相图phase diagram相倚子系统system of dependent particles悬浮液suspension循环过程cyclic process压力商pressure quotient压缩因子compressibility factor压缩因子图diagram of compressibility factor亚稳状态metastable state盐桥salt bridge盐析salting out阳极anode杨氏方程Young’s equation液体接界电势liquid junction potential液相线liquid phase lines一级反应first order reaction一级相变first order phase change依时计量学反应time dependent stoichiometric reactions 逸度fugacity逸度系数coefficient of fugacity阴极cathode荧光fluorescence永动机perpetual motion machine永久气体Permanent gas有效能available energy原电池primary cell原盐效应salt effect增比粘度specific viscosity憎液溶胶lyophobic sol沾湿adhesional wetting沾湿功the work of adhesional wetting真溶液true solution真实电解质real electrolyte真实气体real gas真实迁移数true transference number振动配分函数partition function of vibration振动特征温度characteristic temperature of vibration蒸气压下降depression of vapor pressure正常沸点normal point正吸附positive adsorption支链反应branched chain reactions直链反应straight chain reactions指前因子pre-exponential factor质量作用定律mass action law制冷系数coefficient of refrigeration中和热heat of neutralization轴功shaft work转动配分函数partition function of rotation转动特征温度characteristic temperature of vibration转化率convert ratio转化温度conversion temperature状态state状态方程state equation状态分布state distribution状态函数state function准静态过程quasi-static process准一级反应pseudo first order reaction自动催化作用auto-catalysis自由度degree of freedom自由度数number of degree of freedom自由焓free enthalpy自由能free energy自由膨胀free expansion组分数component number最低恒沸点lower azeotropic point最高恒沸点upper azeotropic point最佳反应温度optimal reaction temperature最可几分布most probable distribution最可几速率most propable speed1. The Ideal-Gas Equation 理想气体状态方程2. Partial Pressures 分压3. Real Gases: Deviation from Ideal Behavior 真实气体:对理想气体行为的偏离4. The van der Waals Equation 范德华方程5. System and Surroundings 系统与环境6. State and State Functions 状态与状态函数7. Process 过程8. Phase 相9. The First Law of Thermodynamics 热力学第一定律10. Heat and Work 热与功11. Endothermic and Exothermic Processes 吸热与发热过程12. Enthalpies of Reactions 反应热13. Hess’s Law 盖斯定律14. Enthalpies of Formation 生成焓15. Reaction Rates 反应速率16. Reaction Order 反应级数17. Rate Constants 速率常数18. Activation Energy 活化能19. The Arrhenius Equation 阿累尼乌斯方程20. Reaction Mechanisms 反应机理21. Homogeneous Catalysis 均相催化剂22. Heterogeneous Catalysis 非均相催化剂23. Enzymes 酶24. The Equilibrium Constant 平衡常数25. the Direction of Reaction 反应方向26. Le Chatelier’s Principle 列·沙特列原理27. Effects of VolumePressureT emperature Changes and Catalysts i. 体积压力温度变化以及催化剂的影响28. Spontaneous Processes 自发过程29. Entropy (Standard Entropy) 熵(标准熵)30. The Second Law of Thermodynamics 热力学第二定律31. Entropy Changes 熵变32. Standard Free-Energy Changes 标准自由能变33. Acid-bases 酸碱34. The Dissociation of Water 水离解35. The Proton in Water 水合质子36. The pH Scales pH值37. Bronsted-Lowry Acids and bases Bronsted-Lowry 酸和碱38. Proton-Transfer Reactions 质子转移反应39. Conjugate Acid-base Pairs 共轭酸碱对40. Relative Strength of Acids and bases 酸碱的相对强度41. Lewis Acids and bases 路易斯酸碱42. Hydrolysis of metal Ions 金属离子的水解43. Buffer Solutions 缓冲溶液44. The Common-Ion Effects 同离子效应45. Buffer Capacity 缓冲容量46. Formation of Complex Ions 配离子的形成47. Solubility 溶解度48. The Solubility-Product Constant Ksp 溶度积常数49. Precipitation and separation of Ions 离子的沉淀与分离50. Selective Precipitation of Ions 离子的选择沉淀51. Oxidation-Reduction Reactions 氧化还原反应52. Oxidation Number 氧化数53. Balancing Oxidation-Reduction Equations 氧化还原反应方程的配平54. Half-Reaction 半反应55. Galvani Cell 原电池56. Voltaic Cell 伏特电池57. Cell EMF 电池电动势58. Standard Electrode Potentials 标准电极电势59. Oxidizing and Reducing Agents 氧化剂和还原剂60. The Nernst Equation 能斯特方程61. Electrolysis 电解62. The Wave Behavior of Electrons 电子的波动性63. Bohr’s Model of The Hydrogen Atom 氢原子的波尔模型64. Line Spectra 线光谱65. Quantum Numbers 量子数66. Electron Spin 电子自旋67. Atomic Orbital 原子轨道68. The s(pdf) Orbital s(pdf)轨道69. Many-Electron Atoms 多电子原子70. Energies of Orbital 轨道能量71. The Pauli Exclusion Principle 泡林不相容原理72. Electron Configurations 电子构型73. The Periodic Table 周期表74. Row 行75. Group 族76. Isotopes Atomic Numbers and Mass Numbers 同位素,原子数,质量数77. Periodic Properties of the Elements 元素的周期律78. Radius of Atoms 原子半径79. Ionization Energy 电离能80. Electronegativity 电负性81. Effective Nuclear Charge 有效核电荷82. Electron Affinities 亲电性/电子亲合性[势]83. metals 金属84. Nonmetals 非金属85. Valence Bond Theory 价键理论86. Covalence Bond 共价键87. Orbital Overlap 轨道重叠88. Multiple Bonds 重键89. Hybrid Orbital 杂化轨道90. The VSEPR Model 价层电子对互斥理论91. Molecular Geometries 分子空间构型92. Molecular Orbital 分子轨道93. Diatomic Molecules 双原子分子94. Bond Length 键长95. Bond Order 键级96. Bond Angles 键角97. Bond Enthalpies 键能98. Bond Polarity 键矩99. Dipole Moments 偶极矩100. Polarity Molecules 极性分子101. Polyatomic Molecules 多原子分子102. Crystal Structure 晶体结构103. Non-Crystal 非晶体104. Close Packing of Spheres 球密堆积105. metallic Solids 金属晶体106. metallic Bond 金属键107. Alloys 合金108. Ionic Solids 离子晶体109. Ion-Dipole Forces 离子偶极力110. Molecular Forces 分子间力111. Intermolecular Forces 分子间作用力112. Hydrogen Bonding 氢键113. Covalent-Network Solids 原子晶体114. Compounds 化合物115. The Nomenclature Composition and Structure of Complexes 配合物的命名组成和结构116. Charges Coordination Numbers and Geometries 电荷数、配位数、及几何构型117. Chelates 螯合物118. Isomerism 异构现象119. Structural Isomerism 结构异构120. Stereoisomerism 立体异构121. Magnetism 磁性122. Electron Configurations in Octahedral Complexes 八面体构型配合物的电子分布123. Tetrahedral and Square-planar Complexes 四面体和平面四边形配合物124. General Characteristics 共性125. s-Block Elements s区元素126. Alkali metals 碱金属127. Alkaline Earth metals 碱土金属128. Hydrides 氢化物129. Oxides 氧化物130. Peroxides and Superoxides 过氧化物和超氧化物131. Hydroxides 氢氧化物132. Salts 盐133. p-Block Elements p区元素134. Boron Group (BoronAluminiumGalliumIndiumThallium) 硼族(硼铝镓铟铊)135. Borane 硼烷136. Carbon Group (CarbonSiliconGermaniumTinLead) 碳族(碳,硅,锗,锡,铅)137. Graphite Carbon Monoxide Carbon Dioxide 石墨,一氧化碳,二氧化碳138. Carbonic Acid Carbonates and Carbides 碳酸,碳酸盐,碳化物139. Occurrence and Preparation of Silicon 硅的存在和制备140. Silicic Acid,Silicates 硅酸,硅酸盐141. Nitrogen Group (PhosphorusArsenicAntimonyand Bismuth) 氮族(磷砷锑铋)142. Ammonia Nitric Acid Phosphoric Acid 氨硝酸磷酸143. Phosphorates phosphorus Halides 磷酸盐,卤化磷144. Oxygen Group (Oxygen Sulfur Selenium and Tellurium) 氧族元素(氧,硫,硒,碲)145. Ozone Hydrogen Peroxide 臭氧,过氧化氢146. Sulfides 硫化物147. Halogens (Fluorine Chlorine Bromine Iodine) 卤素(氟,氯,溴,碘)148. Halides Chloride 卤化物,氯化物149. The Noble Gases 稀有气体150. Noble-Gas Compounds 稀有气体化合物151. d-Block elements d区元素152. Transition metals 过渡金属153. Potassium Dichromate 重铬酸钾154. Potassium Permanganate 高锰酸钾155. Iron Copper Zinc Mercury 铁,铜,锌,汞156. f-Block Elements f区元素157. Lanthanides 镧系元素158. Radioactivity 放射性159. Nuclear Chemistry 核化学160. Nuclear Fission 核裂变161. Nuclear Fusion 核聚变162. analytical chemistry 分析化学163. qualitative analysis 定性分析164. quantitative analysis 定量分析165. chemical analysis 化学分析166. instrumental analysis 仪器分析167. titrimetry 滴定分析168. gravimetric analysis 重量分析法169. regent 试剂170. chromatographic analysis 色谱分析171. product 产物172. electrochemical analysis 电化学分析173. on-line analysis 在线分析174. macro analysis 常量分析175. characteristic 表征176. micro analysis 微量分析177. deformation analysis 形态分析178. semimicro analysis 半微量分析179. systematical error 系统误差180. routine analysis 常规分析181. random error 偶然误差182. arbitration analysis 仲裁分析183. gross error 过失误差184. normal distribution 正态分布185. accuracy 准确度186. deviation 偏差187. precision 精密度188. relative standard deviation 相对标准偏差(RSD)189. coefficient variation 变异系数(CV)190. confidence level 置信水平191. confidence interval 置信区间192. significant test 显著性检验193. significant figure 有效数字194. standard solution 标准溶液195. titration 滴定196. stoichiometric point 化学计量点197. end point 滴定终点198. titration error 滴定误差199. primary standard 基准物质200. amount of substance 物质的量201. standardization 标定202. chemical reaction 化学反应203. concentration 浓度204. chemical equilibrium 化学平衡205. titer 滴定度206. general equation for a chemical reaction 化学反应的通式207. proton theory of acid-base 酸碱质子理论208. acid-base titration 酸碱滴定法209. dissociation constant 解离常数210. conjugate acid-base pair 共轭酸碱对211. acetic acid 乙酸212. hydronium ion 水合氢离子213. electrolyte 电解质214. ion-product constant of water 水的离子积215. ionization 电离216. proton condition 质子平衡217. zero level 零水准218. buffer solution 缓冲溶液219. methyl orange 甲基橙220. acid-base indicator 酸碱指示剂221. phenolphthalein 酚酞222. coordination compound 配位化合物223. center ion 中心离子224. cumulative stability constant 累积稳定常数。

物理学专业英语

物理学专业英语

华中师范大学物理学院物理学专业英语仅供内部学习参考!2014一、课程的任务和教学目的通过学习《物理学专业英语》,学生将掌握物理学领域使用频率较高的专业词汇和表达方法,进而具备基本的阅读理解物理学专业文献的能力。

通过分析《物理学专业英语》课程教材中的范文,学生还将从英语角度理解物理学中个学科的研究内容和主要思想,提高学生的专业英语能力和了解物理学研究前沿的能力。

培养专业英语阅读能力,了解科技英语的特点,提高专业外语的阅读质量和阅读速度;掌握一定量的本专业英文词汇,基本达到能够独立完成一般性本专业外文资料的阅读;达到一定的笔译水平。

要求译文通顺、准确和专业化。

要求译文通顺、准确和专业化。

二、课程内容课程内容包括以下章节:物理学、经典力学、热力学、电磁学、光学、原子物理、统计力学、量子力学和狭义相对论三、基本要求1.充分利用课内时间保证充足的阅读量(约1200~1500词/学时),要求正确理解原文。

2.泛读适量课外相关英文读物,要求基本理解原文主要内容。

3.掌握基本专业词汇(不少于200词)。

4.应具有流利阅读、翻译及赏析专业英语文献,并能简单地进行写作的能力。

四、参考书目录1 Physics 物理学 (1)Introduction to physics (1)Classical and modern physics (2)Research fields (4)V ocabulary (7)2 Classical mechanics 经典力学 (10)Introduction (10)Description of classical mechanics (10)Momentum and collisions (14)Angular momentum (15)V ocabulary (16)3 Thermodynamics 热力学 (18)Introduction (18)Laws of thermodynamics (21)System models (22)Thermodynamic processes (27)Scope of thermodynamics (29)V ocabulary (30)4 Electromagnetism 电磁学 (33)Introduction (33)Electrostatics (33)Magnetostatics (35)Electromagnetic induction (40)V ocabulary (43)5 Optics 光学 (45)Introduction (45)Geometrical optics (45)Physical optics (47)Polarization (50)V ocabulary (51)6 Atomic physics 原子物理 (52)Introduction (52)Electronic configuration (52)Excitation and ionization (56)V ocabulary (59)7 Statistical mechanics 统计力学 (60)Overview (60)Fundamentals (60)Statistical ensembles (63)V ocabulary (65)8 Quantum mechanics 量子力学 (67)Introduction (67)Mathematical formulations (68)Quantization (71)Wave-particle duality (72)Quantum entanglement (75)V ocabulary (77)9 Special relativity 狭义相对论 (79)Introduction (79)Relativity of simultaneity (80)Lorentz transformations (80)Time dilation and length contraction (81)Mass-energy equivalence (82)Relativistic energy-momentum relation (86)V ocabulary (89)正文标记说明:蓝色Arial字体(例如energy):已知的专业词汇蓝色Arial字体加下划线(例如electromagnetism):新学的专业词汇黑色Times New Roman字体加下划线(例如postulate):新学的普通词汇1 Physics 物理学1 Physics 物理学Introduction to physicsPhysics is a part of natural philosophy and a natural science that involves the study of matter and its motion through space and time, along with related concepts such as energy and force. More broadly, it is the general analysis of nature, conducted in order to understand how the universe behaves.Physics is one of the oldest academic disciplines, perhaps the oldest through its inclusion of astronomy. Over the last two millennia, physics was a part of natural philosophy along with chemistry, certain branches of mathematics, and biology, but during the Scientific Revolution in the 17th century, the natural sciences emerged as unique research programs in their own right. Physics intersects with many interdisciplinary areas of research, such as biophysics and quantum chemistry,and the boundaries of physics are not rigidly defined. New ideas in physics often explain the fundamental mechanisms of other sciences, while opening new avenues of research in areas such as mathematics and philosophy.Physics also makes significant contributions through advances in new technologies that arise from theoretical breakthroughs. For example, advances in the understanding of electromagnetism or nuclear physics led directly to the development of new products which have dramatically transformed modern-day society, such as television, computers, domestic appliances, and nuclear weapons; advances in thermodynamics led to the development of industrialization; and advances in mechanics inspired the development of calculus.Core theoriesThough physics deals with a wide variety of systems, certain theories are used by all physicists. Each of these theories were experimentally tested numerous times and found correct as an approximation of nature (within a certain domain of validity).For instance, the theory of classical mechanics accurately describes the motion of objects, provided they are much larger than atoms and moving at much less than the speed of light. These theories continue to be areas of active research, and a remarkable aspect of classical mechanics known as chaos was discovered in the 20th century, three centuries after the original formulation of classical mechanics by Isaac Newton (1642–1727) 【艾萨克·牛顿】.University PhysicsThese central theories are important tools for research into more specialized topics, and any physicist, regardless of his or her specialization, is expected to be literate in them. These include classical mechanics, quantum mechanics, thermodynamics and statistical mechanics, electromagnetism, and special relativity.Classical and modern physicsClassical mechanicsClassical physics includes the traditional branches and topics that were recognized and well-developed before the beginning of the 20th century—classical mechanics, acoustics, optics, thermodynamics, and electromagnetism.Classical mechanics is concerned with bodies acted on by forces and bodies in motion and may be divided into statics (study of the forces on a body or bodies at rest), kinematics (study of motion without regard to its causes), and dynamics (study of motion and the forces that affect it); mechanics may also be divided into solid mechanics and fluid mechanics (known together as continuum mechanics), the latter including such branches as hydrostatics, hydrodynamics, aerodynamics, and pneumatics.Acoustics is the study of how sound is produced, controlled, transmitted and received. Important modern branches of acoustics include ultrasonics, the study of sound waves of very high frequency beyond the range of human hearing; bioacoustics the physics of animal calls and hearing, and electroacoustics, the manipulation of audible sound waves using electronics.Optics, the study of light, is concerned not only with visible light but also with infrared and ultraviolet radiation, which exhibit all of the phenomena of visible light except visibility, e.g., reflection, refraction, interference, diffraction, dispersion, and polarization of light.Heat is a form of energy, the internal energy possessed by the particles of which a substance is composed; thermodynamics deals with the relationships between heat and other forms of energy.Electricity and magnetism have been studied as a single branch of physics since the intimate connection between them was discovered in the early 19th century; an electric current gives rise to a magnetic field and a changing magnetic field induces an electric current. Electrostatics deals with electric charges at rest, electrodynamics with moving charges, and magnetostatics with magnetic poles at rest.Modern PhysicsClassical physics is generally concerned with matter and energy on the normal scale of1 Physics 物理学observation, while much of modern physics is concerned with the behavior of matter and energy under extreme conditions or on the very large or very small scale.For example, atomic and nuclear physics studies matter on the smallest scale at which chemical elements can be identified.The physics of elementary particles is on an even smaller scale, as it is concerned with the most basic units of matter; this branch of physics is also known as high-energy physics because of the extremely high energies necessary to produce many types of particles in large particle accelerators. On this scale, ordinary, commonsense notions of space, time, matter, and energy are no longer valid.The two chief theories of modern physics present a different picture of the concepts of space, time, and matter from that presented by classical physics.Quantum theory is concerned with the discrete, rather than continuous, nature of many phenomena at the atomic and subatomic level, and with the complementary aspects of particles and waves in the description of such phenomena.The theory of relativity is concerned with the description of phenomena that take place in a frame of reference that is in motion with respect to an observer; the special theory of relativity is concerned with relative uniform motion in a straight line and the general theory of relativity with accelerated motion and its connection with gravitation.Both quantum theory and the theory of relativity find applications in all areas of modern physics.Difference between classical and modern physicsWhile physics aims to discover universal laws, its theories lie in explicit domains of applicability. Loosely speaking, the laws of classical physics accurately describe systems whose important length scales are greater than the atomic scale and whose motions are much slower than the speed of light. Outside of this domain, observations do not match their predictions.Albert Einstein【阿尔伯特·爱因斯坦】contributed the framework of special relativity, which replaced notions of absolute time and space with space-time and allowed an accurate description of systems whose components have speeds approaching the speed of light.Max Planck【普朗克】, Erwin Schrödinger【薛定谔】, and others introduced quantum mechanics, a probabilistic notion of particles and interactions that allowed an accurate description of atomic and subatomic scales.Later, quantum field theory unified quantum mechanics and special relativity.General relativity allowed for a dynamical, curved space-time, with which highly massiveUniversity Physicssystems and the large-scale structure of the universe can be well-described. General relativity has not yet been unified with the other fundamental descriptions; several candidate theories of quantum gravity are being developed.Research fieldsContemporary research in physics can be broadly divided into condensed matter physics; atomic, molecular, and optical physics; particle physics; astrophysics; geophysics and biophysics. Some physics departments also support research in Physics education.Since the 20th century, the individual fields of physics have become increasingly specialized, and today most physicists work in a single field for their entire careers. "Universalists" such as Albert Einstein (1879–1955) and Lev Landau (1908–1968)【列夫·朗道】, who worked in multiple fields of physics, are now very rare.Condensed matter physicsCondensed matter physics is the field of physics that deals with the macroscopic physical properties of matter. In particular, it is concerned with the "condensed" phases that appear whenever the number of particles in a system is extremely large and the interactions between them are strong.The most familiar examples of condensed phases are solids and liquids, which arise from the bonding by way of the electromagnetic force between atoms. More exotic condensed phases include the super-fluid and the Bose–Einstein condensate found in certain atomic systems at very low temperature, the superconducting phase exhibited by conduction electrons in certain materials,and the ferromagnetic and antiferromagnetic phases of spins on atomic lattices.Condensed matter physics is by far the largest field of contemporary physics.Historically, condensed matter physics grew out of solid-state physics, which is now considered one of its main subfields. The term condensed matter physics was apparently coined by Philip Anderson when he renamed his research group—previously solid-state theory—in 1967. In 1978, the Division of Solid State Physics of the American Physical Society was renamed as the Division of Condensed Matter Physics.Condensed matter physics has a large overlap with chemistry, materials science, nanotechnology and engineering.Atomic, molecular and optical physicsAtomic, molecular, and optical physics (AMO) is the study of matter–matter and light–matter interactions on the scale of single atoms and molecules.1 Physics 物理学The three areas are grouped together because of their interrelationships, the similarity of methods used, and the commonality of the energy scales that are relevant. All three areas include both classical, semi-classical and quantum treatments; they can treat their subject from a microscopic view (in contrast to a macroscopic view).Atomic physics studies the electron shells of atoms. Current research focuses on activities in quantum control, cooling and trapping of atoms and ions, low-temperature collision dynamics and the effects of electron correlation on structure and dynamics. Atomic physics is influenced by the nucleus (see, e.g., hyperfine splitting), but intra-nuclear phenomena such as fission and fusion are considered part of high-energy physics.Molecular physics focuses on multi-atomic structures and their internal and external interactions with matter and light.Optical physics is distinct from optics in that it tends to focus not on the control of classical light fields by macroscopic objects, but on the fundamental properties of optical fields and their interactions with matter in the microscopic realm.High-energy physics (particle physics) and nuclear physicsParticle physics is the study of the elementary constituents of matter and energy, and the interactions between them.In addition, particle physicists design and develop the high energy accelerators,detectors, and computer programs necessary for this research. The field is also called "high-energy physics" because many elementary particles do not occur naturally, but are created only during high-energy collisions of other particles.Currently, the interactions of elementary particles and fields are described by the Standard Model.●The model accounts for the 12 known particles of matter (quarks and leptons) thatinteract via the strong, weak, and electromagnetic fundamental forces.●Dynamics are described in terms of matter particles exchanging gauge bosons (gluons,W and Z bosons, and photons, respectively).●The Standard Model also predicts a particle known as the Higgs boson. In July 2012CERN, the European laboratory for particle physics, announced the detection of a particle consistent with the Higgs boson.Nuclear Physics is the field of physics that studies the constituents and interactions of atomic nuclei. The most commonly known applications of nuclear physics are nuclear power generation and nuclear weapons technology, but the research has provided application in many fields, including those in nuclear medicine and magnetic resonance imaging, ion implantation in materials engineering, and radiocarbon dating in geology and archaeology.University PhysicsAstrophysics and Physical CosmologyAstrophysics and astronomy are the application of the theories and methods of physics to the study of stellar structure, stellar evolution, the origin of the solar system, and related problems of cosmology. Because astrophysics is a broad subject, astrophysicists typically apply many disciplines of physics, including mechanics, electromagnetism, statistical mechanics, thermodynamics, quantum mechanics, relativity, nuclear and particle physics, and atomic and molecular physics.The discovery by Karl Jansky in 1931 that radio signals were emitted by celestial bodies initiated the science of radio astronomy. Most recently, the frontiers of astronomy have been expanded by space exploration. Perturbations and interference from the earth's atmosphere make space-based observations necessary for infrared, ultraviolet, gamma-ray, and X-ray astronomy.Physical cosmology is the study of the formation and evolution of the universe on its largest scales. Albert Einstein's theory of relativity plays a central role in all modern cosmological theories. In the early 20th century, Hubble's discovery that the universe was expanding, as shown by the Hubble diagram, prompted rival explanations known as the steady state universe and the Big Bang.The Big Bang was confirmed by the success of Big Bang nucleo-synthesis and the discovery of the cosmic microwave background in 1964. The Big Bang model rests on two theoretical pillars: Albert Einstein's general relativity and the cosmological principle (On a sufficiently large scale, the properties of the Universe are the same for all observers). Cosmologists have recently established the ΛCDM model (the standard model of Big Bang cosmology) of the evolution of the universe, which includes cosmic inflation, dark energy and dark matter.Current research frontiersIn condensed matter physics, an important unsolved theoretical problem is that of high-temperature superconductivity. Many condensed matter experiments are aiming to fabricate workable spintronics and quantum computers.In particle physics, the first pieces of experimental evidence for physics beyond the Standard Model have begun to appear. Foremost among these are indications that neutrinos have non-zero mass. These experimental results appear to have solved the long-standing solar neutrino problem, and the physics of massive neutrinos remains an area of active theoretical and experimental research. Particle accelerators have begun probing energy scales in the TeV range, in which experimentalists are hoping to find evidence for the super-symmetric particles, after discovery of the Higgs boson.Theoretical attempts to unify quantum mechanics and general relativity into a single theory1 Physics 物理学of quantum gravity, a program ongoing for over half a century, have not yet been decisively resolved. The current leading candidates are M-theory, superstring theory and loop quantum gravity.Many astronomical and cosmological phenomena have yet to be satisfactorily explained, including the existence of ultra-high energy cosmic rays, the baryon asymmetry, the acceleration of the universe and the anomalous rotation rates of galaxies.Although much progress has been made in high-energy, quantum, and astronomical physics, many everyday phenomena involving complexity, chaos, or turbulence are still poorly understood. Complex problems that seem like they could be solved by a clever application of dynamics and mechanics remain unsolved; examples include the formation of sand-piles, nodes in trickling water, the shape of water droplets, mechanisms of surface tension catastrophes, and self-sorting in shaken heterogeneous collections.These complex phenomena have received growing attention since the 1970s for several reasons, including the availability of modern mathematical methods and computers, which enabled complex systems to be modeled in new ways. Complex physics has become part of increasingly interdisciplinary research, as exemplified by the study of turbulence in aerodynamics and the observation of pattern formation in biological systems.Vocabulary★natural science 自然科学academic disciplines 学科astronomy 天文学in their own right 凭他们本身的实力intersects相交,交叉interdisciplinary交叉学科的,跨学科的★quantum 量子的theoretical breakthroughs 理论突破★electromagnetism 电磁学dramatically显著地★thermodynamics热力学★calculus微积分validity★classical mechanics 经典力学chaos 混沌literate 学者★quantum mechanics量子力学★thermodynamics and statistical mechanics热力学与统计物理★special relativity狭义相对论is concerned with 关注,讨论,考虑acoustics 声学★optics 光学statics静力学at rest 静息kinematics运动学★dynamics动力学ultrasonics超声学manipulation 操作,处理,使用University Physicsinfrared红外ultraviolet紫外radiation辐射reflection 反射refraction 折射★interference 干涉★diffraction 衍射dispersion散射★polarization 极化,偏振internal energy 内能Electricity电性Magnetism 磁性intimate 亲密的induces 诱导,感应scale尺度★elementary particles基本粒子★high-energy physics 高能物理particle accelerators 粒子加速器valid 有效的,正当的★discrete离散的continuous 连续的complementary 互补的★frame of reference 参照系★the special theory of relativity 狭义相对论★general theory of relativity 广义相对论gravitation 重力,万有引力explicit 详细的,清楚的★quantum field theory 量子场论★condensed matter physics凝聚态物理astrophysics天体物理geophysics地球物理Universalist博学多才者★Macroscopic宏观Exotic奇异的★Superconducting 超导Ferromagnetic铁磁质Antiferromagnetic 反铁磁质★Spin自旋Lattice 晶格,点阵,网格★Society社会,学会★microscopic微观的hyperfine splitting超精细分裂fission分裂,裂变fusion熔合,聚变constituents成分,组分accelerators加速器detectors 检测器★quarks夸克lepton 轻子gauge bosons规范玻色子gluons胶子★Higgs boson希格斯玻色子CERN欧洲核子研究中心★Magnetic Resonance Imaging磁共振成像,核磁共振ion implantation 离子注入radiocarbon dating放射性碳年代测定法geology地质学archaeology考古学stellar 恒星cosmology宇宙论celestial bodies 天体Hubble diagram 哈勃图Rival竞争的★Big Bang大爆炸nucleo-synthesis核聚合,核合成pillar支柱cosmological principle宇宙学原理ΛCDM modelΛ-冷暗物质模型cosmic inflation宇宙膨胀1 Physics 物理学fabricate制造,建造spintronics自旋电子元件,自旋电子学★neutrinos 中微子superstring 超弦baryon重子turbulence湍流,扰动,骚动catastrophes突变,灾变,灾难heterogeneous collections异质性集合pattern formation模式形成University Physics2 Classical mechanics 经典力学IntroductionIn physics, classical mechanics is one of the two major sub-fields of mechanics, which is concerned with the set of physical laws describing the motion of bodies under the action of a system of forces. The study of the motion of bodies is an ancient one, making classical mechanics one of the oldest and largest subjects in science, engineering and technology.Classical mechanics describes the motion of macroscopic objects, from projectiles to parts of machinery, as well as astronomical objects, such as spacecraft, planets, stars, and galaxies. Besides this, many specializations within the subject deal with gases, liquids, solids, and other specific sub-topics.Classical mechanics provides extremely accurate results as long as the domain of study is restricted to large objects and the speeds involved do not approach the speed of light. When the objects being dealt with become sufficiently small, it becomes necessary to introduce the other major sub-field of mechanics, quantum mechanics, which reconciles the macroscopic laws of physics with the atomic nature of matter and handles the wave–particle duality of atoms and molecules. In the case of high velocity objects approaching the speed of light, classical mechanics is enhanced by special relativity. General relativity unifies special relativity with Newton's law of universal gravitation, allowing physicists to handle gravitation at a deeper level.The initial stage in the development of classical mechanics is often referred to as Newtonian mechanics, and is associated with the physical concepts employed by and the mathematical methods invented by Newton himself, in parallel with Leibniz【莱布尼兹】, and others.Later, more abstract and general methods were developed, leading to reformulations of classical mechanics known as Lagrangian mechanics and Hamiltonian mechanics. These advances were largely made in the 18th and 19th centuries, and they extend substantially beyond Newton's work, particularly through their use of analytical mechanics. Ultimately, the mathematics developed for these were central to the creation of quantum mechanics.Description of classical mechanicsThe following introduces the basic concepts of classical mechanics. For simplicity, it often2 Classical mechanics 经典力学models real-world objects as point particles, objects with negligible size. The motion of a point particle is characterized by a small number of parameters: its position, mass, and the forces applied to it.In reality, the kind of objects that classical mechanics can describe always have a non-zero size. (The physics of very small particles, such as the electron, is more accurately described by quantum mechanics). Objects with non-zero size have more complicated behavior than hypothetical point particles, because of the additional degrees of freedom—for example, a baseball can spin while it is moving. However, the results for point particles can be used to study such objects by treating them as composite objects, made up of a large number of interacting point particles. The center of mass of a composite object behaves like a point particle.Classical mechanics uses common-sense notions of how matter and forces exist and interact. It assumes that matter and energy have definite, knowable attributes such as where an object is in space and its speed. It also assumes that objects may be directly influenced only by their immediate surroundings, known as the principle of locality.In quantum mechanics objects may have unknowable position or velocity, or instantaneously interact with other objects at a distance.Position and its derivativesThe position of a point particle is defined with respect to an arbitrary fixed reference point, O, in space, usually accompanied by a coordinate system, with the reference point located at the origin of the coordinate system. It is defined as the vector r from O to the particle.In general, the point particle need not be stationary relative to O, so r is a function of t, the time elapsed since an arbitrary initial time.In pre-Einstein relativity (known as Galilean relativity), time is considered an absolute, i.e., the time interval between any given pair of events is the same for all observers. In addition to relying on absolute time, classical mechanics assumes Euclidean geometry for the structure of space.Velocity and speedThe velocity, or the rate of change of position with time, is defined as the derivative of the position with respect to time. In classical mechanics, velocities are directly additive and subtractive as vector quantities; they must be dealt with using vector analysis.When both objects are moving in the same direction, the difference can be given in terms of speed only by ignoring direction.University PhysicsAccelerationThe acceleration , or rate of change of velocity, is the derivative of the velocity with respect to time (the second derivative of the position with respect to time).Acceleration can arise from a change with time of the magnitude of the velocity or of the direction of the velocity or both . If only the magnitude v of the velocity decreases, this is sometimes referred to as deceleration , but generally any change in the velocity with time, including deceleration, is simply referred to as acceleration.Inertial frames of referenceWhile the position and velocity and acceleration of a particle can be referred to any observer in any state of motion, classical mechanics assumes the existence of a special family of reference frames in terms of which the mechanical laws of nature take a comparatively simple form. These special reference frames are called inertial frames .An inertial frame is such that when an object without any force interactions (an idealized situation) is viewed from it, it appears either to be at rest or in a state of uniform motion in a straight line. This is the fundamental definition of an inertial frame. They are characterized by the requirement that all forces entering the observer's physical laws originate in identifiable sources (charges, gravitational bodies, and so forth).A non-inertial reference frame is one accelerating with respect to an inertial one, and in such a non-inertial frame a particle is subject to acceleration by fictitious forces that enter the equations of motion solely as a result of its accelerated motion, and do not originate in identifiable sources. These fictitious forces are in addition to the real forces recognized in an inertial frame.A key concept of inertial frames is the method for identifying them. For practical purposes, reference frames that are un-accelerated with respect to the distant stars are regarded as good approximations to inertial frames.Forces; Newton's second lawNewton was the first to mathematically express the relationship between force and momentum . Some physicists interpret Newton's second law of motion as a definition of force and mass, while others consider it a fundamental postulate, a law of nature. Either interpretation has the same mathematical consequences, historically known as "Newton's Second Law":a m t v m t p F ===d )(d d dThe quantity m v is called the (canonical ) momentum . The net force on a particle is thus equal to rate of change of momentum of the particle with time.So long as the force acting on a particle is known, Newton's second law is sufficient to。

常用物理英语词汇(全)

常用物理英语词汇(全)

常用物理英语词汇(全)力学(Mechanics)1. Force(力)2. Acceleration(加速度)3. Momentum(动量)4. Kinetic Energy(动能)5. Potential Energy(势能)6. Gravity(重力)7. Friction(摩擦力)8. Torque(扭矩)9. Angular Momentum(角动量)10. Work(功)热学(Thermodynamics)11. Temperature(温度)12. Heat(热量)13. Internal Energy(内能)14. Entropy(熵)15. Boyle's Law(波义耳定律)16. Charles's Law(查理定律)17. GayLussac's Law(盖吕萨克定律)18. Ideal Gas Law(理想气体定律)19. First Law of Thermodynamics(热力学第一定律)20. Second Law of Thermodynamics(热力学第二定律)电磁学(Electromagnetism)21. Electric Charge(电荷)22. Electric Field(电场)23. Magnetic Field(磁场)24. Current(电流)25. Voltage(电压)26. Resistance(电阻)27. Capacitance(电容)28. Inductance(电感)29. Ohm's Law(欧姆定律)30. Ampère's Law(安培定律)光学(Optics)31. Light(光)32. Refraction(折射)33. Reflection(反射)34. Diffraction(衍射)35. Interference(干涉)36. Polarization(偏振)37. Lens(透镜)38. Prism(棱镜)39. Spectrum(光谱)40. Wave Optics(波动光学)现代物理(Modern Physics)41. Quantum Mechanics(量子力学)42. Relativity(相对论)43. Photon(光子)44. Electron(电子)45. Proton(质子)46. Neutron(中子)47. Quark(夸克)48. Black Hole(黑洞)49. Higgs Boson(希格斯玻色子)50. String Theory(弦理论)这些词汇仅为物理学中常用术语的一小部分。

2016物理专业英语

2016物理专业英语

• Elastic collision a collision in which colliding objects rebound without lasting deformation or the generation of heat • 弹性碰撞 相互碰撞的两物体没有发生行变和热 量 • Inelastic collision a collision in which the colliding objects become distorted and generated heat during the collision • 非弹性碰撞 在碰撞过程中物体变形且产生热量
• • •
Power the time rare of work P=W/t 功率 做功和时间的比值 p=w/t Energy the property of a system that enables it to do work • 能量 可以让它工作的东西
• Sumamry of key Terms • Rotational inertia that property of an object to resist any change in its state of rotation:if at rest the body tends to remain atrest;if rotating,it tends to remain rotaing and will continue to do so unless acted upon by a net extemal torque. • 转动惯量 一个对象的属性来抵抗在旋转 状态下任何改变: 其本身保持静止或一直转动状 态,除非受到外力的干扰。
Friction (摩擦力) The force that opposes the relative motion of contacting media. • 反对接触介质的相对运动的力。 •

物理学专业英语B08

物理学专业英语B08


v = ωr
B8 Circular motion
• Centripetal acceleration
• Above, a particle is moving in a circle with a steady speed v. The diagram shows how the velocity vector changes direction as the particle moves from P to P' in time δ t.
• Note: • centripetal force is not produced by circular motion. It is the force needed for circular motion. Without it, the object would travel in a straight line.
B8 Circular motion
• Linking v, ω, and r
• Above, a particle is moving in circle with a steady speed v. (It is not a steady velocity because the direction of the velocity vector is changing.) The particle moves a distance S in time t, so: • v =s/t
B8 Circular motion
• Using v = ωr, two more versions of the above equation can be obtained. So:
• For example, if a particle is moving at a steady speed of 3 m s-l in a circle of radius 2 m, its centripetal acceleration a is found using the middle equation: a = 32/2 = 4.5 m s-2. • Note: • When something accelerates, its velocity changes. As velocity is a vector, this can mean a change in speed or direction (or both). Centripetal acceleration is produced by a change in direction, not speed.

物理专业英语词汇(I)题库

物理专业英语词汇(I)题库

物理专业英语词汇(I)ice 冰ice calorimeter 冰量热计ice model 冰模型iconoscope 光电摄象管icosahedron 二十面体ideal black body 理想黑体ideal constraints 理想拘束ideal crystal 理想晶体ideal fluid 完整铃ideal gas 理想气体ideal gas law 理想气体定律ideal lattice 理想晶格ideal liquid 理想液体ideal solid 理想固体ideal solution 理想溶液ideally imperfect crystal 理想非完满晶体ideally perfect crystal 理想完满晶体identity parameter 晶体参数ignition 点火ignition potential 点火电位ignitron 点火管illuminance 光照度illuminant 光源illuminating engineering 照盲程学illuminating lamp照闷illumination 光照度illumination curve 照度曲线illumination photometer 照度计illumination photometry 照度丈量illuminator 照冒置illuminometer 照度计image 象image analyzer 图象剖析器image charge 象电荷image contrast 象对照度image converter 变象管image converter tube 变象管image distortion 图象失真image force 象力image formation 成象image frequency 象频image hologram 象全息图image iconoscope 图象光电摄象管image intensifier 影象加强器影象放大器image intensifier tube 影象加强器影象放大器image orthicon 超正析象管image parameter 成象参数image pickup tube 摄象管image plane 象平面image point 象点image processing 图象办理image ratio 镜频波道的相对增益image restoration 象恢复image space 象空间image surface 象曲面imagelyzer 图象剖析器immersion 淹没immersion lens 淹没透镜immersion method 淹无法immersion microscope 油浸显微镜immersion objective 淹没物镜immersion refractometer 淹没折射计impact 冲击impact ionization 碰撞电离impact matrix 碰撞矩阵impact parameter 碰撞参数impact parameter method 碰撞参数法impact strength 冲豢度impact stress 冲沪力impact test 冲辉验impedance 阻抗impedance bridge 阻抗电桥impedance matching 阻抗般配imperfect crystal 非完满晶体imperfect gas 非理想气体impressed forces 外力imprisonment of resonance radiation 共振辐射陷获improper variable 准变星impulse 冲击冲量impulse approximation 冲稽似impulse function 脉冲函数impulse generator 脉冲发生器impulse of force 冲量impulsive current 脉冲电流impulsive force 冲力impulsive sound 冲基impulsive tone 撞霍impurity 杂质impurity atom 杂质原子impurity band 杂质能带impurity center 杂质中心impurity conduction 杂质导电impurity level 杂质能级impurity scattering 杂质散射impurity semiconductor 杂质半导体in clockwise direction 向顺时针的方向in counter colckwise direction 向反时针的方向in situ observation 就地察看incandescence 白炽incandescent lamp 白炽灯inch 英寸incidence 入射incidence angle 入射角incident beam 入射束incident light 入射光incident particle 入射粒子incident plane 入射面incident ray 入射光芒incident wave 入射波inclination factor 倾斜因子inclinometer 磁倾计incoherence 非相关性incoherent light 非相关光incoherent scatteering 非相关散射incommensurate structure 不相应构造incompressibility 不行压缩性incompressible flow 不行压缩流indefinite metric 不定胸怀independent atom model 独立原子模型independent particle 独立粒子independent particle model 独立粒子模型independent variable 自变数indeterminancy 不确立性indeterminancy principle 测禁止原理index 指数index of refraction 折射率indicating lamp 指示灯indicator 指示器指示剂indifferent equilibrium 中性均衡indirect exchange interaction 间接交换互相酌indirect illumination 间接照明indirect measurement间接丈量indirect transition 间接跃迁indirectly heated cathode 旁热式阴极indistinguishability of identical particles 全同粒子的不行分辨性indium 铟individual error 人为偏差individual excitation 独自激发induced current 感觉电流induced electromotive force 感觉电动势induced emission 感觉发射induced radioactivity 感觉放射性induced representation 引诱表示inductance 电感感觉系数inductance coil 感觉线圈induction 感觉; 概括induction accelerator 感觉加快器induction coefficient 感觉系数induction coil感觉线圈induction field 感觉磁场induction furnace 感觉电炉induction heating 感觉加热induction method 概括法induction motor 感觉电动机inductive 感觉的inductor coil 感觉线圈indus 印第安座inelastic collision 非弹性碰撞inelastic scattering 非弹性散射inert gas 惰性气体inertia 惯性inertial force 惯性力inertial frame of reference 惯性系inertial mass 惯性质量inertial resistance 惯性阻力inertial system 惯性系inertial wave 惯性波inferior conjunction 下合inferior mirage 下现幻景inferior planet 地行家星infinite medium 无穷介质infinite universe 无穷宇宙infinitesimal rotation 无量小转动infinitesimal transformation 无量小变换inflationary universe 狂涨宇宙inflector 偏转器influence machine感觉起电机information processing 信息办理information quantity 信息量information retrieval 信息恢复information theory 信息论infra acoustic 声下的infra acoustic frequency 亚声频infra sound 次声infranics 红外线电子学infrared 红外线的infrared active 红外激活的infrared astronomical satellite 红外天文卫星infrared astronomy 红外天文学infrared catastrophe 红外灾变infrared divergence 红外发散infrared lamp 红外灯infrared laser 红外激光器infrared magnitude 红外星等infrared microscope 红外线显微镜infrared photocell 红外线光电管infrared photography 红外拍照infrared radiation 红外辐射infrared rays 红外线infrared spectrophotometer 红外分光光度计infrared spectroscopy 红外光谱学infrared spectrum 红外光谱inhomogeneous broadening 非平均增宽inhomogeneous plasma 非平均等离子体inhomogeneous superconductor 非均质超导体inhomogeneous universe 非平均宇宙initial black hole 原始黑洞initial permeability 初始磁导率initial phase 初相initial state 初态initial stress 初应力initial velocity 初速度injection 注入injection laser 注入型激光器注入型二极管激光器injector accelerator 注入加快器injury 损害inlet pressure 入口压力inner bremsstrahlung 内韧致辐射inner corona 内冕inner electron 内层电子inner product 内积inner quantum number 内量子数inner shell 内壳层input 输入input output channel 输入输出通道input output unit 输出输入装置input program 输入程序input routine 输入程序insolation 日射inspection 检查instability 不稳固性instability energy 不稳固能instantaneous axis of rotation 刹时转动轴instantaneous neutron 瞬发中子instantaneous pole 刹时极instantaneous power 刹时功率instanton 瞬子instruction 指令instrument 仪器仪表instrument transformer 仪表变换器instrumental error 仪企差instrumental function 仪漂数insulating paper绝缘纸insulating transformer 绝缘变压器insulation 绝缘insulation resistance 绝缘电阻insulator 绝缘体integral calculus 积分学integral equation 积分方程integral invariant 积分不变式integral transform 积分变换integrated circuit 集成电路integrated optics 集成光学integrated reflection intensity 积分反射强度integrating sphere 乌布利希球integrating wattmeter 积累瓦特计integration circuit 积分电路integration type analog to digital conversion 积分型模拟数字变换intense slow positron beam 强慢速阳电子束intensifier 加厚剂intensity 强度intensity alternation 强度交变intensity factors of spectral lines 谱线强度因子intensity modulation 亮度灯intensity of magnetic field 磁场强度intensity of magnetization 磁化强度intensity of radioactivity 放射性强度intensity of sound 声强intensity region 强度范围intensive quantity 内包量intensive variable 示强变量interaction 互相酌interaction energy 互相酌能interaction force 互相酌力interaction potential 互相酌势interaction range 互相酌区interatomic 原子间的interatomic distance 原子间距离interatomic forces 原子间力intercalation 夹层interchange instability 变换不稳固性interchangeability 交换性intercombination 互相组合intercrystalline 晶粒间的interdiffusion 互扩散interface 界限面interfacial electric phenomenon 界面电现象interfacial potential 界面势interfacial tension 界面张力interfacial viscosity 界面粘性interference 干预interference color 扰乱色interference filter 扰乱滤光片interference fringe 干预条纹interference microscope 干预显微镜interference of equal inclination 等倾角干预interference of equal thickness 等厚度干预interference of light 光的干预interference of polarized light 偏振光的干预interference refractometer 干预折射计interference spectroscope 干预分光镜interferometer 干预仪interferometry 干预胸怀学intergalactic matter 星系际物质intergalactic space 星系际空间intermediate coupling 中间耦合intermediate energy 中间能量intermediate energy physics 中能物理学intermediate frequency 中频intermediate frequency transformer 中频变换器intermediate image 中间影象intermediate neutron 中速中子intermediate nucleus 复核intermediate orbit 中间轨道intermediate state 中间态intermediate vector boson 弱玻色子intermetallic compounds 金属间化合物intermittent discharge 间歇放电intermolecular 分子间的intermolecular force 分子间力intermolecular interaction 分子间互相酌internal adsorption 内吸附internal conversion 内变换internal conversion electron 内变换电子internal electron pair creation 内电子对产生internal energy 内能internal exposure 内照耀internal force 内力internal friction 内摩擦internal impedance 内阻抗internal ionization 内电离internal magnetic field 内磁场internal photoelectric effect 内光电效应internal pressure 内压internal quantum number 内量子数internal reflection 内反射internal resistance 内阻internal rotation 内旋转internal storage 内部储存器internal stress 内应力internal target 内靶internal viscosity 内粘滞international atomic time 国际原子时international geophysical year 国际地球物理年international latitude service 国际纬度服务international practical temperature scale 国际适用温标international prototype metre 国际米原器international standard atomsphere 国际标准大气international system of units 国际单位制international temperature scale 国际温标international thermonuclear experimental reactor 国际热核实验反响堆international unit 国际单位interpenetration 互相穿透interplanar crystal spacing 晶面间距interplanetary dust 行星际灰尘interplanetary magnetic field 行星际磁场interplanetary matter 行星际物质interplanetary space 行星际空间interpolation formula 内插公式interrupt 中止interrupter 断续器interspace 缝隙interstellar absorption 星际汲取interstellar absorption line 星际线interstellar cloud 星际云interstellar dust 星际灰尘interstellar gas 星际气体interstellar line 星际线interstellar magnetic field 星际磁场interstellar matter 星际物质interstellar molecule 星际分子interstellar reddening 星际红化interstellar space 星际空间interstice 缝隙interstitial alloy 填隙式合金interstitial atom 填隙原子interstitial diffusion 填隙式扩散interstitial ion 填隙离子interstitial solid solution 填隙式固溶体interval间隔interval rule 间隔规则intraatomic 原子内的intracrystalline 晶体内的intramolecular分子内的intramolecular bond 分子内键intramolecular forces 分子内力intramolecular rotation 分子内转动intrinsic conduction 本占电intrinsic energy 内能intrinsic magnetic moment 固有磁矩intrinsic magnetization 内倥化intrinsic parity 内兕称intrinsic permeability 固有磁导率intrinsic semiconductor 本针导体intrinsic viscosity 本粘性intrinsic wavelength 固有波长invar 殷钢invariable plane 不变平面invariance 不变性invariant 不变式invariant of strain 应变不变量invariant subgroup 不变子群inverse circuit 反演电路inverse compton effect 逆康普顿效应inverse fluorite structure 逆萤石构造inverse photoelectric effect 逆光电效应inverse photoelectron spectroscopy 逆光电光谱学inverse piezoelectric effect 逆压电效应inverse predissociation 逆前级离解inverse problem 逆问题inverse process 逆过程inverse proportion 反比率inverse raman effect 反转喇曼效应inverse raman spectroscopy反转喇曼光谱学inverse reaction 逆反响inverse scattering method 逆散射法inverse spinel 反尖晶石inverse spinel structure 反尖晶石型构造inverse square law 平方反比律inverse transformation 逆变换inverse voltage 逆电压inverse zeeman effect 反向塞曼效应inversion 反演inversion axis 反演轴inversion doublet 反转两重线inversion formula 反演公式inversion layer 反转层 ; 逆温层inversion spectrum 反转光谱inversion system 倒象系inversion temperature 变换温度invert 反演inverted magnetron gage 逆磁控管计inverted multiplet 反转多重态inverted term颠倒项inverter 逆变换装置inviscid flow 无粘性流invisible radiation 不行见的辐射invisible rays 不行见的射线iodine 碘ion 离子ion accelerator 离子加快器ion acceptor 离子接受体ion acoustic instability 离子声波不稳固性ion activity 离子活度ion avalanche 离子雪崩ion beam 离子束ion beam probe 离子束探针ion bombardment 离子轰击ion channelling 离子沟道效应ion cloud 离子云ion cluster 离子簇ion concentration 离子浓度ion condensation 离子凝集ion cyclotron frequency 离子盘旋频次ion cyclotron resonance heating 离子盘旋共振加热ion cyclotron resonance method 离子盘旋共振法ion density 离子密度ion diffusion 离子扩散ion electron recombination 离子电子再化合ion exchange 离子交换ion exchange resin 离子交换尸ion impact 离子碰撞ion implantation 离子注入ion implanted junction 离子注入结ion induced desorption 离子感觉退吸ion induced x ray analysis 离子感觉 x 射线剖析ion lattice 离子晶格ion loss 离子消耗ion microprobe analyzer 离子微探针剖析器ion microscope 离子显微镜ion molecule 离子型分子ion neutralization 离子中和ion neutralization spectroscopy 离子中和波谱学ion optics 离子光学ion orbit 离子轨道ion pair 离子对ion pair formation 离子对生成ion plasma frequency 离子等离子体频次ion pump 离子泵ion recombination 离子复合ion saturation current 离子饱和电流ion scattering spectroscopy 离子散射能谱学ion selective electrode 离子选择电极ion sheath 离子鞘ion source 离子源ion temperature 离子温度ion trap 离子圈套ion yield 离子产额ionic atmosphere 离子氛围ionic bond 异极键ionic charge 离子电荷ionic compound 离子化合物ionic conduction 离子导电ionic crystal 离子晶体ionic current 离子电流ionic laser 离子激光器ionic migration 离子迁徙ionic mobility 离子迁徙率ionic molecule 离子型分子ionic polymerization 离子聚合ionic radius 离子半径ionic recombination 离子复合ionic strength 离子强度ionic structure 离子构造ionium 锾ionization 电离ionization by collision 碰撞电离ionization chamber 电离室ionization current 电离电流ionization density 电离密度ionization fluctuation 电离涨落ionization limit 电离极限ionization loss 电离损失ionization potential 电离电势ionization power 致电离能力ionization rate 电离率ionization vacuumgage 电离真空计ionized atom 电离原子ionized layer 电离层ionizer 电离装置ionizing energy 电离能量ionizing power 致电离能力ionizing radiation 电离线ionoluminescence 离子发光ionometer离子计ionosphere电离层ionospheric disturbance电离层扰动ionospheric storm 电离层暴iras object iras 天体iridescence 虹色iridium 铱iris 可变光栏iris diaphragm锁定光栏iris type accelerator guide 隔阂型加快波导管iron 铁iron constantan thermocouple 铁康铜热电偶iron group elements 铁族元素iron loss 铁耗irradiation 辐照irradiation damage 辐照损害irradiation hardening 辐照硬化irradiation reactor 辐照用堆irreducible representation 不行约表示irregular galaxy 不规则星系irregular nebula 不规则星云irregular reflection 不规则反射irregular variable 不规则变星irreversibility 不行逆性irreversible process 不行逆过程irreversible reaction 不行逆反响irrotational field 非旋场isentrope 等熵线isentropic analysis 等熵剖析isentropic surface 等熵面ising model 伊辛模型isoanomalous line 等异样线isobar 等压线isobaric 等压的isobaric analog resonance同质异位素相像共振isobaric analog state 同质异位素相像态isobaric process 等压过程isobaric surface 等压面isocandle diagram 等烛光图isochor 等容线isochromatic 等色的isochromatic line 等色线isochromatic surface 等色面isochrone 等时线isochronism 等时性isochronous cyclotron 等时性盘旋加快器isoclinal 等倾线isoclinal line 等倾线isoclinic line 等倾线isodiaphere 同差素isodynamic line 等力线isoelectric point 等电点isogon 等偏线isolated point 孤点isolation 隔绝isolator 隔绝器绝缘体isolux curve 等照度线isomagnetism 等偏isomer 同质异能素isomer shift 同质异能位移isomeric state 同质异能态isomeric transition 同质异能跃迁isomerism 同质异能性isomerization energy 同质异能化能isometric process 等容过程isomorphism 同构isopycnic 等密度的isopycnic line 等密度线isospace 电荷空间isospin 同位旋isostasy 地壳均衡说isostere 等比容线isosteric molecule 电子等排分子isotherm 等温线isothermal 等温的isothermal atmosphere 等温大气isothermal change 等温变化isothermal equilibrium 等温均衡isothermal expansion 等温膨胀isothermal process 等温过程isotone 同中子素isotope 同位素isotope analysis 同位素剖析isotope effect 同位素效应isotope incoherence 同位素非相关性isotope separation 同位素分别isotope separator 同位素分别器isotope shift 同位素位移isotopic abundance 同位素丰度isotopic dating 同位素测年纪isotopic invariance 同位旋不变性isotopic spin同位旋isotopic tracer 示踪同位素isotropic scattering 蛤同性散射isotropic turbulence 蛤同性湍流isotropic universe 蛤同性宇宙isotropy 蛤同性iterative method 迭代法itinerant electron 巡回电子itinerant electron magnetism 遍历电子磁性。

(完整版)高中物理专业英语词汇

(完整版)高中物理专业英语词汇

一、机械运动机械运动mechanical motion [mi'kænikəl] ['məuʃən]力学mechanics [mɪ'kænɪks]质点mass point [mæs] [pɔint]参考系reference frame ['refrəns] [freim]坐标系coordinate system [kəu'ɔ:dineit] ['sistəm]路程path[pɑ:θ]位移displacement[dɪs'pleɪsmənt]矢量vector['vektə]标量scalar['skeilə]速度velocity[vi'lɔsiti]平均速度average velocity['ævəridʒ] [vi'lɔsiti瞬时速度instantaneous velocity[,ɪnstən'teinjəs]速率speed[spi:d]v-t 图象v-t graph[ɡrɑ:f]加速度acceleration [æk,selə'reɪʃən]匀变速直线运动uniform variable rectilinear motion['ju:nifɔ:m] ['vɛəriəbl] [,rekti'liniə]初速度initial velocity[i'niʃəl] [vi'lɔsiti]自由落体运动free-fall motion自由落体加速free-fall acceleration[æk,selə'reɪʃən]重力加速度gravitational acceleration [,ɡrævi'teiʃnəl]二、物体的相互作用力force[fɔ:s]牛顿Newton['nju:tn]重力gravity['ɡræviti]重心center of gravity['sentə]万有引力gravitation[,grævɪ'teɪʃən]电磁相互electromagnetic interaction[ɪ,lektrəʊmæg'netɪk]强相互作用strong interaction[,ɪntər'ækʃən]弱相互作用weak interaction形变deformation[,di:fɔ:'meɪʃən,]弹性形变elastic deformation[i'læstik] [,di:fɔ:'meɪʃən,]弹性限度elastic limit[i'læstik] ['limit]弹力elastic force[i'læstik] [fɔ:s]劲度系数coefficient of stiffness[,kəʊə'fɪʃənt] ['stɪfnɪs]胡克定律Hooke law[lɔ:]摩擦力friction force['frikʃən]静摩擦力static frictional force['stætik] ['frikʃən]滑动摩擦力sliding frictional force['slaidiŋ]动摩擦因数dynamic friction factor[dai'næmik]合力resultant force[ri'zʌltənt]分力component force[kəm'pəunənt]力的合成composition of forces[,kɔmpə'ziʃən]平行四边形定则parallelogram rule[,pærə'lelə,græm]共点力concurrent forces[kən'kɜ:rənt,]力的分解resolution of force[,rezə'lu:ʃən]三角形定则triangular rule[traɪ'æŋgjələ] [ru:l]三、牛顿运动定律运动学kinematics[kini'mætiks]动力学dynamics[dai'næmiks]牛顿第一定律Newton first law['nju:tn] [lɔ:]惯性inertia [i'nə:ʃjə]惯性定律law of inertia[i'nə:ʃjə]质量mass[mæs]惯性系inertial system['sistəm]牛顿第二定律Newton second law单位制system of units国际单位制Le System International d’Unites作用力action['ækʃən]反作用力reaction[ri'ækʃən]牛顿第三定律Newton third law超重overweight[,əʊvə'weɪt]失重weightlessness['weɪtlɪs]误差error['erə]偶然误差accidental error[,æksi'dentl]系统误差systematic error [,sistə'mætik]绝对误差absolute error['æbsəlu:t]相对误差relative error['relətiv]四、圆周运动曲线运动curvilinear motion[kə:vi'liniə]切线tangent['tændʒənt]抛体运动projectile motion[prə'dʒektəl,]抛物线parabola[pə'ræbələ]线速度linear velocity['liniə]匀速圆周运动uniform circular motion['ju:nifɔ:m] ['sə:kjulə]角速度angular velocity['æŋgjələ]弧度radian['reidjən]周期period['piəriəd]向心加速度centripetal acceleration[sen'trɪpɪtl]向心力centripetal force[sen'trɪpɪtl]开普勒Kepler引力常量gravitational constant [,ɡrævi'teiʃnəl] ['kɔnstənt]万有引力定律law of universal gravitation[,ju:ni'və:səl]第一宇宙速度first cosmic velocity['kɔzmik]第二宇宙速度second cosmic velocity第三宇宙速度third cosmic velocity黑洞black hole五、能量能量energy['enədʒi]势能potential energy[pə'tenʃəl]动能kinetic energy[kɪ'netɪk, kaɪ-]功work[wə:k]焦耳joule[dʒu:l]功率power['pauə]瓦特watt['pauə]重力势能gravitational potential energy [,ɡrævi'teiʃnəl] [pə'tenʃəl]弹性势能elastic potential energy[i'læstik] [pə'tenʃəl]动能定理theorem of kinetic energy['θi:ərəm] [kɪ'netɪk]机械能mechanical energy[mi'kænikəl]机械能守恒定律law of conservation of mechanical energy[,kɔnsə'veiʃən] [mi'kænikəl]能量守恒定律law of energy conservation[,kɔnsə'veiʃən]拉力traction['trækʃən]轨道obital大小magnatitude方向direction[di'rekʃən]水平horizental竖直vertical['və:tikəl]相互垂直perpendicular[,pɜ:pən'dɪkjələ]坐标coordinate[kəu'ɔ:dineit]直角坐标系cersian coordinate system弹簧spring[spriŋ]球体sphere[sfiə]环loop[lu:p]盘型disc圆柱形cylinder['silində]。

物理学专业英语翻译

物理学专业英语翻译

2.1 Introduction(引言)We begin our study of the physical universe by examining objects in motion. Thestudy of motion . whose measurement. more than 400 years ago gave birth to physics. iscalled kinematics.Much of our understanding of nature comes from observing the motion of objects. Inthis chapter we will develop a description for the motion of a single point as it movesthrough space. Although a point is a geometrical concept quite different from everydayobjects such as footballs and automobiles, we shall see that the actual mot10n of manyobjects is most easily described as the motion of a single point (the "center of mass"). plusthe rotation of the object about that point. Postponing a discussion of rotation. let usbegin he-re with a description of a single point as it moves through space. Space and timeKinematics is concerned with two basic questions. "Where?" and "When?". Thoughthe questions are simple. the answers are potentially quite complicated if we inquire aboutphenomena outside our ordinary daily experiences. For example. the physics of very highspeeds, or of events involving intergalactic distances or submicroscopic dimensions. isquite different from our common-sense ideas. We will discuss the… interesting subjects inlater chapters. For the present we shall adopt the space and time of Newton-thoseconcepts we gradually developed as a result of our everyday experiences.Space is assumed to be continuously uniform and isotropic. These two terms meanthat space has no 'graininess' and that whatever its properties may be, they areindependent of any particular direction or location. in the words of Isaac Newton.' Absolute space . in its own nature . without relation to anything external . remains alwayssimilar and unmovable. " Every object in the universe exists at a particular location inspace. and an object may change its location Ly moving through space as time goes on. Wespecify the Location of a particular point in space by its relation to a frame of reference.Time, according to Newton, is also absolute in the sense that it "flows on" at auniform rate . We cannot speed it up or slow it down in any way. in Newton's words," Absolute. true. and mathematical time . of itself . and from its own nature . flows equablywithout relation to anything external. and by another name is called duration. " Time isassumed to be continuous and ever advancing. as might be indicated by a clock.Space and time are wholly independent of each other. though it is recognized that allphysical objects must exist simultaneously in both space and time.Remarkably . many of these traditional ideas turn out to be naive and inconsistent withexperimental evidence. The world is just different from the picture we form from ourcommon-sense. intuitive ideas. Space and time, by themselves. arc concepts that arcdifficult (or perhaps impossible) to define in terms of anything simpler. However. we canmeasure space and time in unambiguous ways. We define certain operations by which weobtain numerical measurements of these quantities using rulers and clocks. based uponstandard units of space and time.For many years. our standard of time was based on astronomical observations of the earth'srotation. Because of the variations in the earth’s rotation . in 1967 the 13th General Conference onWeights and Measures. attended by 38 nations. adopted an atomic standard for time.Similarly. our former standard of length was the distance between two marks onplatinum-iridium bar. kept at Sevres. France. in 1960. the fundamental length standardwas redefined in terms of the wavelength of light emitted during a transition between two.The standard units of time and length may be described as follows:An interval of time. The fundamental unit is the second (s) . which by internationalagreement is defined as the duration of 9 192 631 770 periods of radiation corresponding tothe transition between the two lowest energy levels in the atomic isotope cesium 133.An interval of length. The fundamental unit is the meter (m). which is defined independently of the time interval Before 1983 . by international agreement the meter wasdefined as exactly 1 650 763. 73 wavelengths of the orange light emitted from the isotopekrypton 86. in November 1983. the length standard was defined as the distance that lighttravels in a vacuum in l1299 792 458 second.l angstrom(A) -. 10-l0 m l micron (u or um)10-6 m2.1简介(引言)我们开始研究宇宙的物理研究物体的运动。

物理学专业英语A1

物理学专业英语A1

• • average speed = •
displacement time taken
• The SI unit of velocity is also the m s-1. But unlike speed, velocity is a vector.
5
A1 Motion,mass,and forces
ball returns to starting point
4
A1 Motion,mass,and forces
Speed and velocity
• Average speed is calculated like this:
• • average speed = •
distance travelled time taken
2
A1 Motion,mass,and forces
Displacement
• Displacement is distance moved in a particular direction. The SI unit of displacement is the metre (m) .
• Quantities, such as displacement, which have both magnitude (size) and direction, are called vectors.
• Movement of 12m to the right: displacement = +12 • Movement of 12m to the left: displacement = -12
3
A1 Motion,mass,and forces
Displacement • Displacement is not necessarily the same as distance travelled. For example,

物理专业英语 论文 中英文

物理专业英语 论文 中英文

太阳能电池太阳电池的材料种类非常的多,可以有非晶硅、多晶硅、CdTe、CuIn x Ga(1-x)Se2等半导体的、或三五族、二六族的元素链结的材料,简单地说,凡光照后,而产(Silicon Based)、第二代为薄膜(Thin Film)、第三代新观念研发(New Concept)、第四代复合薄膜材料。

第一代太阳能电池发展最长久技术也最成熟。

可分为,单晶硅(Monocrystalline Silicon)、多晶硅(Polycrystalline Silicon)、非晶硅(Amorphous Silicon)。

以应用来说是以前两者单晶硅与多晶硅为大宗。

第二代薄膜太阳能电池以薄膜制程来制造电池。

种类可分为碲化镉(Cadmium Telluride CdTe)、铜铟硒化物(Copper Indium Selenide CIS)、铜铟镓硒化物(Copper Indium Gallium Selenide CIGS)、砷化镓(Gallium arsenide GaAs) 第三代电池与前代电池最大的不同是制程中导入有机物和纳米科技。

种类有光化学太阳能电池、染料光敏化太阳能电池、高分子太阳能电池、纳米结晶太阳能电池。

第四代则是针对电池吸收光的薄膜做出多层结构。

某种电池制造技术。

并非仅能制造一种类型的电池,例如在多晶硅制程,既可制造出硅晶版类型,也可以制造薄膜类型。

[编辑]晶体硅(包括单晶硅及多晶硅)太阳电池工业生产流程1.硅料提纯:原料为高纯的二氧化硅,经过还原剂碳还原后,生成纯度为98%以上的冶金级硅,然后冶金级硅再经西门子法提纯为纯度大于99.99998%的太阳能级硅(纯度要求低于半导体级硅)。

2.拉晶或铸锭:将提纯得到的高纯硅料,经过提拉法结晶为单晶硅棒,或者通过石英坩埚铸锭为多晶硅锭。

3.修角:该工艺只适用于单晶,目的是将圆柱形的单晶硅棒磨为近长方体形,使切出的硅片接近方形。

4.切片:用多线锯将单晶硅棒或多晶硅锭切为200-300μm厚的薄片,目前工业上已大规模使用200μm左右的硅片进行生产。

物理学专业英语A4

物理学专业英语A4
A4 Charges and circuits
NEW WORDS Page.12 NEW WORDS Page.13
A4 Charges and circuits
• Static electricity • If two materials are rubbed together, electrons may be transferred from one to another. As a result, one gains negative charge, while the other is left with an equal positive charge. If the materials are insulators (see right), the transferred charge does not readily flow away. It is sometimes called static electricity.
A4 Charges and circuits
• Current • In the circuit above, chemical reactions in the cell push electrons out of the negative (-) terminal, round the circuit, to the positive (+) terminal. This flow of electrons is called a current.
A4 Charges and circuits
• Thermistors These components have a resistance which changes considerably with temperature (e.g. high when cold, low when hot). They contain semiconducting materials. • Light-dependent resistors (LDRs) These have a high resistance in the dark but a low resistance in the light. • Diodes These have an extremely high resistance in one direction but a low resistance in the other. In effect, they allow current to flow in oneCharges and circuits
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新《物理专业英语》范围单词篇1 、加速度 acceleration2 、速度velocity3 、角速度 angular velocity4 、角动量angular momentum5、热量 amount of heat6、热力学第一定律 the first law of thermodynamics7、干涉 interference8、反射 reflection9、折射 refraction10、振幅 amplitude11、机械运动 mechanical motion12、保守场 conservative field13 、向心力 centripetal force14、保守力 conservative force15、摩擦力 friction force16 、面积 area17 、体积 volume18、阿伏加德罗常数Avogadro constant19 、绝对零度absolute zero20 、电势能 energy of position21、重力势能gravitational potential energy22、重力场 the field of gravity force23、真空中的磁场 magnetic field in a vacuum24、电磁波 electromagnetic wave25 、电流的相互作用interaction of current1 、(第 3 页)第四段的第 3 句A typical problem of mechanics consists in determining the states of a system at all the following moments of time t when we know the state of the system at a certain initial moment to and also the law governing the motion.翻译:机械运动的一个典型的问题的构成取决于一个系统在接下来的时间间隔t 的状态,(因此)当我们知道了一个确切的最初的系统状态时,也可以知道运动的规律。

2 、(第 4 页)第一段A body whose dimension may be disregarded in the condition or a given problem is called a point particle (or simply a particle).翻译:在一个给定的问题中,一个物体的形状和大小可以被忽略的情况被称为质点。

3 、( 第 36 页 )第五段【注:选词和阅读会出】For a stationary filed ,the work done on a particle by the forces of the field may depend only on the initial and final position of the particle and not depend on the path along which the particle moved .Forces having such a property are called conservative.翻译:对于恒定场,这个场的力对粒子所做的功只依赖于粒子的初位置和末位置,不依赖于粒子运动的路径。

具有这一特性的力被称为保守力。

4 、(第 40 页)第一行A field of forces is called potential if it can be described with the aid of the function V(x,y,z,t), whose gradient [see the following section, Eq.(2.13)]determines the force at each point of the field:F=? V [compare with Eq.(2.32)].the function V is called the potential function or the potential.翻译:一个力场被称为势场,如果可以借助函数V(x,y,z,t) 来描述, [ 看下一部分, E.q.(2.31)] 它的梯度决定力场中的每一个点:F=? V[ 与(2.32) 比较 ] 。

函数V 被称为势函数或势场。

5、 ( 第 56 页)第二段和第三段【注:翻译、选词、阅读会出】In translation,all the points of a body receive displacements equal in magnitude and direction during the same time interval .Consequently, the velocities and accelerations of all the points are identical at every moment oftime .It is therefore sufficient ( 足够的;充分的)to determine the motion of one of the points of a body (for example ,of its center of mass) to completely characterize the motion of the entire body.翻译:在平动中,刚体上所有的点在相同的时间间隔内得到大小和方向都相同的位移。

因此,所以的点的速度和加速度在各个时刻是相同的。

因此充分的取决于用刚体上一点(例如,质心)的运动来完全描述整个刚体的运动特征。

In rotation,all the points of a rigid move along circles whose centers are on a single straight line called theaxis of rotation.To describe rotation,we must set the position of the axis of rotation in space and the angular velocity of the body at each moment of time .翻译:在转动中,刚体上所有的点沿着圆周运动的中心在一条单直线上被称为旋转轴。

为了描述转动, 我们必须设定空间中旋转轴的位置和刚体在各个时刻的角速度。

6、(第 79 页)第一段和第二段The masses of atoms and molecules are characterized by(通过 ...来区分)using quantities known as the relative atomic mass of an element (the atomic mass in short) and the relative molecular mass of substance (the molecular mass).翻译:原子和分子的质量通过使用质量来区分被称为元素的相对原子质量(简称原子质量)和物质的相对分子质量(简称分子质量)。

the atomic mass (Ar)of a chemical element is defined as the ratio of the mass of an atom of the element to1/12 of the mass of the atom 12C (This is the symbol for the carbon isotope with a mass number of 12) .The molecular mass (Mr) of a substance is defined as the ratio of the mass of a molecule of the substance to 1/12 of the mass of the atom12C. Their definitions show that the atomic and molecular masses are dimensionless Quantities .翻译:一种化学元素的相对原子质量被定义为这种元素的原子的质量与12C原子的质量的1/12 的比值。

物质的相对分子质量被定义为物质的分子的质量与12C原子的质量的1/12 的比值。

它们的定义表明原子和分子的质量是无量纲的。

7、(第 85 页)第一段、第二段和第三段The internal energy can change in the main at the expense of two different processes:the performance of the work A'on a body and the imparting of the heat Q to it.The doing of work is attended by the displacement ofthe external bodies acting on the system .For example ,when we move in the piston closing a vessel with a gas,the piston when moving does the work A' on the gas . According to Newton ’s law,the gas, in turn ,dose the work A = - A' on the piston .翻译:内能可以交换总的来说是两个不同过程的(能量的)损失:一个物体所做的功A' 和物体传递的热量Q。

所做的功是由外界物体对系统做功的增量决定的。

例如,当我们移动充满气体的密闭容器的活塞的时候,移动时活塞对气体做的功为A'。

根据牛顿第三定律,总的来说,气体对活塞做的功为A=- A' 。

The imparting of heat to a gas is not associated with the motion of external bodies and is therefore not associated with the doing of macroscopic (i.e. relating to the entire complex of molecules which the body consistsof ) work on the gas .In this case,the change in the internal energy is due to the fact that separate molecules of the hotter body do work on separate molecules of the colder one .Energy is also transferred here by radiation.The combination of microscopic (i.e. involving not an entire body ,but separate molecules of it ) processes is called heat transfer.翻译:气体热量的传递不与外界物体的运动相联系也因此不与宏观上对气体作功相联系。

相关文档
最新文档