图的基本存储方法及拓扑排序
数据结构复习与习题解析(2)
按路径长度递增次序产生最短路径
1、把 V 分成两组: (1) S:已求出最短路径的顶点的集合。 (2) V - S = T:尚未确定最短路径的顶点集合。
2、将 T 中顶点按最短路径递增的次序加入到 S 中,保证: (1) 从源点 v0 到 S 中各顶点的最短路径长度都不大于 从 v0 到 T 中任何顶点的最短路径长度。 (2) 每个顶点对应一个距离值: S中顶点:从 v0 到此顶点的最短路径长度。 T中顶点:从 v0 到此顶点的只包括 S 中顶点作中间顶点的 最短路径长度。
例题解析
例已知某网的邻接(出边)表,请画出该网络。
当邻接表的存储 结构形成后,图 便唯一确定!
图的遍历
❖广度优先搜索
从图的某一结点出发,首先依次访问该结点的所有邻接顶点 V1, V2, …, Vn 再按这些顶点被访问的先后次序依次访问与它们 相邻接的所有未被访问的顶点,重复此过程,直至所有顶点均 被访问为止。
7 10 3
a10 16 16 0 ✓
a11 14 14 0 ✓
v2
v7
v5
v9
v3
v8
v4 a6=2 v6
顶点 ve vl
v1
00
v2
66
v3
46
v4
58
v5
77
v6
7 10
v7 16 16
v8 14 14
v9 18 18
有向图的应用 应用
无向图的应用
Dijkstra算法 最短路径 Floyd算法
条件:边数不等于 n-1时 边 动作 连通分量 (0,2) 添加 {0,2},{1},{3},{4},{5} (3,5) 添加 {0,2},{3, 5},{1},{4} (1,4) 添加 {0,2},{3, 5},{1,4} (2,5) 添加 {0,2,3,5},{1,4} (0,3) 放弃 因构成回路 (2,3) 放弃 因构成回路 (1,2) 添加 {0,2,3,5,1,4}
拓扑排序序列的步骤
拓扑排序序列的步骤拓扑排序是一种常用的有向图排序算法,它可以用来解决依赖关系的排序问题。
拓扑排序序列指的是通过拓扑排序算法得到的图中节点的一个线性排序。
在本文中,我们将深入探讨拓扑排序的步骤并给出实现示例。
一、拓扑排序简介拓扑排序适用于有向无环图(DAG)。
它的基本思想是将有向图中的节点按照依赖关系排序,使得每个节点的所有前驱节点都在它的前面。
如果存在环路,则无法进行拓扑排序。
二、拓扑排序步骤1. 初始化一个队列,用于储存入度为0的节点。
2. 遍历图中的所有节点,并统计每个节点的入度,将入度为0的节点加入队列。
3. 从队列中取出一个节点,将其输出,并将其所有邻接节点的入度减1。
4. 如果邻接节点的入度变为0,则将其加入队列。
5. 重复步骤3和步骤4,直到队列为空。
6. 如果输出的节点数量与图中节点的数量相同,则拓扑排序成功;否则,说明图中存在环路,无法进行拓扑排序。
示例代码如下:```pythondef topological_sort(graph):indegree = [0] * len(graph)queue = []# 统计每个节点的入度for node in graph:for adjacent in graph[node]: indegree[adjacent] += 1 # 将入度为0的节点加入队列 for i in range(len(indegree)):if indegree[i] == 0:queue.append(i)result = []while queue:node = queue.pop(0)result.append(node)# 将邻接节点的入度减1 for adjacent in graph[node]:indegree[adjacent] -= 1if indegree[adjacent] == 0: queue.append(adjacent) # 判断是否成功拓扑排序if len(result) == len(graph):return resultelse:return []# 图的邻接表表示graph = {0: [1, 2],1: [3, 4],2: [3],3: [],4: [3]}result = topological_sort(graph)if result:print("拓扑排序序列为:", result)else:print("图中存在环路,无法进行拓扑排序")```以上代码实现了拓扑排序的步骤,可以根据具体需求进行调用和扩展。
拓扑排序的基本算法
拓扑排序的基本算法拓扑排序是面试中经常涉及到的一个经典算法,特别是在有向无环图(Directed Acyclic Graph, DAG)的处理中应用广泛。
本文将详细介绍拓扑排序的基本算法及其实现过程。
1. 前置知识在讲拓扑排序算法之前,需要先理解有向图和拓扑结构的概念。
有向图:顶点之间存在有向边的图。
拓扑结构:由一组具有局部顺序关系的节点组成的集合,这些节点既可以是实际存在的物体,也可以是抽象的概念。
2. 拓扑排序的定义拓扑排序是针对有向无环图(DAG)所定义的一种算法,它可以将DAG图中的所有节点排成一条线性序列,使得对于任何一条边(u,v),都有u排在v的前面。
3. 拓扑排序的基本过程步骤一:选择入度为0的节点作为起点。
如果没有入度为0的节点,则图中存在环,算法无法完成。
步骤二:对选择的起点进行遍历,将它所能到达的节点的入度减一。
步骤三:再从入度为0的节点开始,重复上述过程,直到所有节点都已经遍历完成。
4. 拓扑排序的实现方式使用队列来实现拓扑排序过程。
4.1 准备阶段:- 定义一个队列queue和一个数组inDegree用来存储每个节点的入度;- 将每个节点的入度初始化为0;- 遍历有向图,计算每个节点的入度,并更新inDegree数组。
4.2 开始拓扑排序:- 将所有入度为0的节点放入队列中;- 当队列非空时,重复下述操作:1. 取出队首元素;2. 对该节点能够到达的所有节点的入度减一;3. 如果入度减为0,则将该节点加入队列中。
- 如果拓扑排序过程中遍历到的节点数小于有向图的节点总数,则有向图中存在环。
5. 拓扑排序的时间复杂度和空间复杂度时间复杂度为O(|V|+|E|),其中V表示节点集合,E表示边集合。
空间复杂度为O(|V|),即需要存储每个节点的入度。
6. 总结拓扑排序算法是面试中必备的经典算法,它能够处理有向无环图(DAG)中的节点排序问题,为后续的遍历等操作提供了便利。
拓扑排序的基本过程包括选择入度为0的节点、遍历节点及更新节点的入度,使用队列来实现算法过程。
图的拓扑排序算法
图的拓扑排序算法图是计算机科学中常用的数据结构之一,它由一些节点(点)和连接这些节点的边(线)组成。
在计算机科学中,图经常被用来解决很多问题,例如计算机网络路由、调度、自然语言处理等等。
其中,图的拓扑排序算法是一个十分重要且广泛应用的算法。
在本文中,我们将详细介绍图的拓扑排序算法的原理及应用。
一、拓扑排序算法简介首先,我们来了解一下什么是拓扑排序算法。
拓扑排序是指将有向无环图(Directed Acyclic Graph, DAG)中节点按照拓扑序列排列的过程。
拓扑序列是指,在排列中,如果存在一条从节点A到节点B的路径,那么在拓扑序列中节点A必须出现在节点B之前。
如果存在环路,则不存在拓扑序列。
拓扑排序算法通常用于任务调度等场景中。
在计算机科学中,拓扑排序算法可以使用两种方法进行实现:基于搜索的算法和基于入度的算法。
二、基于搜索的算法基于搜索的算法是一种比较直接的实现思路,我们可以使用深度优先搜索或者广度优先搜索来实现。
深度优先搜索的方法是,先访问图中入度为0的节点,将其加入拓扑序列中,并将其后继节点的入度减1,直到遍历完整幅图。
基于入度的算法基于入度的算法是另一种有用的实现思路。
首先,我们可以记录每个节点的入度值。
入度是指图中所有指向该节点的边的个数。
对于一个拓扑序列中的节点,它的入度必定为0。
因此,我们可以将入度为0的节点放入队列中,然后对该节点的后继节点的入度减1。
如果减去入度后某个节点的入度为0,则也将其加入队列中。
不断循环这一过程,直到遍历完整幅图。
三、应用场景拓扑排序算法可以在很多场景中应用。
例如,任务调度。
在计算机中,任务调度是指将一些任务分配给不同的处理器进行处理的过程。
我们可以将每个任务看作一个节点,处理器看作边。
拓扑排序算法可以帮助我们找到一个最优的任务调度方案。
另一个应用场景是编译器和依赖管理器。
在编译一个程序时,我们需要按指定顺序编译不同的模块。
如果模块之间存在依赖关系,则需要使用拓扑排序算法来进行模块的编译顺序优化。
图基本算法拓扑排序(基于dfs)
图基本算法拓扑排序(基于dfs) 拓扑排序,是对有向⽆回路图进⾏排序,以期找到⼀个线性序列,这个线性序列在⽣活正可以表⽰某些事情完成的相应顺序。
如果说所求的图有回路的话,则不可能找到这个序列。
在⼤学数据结构课上,我们知道求拓扑排序的⼀种⽅法。
⾸先⽤⼀个⼊度数组保存每个顶点的⼊度。
在进⾏拓扑排序时,我们需要找到⼊度为0的点,将其存⼊线性序列中,再将其从图中删除(与它相关的边都删除,相邻的顶点的⼊度均减1),再重复上⾯的操作,直⾄所有的顶点都被找到为⽌。
如果不对每次找⼊度为0的顶点的⽅法进⾏处理,⽽直接去遍历⼊度数组,则该算法的时间复杂度为O(|V|2),如果使⽤⼀个队列来保存⼊度为0的顶点,则可以将这个算法的复杂度降为O(V+E)。
今天在算法导论上看了⽤dfs来求拓扑排序的算法,才发现其⾼深之处,膜拜之Orz…下⾯是算法导论的叙述: 本节说明了如何运⽤深度优先搜索,对⼀个有向⽆回路图(dag)进⾏拓扑排序。
对有向⽆回路图G=(V,E)进⾏拓扑排序后,结果为该图顶点的⼀个线性序列,满⾜如果G包含边(u, v),则在该序列中,u就出现在v的前⾯(如果图是有回路的,就不可能存在这样的线性序列)。
⼀个图的拓扑排序可以看成是图中所有顶点沿⽔平线排列⽽成的⼀个序列。
使得所有的有向边均从左指向右。
因此,拓扑排序不同于通常意义上的排序。
在很多应⽤中,有向⽆回路图⽤于说明时间发⽣的先后次序,下图1即给出⼀个实例,说明Bumstead教授早晨穿⾐的过程。
他必须先穿好某些⾐服,才能再穿其他⾐服(如先穿袜⼦后穿鞋),其他⼀些⾐服则可以按任意次序穿戴(如袜⼦和裤⼦),在图1中,有向边<u,v>表⽰⾐服u必须先于⾐服v穿戴。
因此,该图的拓扑排序给出了⼀个穿⾐的顺序。
图2说明了对该图进⾏拓扑排序后,将沿⽔平线⽅向形成⼀个顶点序列,使得图中所有有向边均从左指向右。
拓扑排序算法具体步骤如下:1、调⽤dfs_travel();2、在dfs_travel()每次调⽤dfs()的过程中,都记录了顶点s的完成时间,将顶点s按完成顺序保存在存放拓扑排序顺序的数组topoSort[]中。
计算机中图的名词解释
计算机中图的名词解释在计算机领域中,图(Graph)是一种常见的数据结构,用于描述对象之间的关系和相互作用。
图的概念最早由数学家欧拉提出,并且在计算机科学中得到广泛运用。
本文将从图的基本概念和操作开始,逐步介绍计算机中图的相关术语和应用。
1. 图的基本概念图由节点(Node)和边(Edge)组成。
节点表示对象或实体,边表示节点之间的连接关系。
图可以分为有向图(Directed Graph)和无向图(Undirected Graph)。
在有向图中,边具有方向性,表示从一个节点流向另一个节点;而在无向图中,边没有方向性,表示两个节点之间的相互关系。
2. 图的存储方式为了在计算机中表示和处理图,常见的存储方式有邻接矩阵(Adjacency Matrix)和邻接表(Adjacency List)。
邻接矩阵是一个二维数组,其中行和列表示节点,矩阵的值表示节点之间是否有边相连。
邻接表则使用链表的形式来表示节点之间的连接关系,每个节点对应一个链表,链表中存储了与该节点相连的其他节点。
3. 图的遍历图的遍历是指沿着图中的路径,依次访问所有节点的过程。
常见的图遍历算法有深度优先搜索(Depth-First Search)和广度优先搜索(Breadth-First Search)。
深度优先搜索先选择一个起始节点,沿着路径一直深入直到无法继续,然后回溯到其他未访问的节点,继续深入;而广度优先搜索则是从起始节点开始,并逐层扩展,逐层访问。
4. 最短路径算法最短路径算法用于计算两个节点之间的最短路径,即路径上边的权值之和最小。
其中,最常用的最短路径算法是狄克斯特拉算法(Dijkstra Algorithm)。
该算法通过逐步更新节点到其他节点的距离,找到起始节点到目标节点的最短路径。
5. 拓扑排序拓扑排序(Topological Sorting)是一种对有向无环图进行排序的算法。
在有向图中,如果节点 A 的边指向节点 B,那么 B 必须在 A 之后才能出现在排序结果中。
拓扑排序结果字典序
拓扑排序结果字典序全文共四篇示例,供读者参考第一篇示例:拓扑排序是一种对有向无环图(DAG)进行排序的方法,它可以保证图中的每个顶点在排序结果中出现的位置都是正确的。
拓扑排序的结果并不唯一,即可能存在不同的排列顺序,但这些顺序都满足拓扑排序的要求。
在拓扑排序中,我们通常会使用一种算法来进行排序,这种算法被称为拓扑排序算法。
其中最经典的算法是Kahn算法,其基本思想是通过不断地删除入度为0的顶点,直到所有顶点都被删除。
删除的顶点即为拓扑排序的结果。
在Kahn算法中,我们会使用一个队列来存储入度为0的顶点,并在每次删除一个顶点后更新其他顶点的入度。
拓扑排序的结果可以有多种形式显示,最常见的形式是将顶点按照其排序顺序输出。
但在某些情况下,我们可能会需要将拓扑排序结果按照字典序进行输出,这时我们需要对拓扑排序的结果进行一定的调整。
在进行拓扑排序时,我们可以将排序结果存储在一个列表中,并通过比较列表中的元素大小,从而得到字典序的拓扑排序结果。
这种方法相对简单直接,但需要注意的是,不同的图可能有不同的结果,因此需要在编程时考虑到这一点。
对于拓扑排序结果的字典序,我们可以举一个例子来说明。
假设我们有一个图G,其拓扑排序结果为{A, B, C, D}。
如果我们需要按照字典序输出拓扑排序结果,那么最终的结果可能会是{A, B, D, C}或者{B, A, D, C}等不同的排列。
除了使用队列和比较列表元素大小之外,我们也可以通过递归的方式来实现拓扑排序结果的字典序输出。
在递归过程中,我们可以利用字典序的性质,对拓扑排序结果进行调整,从而输出符合字典序要求的结果。
拓扑排序结果的字典序输出是一个比较有意义的问题,在实际工程中也有一定的应用场景。
通过合理的算法设计和编程实现,我们可以方便地得到符合要求的拓扑排序结果,从而更好地解决问题。
希望本文能够帮助读者更好地理解拓扑排序以及相关概念,进一步拓展对图论的认识。
第二篇示例:拓扑排序是一种用于有向图的排序方法,它可以将图中的节点按照一定的顺序排列。
数据结构与算法课程设计报告---图的算法实现
数据结构与算法课程设计报告课程设计题目:图的算法实现专业班级:信息与计算科学1002班目录摘要 (1)1、引言 (1)2、需求分析 (1)3、概要设计 (2)4、详细设计 (4)5、程序设计 (10)6、运行结果 (18)7、总结体会 (19)摘要(题目): 图的算法实现实验内容图的算法实现问题描述:(1)将图的信息建立文件;(2)从文件读入图的信息,建立邻接矩阵和邻接表;(3)实现Prim、Kruskal、Dijkstra和拓扑排序算法。
关键字:邻接矩阵、Dijkstra和拓扑排序算法1.引言本次数据结构课程设计共完成图的存储结构的建立、Prim、Kruskal、Dijkstra 和拓扑排序算法等问题。
通过本次课程设计,可以巩固和加深对数据结构的理解,通过上机和程序调试,加深对课本知识的理解和熟练实践操作。
(1)通过本课程的学习,能够熟练掌握数据结构中图的几种基本操作;(2)能针对给定题目,选择相应的数据结构,分析并设计算法,进而给出问题的正确求解过程并编写代码实现。
使用语言:CPrim算法思想:从连通网N={V,E}中的某一顶点v0出发,选择与它关联的具有最小权值的边(v0,v),将其顶点加入到生成树的顶点集合V中。
以后每一步从一个顶点在V中,而另一个顶点不在V中的各条边中选择权值最小的边(u,v),把它的顶点加入到集合V中。
如此继续下去,直到网中的所有顶点都加入到生成树顶点集合V中为止。
拓扑排序算法思想:1、从有向图中选取一个没有前驱的顶点,并输出之;2、从有向图中删去此顶点以及所有以它为尾的弧;重复上述两步,直至图空,或者图不空但找不到无前驱的顶点为止。
没有前驱-- 入度为零,删除顶点及以它为尾的弧-- 弧头顶点的入度减1。
2.需求分析1、通过键盘输入建立一个新的有向带权图,建立相应的文件;2、对建立的有向带权图进行处理,要求具有如下功能:(1)用邻接矩阵和邻接表的存储结构输出该有向带权图,并生成相应的输出结果;(2)用Prim、Kruskal算法实现对图的最小生成树的求解,并输出相应的输出结果;(3)用Dijkstra算法实现对图中从某个源点到其余各顶点的最短路径的求解,并输出相应的输出结果;(4)实现该图的拓扑排序算法。
图_拓扑排序关键路径最短路径
6 a 5 d 4
b
1 1 e
8 7
g 4 h
2 k
c 2 4 f
a b c d e f g h k ve vl
0 0 0 0 0 0 15 14 18 6 4 5 5 7 0 11 0 7 0 18 18 18 18 18 18 18 18 18 0 6 6 8 8 10 16 14 7
事件发生时间的计算公式: 事件发生时间的计算公式: ve(源点 = 0; 源点) 源点 ; ve(j) = Max{ve(i) + dut(<i, j>)} <i,j>表示以 为弧头的弧 表示以j为弧头的弧 表示以 vl(汇点 = ve(汇点 ; 汇点) 汇点); 汇点 汇点 vl(i) = Min{vl(j) – dut(<i, k>)} <i,j>表示以 为弧尾的弧 表示以i为弧尾的弧 表示以
(2)弗洛伊德算法的基本思想是:
的所有可能存在的路径中, 从 vi 到 vj 的所有可能存在的路径中,选出一条长 度最短的路径。
可以用如下递推公式描述: 可以用如下递推公式描述: D-1[i][j]=cost[i][j] Dk [i][j]=min{Dk-1[i][j],Dk-1[i][k]+Dk-1[k][j]}(0≤k≤n-1) 其中, 中存放着序号为i的结点到序号为 其中,cost[i][j]中存放着序号为 的结点到序号为 的结点之 中存放着序号为 的结点到序号为j的结点之 表示从结点vi到结点 到结点vj的路径 间的权值 ; Dk[i][j](0≤k≤n-1) 表示从结点 到结点 的路径 上所经过的结点序号不大于k的最短路径长度 的最短路径长度。 上所经过的结点序号不大于 的最短路径长度。
图的种类及储存方式
图的种类及储存⽅式⼀.图的种类(以下的分类不是并列的)1.有向图:图中边的⽅向是⼀定的,不能逆序⾛。
2.⽆向图:图中的边没有⽅向,可以逆序⾛。
没有正负⽅向3.完全图:完全图:对于顶中的每⼀个顶点,都与其他的点有边直接相连⽆向完全图:任意⼀个具有n个结点的⽆向简单图,其边数n*(n-1)/2;我们把边数恰好等于n*(n-1)/2的n个结点的称为完全图。
有向完全图:在⼀个n个结点的中,最⼤边数为n*(n-1)。
4.稀疏图和稠密图:⼀般的对于⼀个图来说,边的数⽬多的就是稠密图,边的数⽬少的就是稀疏图。
5.⼆部图与完全⼆部图(⼆部图也就是⼆分图)⼆分图的概念:简⽽⾔之,就是顶点集V可分割为两个互不相交的⼦集,并且图中每条边依附的两个顶点都分属于这两个互不相交的⼦集,两个⼦集内的顶点不相邻。
两个⼦集:A,B;性质满⾜:A∩B=∅,A∪B=V,这就是⼆分图。
6.图的⽣成树:把图中的n个点,和图中的n-1条边挑出来,如果这n-1条边能把这n个点连起来,那这就是图的⼀个⽣成树7.有向⽹,⽆向⽹:⽹就是加权的图8.活动⽹络:AOV图:顶点是活动,有向边表⽰活动之间的前驱后继关系--拓扑排序AOE图:E,也就是⽤边表⽰活动,⽤边表⽰的⽬的是利⽤边的权值,⽐如⽤边的权值表⽰最长时间--关键路径⼆:图的存储表⽰1. 邻接矩阵也就是⽤jz[i][j]表⽰i--j的连通情况,可以表⽰权值,也可以表⽰是否连通。
2.邻接表:就是把同⼀个顶点出发的边的链接储存在同⼀个边链表中,边链表的每⼀个结点代表⼀条边,称为边结点,边结点包括的信息可以⾃⼰确定。
⼀种⽅法:g[i][j]代表从i出发的第j条边的编号,对应着edge数组中的储存着边的信息,可以直接从g[i]得到从i出发的边的数⽬。
另⼀种就是边表了。
3.边表:就不介绍了,因为⼀直以来我都是⽤“邻接矩阵”和“边表”的,⽐较熟悉。
图论基本知识
图的若干概念
• 权 (weight) :在某些图的应用中,边(弧)上具 有与它相关的系数,称之为权。这些权可以表示 从一个顶点到另一个顶点的距离、花费的代价、 所需的时间、次数等。这种带权图也被称为网络 (network)。
• 顶点的度(degree):在无向图中,一个顶点v的度 是依附于顶点v的边的条数,记作TD(v)。在有向 图中,以顶点v为始点的有向边的条数称为顶点v 的出度,记作OD(v);以顶点v为终点的有向边的 条数称为顶点v的入度,记作ID(v)。有向图中顶 点v的度等于该顶点的入度与出度之和:TD(v)= ID(v)十OD(v)。
无向图ቤተ መጻሕፍቲ ባይዱ有向图
在图中如果顶点对(v、w)是无序的,则称此图为无 向图(undirected graph),顶点对(v、w)称为与顶点v和 顶点w相关联的一条边。由于这条边没有方向,所以(v、 w)与(w、v)是同一条边; 在图中如果顶点对<v、w>是有序的,则称此图 为有向图(directed graph),顶点对<v、w>称为从顶 点v到顶点w的一条有向边(又称为弧),其中v称为有 向边<v、w>的始点(弧尾);w称为有向边<v、w >的终点(弧头)。显然<v、w>与<w、v>是两条 不同的弧。
图的存储结构
• 邻接矩阵 • 邻接表
拓扑排序
拓扑排序算法可以描述如下: (1)建立入度为零的顶点栈; (2)当入度为零的顶点栈为空时算法转步骤 (6),否则继续步骤(3); (3)入度为零的顶点栈中栈顶元素v出栈,并输出 之顶点v; (4)从AOV网络中删去顶点v和所有从顶点v发出 的弧<v、j>,并将顶点j的入度减一; (5)如果顶点j入度减至0,则将该顶点进入入度 为零的顶点栈;转步骤(2); (6)如果输出顶点个数少于AOV网络的顶点个数, 则输出网络中存在有向环的信息;算法结束。
课次21——第七章03拓扑排序和关键路径
对有向图进行如下操作:按照有向图给出的次序关系,将图 中顶点排成一个线性序列,对于有向图中没有限定次序关系的顶 点,则可以人为加上任意的次序关系。由此所得顶点的线性序列 称之为拓扑有序序列。
v3 v5
v9
v8
v4
v6
13 2020/8/4
7.5.2 关键路径(4)
在AOE网络中, 有些活动顺序进行,有些活动并行进行。
从源点到各个顶点,以至从源点到汇点的有向路径可能不止 一条。这些路径的长度也可能不同。完成不同路径的活动所 需的时间虽然不同,但只有各条路径上所有活动都完成了, 整个工程才算完成。
例:
C0
C1
C2
C0
C1
C2
C3
C4
C5
(a) 有向无环图
C0
C1
C2
C3
C4
C5
(b) 输出C4
C1
C2
C3
C5
(c) 输出顶点C0
9 2020/8/4
C3
C5
(d) 输出顶点C3
7.5.1拓扑排序(Topological Sort)(7)
C1
C2
C1
C5 (e) 输出顶点C2
C5 (f) 输出顶点C1
因此,完成整个工程所需的时间取决于从源点到汇点的最长 路径长度,即在这条路径上所有活动的持续时间之和。这条 路径长度最长的路径就叫做关键路径(Critical Path)。
子工程所需时间。 问:哪些子工程是“关键工程”? 即:哪些子工程将影响整个工程的完成期限的。
首先了解一些基本概念:
图的两种存储结构及基本算法
图的两种存储结构及基本算法第一篇:图的两种存储结构及基本算法一、图的邻接矩阵存储1.存储表示#definevexnum10typedefstruct{vextypevexs[vexnum];intarcs[vexnum][vexnum];}mgraph;2.建立无向图的邻接矩阵算法voidcreat(mgraph*g, inte){for(i=0;iscanf(“%c”,&g->vexs[i]);for(i=0;ifor(j=0;jg->arcs[i][j]=0;for(k=0;kscanf(“%d,%d”,&i,&j);g->arcs[i][j]=1;g->arcs[j][i]=1;} }3.建立有向图的邻接矩阵算法voidcreat(mgraph*g, inte){for(i=0;iscanf(“%c”,&g->vexs[i]);for(i=0;ifor(j=0;jg->arcs[i][j]=0;for(k=0;kscanf(“%d,%d,%d”,&i,&j,&w);g->arcs[i][j]=w;}}二、图的邻接表存储1.邻接表存储表示#definevexnum10typedefstructarcnode{intadjvex;structarcnode*nextarc;}Arcnode;typedefstructvnode{vextypedata;Arcnode*firstarc;}Vnode;typedefstruct{Vnodevertices[vexnum];intvexnum,arcnum;}algraph;2.建立无向图的邻接表算法:voidcreat(algraph*g, inte){for(i=0;iscanf(“%c”,&g->vertices[i]->data);g->vertices[i]->firstarc=NULL;}for(k=0;kscanf(“%d,%d”,&i,&j);q=(Arcnode*)malloc(sizeof(Arcnode));p=(Arcnode*)malloc(s izeof(Arcnode));p->adjvex=j;p->nextarc=g->vertices[i]->firstarc;g->vertices[i]->firstarc=p;q->adjvex=i;q->nextarc=g->vertices[j]->firstarc;g->vertices[j]->firstarc=q;}}3.建立有向图邻接表算法:voidcreat(algraph*g, inte){for(i=0;iscanf(“%c”,&g->vertices[i]->data);g->vertices[i]->firstarc=NULL;}for(k=0;kscanf(“%d,%d”,&i,&j);p=(Arcnode*)malloc(sizeof(Arcnode));p->adjvex=j; p->nextarc=g->vertices[i]->firstarc;g->vertices[i]->firstarc=p;}}三、图的遍历1.连通图的深度优先搜索遍历intvisited[vexnum]={0};voiddfs(mgraph*g, inti){printf(“%3c”,g->vexs[i]);visited[i]=1;for(j=0;jif((g->arcs[i][j]==1)&&(!visited[j]))dfs(g, j);}2.联通图的广度优先搜索遍历intvisited[vexnum]={0};voidbfs(mgraph*g, intk){intq[20], f, r;f=0;r=0;printf(“%3c”,g->vexs[k]);visited[k]=1;q[r]=k;r++;while(r!=f){i=q[f];f++;for(j=0;jif((g->arcs[i][j]==1)&&!visited[j]){printf(“%3c”,g->vexs[j]);visited[j]=1;q[r]=j;r++;}}}4.求图的联通分量intvisited[vexnum]={0};voidcomponent(mgraph*g){intcount=0;for(j=0;jif(!visited[j]){count++;printf(“n第%d个联通分量:”, count);dfs(g, j);} printf(“n 共有%d个联通分量。
详解图的应用(最小生成树、拓扑排序、关键路径、最短路径)
详解图的应用(最小生成树、拓扑排序、关键路径、最短路径)1.最小生成树:无向连通图的所有生成树中有一棵边的权值总和最小的生成树1.1 问题背景:假设要在n个城市之间建立通信联络网,则连通n个城市只需要n—1条线路。
这时,自然会考虑这样一个问题,如何在最节省经费的前提下建立这个通信网。
在每两个城市之间都可以设置一条线路,相应地都要付出一定的经济代价。
n个城市之间,最多可能设置n(n-1)/2条线路,那么,如何在这些可能的线路中选择n-1条,以使总的耗费最少呢?1.2 分析问题(建立模型):可以用连通网来表示n个城市以及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价。
对于n个顶点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网。
即无向连通图的生成树不是唯一的。
连通图的一次遍历所经过的边的集合及图中所有顶点的集合就构成了该图的一棵生成树,对连通图的不同遍历,就可能得到不同的生成树。
图G5无向连通图的生成树为(a)、(b)和(c)图所示:G5G5的三棵生成树:可以证明,对于有n 个顶点的无向连通图,无论其生成树的形态如何,所有生成树中都有且仅有n-1 条边。
1.3最小生成树的定义:如果无向连通图是一个网,那么,它的所有生成树中必有一棵边的权值总和最小的生成树,我们称这棵生成树为最小生成树,简称为最小生成树。
最小生成树的性质:假设N=(V,{ E}) 是个连通网,U是顶点集合V的一个非空子集,若(u,v)是个一条具有最小权值(代价)的边,其中,则必存在一棵包含边(u,v)的最小生成树。
1.4 解决方案:两种常用的构造最小生成树的算法:普里姆(Prim)和克鲁斯卡尔(Kruskal)。
他们都利用了最小生成树的性质1.普里姆(Prim)算法:有线到点,适合边稠密。
时间复杂度O(N^2)假设G=(V,E)为连通图,其中V 为网图中所有顶点的集合,E 为网图中所有带权边的集合。
图的基本概念及拓扑排序
有n-1条边。 如果在生成树上添加1条边,必定构成一个环。 若图中有n个顶点,却少于n-1条边,必为非连通 图。
最小生成树:若无向连通带权图G=<V,E,W>,T是G的一棵生成树,T的各边权之
和称为T的权,记做W(T),G的所有生成树中权值最小的生成树 称为最小生成树。
带权图: 即边上带权的图。其中权是指每条边可以标上 具有某种含义的数值(即与边相关的数)。
网 络: =带权图
路径: 在图 G=(V, E) 中, 若从顶点 vi 出发, 沿一些边经过一
些顶点 vp1, vp2, …, vpm,到达顶点vj。则称顶点序列 ( vi vp1 vp2 ... vpm vj ) 为从顶点vi 到顶点 vj 的路径。它经过的边(vi, vp1)、(vp1, vp2)、...、(vpm, vj)应当是属于E的边。
最小生成树算法: Prim算法和kruskal算法
简单路径:路径上各顶点 v1,v2,...,vm 均不互相重复。
回 路: 若路径上第一个顶点 v1 与最后一个顶点vm 重合,
则称这样的路径为回路或环。
例:
图的数学表示
点: 用整数0, 1, 2, …, V-1表示 边: 用无序数对(u, v)表示, 或者表示成u-v
4. 你认为,对于给定的两个位置A,B,聪明的机器人从A位置到B位置至少需要判断几次?
5. input
6. 第一行:M 表示以下有M组测试数据(0<M<=8)
7. 接下来每组有两行数据
8.
头一行:N A B(1<=N<=50,1<=A,B<=N)
9.
下一行:K1 K2···Kn(0<=Ki<=N)
数据结构:第7章 图4-拓扑排序和关键路径
拓扑排序算法
拓扑排序方法: (1)在AOV网中选一个入度为0的顶点(没有前驱) 且输出之; (2)从AOV网中删除此顶点及该顶点发出来的所 有有向边; (3)重复(1)、(2)两步,直到AOV网中所有 顶点都被输出或网中不存在入度为0的顶点。
从拓扑排序步骤可知,若在第3步中,网中所有顶 点都被输出,则表明网中无有向环,拓扑排序成功。 若仅输出部分顶点,网中已不存在入度为0的顶点, 则表明网中有有向环,拓扑排序不成功。
拓扑序列:C1--C2--C3 (3)
C12 C9 C10
C7 C8 C6
C11
拓扑序列:C1--C2--C3--C4 (4)
C7
C12
C12
C8
C8 C9 C10
C6
C9 C10
C6
C11
C11 拓扑序列:C1--C2--C3--C4--C5
(5)
拓扑序列:C1--C2--C3--C4--C5--C7 (6)
在 (b)中,我们用一种有向图来表示课程开设
拓扑排序
1.定义 给出有向图G=(V,E),对于V中的顶点的线性序列 (vi1,vi2,...,vin),如果满足如下条件:若在G中从 顶点 vi 到vj有一条路径,则在序列中顶点vi必在 顶点 vj之前;则称该序列为 G的一个拓扑序列。 构造有向图的一个拓扑序列的过程称为拓扑排序。 2.说明 (1)在AOV网中,若不存在回路,则所有活动可排成 一个线性序列,使得每个活动的所有前驱活动都排 在该活动的前面,那么该序列为拓扑序列. (2)拓扑序列不是唯一的.
2.AOV网实际意义
现代化管理中, 通常我们把计划、施工过程、生产流程、 程序流程等都当成一个工程,一个大的工程常常被划分 成许多较小的子工程,这些子工程称为活动。在整个工 程实施过程中,有些活动开始是以它的所有前序活动的 结束为先决条件的,必须在其它有关活动完成之后才能 开始,有些活动没有先决条件,可以 安排在任意时间开 始。AOV网就是一种可以形象地反映出整个工程中各个 活动之间前后关系的有向图。例如,计算机专业学生的 课程开设可看成是一个工程,每一门课程就是工程中的 活动,下页图给出了若干门所开设的课程,其中有些课 程的开设有先后关系,有些则没有先后关系,有先后关 系的课程必须按先后关系开设,如开设数据结构课程之 前必须先学完程序设计基础及离散数学,而开设离散数 学则必须先并行学完数学、程序设计基础课程。
图的基本概及图的存储
WENKU DESIGN
大规模图的存储与处理
大规模图的存储
随着图数据的规模不断增大,传统的关系型数据库已经无 法满足存储和查询需求。为了解决这个问题,需要采用分 布式存储系统来存储大规模图数据。
大规模图的查询处理
大规模图查询处理需要高效的数据结构和算法,以支持大 规模图数据的快速查询和遍历。
广度优先遍历
队列实现
使用一个队列来存储遍历过程中的节点,按照节点的层次顺序进行遍历,即先 访问离起始节点最近的节点,再依次访问其他节点。
层次遍历
按照层次顺序遍历图中的节点,从起始节点开始,先访问其所有未被访问过的 邻居节点,然后再依次访问这些邻居节点的未被访问过的邻居节点,以此类推。
遍历算法的应用场景
定义
图是由顶点(或节点)和边组成的数 据结构,用于表示对象及其之间的关 系。
特点
图是一种非线性数据结构,可以表示 复杂的关系和网络结构,具有灵活性 、直观性和可视化等优点。
图的组成元素
顶点(节点)
表示对象或实体,可以是任意类型的数据。
边
表示顶点之间的关系或连接,可以是有向或无向 的。
权重
表示边的强度或连接的紧密度,可以是任意实数 或数据类型。
随着深度学习技术的不断发展,图神 经网络将会有更多的应用场景和优化 空间。同时,随着图数据的规模不断 增大,如何高效地训练和部署图神经 网络也是未来的研究方向之一。
THANKS
感谢观看
REPORTING
https://
图的存储方式
REPORTING
WENKU DESIGN
邻接矩阵
定义
邻接矩阵是表示图的一种数据结构,其中每个元素表示顶点之间的连接关系。如果两个顶点 之间存在一条边,则对应的矩阵元素值为1;否则为0。
图论简单介绍
0 1 4 0
3
0
top=0 top
3
1
2
1
2
1
1
2
4
3
6
5
0
top
0
4 4
top
0
4 4
0
4 4
4 4
0
1
0
1
top
0
0
0
01ຫໍສະໝຸດ 111拓扑排序算法 typedef int datatype; typedef int vextype; typedef struct node /*边表结点定义*/ { int adjvex; struct node *next; } edgenode; typedef struct /*顶点表结点定义*/ { vextype vertex int id; edgenode *link } vexnode; vexnode dig[n];
为找出关键活动, 需要求各个活动的 e[k] 与 l[k],以判 别是否 l[k] == e[k]. 为求得e[k]与 l[k],需要先求得从源点V0到各个顶点Vi 的 Ve[i] 和 Vl[i]。
求Ve[i]的递推公式
从Ve[0] = 0开始,向前递推
i
Ve[ j ] max{ Ve[i ] dur ( Vi , V j ) },
检测有向环的一种方法是对AOV网络构造它的拓 扑有序序列。即将各个顶点 (代表各个活动) 排列 成一个线性有序的序列,使得AOV网络中所有应 存在的前驱和后继关系都能得到满足。 这种构造AOV网络全部顶点的拓扑有序序列的运 算就叫做拓扑排序。 如果通过拓扑排序能将AOV网络的所有顶点都排 入一个拓扑有序的序列中,则该AOV网络中必定 不会出现有向环;相反,如果得不到满足要求的 拓扑有序序列,则说明AOV网络中存在有向环, 此AOV网络所代表的工程是不可行的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四
图的基本存储方法及拓扑排序
班级:10级数学班姓名:裴志威学号:201008101127
实验目的:
(1)熟练掌握图的基本存储方法;
(2)熟练掌握图的深度优先和广度优先搜索方法;
(3)掌握AOV网和拓扑排序算法;
(4)掌握AOE网和关键路径。
实验内容:
拓扑排序。
任意给定一个有向图,设计一个算法,对它进行拓扑排序。
拓扑排序算法思想:a.在有向图中任选一个没有前趋的顶点输出;b.从图中删除该顶点和所有以它为尾的弧;c.重复上述a、b,直到全部顶点都已输出,此时,顶点输出序列即为一个拓朴有序序列;或者直到图中没有无前趋的顶点为止,此情形表明有向图中存在环。
源程序代码:
#include<stdio.h>
#include<stdlib.h>
#define MAXV 10 // 最大顶点个数
typedef struct
{
int edges[MAXV][MAXV]; // 邻接矩阵的边数组
int n; // 顶点数
}MGraph;
typedef struct ANode
{
int adjvex; // 该弧的终点位置
struct ANode * nextarc; // 指向下一条弧的指针
}ArcNode;
typedef struct
{
int no; // 顶点信息
int count; // 顶点入度
ArcNode * firstarc; // 指向第一条弧
}VNode, AdjList[MAXV];
typedef struct
{
AdjList adjlist; // 邻接表
int n; // 图的顶点数
}ALGraph;
void MatTolist(MGraph g, ALGraph * &G)
{
int i, j, n=g.n;
ArcNode * p;
G = (ALGraph *)malloc(sizeof(ALGraph));
for (i=0; i<n; i++)
G->adjlist[i].firstarc = NULL;
for (i=0; i<n; i++)
for (j=n-1; j>=0; j--)
if (g.edges[i][j]!=0)
{
p=(ArcNode *)malloc(sizeof(ArcNode));
p->adjvex = j;
p->nextarc = G->adjlist[i].firstarc;
G->adjlist[i].firstarc = p;
}
G->n=n;
}
void TopSort(ALGraph * G)
{
int i,j,flag=0,a[MAXV];
int St[MAXV], top = -1; // 栈St的指针为top
ArcNode * p;
for (i=0; i<G->n; i++) // 入度置初值为0
G->adjlist[i].count = 0;
for (i=0; i<G->n; i++) // 求所有顶点的入度
{
p=G->adjlist[i].firstarc;
while (p!=NULL)
{
G->adjlist[p->adjvex].count++;
p=p->nextarc;
}
}
for (i=0; i<G->n; i++)
if (G->adjlist[i].count==0) // 入度为0的顶点进栈
{
top++; St[top] = i;
}
while (top>-1) // 栈不为空时循环
{
i = St[top]; top--; // 出栈
a[flag++]=i; // 输出顶点
p=G->adjlist[i].firstarc; // 找第一个相邻顶点
while (p!=NULL)
{
j = p->adjvex;
G->adjlist[j].count--;
if (G->adjlist[j].count==0)
{
top++; St[top] = j; // 入度为0的相邻顶点进栈}
p = p->nextarc; // 找下一个相邻顶点
}
}
if (flag<G->n)
printf("该图存在回路,不存在拓扑序列!\n");
else
{
printf("该图的一个拓扑序列为:");
for(i=0; i<flag; i++)
printf("%d", a[i]);
printf("\n");
}
}
void main()
{
int i, j;
MGraph g;
ALGraph * G;
G=(ALGraph *)malloc(sizeof(ALGraph));
printf("请输入图的顶点数:");
scanf("%d", &g.n);
printf("请输入图的邻接矩阵:\n");
for(i=0; i<g.n; i++)
for(j=0; j<g.n; j++)
scanf("%d", &g.edges[i][j]);
MatTolist(g, G);
TopSort(G);
}
若图存在回路,则不存在拓扑序列。
实验总结:
无向图的生成树就是从图的边集中选择一些边,使得这些边构成一个连通无环图,也就是树。
如果给每一条边加一个权,所有生成树中权和最小的生成树称为最小生成树。
实验中由給定连通图算法实现最小支撑树,后来变化了要求,如果一开始給出的是不连通图,程序无法实现, 但程序是基于连通来写的,最后使用k=LocateVex(G,u),在图不连通的情况下,会输出:此图不连通,无最小支撑树。