光伏并网逆变器的孤岛效应保护原理介绍(甘电投金塔)
孤岛效应的原理
孤岛效应的原理在电子电路中,孤岛效应是指电路的某个区域有电流通路而实际没有电流流过的现象。
在电容器串联的电路里,只有与外电路相连接的两个极板(注意:不是同一电容器的极板)有电流流孤岛效应动(电荷交换),其他极板的电荷总量是不变的,所以称为孤岛。
孤岛是一种电气现象,发生在一部分的电网和主电网断开,而这部分电网完全由光伏系统来供电。
在国际光伏并网标准化的课题上这仍是一个争论点,因为孤岛会损害公众和电力公司维修人员的安全和供电的质量,在自动或手动重新闭合供电开关向孤岛电网重新供电时有可能损坏设备。
所以,逆变器通常会带有防止孤岛效应装置。
被动技术(探测电网的电压和频率的变化)对于平衡负载很好条件下通电和重新通电两种情况下的孤岛防止还不够充分,所以必须结合主动技术,主动技术是基于样本频率的移位、流过电流的阻抗监测、相位跳跃和谐波的监控、正反馈方法、或对不稳定电流和相位的控制器基础上的。
现在已有许多防止的办法,在世界上已有16个专利,有些已获得,而有些仍在申请过程当中。
其中的有些方法,如监测电网流过的电流脉冲被证明是不方便的,特别是当多台的逆变器并行工作时,会降低电网质量,并且因为多台逆变器的相互影响会对孤岛的探测产生负面影响。
在另一些场合,对电压和频率的工作范围的限制变得宽了,而安装工人通常可以通过软件来设置这些参数,甚至于ENS(一种监测装置,在德国是强制性的)为了能在弱的电网中工作,可以把它关掉。
[编辑本段]孤岛效应实验室一般是用谐振模拟负载电路,同时定义了一个质量因数,“Q-factor”。
尽管如此,这些试验还是很难运行,特别是对于那些高功率的逆变器,它们需要很大的试验室。
试验的电路和参数会根据不同国家有所不同,测试结果很大程度上取决于试验者的技术水平。
现已开展了一些研究,用来评估孤岛效应和它关联风险的各种可能性,研究表明对于低密度的光伏发电系统,事实上孤岛是不可能的,这是因为负载和发电能力远远不可能匹配。
探讨光伏并网发电系统的孤岛效应
探讨光伏并网发电系统的孤岛效应在电网有误操作、电气故障出现或者自然因素出现供电中断的情况时,和公共电网连接的各个光伏发电系统无法及时的将停电现象检测出来,会导致光伏发电系统对某个区域单独进行供电,出现无法通过电力部门控制的孤岛效应,此情况出现会降低电网的安全标准,使得频率超出了规定的范围,会对孤岛上的检修人员和设备的安全造成大的安全隐患,因此对孤岛效应的控制策略和检测方法进行研究,有非常重要的现实意义。
1出现孤岛效应的主要原因图1光伏系统并网等效电路图通常情况下,可以使用RLC并联电路模拟光伏发电系统的负载,假如负载接入点的电压频率和电压分别为f和U,输出的无功功率和有功功率分别为Qpv 和Ppv,负载吸收的无功功率和有功功率分别为QL和PL,负载和光伏系统直接的功率偏差分别使用△P和△Q表示,那么光伏发电系统并网的等效电路如图1所示。
在光伏系统的运行状态为正常时,负载端电压是受公共电网电压制约的,而不是受并网逆变器输出电压影响,当电网有异常情况出现时,一旦逆变器的负载和输出功率不匹配,就会导致电网光伏系统的无功功率和有功功率出现比较大的变化,进而导致负载频率和负载电压出现较大的变化,电压频率和副值会在限定值以上,此时,检测系统就很容易出现孤岛,控制系统会立即把电网和逆变器切断,使光伏系统停止电能的输出。
在光伏发电系统的负载消耗功率和输出功率平衡时,由于电网频率f和RLC组成的负载谐振频率相同,次数并网逆变器的并网输出电流为零,当负载功率和并网逆变器的输出功率相同时,很难对孤岛效应进行检测,此时就会进入到检测盲区,导致光伏发电系统和负载进入到孤岛运行的状态。
2防止出现孤岛效应的方法一般情况下,会通过对电压幅指数、频率情况、相位偏移情况判断并网系统中的孤岛效应,在对孤岛效应进行检测的过程中,主要有主动检测和被动检测两种方法。
在使用主动方法进行检测时,会先将并网逆变器控制住,然后使输出功率、输出频率、相位出现扰动的情况,在电网实际运行的过程中,由于电网具有自我平衡的能力,扰动不能检测出来,而在电网工作停止时,并网逆变器的扰动会迅速积累,并超过并网的规定范围,触动电路保护,使用这种方法进行检测,具有检测盲区小,检测准确度高的优点。
光伏并网发电系统的孤岛效应及检测措施
SMS
2 f fg m Sin( ) 360 2 fm f 位为°) ; fm ——产生该相角时的频率。 自动移相法是在滑动移相法的基础上进行了改进,加快了在电网断电后的相位 偏移量,但是算法稍复杂,系统参数较多。 依据AFDPF的工作原理,滑动移相法同样可以采用线性的频率正反馈加以简化 ( IM2SMS) 如式(6),同时引入初始附加相角以出发频率正反馈的有效动作。 (6) M SMS n( f f g ) F ( f f g ) 0 式中 n ——反馈增益; 0 ——常数。 当 f f g 0 时, F ( f f g ) 为1;当 f f g 0 时, F ( f f g ) 为-1[4]。 此检测方法实际是通过移相达到移频, 与主动频率偏移法AFD一样有实现简单、 无需额外硬件、孤岛检测可靠性高等优点,也有类似的弱点,即随着负载品质因数 增加,孤岛检测失败的可能性变大。 3)周期电流干扰检测法(ACD) 周期电流扰动法(Alternate CurrentDisturbances,ACD)是一种主动式孤岛检测 法。对于电流源控制型的逆变器来说,每隔一定周期, 减小光伏并网逆变器输出电流, 则改变其输出有功功率。当逆变器并网运行时, 其输出电压恒定为电网电压;当电 网断电时, 逆变器输出电压由负载决定。每每到达电流扰动时刻,输出电流幅值改变, 则负载上电压随之变化,当电压达到欠电压范围即可检测到孤岛发生。 4)频率突变检测法(FJ) 频率突变检测法是对AFD的修改,与阻抗测量法相类似。FJ检测在输出电流波 形(不是每个周期)中加入死区,频率按照预先设置的模式振动。例如,在第四个周 期加入死区,正常情况下,逆变器电流引起频率突变,但是电网阻止其波动。孤岛 形成后,FJ通过对频率加入偏差,检测逆变器输出电压频率的振动模式是否符合预 先设定的振动模式来检测孤岛现象是否发生。这种检测方法的优点是:如果振动模 式足够成熟,使用单台逆变器工作时,FJ防止孤岛现象的发生是有效的,但是在多
孤岛运行下的光伏发电技术
基于孤岛运行的光伏发电关键技术研究一、绪论太阳能作为一种绿色能源,是人类取用不竭的可靠能源。
大力开发和利用太阳能是建立起清洁和可持续发展能源体系的必由之路。
太阳能光伏发电是利用太阳能最灵活方便的一种方式,近年来在国际上受到广泛重视并取得了长足进展。
因此,深入研究光伏并网发电系统,对于节约常规能源、保护环境、促进经济发展都有极为重要的现实意义和深远的历史意义。
但光伏发电系统接入电网会给电网运行带来不利影响。
其中光伏发电最大的技术挑战和潜在危险就是孤岛效应,因此孤岛效应的检测和防护是目前颇受关注的一个课题。
1.1 孤岛检测的研究意义在光伏并网发电系统中,光伏发电系统不能直接与电网并联,而是通过逆变器作为接口元件与电网连接,这就涉及到一个新的安全问题“孤岛”。
随着光伏并网发电系统越来越多的被应用,孤岛日益成为人们关注的焦点。
图1.1 孤岛系统原理电路图孤岛效应是指当电网由于电气故障或自然因素等原因中断供电时,光伏并网发电系统仍然向周围的负载供电,从而形成一个电力公司无法控制的自给供电孤岛[1]。
孤岛系统原理电路图如图 1.1 所示,断路器断开时逆变器与RLC 负载就构成了一个“孤岛”。
光伏电池输出能量将随着太阳照射强度的变化而变化,当光照强度大时,光伏发电系统输出的功率较大。
当光伏逆变器输出的容量超出本地负载的需求时,多余的能量将输送到电网上供其他负载使用;当光照强度较弱或者晚间光伏电池完全停止工作时,光伏发电系统输出的能量降低或者为0,此时负载所需的能量由电网提供。
光伏并网发电系统处于孤岛运行状态时会产生严重的后果,其危害性在于:(1)孤岛产生后,电力系统不再能控制光伏电源,电源的电压和频率可能会产生大波动,对孤岛中的电力设备产生一定损害。
(2)孤岛并网重合闸时可能因为与电力系统电压相位相差过大,导致再次跳闸,严重时损坏发电设备。
(3)孤岛运行可能会对电力线路的维修人员造成伤害,降低电网安全性。
(4)电力孤岛区域如果过载运行可能会损坏逆变电源。
光伏逆变器——孤岛效应
光伏逆变器——孤岛效应
光伏逆变器是将直流电转换为交流电的设备,用于将太阳能电池板所产生的直流电转换为交流电,以供家庭或工业用电。
然而,在某些情况下,光伏逆变器可能会遭遇孤岛效应。
孤岛效应是指在一个电网中,由于某些原因,一部分区域的电力系统与其他区域隔绝,形成了一个“孤岛”。
在这种情况下,如果光伏逆变器仍在继续向孤岛供电,那么这些电力设备将无法确保电力质量和电力安全。
因为在孤岛效应的情况下,电压和频率可能会变化,这会影响到供电质量和设备安全,甚至可能会导致设备损坏。
为了避免孤岛效应,光伏逆变器需要具备逆变器控制功能,以便在发生孤岛效应时及时停止向孤岛供电。
同时,电力系统也需要具备相应的保护措施,如自动分闸系统和保护继电器等,以确保电力系统在孤岛效应发生时能够迅速地与其他电网断开连接,避免电力质量和设备安全问题。
总之,孤岛效应是光伏逆变器运行中需要注意的问题之一。
只有在逆变器控制和电力系统保护措施完备的情况下,才能确保光伏逆变器的正常运行和电力安全。
- 1 -。
光伏逆变器——孤岛效应
光伏逆变器一孤岛效应目录1.前言 (1)1. 1.什么是孤岛效应? (1)2. 2.危害 (2)2.防孤岛的工作原理 (3)3.防孤岛检测 (3)3.1.概述 (3)3.2.被动式 (3)3.2.1. (1).概述33.2.2.电压和频率检测法 (4)3.2.3.电压谐波检测法 (4)3.2.4.电压相位突变检测法 (4)3.3.主动式 (5)3.3. 1.概述 (5)3.3.1.输出频率扰动法——AFD (6)3.3.2.频率偏移检测法 (6)3.3.4.滑模频漂检测法 (6)3.3.5.电流干扰检测法 (7)3.3.6.频率突变检测法 (7)3.3.7.其他方法 (7)1.前言11.什么是孤岛效应?在电子电路中,孤岛效应是指电路的某个区域有电流通路而实际没有电流流过的现象。
在通信网络中,无线移动基站的覆盖可能会存在的一种现象。
孤岛效应(ISIandingEffeCt)是指电网突然失压时,并网光伏发电系统仍保持对电网中的邻近部分线路供电状态的一种效应。
孤岛效应是指当电网的部分线路因故障或维修而停电时,停电线路由所连的并网发电装置继续供电,并连同周围负载构成一个自给供电的孤岛的现象。
当电网由于电气故障或自然因素等原因中断供电时,光伏并网发电系统(逆变器)仍然向周围的负载供电,从而形成一个无法控制的自给供电孤岛。
在电容器串联的电路里,只有与外电路相连接的两个极板(注意:不是同一电容器的极板)有电流流动(电荷交换),其他极板的电荷总量是不变的,所以称为孤岛。
孤岛是一种电气现象,发生在一部分的电网和主电网断开,而这部分电网完全由光伏系统来供电。
在国际光伏并网标准化的课题上这仍是一个争论点,因为孤岛会损害公众和电力公司维修人员的安全和供电的质量,在自动或手动重新闭合供电开关向孤岛电网重新供电时有可能损坏设备。
所以,逆变器通常会带有防止孤岛效应装置。
被动技术(探测电网的电压和频率的变化)对于平衡负载很好条件下通电和重新通电两种情况下的孤岛防止还不够充分,所以必须结合主动技术,主动技术是基于样本频率的移位、流过电流的阻抗监测、相位跳跃和谐波的监控、正反馈方法、或对不稳定电流和相位的控制器基础上的。
关于并网逆变器孤岛效应保护和低电压穿越的判断依据及功能介绍
关于并网逆变器孤岛效应保护和低电压穿越的判断依据及功能介绍一、概述低电压穿越功能是指当电网电压跌落时并网逆变器能够正常并网一段时间,“穿越”这个低电压时间(区域)直到电网恢复正常;孤岛效应保护是指当电网断电时并网逆变器应立即停止并网发电,保护时间不超过0.2秒。
可以看出,孤岛效应保护与低电压穿越是相互矛盾的,两种功能不能同时并存,需要根据电站规模和要求进行选择,一般原则如下:✧对于小型光伏电站,并网逆变器在电网中所占的容量较小,对电网的影响较小,在电网故障时不会对电网的稳定性产生实质性的影响,所以应具备快速监测孤岛且立即断开与电网连接的能力,即此时并网逆变器应选择孤岛效应保护功能。
✧对于大中型光伏电站,并网逆变器在电网中所占的容量较大,对电网的影响较大,在电网故障时不会对电网的稳定性产生实质性的影响,所以应具备一定的低电压穿越能力,即此时并网逆变器应选择低电压穿越功能。
我司大功率并网逆变器同时具有孤岛效应保护与低电压穿越功能,在实际应用时可通过触摸屏菜单设置,也可通过RS485通讯方式由上位机进行远程设置。
二、低电压穿越功能介绍如图1所示,当并网点电压在图中电压轮廓线及以上的区域内时,并网逆变器必须保证不间断并网运行;并网点电压在图中电压轮廓线以下时,并网逆变器立即停止向电网线路送电。
其中T1=1秒,T3=3秒,也就是说,并网逆变器必须具有在电网电压跌至20%额定电压时能够维持并网运行1秒的低电压穿越能力,如电网电压在轮廓线内能够恢复到额定电压的90%时,并网逆变器必须保持并网运行。
图1:大型和中型光伏电站的低电压耐受能力要求为了实现并网逆变器的低电压穿越功能,并网逆变器需要采用新的软件控制算法,软件控制算法需实时监测电网,并判断电网是否发生电压跌落(平衡或者不平衡跌落)。
当CPU发现电网发生电压跌落故障时,立即启动低电压穿越功能,控制输出电流以及输出的功率,当电网电压在图1所示的曲线以内时,逆变器进入低电压穿越阶段;当电网进入电压恢复阶段,此时并网逆变器输出无功功率起到迅速支撑起电网电压的功能。
光伏逆变器防孤岛保护原理
光伏逆变器防孤岛保护原理
光伏逆变器防孤岛保护是指在光伏发电系统中,当主电网发生故障或停电时,逆变器能够及时检测到,并主动切断与主电网的连接,以防止光伏逆变器形成孤岛运行。
光伏逆变器防孤岛保护的原理主要包括两个方面:电流监测和频率监测。
1. 电流监测:当主电网故障或停电时,光伏逆变器通过感知电网电流的变化来判断是否发生了故障。
如果光伏逆变器检测到电网电流下降到一定程度或消失,则说明发生了故障或停电。
2. 频率监测:主电网的频率通常是恒定的,当发生故障或停电时,主电网的频率会发生变化。
光伏逆变器通过频率监测来检测主电网频率的变化情况。
如果光伏逆变器检测到主电网频率超出一定范围或变化较大,则说明发生了故障或停电。
当光伏逆变器同时检测到电流异常和频率异常时,会主动切断与主电网的连接,以避免形成孤岛运行。
切断连接后,光伏逆变器将停止向主电网注入电能,确保安全运行。
需要注意的是,光伏逆变器防孤岛保护的实现还需要符合相关的国家和地区的技术规范和标准,以确保系统的可靠性和安全性。
光伏并网逆变器一个有效的反孤岛解决方案
反孤岛解决方案1. 孤岛效应所谓孤岛效应,是指当电力公司因故障或停电维修而停止供电时,用户端的并网逆变器系统仍处于工作状态,使得并网逆变器和周围的负载形成了电力公司无法控制的自供电网络。
光伏并网发电系统处于孤岛运行状态时会产生严重的后果:(1)电网无法控制孤岛中的电压和频率,若电压和频率超出允许的范围,可能对用户的设备造成的损坏;(2)若负载容量大于光伏发电系统的容量,光伏发电系统过载运行,易被烧毁;(3)与光伏发电系统连接的电路仍会带电,对检修人员造成危险,降低电网的安全性;(4)对孤岛进行重合闸操作时会导致该线路再次跳闸,还有可能损坏光伏发电系统和其他设备。
因此,光伏并网逆变器具有孤岛检测和反孤岛的功能是很有必要的。
2. 孤岛检测检测孤岛效应的方法有很多种,主要分为两种:被动检测和主动检测。
被动检测就是光伏并网逆变器检测与电网连接处的电网电压或频率的异常来检测孤岛效应。
主动检测是有意的引入一些扰动信号,来监控系统中的电压、频率和阻抗的相应变化,以确定电网的存在与否。
比较被动检测和主动检测的区别,被动检测的软件实现比较简单,但是检测范围有限,无法满足并网发电系统反孤岛保护安全标准的要求,因此我们选择用主动检测的方法;而主动检测可以使孤岛检测的盲区尽可能的小,孤岛检测比较有效,但是软件实现比较复杂,并且会使并网发电系统的发电效率有所降低。
国际上对反孤岛检测方案和响应时间没有明确的规定, IEEE Std.929[2]和IEEE Std.1547[3]根据孤岛效应发生时的具体情况推荐了不同的孤岛效应检测时间。
表1为IEEE Std.1547[3]允许的孤岛效应检测时间。
n n n f 指电网电压的频率值。
对于中国的单相市电,n f 为50Hz 。
经研究讨论,根据逆变器的控制策略,我们选择了两种的孤岛检测的方法,滑膜频率偏移法(slip-mode frequency shift, SMS )和主动电流扰动法。
光伏发电并网系统的孤岛效应及反孤岛策略
光伏发电并网系统的孤岛效应及反孤岛策略近年来,随着能源的过度消耗,传统能源对环境带来的影响日益加重,人们逐渐意识到清洁能源的使用可以改善现有能源紧缺的状况,也可以改善能源使用对环境所带来的影响。
太阳能作为一种清洁、环保型的能源不仅无污染、可持续性强而且使用便捷,因此越来越多的人开始使用这种新型能源。
随着使用范围的扩大,它已经从补充型能源向替代型能源逐渐过渡。
孤岛效应是光伏发电中独有的故障,为了能够让清洁能源得到更好的利用,我们必须要制定对应的策略来改善孤岛效应带来的损害。
一、关于孤岛效应(一)概念它是指在光伏发电系统中,整个电力网络由于故障原因或是停电而出现跳闸断电的情况。
而此时各个分布式发电系统并没有检测出对应的故障问题,进而没有及时将光伏发电系统与电力网络断开,从而形成了一个以分布式发电系统以及其他负载组件共同形成的发电孤岛。
(二)危害1.一旦这种发电孤岛形成就会给系统内的电压和频率造成非常直接的影响,甚至会对相应的装置设备造成损害[1]。
2.而当故障解除之后,光伏发电系统在重新接入电力网络时又可能会出现电压不同步的情况,继而出现电流突变的情况,导致电力设备和其他器件受到损害。
3.断电之后的孤岛效应会造成接地故障无法彻底清除,给电力系统造成影响。
4.孤岛效应很容易给工作人员带来认知偏差,认为是电力网络断电,进而做出错误的判断,给工作人员的人身安全带来威胁。
为了避免孤岛效应给设备和工作人员造成危害,就必须要在出现此类情况时具备一定的防御保护能力,进而确保设备完好、人员安全。
二、关于孤岛效应危害的解决策略触发孤岛效应出现的必要条件就是光伏系统内的输出功率与其负载功率相互匹配。
依据孤岛效应的检测规定,当发电系统中所输出的有功功率和负载有功功率之间出现5%的误差且持续时间长达2s以上,便可以确定光伏发电的孤岛效应已经产生。
因此我们可以得出结论,孤岛效应的出现与功率数值是否匹配以及其所能够持续的时间有紧密的联系。
光伏孤岛装置的作用、光伏电站反孤岛保护装置的作用
光伏孤岛装置的作用、光伏电站反孤岛保护装置的作用
国家电网针对分布式光伏电站有了更加明确的规定,就是根据光伏的安装容量大小和变压器的自身容量,加装反孤岛装置。
若不加装反孤岛,接入的光伏容量最多只能为变压器的25%,若加装反孤岛装置,可以增加到变压器的80%。
由此看来,加装反孤岛装置对于分布式光伏电站是非常重要的,起着非常重要的作用。
首先来说,反孤岛装置是一个柜子的形式出现,它不同于防孤岛装置。
防孤岛保护装置一般安装在并网柜中,当电网出现异常时候,跳开并网开关因此在防孤岛概念中有主动式防孤岛和被动式防孤岛之分。
反孤岛装置是一个配电柜。
里面的核心元件为扰动电阻,控制元件,反孤岛开关等。
其主要作用为当电网失电的情况下,如果400V母线依然有电,这时候启动反孤岛装置。
通过投入反孤岛来扰动400V母线电压,从而迫使逆变器停止运行。
保证检修人员的安全。
国家电网的典型设计规范如下图所示:
一般来讲,国家电网使用的JP柜都是三路馈线,这样一来,需要反孤岛装置配有三组开关来配合使用。
一般都是用于低压400V的电压等级。
如果是10KV或者更高的电压等级,使用的应该是防孤岛保护装置了。
如今集中式光伏电站逐渐减少。
屋顶式光伏电站逐渐增多。
而且对于大多数的扶贫项目来说,都是安装容量比较小的而且安装比较分散,使用的多为公变。
这样一来即时电网停电了。
逆变器也极大可能处于发电状态,这种孤网运行是不允许存在的,因此在检修前如电网有此现象,立即投入反孤岛。
光伏发电之孤岛效应
光伏发电之孤岛效应独立光伏发电也叫离网光伏发电。
主要由太阳能电池组件、控制器、蓄电池组成,若要为交流负载供电,还需要配置交流逆变器。
独立光伏电站包括边远地区的村庄供电系统,太阳能户用电源系统,通信信号电源、阴极保护、太阳能路灯等各种带有蓄电池的可以独立运行的光伏发电系统。
并网光伏发电并网光伏发电就是太阳能组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网。
可以分为带蓄电池的和不带蓄电池的并网发电系统。
带有蓄电池的并网发电系统具有可调度性,可以根据需要并入或退出电网,还具有备用电源的功能,当电网因故停电时可紧急供电。
带有蓄电池的光伏并网发电系统常常安装在居民建筑;不带蓄电池的并网发电系统不具备可调度性和备用电源的功能,一般安装在较大型的系统上。
并网光伏发电有集中式大型并网光伏电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电。
但这种电站投资大、建设周期长、占地面积大,还没有太大发展。
而分散式小型并网光伏,特别是光伏建筑一体化光伏发电,由于投资小、建设快、占地面积小、政策支持力度大等优点,是并网光伏发电的主流。
分布式光伏发电系统,又称分散式发电或分布式供能,是指在用户现场或靠近用电现场配置较小的光伏发电供电系统,以满足特定用户的需求,支持现存配电网的经济运行,或者同时满足这两个方面的要求。
分布式光伏发电系统的基本设备包括光伏电池组件、光伏方阵支架、直流汇流箱、直流配电柜、并网逆变器、交流配电柜等设备,另外还有供电系统监控装置和环境监测装置。
其运行模式是在有太阳辐射的条件下,光伏发电系统的太阳能电池组件阵列将太阳能转换输出的电能,经过直流汇流箱集中送入直流配电柜,由并网逆变器逆变成交流电供给建筑自身负载,多余或不足的电力通过联接电网来调节。
国家将为5MW(兆瓦)以下的小型分布式光伏电站提供每度电0.47元的额外补贴加上目前4毛钱的并网电价,每度电也能卖到将近1块钱。
光伏电站中的孤岛效应
光伏电站中的孤岛效应防孤岛效应是光伏系统中的一个重要环节1. 孤岛效应概述孤岛现象是指:当电网由于电气故障或自然因素等缘由中断供电时,光伏并网发电系统仍旧向四周的负载供电,从而形成一个电力公司无法掌握的自给供电孤岛。
由于光伏发电系统与电网并联工作时,电网会由于故障设备检修或操作失误等缘由停止工作,也就是说孤岛效应是光伏并网发电系统中普遍存在的一个问题,因此精确准时地检测出孤岛效应,是光伏并网发电系统设计中的一个关键性问题。
当孤岛效应发生时,将造成以下危害:①电网无法掌握孤岛中的电压和频率,假如电压和频率超出允许的范围,可能会对用户的设备造成损坏;②假如负载容量大于逆变电源容量逆变,电源过载运行,简单被烧毁;③与逆变电源相连的线路仍旧带电,对检修人员造成危害,降低电网的平安性;④对孤岛进行重合闸会导致该线路再次跳闸,还有可能损坏逆变电源和其他设备。
光伏并网系统防孤岛爱护装置实物图2. 孤岛效应的检测方法孤岛现象的消失,严峻影响电力系统的平安和正常运行,从用电平安与电能质量考虑,孤岛效应是不允许消失的,当孤岛发生时必需快速、精确地切出并网逆变器,因此对于孤岛效应应进行检测及掌握。
孤岛效应检测方法主要分为被动式和主动式两种:被动式孤岛检测方法,通过检测逆变器的输出是否偏离并网标准规定的范围,如电压、频率或相位,推断孤岛效应是否发生。
该方法工作原理简洁,简单实现,但在逆变器输出功率与局部负载功率平衡时,无法检测出孤岛效应的发生。
主动式孤岛检测方法是指通过掌握逆变器使其输出功率频率和相位存在肯定的扰动。
电网正常工作时,由于电网的平衡作用,这些扰动检测不到。
一旦电网消失故障逆变器输出的扰动将快速累积并超出并网标准允许的范围,从而触发孤岛效应的爱护电路。
该方法检测精度高,检测盲区小,但是掌握较简单,且降低了逆变器输出电能的质量。
防孤岛检测模拟示意图(1)被动方法被动式孤岛效应检测方法的工作原理是指依据电网断电时逆变器输出电压、频率的转变,推断出是否发生孤岛效应。
光伏并网柜的防孤岛保护
什么是"孤岛效应"?-光伏并网柜的防孤岛保护装置防孤岛保护是对分布式光伏电站有着重要保护作用的。
即当电网出现电压高、电压低、频率高、频率低故障时,光伏并网开关及时跳闸。
当电网恢复供电并且电压和频率达到允许值时,并网开关要自动合闸。
这样的目的是在为了国家电网不受太大影响的情况下,尽可能保证光伏的发电效率。
什么是“孤岛效应”当光伏电站出现孤岛效应时,即当电网由于某种故障原因造成失压时,应具备快速监测孤岛并立即断开与电网连接的能力,局部电网出现孤岛会影响到供电质量和维修人员的生命安全,所以在光伏电站中必需要配备防孤岛保护装置。
而光伏防孤岛保护装置就是为了解决“孤岛效应”的。
防孤岛保护装置能够精确检定并网点的电压、频率,然后当电压、频率出现波动且大于定值时跳闸出口动作,断开并网开关。
1、防孤岛保护·存在的意义据了解,在能源转型的目标下,各省可再生能源占比目标都在相应提高,加上最近光伏成本下降潜力可期,各省的初步规划对于光伏的发展有着非常积极的推动,尤其是光照资源优渥的西部以及东北地区,各省份年均新增规模高达1GW至5GW。
回望刚过去的五年,是中国光伏电站建设快速发展的一段历程,现在光伏行业正昂首阔步迈向新的征程。
根据光伏电站电压等级不同,配置防孤岛保护的要求也不一样。
0.4kV~10kV电压等级分布式光伏电站,只需逆变器具备快速监测孤岛并立即断开与电网连接的能力。
而对于35kV及以上电压等级的光伏电站,主电网继电保护装置必须保证主电网故障时切除光伏电站,此时应配备孤岛保护装置。
防孤岛保护:根据《光伏发电站接入电力系统技术规定》GB/T19964-2012第12.3.3条的规定:“光伏发电站应配置独立的防孤岛保护装置,动作时间应不大于2s。
”以及《光伏发电站接入电力系统设计规范》GB/T50866-2013第6.3.2条的规定:“光伏发电站需要配置独立的防孤岛保护装置,保证电网故障及检修时的安全”。
光伏并网逆变器的孤岛效应保护原理介绍(甘电投金塔)
光伏并网逆变器的孤岛效应保护原理介绍
所谓“孤岛效应”是指当电网的部分线路因故障或维修而停电时,停电线路由所连的并网发电装置继续供电,并连同周围负载构成一个自给供电的孤岛的现象。
一般来说,孤岛效应可能对整个配电系统设备及用户端的设备造成不利的影响,主要包括:
电力公司输电线路维修人员的安全危害;
影响配电系统上的保护开关动作程序;
电力孤岛区域所发生的供电电压与频率的不稳定现象;
当电力公司供电恢复时所造成的相位不同步问题;
太阳能供电系统因单相供电而造成系统三相负载的欠相供电问题。
防止孤岛效应的基本点和关键点是电网断电的检测,为了能快速检测到电网断电,通常需要采用被动式和主动式两种“孤岛效应”检测方法,一旦确认电网失电,均会在几个周期内将逆变器与电网断开并停止逆变器的运行。
我司并网逆变器采用了主动式与被动式相结合的孤岛效应检测方法:
被动式孤岛效应检测方法:实时检测电网电压的幅值、频率和相位,当电网失电时,会在电网电压的幅值、频率和相位参数上,产生跳变信号,通过检测跳变信号来判断电网是否失电。
主动式孤岛效应检测方法:指对电网参数产生小干扰信号,通过检测反馈信号来判断电网是否失电。
我司并网逆变器采用的是主动频移反孤岛策略,通过对输出电流在并网点的频率进行小的扰动,当电网有电时,该扰动对电网电压的频
率没有任何影响,当电网失电时,该扰动将会引起电网电压频率发生较大变化,从而判断电网是否失电。
当并网逆变器检测到电网失电后,在0.2秒内停止运行并与电网断开。
当电网恢复供电时,并网逆变器并不会立即投入运行,而是需要持续检测电网信号在一段时间内完全正常(默认时间5分钟),才重新投入并网运行。
并网逆变器孤岛效应保护流程简图。
关于并网逆变器孤岛效应保护和低电压穿越的判断依据及功能介绍
关于并网逆变器孤岛效应保护和低电压穿越的判断依据及功能介绍阳光电源股份有限公司2011.4一、概述低电压穿越功能是指当电网电压跌落时并网逆变器能够正常并网一段时间,“穿越”这个低电压时间(区域)直到电网恢复正常;孤岛效应保护是指当电网断电时并网逆变器应立即停止并网发电,保护时间不超过0.2秒。
可以看出,孤岛效应保护与低电压穿越是相互矛盾的,两种功能不能同时并存,需要根据电站规模和要求进行选择,一般原则如下:✧对于小型光伏电站,并网逆变器在电网中所占的容量较小,对电网的影响较小,在电网故障时不会对电网的稳定性产生实质性的影响,所以应具备快速监测孤岛且立即断开与电网连接的能力,即此时并网逆变器应选择孤岛效应保护功能。
✧对于大中型光伏电站,并网逆变器在电网中所占的容量较大,对电网的影响较大,在电网故障时不会对电网的稳定性产生实质性的影响,所以应具备一定的低电压穿越能力,即此时并网逆变器应选择低电压穿越功能。
我司大功率并网逆变器同时具有孤岛效应保护与低电压穿越功能,在实际应用时可通过触摸屏菜单设置,也可通过RS485通讯方式由上位机进行远程设置。
二、低电压穿越功能介绍如图1所示,当并网点电压在图中电压轮廓线及以上的区域内时,并网逆变器必须保证不间断并网运行;并网点电压在图中电压轮廓线以下时,并网逆变器立即停止向电网线路送电。
其中T1=1秒,T3=3秒,也就是说,并网逆变器必须具有在电网电压跌至20%额定电压时能够维持并网运行1秒的低电压穿越能力,如电网电压在轮廓线内能够恢复到额定电压的90%时,并网逆变器必须保持并网运行。
图1:大型和中型光伏电站的低电压耐受能力要求为了实现并网逆变器的低电压穿越功能,并网逆变器需要采用新的软件控制算法,软件控制算法需实时监测电网,并判断电网是否发生电压跌落(平衡或者不平衡跌落)。
当CPU发现电网发生电压跌落故障时,立即启动低电压穿越功能,控制输出电流以及输出的功率,当电网电压在图1所示的曲线以内时,逆变器进入低电压穿越阶段;当电网进入电压恢复阶段,此时并网逆变器输出无功功率起到迅速支撑起电网电压的功能。
光伏并网发电系统的孤岛检测方法
光伏并网发电系统的孤岛检测方法光伏并网发电系统的孤岛检测方法【大比特导读】光伏并网发电系统不允许运行在孤岛状态,因此孤岛检测是光伏并网逆变器的核心技术之一。
本文介绍了光伏并网发电系统孤岛检测的原理和研究进展。
对比分析了常用的孤岛检测方法的优缺点及其改进策略。
摘要:光伏并网发电系统不允许运行在孤岛状态,因此孤岛检测是光伏并网逆变器的核心技术之一。
本文介绍了光伏并网发电系统孤岛检测的原理和研究进展。
对比分析了常用的孤岛检测方法的优缺点及其改进策略。
关键字:分布式并网发电系统,孤岛现象,1引言“孤岛”是指公共电网停止供电后,各个用户端的分布式并网发电系统未能及时检测出停电状态,继续向周围的负载供电,从而形成一个公共电网无法控制的自给供电网络,如图1所示。
孤岛现象可能造成以下危害:威胁电力公司输电线路维修人员的人身安全;影响电能质量,造成孤岛区的电压与频率不稳定,并可能损坏用电设备;对于单相光伏并网的三相系统造成欠相供电问题等[2]。
因此,孤岛检测是光伏并网发电系统中不可缺少的重要环节。
针对分布式发电系统的并网问题,美国电气及电子工程师协会制订的光伏系统并网标准IEEE Std. 929-2000 中规定:(1)PV逆变器输出有功功率与负载消耗功率的失配度大于50%;或:本地负载功率因数小于95%时,电网失压后必须在10个周波内停止向电网供电。
(2)有功功率失配度在50%内且本地负载功率因数大于95%时,逆变器应能在电网失压后2s内停止对电网供电。
上述指标针对的是负载品质因数小于2.5的并联谐振负载。
中国国家标准请参看GB/T20046-2006“光伏(PV)系统电网接口特性”。
2 被动式孤岛检测方法被动式(又称无源法)孤岛检测方法通过被动地监测公共耦合点(Point of Common Coupling, PCC)电压的参数(电压幅值、频率、谐波等)是否超过设定的阈值来控制逆变器是否停止运行。
其特点是:不需要添加扰动,因此检测速度快,输出电能质量高;在多台逆变器并联运行的情况下,检测效率也不会降低;但存在较大的检测盲区(Nondetection Zone, NDZ),一般应与主动式检测方法结合使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光伏并网逆变器的孤岛效应保护原理介绍
所谓“孤岛效应”是指当电网的部分线路因故障或维修而停电时,停电线路由所连的并网发电装置继续供电,并连同周围负载构成一个自给供电的孤岛的现象。
一般来说,孤岛效应可能对整个配电系统设备及用户端的设备造成不利的影响,主要包括:
电力公司输电线路维修人员的安全危害;
影响配电系统上的保护开关动作程序;
电力孤岛区域所发生的供电电压与频率的不稳定现象;
当电力公司供电恢复时所造成的相位不同步问题;
太阳能供电系统因单相供电而造成系统三相负载的欠相供电问题。
防止孤岛效应的基本点和关键点是电网断电的检测,为了能快速检测到电网断电,通常需要采用被动式和主动式两种“孤岛效应”检测方法,一旦确认电网失电,均会在几个周期内将逆变器与电网断开并停止逆变器的运行。
我司并网逆变器采用了主动式与被动式相结合的孤岛效应检测方法:
被动式孤岛效应检测方法:实时检测电网电压的幅值、频率和相位,当电网失电时,会在电网电压的幅值、频率和相位参数上,产生跳变信号,通过检测跳变信号来判断电网是否失电。
主动式孤岛效应检测方法:指对电网参数产生小干扰信号,通过检测反馈信号来判断电网是否失电。
我司并网逆变器采用的是主动频移反孤岛策略,通过对输出电流在并网点的频率进行小的扰动,当电网有电时,该扰动对电网电压的频
率没有任何影响,当电网失电时,该扰动将会引起电网电压频率发生较大变化,从而判断电网是否失电。
当并网逆变器检测到电网失电后,在0.2秒内停止运行并与电网断开。
当电网恢复供电时,并网逆变器并不会立即投入运行,而是需要持续检测电网信号在一段时间内完全正常(默认时间5分钟),才重新投入并网运行。
并网逆变器孤岛效应保护流程简图。