PN结反向击穿原理

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当PN结上加的反向电压增大到一定数值时,反向电流突然剧增,这种现象称为PlN结的反向击穿。PN结出现击穿时的反向电压称为反向击穿电压,用u。。表示。反向击穿可分为雪崩击穿和齐纳击穿两类。

(1)雪崩击穿。当反向电压较高时,结内电场很强,使得在结内作漂移运动的少数载流子获得很大的动能。当它与结内原子发生直接碰撞时,将原子电离,产生新的“电子一空穴对”。这些新的“电子一空穴对”,又被强电场加速再去碰撞其他原子,产生更多的“电子一空穴对”。如此链锁反应,使结内载流子数目剧增,并在反向电压作用下作漂移运动,形成很大的反向电流。这种击穿称为雪崩击穿。显然雪崩击穿的物理本质是碰撞电离。

(2)齐纳击穿。齐纳击穿通常发生在掺杂浓度很高的PN

结内。由于掺杂浓度很高,PN结很窄,这样即使施加较小的反向电压(5v以下),结层中的电场却很强(可达2.5×1旷V/m左右)。在强电场作用下,会强行促使PN结内原子的价电子从共价键中拉出来,形成“电子一空穴对”,从而产生大量的载流子。

它们在反向电压的作用下,形成很大的反向电流,出现了击穿。

显然,齐纳击穿的物理本质是场致电离。

采取适当的掺杂工艺,将硅PN结的雪崩击穿电压可控制在8~1000V。而齐纳击穿电压低于5V。在5~8v 之间丽种击穿可能同时发生。

PN结的V-I特性曲线,当PN结两端的反向电压增大到一定数值时,反向电流突然增加。这个现象就称为PN结的反向击穿(电击穿)。发生击穿所需的反向电压

VBR称为反向击穿电压。

PN结电击穿从其产生原因又可分为雪崩击穿和齐纳击穿两种类型。

一、雪崩击穿:

当PN结反向电压增加时,空间电荷区中的电场随着增强。通过空间电荷区的电子和空穴,在电场作用下获得的能量增大,在晶体中运动的电子和空穴,将不断地与晶体原子发生碰撞,当电子和空穴的能量足够大时,通过这样的碰撞,可使共价键中的电子激发形成自由电子—空穴对,这种现象称为碰撞电离。新产生的电子和空穴与原有的电子和空穴一样,在电场作用下,也向相反的方向运动,重新获得能量,又可通过碰撞,再产生电子—空穴对,这就是载流子的倍增效应。当反向电压增大到某一数值后,载流子的倍增情况就像在陡峻的积雪山坡上发生雪崩一样,载流子增加得多而快,使反向电流急剧增大,于是PN 结就发生雪崩击穿。

雪崩击穿多发生在杂质浓度较低的二极管,一般需要比较高的电压(>6V),击穿电压与浓度成反比。

二、齐纳击穿:

在加有较高的反向电压下,PN结空间电荷区中存在一个强电场,它能够破坏共价键将束缚电子分离出来造成电子—空穴对,形成较大的反向电流。发生齐纳击穿需要的电场强度约为2*105V/cm,这只有在杂质浓度特别大的PN结中才能达到,因为杂质浓度大,空间电荷区内电荷密度(即杂质离子)也大,因而空间电荷区很窄,电场强度就可能很高。一般整流二极管掺杂浓度没有这么高,它在电击穿中多数是雪崩击穿造成的。

齐纳击穿多数出现在杂质浓度较高的二极管,如稳压管(齐纳二极管)。

必须指出,上述两种电击穿过程是可逆的,当加在稳压管两端的反向电压降低

后,管子仍可以恢复原来的状态。但它有一个前提条件,就是反向电流和反向

电压的乘积不超过PN结容许的耗散功率,超过了就会因为热量散不出去而使PN 结温度上升,直到过热而烧毁,这种现象就是热击穿。所以热击穿和电击穿的

概念是不同的。电击穿往往可为人们所利用(如稳压管),而热击穿则是必须尽

量避免的。

晶体管的击穿分为一次击穿和二次击穿,一次击穿又称雪崩击穿。一次击穿是

一种可恢复性击穿;二次击穿为不可恢复击穿,或称破坏性击穿。

PN结的反向击穿电压是多少?二极管三极管和稳压管是否一样呢?

不一样,BC结的反向击穿电压低的几十伏,高的数百伏,但有一点是一样的,就是NPN管的BE结反向击穿电压都是6V左右,因此NPN管的BE结可当6V稳压管用. 补充:应该是所有硅材料管(PNP和NPN)的BE结都有反向击穿电压都是6V这特性,利用这特性可鉴别管子的C和E脚,用10K档分别测BC和BE的反向电阻,击穿的是BE结。

相关文档
最新文档