2017-2018年安徽省合肥一中高一上学期数学期末试卷(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年安徽省合肥一中高一(上)期末数学试卷

一、选择题(本题共12道小题,每小题5分,共60分)

1.(5分)已知集合M={x|﹣1≤x<8},N={x|x>4},则M∪N=()A.(4,+∞)B.[﹣1,4)C.(4,8)D.[﹣1,+∞)2.(5分)函数的定义域为()

A.(﹣2,+∞)B.(﹣2,﹣1)∪(﹣1,+∞)

C.D.(﹣∞,﹣1)∪(1,+∞)

3.(5分)已知函数y=sin(2x+φ)在x=处取得最大值,则函数y=cos(2x+φ)的图象()

A.关于点(,0)对称B.关于点(,0)对称

C.关于直线x=对称D.关于直线x=对称

4.(5分)已知a=2﹣1.2,b=log36,c=log510,则a,b,c的大小关系是()A.c<b<a B.c<a<b C.a<b<c D.a<c<b 5.(5分)若将函数f(x)=sin(2x+)图象上的每一个点都向左平移个单位,得到g(x)的图象,则函数g(x)的单调递增区间为()

A.[kπ﹣,kπ+](k∈Z)B.[kπ+,kπ+](k∈Z)

C.[kπ﹣,kπ﹣](k∈Z)D.[kπ﹣,kπ+](k∈Z)6.(5分)对于定义在R上的函数y=f(x),若f(a)•f(b)<0(a,b∈R,且a<b),则函数y=f(x)在区间(a,b)内()

A.只有一个零点B.至少有一个零点

C.无零点D.无法判断

7.(5分)已知函数f(x)=x2•sin(x﹣π),则其在区间[﹣π,π]上的大致图象是()

A.B.

C.D.

8.(5分)已知=(2sin13°,2sin77°),|﹣|=1,与﹣的夹角为,则•=()

A.2B.3C.4D.5

9.(5分)(理)设点是角α终边上一点,当最小时,sinα﹣cosα的值是()

A.B.C.或D.或10.(5分)已知函数f(x)=,若a、b、c互不相等,且f (a)

=f (b)=f (c),则a+b+c 的取值范围是()

A.(1,2 017)B.(1,2 018)C.[2,2 018]D.(2,2 018)11.(5分)已知A,B是单位圆O上的两点(O为圆心),∠AOB=120°,点C是线段AB上不与A、B重合的动点.MN是圆O的一条直径,则•的取值范围是()

A.B.[﹣1,1)C.D.[﹣1,0)12.(5分)已知α∈[,],β∈[﹣,0],且(α﹣)3﹣sinα﹣2=0,8β3+2cos2β+1=0,则sin(+β)的值为()

A.0B.C.D.1

二、填空题(本题共4道小题,每小题5分,共20分)

13.(5分)已知函数y=f(x)是定义在R上的奇函数,且周期为4,若f(﹣1)

=2,且函数的则f(2017)的值为.

14.(5分)已知定义域为R的奇函数f(x)在(0,+∞)上是增函数,且f()=0,则不等式f(log4x)>0的解集是.

15.(5分)已知||=4,||=8,=x,且x+2y=1,∠AOB是钝角,

若f(t)=||的最小值为2,则||的最小值是.

16.(5分)已知函数f(x)=2sin (2x+),记函数f(x)在区间[t,t+]上的最大值为M t最小值为m t,设函数h(t)=M t﹣m t,若t∈[],则函数h(t)的值域为.

三、解答题(本题共6道题,17题10分,18-22题每题12分,共70分)17.(10分)已知集合A={x|m﹣1≤x≤2m+3},函数f(x)=lg(﹣x2+2x+8)的定义域为B.

(1)当m=2时,求A∪B、(∁R A)∩B;

(2)若A∩B=A,求实数m的取值范围.

18.(12分)已知sin(π﹣α)﹣cos(π+α)=.求下列各式的值:

(1)sinα﹣cosα;

(2).

19.(12分)函数f(x)=log a(1﹣x)+log a(x+3)(0<a<1).

(1)求函数f(x)的零点.

(2)若函数f(x)的最小值为﹣2,求a的值.

20.(12分)如图,在平面直角坐标系中,点,,锐角α的终边与单位圆O交于点P.

(Ⅰ)当时,求α的值;

(Ⅱ)在轴上是否存在定点M,使得恒成立?若存在,求出点M 的横坐标;若不存在,说明理由.

21.(12分)已知函数f(x)为R上的偶函数,g(x)为R上的奇函数,且f(x)+g(x)=log 4(4x+1).

(1)求f(x),g(x)的解析式;

(2)若函数h(x)=f(x)﹣在R上只有一个零点,求实数a的取值范围.

22.(12分)已知f(x)=ax2﹣2x+2,a∈R

(1)已知h(10x)=f(x)+x+1,求h(x)的解析式;

(2)若f(x)>0在x∈[1,2]恒成立,求a的取值范围;

(3)设函数F(x)=|f(x)|,若对任意x1,x2∈[1,2],且x1≠x2,满足>0,求实数a的取值范围.

2017-2018学年安徽省合肥一中高一(上)期末数学试卷

参考答案与试题解析

一、选择题(本题共12道小题,每小题5分,共60分)

1.(5分)已知集合M={x|﹣1≤x<8},N={x|x>4},则M∪N=()A.(4,+∞)B.[﹣1,4)C.(4,8)D.[﹣1,+∞)【解答】解:∵集合M={x|﹣1≤x<8},N={x|x>4},

∴M∪N={x|x≥﹣1}=[﹣1,+∞).

故选:D.

2.(5分)函数的定义域为()

A.(﹣2,+∞)B.(﹣2,﹣1)∪(﹣1,+∞)

C.D.(﹣∞,﹣1)∪(1,+∞)

【解答】解:由,解得x>﹣2且x≠﹣1.

∴函数的定义域为(﹣2,﹣1)∪(﹣1,+∞).

故选:B.

3.(5分)已知函数y=sin(2x+φ)在x=处取得最大值,则函数y=cos(2x+φ)的图象()

A.关于点(,0)对称B.关于点(,0)对称

C.关于直线x=对称D.关于直线x=对称

【解答】解:∵函数y=sin(2x+φ)在x=处取得最大值,∴sin(+φ)=1,∴cos(+φ)=0,∴函数y=cos(2x+φ)的图象关于点(,0)对称,

故选:A.

4.(5分)已知a=2﹣1.2,b=log36,c=log510,则a,b,c的大小关系是()A.c<b<a B.c<a<b C.a<b<c D.a<c<b

【解答】解:a=2﹣1.2<1,b=log36=1+log32,c=log510=1+log52,而log32>log52>0,∴b>c.

相关文档
最新文档