复合材料的结构复合材料=基体 增强体
复合材料中基体和增强体的作用
复合材料中基体和增强体的作用一、引言复合材料是由两种或两种以上的不同材料组成的,其中基体和增强体是其最基本的组成部分。
基体是指复合材料中主要承受载荷的材料,而增强体则是为了增加其力学性能而添加到基体中的材料。
本文将详细探讨复合材料中基体和增强体的作用。
二、基体的作用1. 承载载荷基体是复合材料中最主要的承载载荷的材料。
它需要具备足够的强度和刚度来承受外部荷载,并且必须具有足够的韧性来防止断裂和破坏。
因此,在选择基体时,需要考虑其力学性能、化学稳定性、加工性能等因素。
2. 保护增强体在复合材料中,增强体容易受到外界环境和荷载的影响而发生破坏。
而基体可以起到保护增强体的作用,防止其在使用过程中发生损伤。
同时,基体还可以通过与增强体之间形成良好的结合来提高整个复合材料系统的力学性能。
3. 调节复合材料的性能基体的材料种类和性质可以影响复合材料的力学、热学、电学等性能。
例如,选择不同种类的基体可以使复合材料具有不同的强度、刚度和韧性等性能。
此外,基体还可以通过调节增强体的分布和排列方式来影响复合材料的力学性能。
三、增强体的作用1. 增加复合材料的强度和刚度增强体是为了增加复合材料的力学性能而添加到基体中的材料。
它通常具有高强度和高刚度,可以在很大程度上增加复合材料的整体强度和刚度。
在选择增强体时,需要考虑其与基体之间形成良好结合以及其自身特点。
2. 提高耐磨损性某些增强体具有较高的硬度和耐磨损性,在使用过程中可以有效地提高复合材料系统对摩擦磨损等外部环境因素的抵抗能力。
3. 改善阻尼特性一些特殊类型的增强体(如碳纤维)具有良好的阻尼特性,在使用过程中可以减少材料的振动和噪音,提高其使用寿命。
四、基体和增强体的协同作用基体和增强体之间需要形成良好的结合,才能发挥最佳的性能。
良好的结合可以使复合材料系统具有更高的强度、刚度和韧性等性能。
同时,基体和增强体之间还可以通过相互作用来改善复合材料系统的耐热性、耐腐蚀性等特殊性能。
复合材料基础
复合材料基础复合材料是由两种或两种以上的成分组成的材料,具有优异的性能和广泛的应用。
它由增强体和基体组成,增强体可以是纤维、颗粒或片材,基体可以是金属、陶瓷或高分子等。
复合材料的性能取决于增强体和基体的选择和设计,其特点是轻质、高强度、耐腐蚀、耐磨损等。
复合材料的增强体可以是玻璃纤维、碳纤维、芳纶纤维等。
这些纤维具有优良的机械性能和化学稳定性,能够增加复合材料的强度和刚度。
其中,碳纤维是一种高强度、高模量的纤维,被广泛应用于航空航天、汽车、体育器材等领域。
而玻璃纤维则具有良好的电绝缘性能和耐腐蚀性能,常用于电子、建筑等领域。
复合材料的基体可以是金属、陶瓷或高分子。
金属基复合材料具有良好的导热性和导电性,广泛应用于航空航天、能源等领域。
陶瓷基复合材料具有优异的抗磨损、耐高温性能,常用于摩擦材料、切削工具等。
高分子基复合材料具有良好的绝缘性能和耐腐蚀性能,广泛应用于电子、汽车、船舶等领域。
复合材料的制备过程包括增强体的制备和基体的制备。
增强体的制备主要通过纤维拉伸、层叠和浸渍等工艺来实现。
基体的制备可以通过热固化、热塑性和自固化等方法来实现。
制备过程中需要考虑增强体与基体之间的界面结合强度,以保证复合材料的整体性能。
复合材料的性能可以通过控制增强体和基体的比例、形状和分布来实现。
增加纤维含量可以提高复合材料的强度和刚度,但也会增加材料的成本。
优化界面结合可以提高复合材料的耐久性和抗冲击性能。
此外,还可以通过添加填料、改变纤维的取向和交错方式等方法来改善复合材料的性能。
复合材料的应用十分广泛,涵盖了航空航天、汽车、建筑、电子、体育器材等众多领域。
在航空航天领域,复合材料被广泛应用于飞机机身、机翼、螺旋桨等部件,以减轻重量并提高性能。
在汽车领域,复合材料被用于车身、底盘等部件,以提高燃油经济性和安全性。
在建筑领域,复合材料被用于桥梁、楼板等结构,以提高承载能力和耐久性。
复合材料作为一种新型材料,具有独特的性能和广泛的应用前景。
复合材料中基体和增强体的作用
复合材料中基体和增强体的作用复合材料是由至少两种不同材料组成的材料,主要包括基体和增强体。
基体是复合材料的主体组成部分,起到支撑和固定增强体的作用。
增强体则是基体中的强化组分,负责提高复合材料的力学性能。
基体是复合材料的主要组成部分,起到支撑和固定增强体的作用。
基体通常是一种具有良好的柔韧性和强度的材料,如树脂、金属、陶瓷等。
基体的选择需要考虑复合材料的使用环境、应力要求以及成本等因素。
基体的性能决定了复合材料的整体性能,如强度、刚度、耐磨性等。
增强体是复合材料中起到强化作用的组分,通常是纤维、颗粒或片层状的材料。
增强体可以提高复合材料的强度、刚度和耐用性。
常见的增强体包括碳纤维、玻璃纤维、芳纶纤维等。
增强体的选择取决于对复合材料所需的特定性能,如高强度、高刚度或高温耐受性。
基体和增强体的相互作用是复合材料性能的关键因素。
增强体的存在增加了复合材料的强度和刚度,同时还可以提高材料的耐腐蚀性和耐磨性。
基体则提供支撑和固定增强体的功能,防止其从基体中脱离。
1.机械锁定作用:基体和增强体之间的力学锁定作用是通过增强体与基体之间的相互作用力和摩擦力来实现的。
增强体的形状和分布对锁定效果起到重要作用。
2.能量转化作用:增强体能吸收和分散外部载荷作用时的能量,通过增强体和基体之间的相互作用将能量转移到基体中,从而提高了复合材料的韧性和抗冲击性能。
3.功率传递作用:增强体通过相互作用将应力传递到基体中,增加了复合材料的整体强度和刚度。
增强体的刚度和强度越高,功率传递效果越好。
4.界面作用:基体和增强体的界面对于复合材料的性能起着重要作用。
界面的结构和性质影响着基体和增强体之间的相互作用,如界面的粘着强度和亲和性。
5.互补效应:基体和增强体的不同性质和结构相互补充,共同提高了复合材料的综合性能。
增强体可以弥补基体的缺陷,提高复合材料的强度和刚度,而基体可以提供增强体所不具备的柔韧性。
综上所述,基体和增强体在复合材料中具有不可替代的作用。
结构复合材料
结构复合材料结构复合材料是由两种或两种以上不同性质的材料按一定规律、顺序和组合方式结合在一起,形成具有新的组织结构和性能的材料。
它具有独特的优势,广泛应用于航空航天、汽车、建筑等领域。
下面,我将从定义、分类、应用和发展趋势等方面进行探讨。
结构复合材料的定义:结构复合材料是由增强材料和基体材料组成的材料。
增强材料一般为连续相或分散相,可以是纤维、片材、颗粒等形状;基体材料一般是将增强材料粘结在一起的材料,可以是金属、塑料、陶瓷等。
通过增强材料和基体材料的组合,可以充分发挥各自的特点,得到具有优异性能的材料。
结构复合材料的分类:按增强材料的类型进行分类,常见的结构复合材料有纤维增强复合材料、颗粒增强复合材料和层叠复合材料等。
纤维增强复合材料是指在基体中使用纤维作为增强材料,如碳纤维增强复合材料、玻璃纤维增强复合材料等;颗粒增强复合材料是指在基体中使用颗粒作为增强材料,如金属颗粒增强复合材料、陶瓷颗粒增强复合材料等;层叠复合材料是指采用多层构件按照一定顺序堆砌组合而成的材料。
结构复合材料的应用:结构复合材料具有高强度、高刚度、轻质等优点,广泛应用于航空航天、汽车、建筑等领域。
在航空航天领域,结构复合材料可以替代传统金属材料,降低重量,增加载荷承受能力,提高飞行效率。
在汽车制造领域,结构复合材料可以提高汽车的燃油经济性和安全性能,减少碳排放。
在建筑领域,结构复合材料可以用于建筑外墙、屋顶、地板等部位,增加建筑物的承重能力和抗震性能。
结构复合材料的发展趋势:随着技术的进步和对材料性能的要求不断提高,结构复合材料的发展趋势主要体现在以下几个方面。
首先,研究开发新型增强材料,如纳米材料、纳米纤维等,以进一步提高材料的性能。
其次,采用新的制备工艺和先进的加工技术,提高复合材料的制备效率和加工精度。
再次,结合智能化技术,开发具有多功能性的结构复合材料,如具有自修复功能、传感功能和阻尼功能等。
最后,加强结构复合材料的可持续发展,探索材料的回收再利用和生命周期管理等问题。
复合材料
的种类、配比、加工方法和纤维含量等进行设计,由于基体、增强体材料种 类很多,故其选材设计的自由度很大。
7、独特的成型工艺 复合材料可以整体成型,可以减少零部件紧固和接头数目,简化
结构设计,减轻结构重量。在中等批量生产的车型中,用树脂基复合 材料取代铝材可降低成本40%左右。
一、复合材料的组成及分类
复合材料=基体+增强体
基体是复合材料的主体,即自 身保持连续而包围增强相的材料。 起粘结作用,可以是金属、高分子 或陶瓷材料中的一种。
复合材料可以分为金属材料、高 分子材料和陶瓷材料中的任意两种 或几种制备而成。
二、复合材料的性能特点
1.高的比强度和比模量 复合材料最显著的特点是比强度和比模量高,对要求减轻自重和高速运转 的结构和零件是非常重要的,碳纤维增强环氧树脂复合材料的比强度是钢 的7倍,比模量是钢的4倍。
增强的复合材料的高温强度和弹性模量均较高。特别是金属基复合材 料,例如7075铝合金,在400℃时,弹性模量接近于零,强度值也从 室温时的500MPs降至30-50MPa。而碳纤维或硼纤维增强组成的复 合材料,在400℃时,强度和弹性模量可保持接近室温下的水平:碳 纤维增强的镍基合金也有类似的情况。
玻璃纤维增强塑料也称为玻璃钢。玻璃钢是汽车上应用最广的复合材料, 目前在轿车、吉普车以及卡车上使用的玻璃钢部件逐步增多。随着研究和开 发的不断深入,将更多地用玻璃钢替代金属材料,以达到节能的目的。
2.碳纤维增强塑料(CFRP)
碳纤维增强塑料是以树脂为基体材料, 常用树脂有环氧树脂、酚醛树脂和聚 四氟乙烯等。
这种复合材料具有质轻、强度高、导 热系数大、摩擦系数小、抗冲击性能 好、疲劳强度高等优点。
复合材料的组成和结构
复合材料的组成和结构随着科技的不断发展,复合材料已经成为了现代工业领域不可或缺的一部分。
它们可以广泛应用于飞机、汽车、船舶、建筑、电子设备和医学器械等领域。
那么,什么是复合材料呢?复合材料的组成和结构是什么?下面将为您详细解答。
一、何为复合材料?复合材料(Composite Materials)是指由两种或两种以上不同材料组合而成的新型材料。
它的特点在于不同材料之间有更强的结合力,这种结合力可以使复合材料具有独特的性质和优良的性能。
二、复合材料的组成1. 基体材料基体材料通常是具有良好强度和刚度的聚合材料(如环氧树脂),金属(如铝、钛等)或陶瓷(如氧化铝)等。
基体材料形成了复合材料的主要骨架结构。
2. 增强材料增强材料通常是一种纤维材料,如碳纤维、玻璃纤维、芳纶纤维等。
这些纤维具有高强度和高模量特性,经过加工可以将它们布置在基体材料的表面上,形成所谓的增强材料。
3. 界面材料由于基体材料和增强材料的化学和物理性质有很大的差异,所以界面材料的作用是防止它们之间的层间剥离,保证复合材料整体强度。
目前,界面改性技术已经成为大量研究的主要方向之一。
三、复合材料的结构复合材料结构是由增强材料和基体材料的交替叠加形成的。
正常情况下,复合材料的厚度都很小,只有几毫米到几十厘米不等。
其结构特点主要包括以下几个方面:1. 纤维结构复合材料中的纤维结构通常是由排列有序的纤维复合体构成的。
这样的排列方式可以使纤维之间相互贯通,在应力作用下相互支撑,提高复合材料的抗拉强度和抗剪强度。
2. 层间结构层间结构是由交替叠加的增强材料和基体材料构成的。
由于增强材料比基体材料更硬,所以在外力作用下,增强材料首先承受应力,从而优化整个结构的抗振性能。
3. 裂纹结构相对于单一材料的均质结构而言,复合材料内部有很多不同性质的材料组合而成,因此对外部应力有更强的韧性和耐久性。
裂纹结构是在复合材料发生破裂时形成的,通过层间叠加的结构来缓解应力并防止破碎。
【复合材料概论】复习重点应试宝典
第一章总论1、名词:复合材料基体增强体结构复合材料功能复合材料复合材料(Composite materials),是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。
包围增强相并且相对较软和韧的贯连材料,称为基体相。
细丝(连续的或短切的)、薄片或颗粒状,具有较高的强度、模量、硬度和脆性,在复合材料承受外加载荷时是主要承载相,称为增强相或增强体。
它们在复合材料中呈分散形式,被基体相隔离包围,因此也称作分散相。
结构复合材料:用于制造受力构件的复合材料。
功能复合材料:具有各种特殊性能(如阻尼,导电,导磁,换能,摩擦,屏蔽等)的复合材料。
2、在材料发展过程中,作为一名材料工作者的主要任务是什么?(1)发现新的物质,测试其结构和性能;(2)由已知的物质,通过新的制备工艺,改变其显微结构,改善材料的性能;(3)由已知的物质进行复合,制备出具有优良性能的复合材料。
3、简述现代复合材料发展的四个阶段。
第一代:1940-1960 玻璃纤维增强塑料第二代:1960-1980 先进复合材料的发展时期第三代:1980-2000 纤维增强金属基复合材料第四代:2000年至今多功能复合材料(功能梯度复合材料、智能复合材料)4、简述复合材料的命名和分类方法。
增强材料+(/)基体+复合材料按增强材料形态分:连续纤维复合材料,短纤维复合材料,粒状填料复合材料,编织复合材料;按增强纤维种类分类:玻璃纤维复合材料,碳纤维复合材料,有机纤维复合材料,金属纤维复合材料,陶瓷纤维复合材料,混杂复合材料(复合材料的“复合材料”);按基体材料分类:聚合物基复合材料,金属基复合材料,无机非金属基复合材料;按材料作用分类:结构复合材料,功能复合材料。
5、简述复合材料的共同性能特点。
(1)、综合发挥各组成材料的优点,一种材料具有多种性能;(2)、复合材料性能的可设计性;(3)、制成任意形状产品,避免多次加工工序。
6、简述聚合物基复合材料的主要性能特点。
复合材料中基体和增强体的作用
复合材料中基体和增强体的作用介绍复合材料是由两种或以上不同性质的物质组合而成的材料,通过它们的共同作用,使复合材料具备了优异的性能。
其中,基体和增强体是复合材料中最基本的组成部分,它们分别起着不同的作用。
基体的作用基体是复合材料中占据主导地位的成分,它决定了复合材料的主要性能和应用范围。
基体的作用主要体现在以下几个方面:1. 提供载荷传递的功能基体承载着复合材料的整体载荷,通过自身具备的强度和韧性将载荷传递到整个复合材料中的各个增强体中,从而使得整个复合材料具备了较高的强度和刚度。
2. 提供界面支撑基体不仅要支撑增强体,还要提供增强体之间的支撑和分散应力的功能。
在复合材料中,基体与增强体之间的界面是复合材料的关键部分,它直接影响材料的力学性能和界面层的结合强度。
3. 润湿增强体基体的选择对于增强体与基体之间的相互作用至关重要。
基体能有效地与增强体进行润湿作用,使得增强体与基体之间能够更紧密地结合,从而提高复合材料的力学性能。
4. 提供化学稳定性在某些特殊环境下,复合材料需要具备较高的化学稳定性。
基体的选择要考虑到复合材料所面临的环境条件,以确保复合材料能够在恶劣的环境中保持良好的性能。
增强体的作用增强体是复合材料中起到增强材料性能的作用的组成部分。
增强体的作用主要包括以下几个方面:1. 提供强度和刚度增强体的存在使得复合材料能够具备较高的强度和刚度。
增强体一般是以纤维、颗粒、片层等形式存在,通过其自身的强度和刚度,有效地提高了复合材料的力学性能。
2. 提供方向性由于增强体具备一定的方向性,当增强体的方向与所需应力方向一致时,增强体能够发挥最佳的增强效果。
因此,增强体的方向性使得复合材料能够针对特定的应用需求进行设计和优化。
3. 提高疲劳性能增强体的存在有效地阻碍了裂纹的扩展,从而提高了复合材料的疲劳性能。
增强体能够在裂纹处分散应力,使得裂纹扩展受到一定程度的限制,从而延长了复合材料的使用寿命。
4. 提供耐磨损性能由于增强体的硬度较高,它的存在能够有效地提高复合材料的耐磨损性能。
复合材料2
第1章绪论1.复合材料的定义(Composition Materials , Composite)复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。
复合材料=基体(连续相)+增强材料(分散相)分散相是以独立形态分布在整个连续相中,两相之间存在着相界面。
分散相可以是增强纤维,也可以是颗粒或弥散的填料。
2.复合材料常见分类方法:1)按性能分:常用复合材料、先进复合材料2)按用途分:结构复合材料、功能复合材料3)按复合方式分:宏观复合、微观复合4)按基体材料分:聚合物基、金属基、无机非金属基5)按增强体形式分:纤维增强复合材料、颗粒增强、片材增强、叠层复合3.复合材料在结构设计过程中的结构层次分几类,各表示什么?在结构设计过程中的设计层次如何,各包括哪些内容?三个结构层次: 一次结构——单层材料——微观力学一次结构二次结构——层合体——宏观力学二次结构三次结构——产品结构——结构力学三次结构设计层次:单层材料设计、铺层设计、结构设计4.复合材料力学主要是在单层板和层合板这两个结构层次上展开的,其研究内容分为微观力学和宏观力学两部分。
第2章复合材料界面和优化设计1.复合材料是由两种或两种以上不同物理、化学性质的物质以微观或宏观形式复合而成的多相材料。
2.复合材料界面机能:1)传递效应:基体可通过界面将外力传递给增强物,起到基体与增强体之间的桥梁作用2)阻断效应:适当的界面有阻止裂纹扩展、中断材料破坏、减缓应力集中的作用3)不连续效应:在界面上产生物理性能不连续性和界面摩擦现象,如抗电性、电感应性、磁性、耐热性等4)散热和吸收效应:5)诱导效应3.界面效应既与界面结合状态、形态和物理、化学性质等相关,也与界面两边组元材料的浸润性、相容性、扩散性等密切相关。
4.聚合物基复合材料是由增强体与聚合物基体复合而形成的材料。
聚合物基复合材料分类:热塑性、热固性聚合物基复合材料。
热塑性聚合物基复合材料成型两个阶段:①熔体与增强体之间接触和润湿②复合后体系冷却凝固成型。
复合材料的增强体
02
增强体的材料类型
玻璃纤维
玻璃纤维是一种无机非金属材料,由 熔融的玻璃拉丝制成,具有高强度、 高弹性模量、低密度、耐腐蚀、绝缘 等优点。
玻璃纤维增强复合材料广泛应用于航 空航天、汽车、建筑、体育器材等领 域。
玻璃纤维在复合材料中常用作增强体, 可提高复合材料的强度、刚度和耐久 性。
碳纤维
在汽车工业领域的应用
总结词
高强度、耐腐蚀
详细描述
汽车工业中,增强体如玻璃纤维、碳纤维等被用于制造汽车车身、底盘和零部件 ,以提高其强度、刚度和耐腐蚀性能,延长使用寿命。
在建筑领域的应用
总结词
结构加固、节能环保
详细描述
在建筑领域,增强体如碳纤维、玻璃纤维等被用于结构加固和节能环保的复合材料中,如建筑板材、墙体和屋顶 等,提高结构的强度和耐久性,同时实现节能环保的效果。
在体育器材领域的应用
总结词
轻量、高强度
详细描述
在体育器材领域,增强体如碳纤维、玻璃纤维等被广泛应用于制造球拍、自行车车架、滑雪板等体育 器材中,以提高其轻量化和高强度的性能。
在其他领域的应用
总结词
广泛的应用领域
详细描述
除了以上领域外,复合材料的增 强体还广泛应用于医疗器械、电 子产品、船舶制造等领域,以满 足各种不同的性能要求。
增强体可以增加复合材料的硬 度和抗划痕能力,提高其耐磨
性。
增强体的分类
按形态分类
按材质分类
按长度分类
按表面处理分类
增强体可以分为纤维状、 颗粒状和晶须状增强体。
增强体可以分为玻璃纤 维、碳纤维、陶瓷颗粒、
金属晶须等。
增强体可以分为短纤维、 长纤维和连续纤维。
第三章 复合材料的增强体
18
五、玻璃纤维
玻璃纤维是以玻璃球或废旧玻璃为原料经 高温熔制、拉丝、络纱、织布等工艺制成,单 丝直径为几微米到几十微米。
19
无碱玻璃纤维(E玻纤):以钙铝硼硅酸盐组成,纤维强度高,耐热性 无碱玻璃纤维( 玻纤):以钙铝硼硅酸盐组成,纤维强度高, 玻纤):以钙铝硼硅酸盐组成 和电性能优良,抗大气侵蚀,化学稳定性较好(不耐酸)。 )。碱性氧化 和电性能优良,抗大气侵蚀,化学稳定性较好(不耐酸)。碱性氧化 物含量小于1%。 物含量小于 。 中碱玻璃纤维:碱金属氧化物含量在 之间。 中碱玻璃纤维:碱金属氧化物含量在11.5%~12.5%之间。耐酸性好, 之间 耐酸性好, 强度不如E玻纤 价格便宜。 玻纤, 强度不如 玻纤,价格便宜。
30
玻璃纤维的制造:
三个步骤:制球、拉丝、 三个步骤:制球、拉丝、纺织 (1)制球:将砂、石灰石、硼酸等玻璃原料干混后,送入 玻璃熔窑内(约1260℃)制成玻璃液,玻璃液从熔窑中缓 慢流出,经制球机制成直径约为1.8cm的玻璃球。
31
(2)拉丝 拉丝过程中用浸润剂的作用: 拉丝过程中用浸润剂的作用: 原丝中的纤维不散乱而能 相互粘附在一起; 相互粘附在一起; 防止纤维间磨损; 防止纤维间磨损; 便于纺织加工。 便于纺织加工。
碳纤维由高度取向的石墨片层组成,具有明显的各向异性,沿纤 碳纤维由高度取向的石墨片层组成,具有明显的各向异性, 维轴向性能高,沿横向性能差。 维轴向性能高,沿横向性能差。
5
碳纤维的制造:
(1)气相法:在惰性气氛中小分子有机物(如烃或芳烃等)在高 )气相法:在惰性气氛中小分子有机物(如烃或芳烃等) 温沉积而成纤维。该法适宜制取短纤维或晶须。 温沉积而成纤维。该法适宜制取短纤维或晶须。 (2)有机纤维碳化法:先将有机纤维经过稳定化处理变成耐焰纤 )有机纤维碳化法: 维,然后再在惰性气氛中在高温下进行煅烧碳化,使有机纤维 然后再在惰性气氛中在高温下进行煅烧碳化, 失去部分碳和其他非碳原子,形成以碳为主要成分的纤维。 失去部分碳和其他非碳原子,形成以碳为主要成分的纤维。此 法可制备连续长纤维。 法可制备连续长纤维。
复合材料的定义
复合材料的定义复合材料是由两种或两种以上的不同材料组合而成的一种新型材料。
它利用了各种原材料的优点,克服了传统单一材料的缺点,具有独特的性能和使用特点。
复合材料的组成通常包括增强体和基体两部分。
增强体是复合材料的强化成分,可以是纤维、颗粒、片材等形式,常见的有玻璃纤维、碳纤维、芳纶纤维等。
基体则是复合材料的载体,可以是金属、高分子等,决定了复合材料的总体性能。
复合材料的定义包括两个方面的含义。
首先,它是由两种或两种以上的不同材料组合而成的,这种组合使得复合材料具有更加优异的性能和特点。
其次,复合材料是一种新型材料,其性能和特点与单一原材料的性能和特点有所不同。
复合材料具有许多独特的性能和使用特点。
首先,复合材料具有优异的强度和刚度,其强度和刚度可以根据材料的组成和比例进行调整。
其次,复合材料具有良好的耐热性能,能够耐受高温环境,并保持稳定的性能。
此外,复合材料还具有良好的耐腐蚀性能,可以在潮湿、酸碱等恶劣环境下长期使用。
另外,复合材料还具有良好的电绝缘性能、较好的吸音、隔热和抗雷击性能等。
复合材料广泛应用于各个领域。
在航空航天领域,复合材料被广泛应用于飞机、火箭、导弹等结构件中,以提高其强度和刚度,减轻重量,提高燃料效率。
在汽车领域,复合材料被应用于车身、内饰等部位,以提高汽车的安全性能和燃油经济性。
在建筑领域,复合材料被用于制作装饰材料、建筑结构件等,以提高建筑物的抗震性能和耐久性。
综上所述,复合材料是由两种或两种以上的不同材料组合而成的一种新型材料,具有独特的性能和使用特点。
它广泛应用于航空航天、汽车、建筑等各个领域,为各行各业的发展做出了重要贡献。
【金属基复合材料】第五章,复合材料基体与增强体
Introduction
The possibility of taking advantage of particular properties of the constituent materials to meet specific demands is the most important motivation for the development of composites. The terms matrix and reinforcement are often used. The matrix is a percolating “soft” phase (with in general excellent ductility, formability and thermal conductivity) in which are embedded the “hard” reinforcements (high stiffness, hardness, and low thermal expansion). The reinforcements can be continuous or discontinuous, orientated or disorientated. The composites are classified by: (1) their matrix (polymer, ceramic, metal), (2) their reinforcement, which includes the chemical nature (oxides, carbides, nitrides), shape (continuous fibers, short fibers, whiskers, particulates) and orientation, (3) their processing routes.
复合材料的结构与性能
复合材料的结构与性能复合材料是指由两种或两种以上的成分组成的材料,其具有优良的综合性能。
本文将从复合材料的结构和性能两个方面进行探讨。
一、复合材料的结构复合材料的结构由纤维增强体和基体组成。
纤维增强体是复合材料的主要组成部分,常见的纤维增强体有玻璃纤维、碳纤维和聚合物纤维等。
纤维增强体的作用是提供强度和刚度,同时还可以耐受拉伸和压缩等力的作用。
基体是纤维增强体的粘结剂,常见的基体有热固性树脂和热塑性树脂等。
基体的作用是保护纤维增强体、分散外部作用力以及提供耐化学腐蚀的能力。
在复合材料的结构中,还有一个重要的部分是界面层。
界面层位于纤维增强体和基体之间,起着连接和传递力的作用。
一个好的界面层能够提高复合材料的力学性能,并且能够防止纤维增强体与基体之间的剪切滑移。
二、复合材料的性能1.力学性能复合材料的力学性能包括强度、刚度、韧性和疲劳性能等。
由于纤维增强体的加入,复合材料具有较高的强度和刚度,能够承受较大的力。
同时,纤维增强体还可以提高复合材料的韧性,使其在受到冲击或者拉伸时不易断裂。
此外,复合材料还具有良好的疲劳性能,能够承受多次循环加载而不产生破坏。
2.导热性能复合材料的导热性能取决于纤维增强体和基体的热导率,以及界面层的热阻抗。
通常情况下,纤维增强体具有较高的导热性能,而基体则具有较低的导热性能。
界面层能够减少热量的传递,降低导热性能。
这种导热性能的差异使得复合材料在一些特定的应用中起到优异的绝缘和隔热效果。
3.耐化学性能复合材料具有良好的耐化学性能,能够在各种酸、碱、盐等腐蚀介质中长期使用。
这主要是由于纤维增强体和基体的化学稳定性较高,能够抵御腐蚀介质的侵蚀。
同时,界面层的存在也能够减缓腐蚀的发生。
4.重量轻由于纤维增强体的加入,复合材料具有很轻的重量。
相比于传统的金属材料,复合材料的重量可以减轻30%到50%。
这使得复合材料成为航空航天、汽车、体育器材等领域的理想选择。
结论:综上所述,复合材料的结构和性能密不可分,其结构特点决定了其优异的力学性能、导热性能和耐化学性能。
复合材料学的基体材料和增强材料各论
设计人员可根据所需制品对力学及其它性能的要求, 对结构设计的同时对材料本身进行设计。
具体体现在两个方面
力学设计—— 给制品一定的 强度和刚度
功能设计——给 制品除力学性能 外的其他性能
3、工艺性能好 复合材料的工艺性能十分a、优电越绝,缘其性成能好型,方不法受
多种多样,成型条件机动灵活。电磁作用; 具1导的/体1热玻0到0系 璃~玻数 钢1璃/小 可1纤0, 耐0维0是瞬;增金时特强属高殊树材温类脂料。型基复合bc制、、材品可微料。制波特作穿性成透:不性带好静;电的
碳纤维II/环氧 1.45
1.5
1.4
1.03
0.97
碳纤维I/环氧
1.6
1.07
2.4
0.67
1.5
有机纤维/环氧 1.4
1.4
0.8
1.0
0.57
硼纤维/环氧
2.1
1.38
2.1
0.66
1.0
硼纤维/铝
2.65
1.0
2.0
0.38
0.57
由表1-2可见:FRC的密度约为钢的1/5,铝的1/2
比模量:高模量碳纤维/环氧复合材料为钢的5倍,
2007年6月8日, “阿特兰蒂斯”号 航天飞机在位于美 国佛罗里达州卡纳 维拉尔角的肯尼迪 航天中心发射升空, 飞往国际空间站。
美国全部用碳纤维复合材料制成一架八座商用飞机-里尔芳2100号,并试飞成功,这架飞机仅重567kg,它 以结构小巧重量轻而称奇于世。
采用大量先进复合材料制成的哥伦比亚号航天飞机。
无机非金属材料:具有性质稳定,抗腐蚀、 耐高温等优点。但质脆,经不起热冲击。
金属材料:力学性能好,耐高温。但密度 大,抗腐蚀性能差。
复合材料概述
(1)组元含量大于 5 %;
(2)复合材料的性能显著不同于各组元的性能; (3)通过各种方法混合而成。
6
2、复合材料的特点: 1)由两种或多种不同性能的组分通过宏观或微观 复合在一起的新型材料,组分之间存在着明显的界面。 2)各组分保持各自固有特性的同时可了复合材料的整体性能。界面最佳态的衡量是 当受力发生开裂时,裂纹能转化为区域化而不进一步 界面脱粘;即这时的复合材料具有最大断裂能和一定 的韧性。
结合状态和强度影响因素
19
2.2 复合材料组分的相容性
1、物理相容性:
(1)基体应具有足够的韧性和强度,能够将外部载荷 均匀地传递到增强剂上,而不会有明显的不连续 现象。 (2)由于裂纹或位错移动,在基体上产生的局部应力
9
2、按基体材料分类: 聚合物复合材料 金属基复合材料 陶瓷基复合材料
碳碳复合材料
水泥基复合材料
10
3、按用途分类
结构复合材料 功能复合材料
结构 / 功能一体化复合材料
4、按增强剂分类 颗粒增强复合材料 晶须增强复合材料 短纤维增强复合材料
连续纤维增强复合材料
混杂纤维增强复合材料 三向编织复合材料
木材,发展成为玻璃纤维增强塑料(玻璃钢)这种种广泛
应用的较现代化复合材料。
3
2、复合材料的意义
现代高科技的发展更是离不开复合材料。 例如:火箭壳体材料对射程的影响, 航空发动机材料发展预测如下
4
5
1 复合材料概述
1.1 复合材料的定义和特点:
1、复合材料的定义: ISO定义为是:两种或两种以上物理和化学性质 不同的物质组合而成的一种多相固体材料。 复合材料应满足下面三个条件:
14
2 复合材料界面
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(14)卷制管成型技术; (15)纤维缠绕制品成型技术; (16)连续制板生产工艺; (17)浇铸成型技术; (18)拉挤成型工艺; (19)连续缠绕制管工艺; (20)编织复合材料制造技术; (21)热塑性片状模塑料制造技术 及冷模冲压成型工艺; (22)注射成型工艺; (23)挤出成型工艺; (24)离心浇铸制管成型工艺; (25)其它成型技术。
3 复合材料分类
按组成分 ①金属与金属复合材料 ②非金属与金属复合材料 ③非金属与非金属复合材料 按结构特点: ①纤维复合材料 ②夹层复合材料 ③细粒复合材料 ④混杂复合材料
按基体类型分类 ①树脂基复合材料 ②金属基复合材料 ③陶瓷基复合材料 ④碳-碳复合材料
(1)手糊成型工艺--湿法铺层成型法; (2)喷射成型工艺; (3)树脂传递模塑成型技术(RTM技术); (4)袋压法(压力袋法)成型; (5)真空袋压成型; (6)热压罐成型技术; (7)液压釜法成型技术; (8)热膨胀模塑法成型技术; (9)夹层结构成型技术; (10)模压料生产工艺; (11)ZMC模压料注射技术; (12)模压成型工艺; (13)层合板生产技术;
2 复合材料的特点
A 组成与结构特点 (1)具有可设计性 (2)组元间有明显界面或 呈梯度变化的多相材料; (3)性能取决于各组分性 能及协同效应。 B 性能特点 比强度高
抗疲劳性能好
耐磨减磨性能高 减震能力强 高温性能好 化学稳定性高
成型工艺简单灵活
复合材料性能不足之处
1、横向拉伸强度和层间剪切强度低。 2、断裂伸长率低,冲击韧性有时不好。 3、制造时产品性能不稳定,分散性大,质 检困难。 4、抗老化性能不好。 5、机械连接困难。 6、成本太高。
第九章 复合材料及加工工艺
9.1 复合材料的基本特性
9.2 常用复合材料 9.3 复合材料的成型工艺 9.4 复合材料在产品设计中的应用
9.1 复合材料的基本特性
1 什么是复合材料
复合材料(Composite materials),是以一 种材料为基体(Matrix),另一种材料为增强 体(reinforcement),通过一定的工艺组合 而成的材料。 基体材料和增强材料在性能上互相取长补短 ,产生协同效应,使复合材料的综合性能优 于原组成材料而满足各种不同的要求。
9.2 常用复合材料
1 纤维增强复合材料
基体:强度低、模量低、韧性好
增强纤维:强度高、模量高、脆性大
玻璃纤维 塑料基体
基 体
金属基体 陶瓷基体
增 强 纤 维
碳/硼纤维
金属纤维 陶瓷纤维
化学纤维
1)玻璃纤维增强塑料
玻璃纤维增强塑料(Fiber Reinforced Plastics),也称树脂基复合材料(Resin Matrix Composite)是目前技术比较成熟且 应用最为广泛的一类复合材料。 用短切的或连续纤维及其织物增强热固性或热 塑性树脂基体,经复合而成。
硬质合金组织(Co+WC)
硬质合金铣刀
硬质合金主要有钨 钴(YG)和钨钴钛 (YT)两类。牌号中 ,YG后的数字为含 Co量,YT后的数字 为碳化钛含量。 硬质合金硬度极高 ,且热硬性、耐磨 性好,一般做成刀 片,镶在刀体上使 用。
硬质合金模具
硬质合金轴承刀具
3 层状复合材料
是指在基体中含 有多重层片状高 强高模量增强物 的复合材料。这 种材料是各向异 性的(层内两维同 性)。如碳化硼片 增强钛、胶合板 等。
陶瓷基粒子复合材料如氧化锆增韧陶瓷 等。 聚合物基粒子复合材料如酚醛树脂中掺 入木粉的电木、碳酸钙粒子改性热塑性 塑料的钙塑材料。
粒子增强SiC陶瓷基复合材料
颗粒增强铝基泡沫复合材料
碳黑增强橡胶
金属基粒子复合材料又称 金属陶瓷,是由钛、镍、 钴、铬等金属与碳化物、 氮化物、氧化物、硼化物 等组成的非均质材料。 碳化物金属陶瓷作为工具 材料已被广泛应用,称作 硬质合金。硬质合金通常 以Co、Ni作为粘结剂, WC、TiC等作为强化相 。
以玻璃纤维作为增强相的树脂基复合材料在世界范 围内已形成了产业。
A 热塑性玻璃纤维增强塑料
构成:热塑性树脂+玻璃纤维 性能:强度高、疲劳性能好、冲击韧性高、抗蠕变性好
B 热固性玻璃纤维增强塑料—玻璃钢
构成:热固性树脂+玻璃纤维 性能:
强度高、质轻、电绝缘、绝热、抗腐蚀、憎水性
2)碳纤维增强复合材料 A 碳纤维塑料复合材料
性能优于玻璃钢
B 碳纤维金属复合材料
强度高、质量轻
C 碳纤维陶瓷复合材料
强度高、质量轻
2 粒子增强复合材料
粒子增强复合材料 是将粒子高度弥散 地分布在基体中, 使其阻碍导致塑性 变形的位错运动( 金属基体)和分子 链运动(聚合物基 体)。 这种复合材料是各 向同性的。
卫星用颗粒增强铝基复合材料 零件
金属
高强纤维
基体
塑料 增强体 陶瓷
纤维编织物
硬质颗粒
在大多数情况下,增强相较基体硬, 强度和刚度较基体大。在基体与增 强体之间存在着界面。
复合材料的组成及作用
(基体)连续相 + 界面相
粘接和固定增强相 分配增强体的载荷 保护增强体免受环 境影响
+ (增强体)分散相
增加强度、善 性能
传递作用、 阻断作用、 诱导效应 ……
层状陶瓷复合材料断口形貌
三明治复
双金属、表面涂层等也是层状复合材料。 层状结构材料根据材质不同,分别用于飞机制造 、运输及包装等。
有TiN涂层的高尔夫球头
层状复合
铝合金蜂窝夹层板
9.3 复合材料的成型工艺
复合材料成型工艺是复合材料工业的发展基础 和条件。随着复合材料应用领域的拓宽,复合 材料工业得到迅速发镇,其老的成型工艺日臻 完善,新的成型方法不断涌现,目前聚合物基 复合材料的成型方法已有20多种,并成功地 用于工业生产.
克服单一材料的缺点 ,产生原来单一材料本身所 没有的新性能。
复合材料的结构 复合材料=基体+增强体
复合材料的结构通常是一个相为连续相, 称为基体;而另一相是以独立的形态分布 在整个连续相中的分散相,与连续相相比, 这种分散相的性能优越,会使材料的性能 显著增强,故常称为增强体 (也称为增强材 料、增强相等)。