数学研究课题空间几何体的外接球与内切球问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学课题研究
几何体与球切、接的问题
纵观近几年高考对于组合体的考查,与球相关的外接与内切问题是高考命题的热点之一.高考命题小题综合化倾向尤为明显,要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识学生掌握较为薄弱、认识较为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理. 下面结合近几年高考题对球与几何体的切接问题作深入的探究,以便更好地把握高考命题的趋势和高考的命题思路,力争在这部分内容不失分.从近几年全国高考命题来看,这部分内容以选择题、填空题为主,大题很少见.?
首先明确定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。
定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.
1 球与柱体的切接
规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题.
1.1 球与正方体
如图所示,正方体1111ABCD A B C D -,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则2
a OJ r ==;二
是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则GO R a ==;三是球为正方体的
外接球,截面图为长方形11ACA C 和其外接圆,则12
A O R '==.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.
(1)正方体的内切球,如图1.?位置关系:正方体的六个面都与一个球都相切,正方体中心与球心重合;? 数据关系:设正方体的棱长为a ,球的半径为r ,这时有2r a =.?
(2)正方体的外接球,如图2.?位置关系:正方体的八个顶点在同一个球面上;正方体中心与球心重合;?
数据关系:设正方体的棱长为a ,球的半径为r ,这时有2r =.
(3)正方体的棱切球,如图3.?位置关系:正方体的十二条棱与球面相切,正方体中心与球心重合;?数据
关系:设正方体的棱长为a ,球的半径为r ,这时有2r =.
例 1 棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为( )
A .2
B .1
C .12+ D
思路分析:由题意推出,球为正方体的外接球.平面11AA DD 截面所得圆面的半径1,22
AD R =
=得知直线EF 被球O 截得的线段就是球的截面圆的直径.
【解析】由题意可知,球为正方体的外接球.平面11AA DD 截面所得圆面的半径
1
22
AD R ==11EF AA DD ⊂Q 面,∴直线EF 被球O 截得的线段为球的截面圆的直径2R = 点评:本题考查球与正方体“接”的问题,利用球的截面性质,转化成为求球的截面圆直径.
1.2 球与长方体
例 2自半径为R 的球面上一点M ,引球的三条两两垂直的弦MC MB MA ,,,求2
22MC MB MA ++的值. 思路分析:此题欲计算所求值,应首先把它们放在一个封闭的图形内进行计算,所以应引导学生构造熟悉的几何体并与球有密切的关系,便于将球的条件与之相联.
【解析】以MC MB MA ,,为从一个顶点出发的三条棱,将三棱锥ABC M -补成一个长方体,则另外四个顶点必在球面上,故长方体是球的内接长方体,则长方体的对角线长是球的直径. ∴222MC MB MA ++=224)2(R R =.
点评:此题突出构造法的使用,以及渗透利用分割补形的方法解决立体几何中体积计算..
例 3已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ).
A.16π
B.20π
C.24π
D.32π
思路分析:正四棱柱也是长方体.由长方体的体积16及高4可以求出长方体的底面边长为2,可得长方体的长、宽、高分别为2,2,4,长方体内接于球,它的体对角线正好为球的直径.
【解析】正四棱柱也是长方体。由长方体的体积16及高4可以求出长方体的底面边长为2,因此,长方体的长、宽、高分别为2,2,4,因为长方体内接于球,所以它的体对角线正好为球的直径.长方体体对角线
长为,故球的表面积为24π.故选C.
点评:本题考查球与长方体“接”的问题,利用长方体的性质,转化成为求其体对角线.
2 球与锥体的切接
规则的锥体,如正四面体、正棱锥、特殊的一些棱锥等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱锥的棱和高产生联系,然后考查几何体的体积或者表面积等相关问题.
2.1正四面体与球的切接问题?
(1)?正四面体的内切球,如图4.?位置关系:正四面体的四个面都与一个球相切,正四面体的中心与球心重合;?
数据关系:设正四面体的棱长为a ,高为h ;球的半径为R ,这时有4R h a ==
;(可以利用体积桥证明)?
(2)?正四面体的外接球,如图5.?位置关系:正四面体的四个顶点都在一个球面上,正四面体的中心与球
心重合;?数据关系:设正四面体的棱长为a ,高为h ;球的半径为R ,这时有43R h ==
;(可用正四面体高h 减去内切球的半径得到)
(3)?正四面体的棱切球,如图6.?位置关系:正四面体的六条棱与球面相切,正四面体的中心与球心重合;?
数据关系:设正四面体的棱长为a ,高为h ;球的半径为R ,这时有4,.3
R h a ===? 例 4设正四面体中,第一个球是它的内切球,第二个球是它的外接球,求这两个球的表面积之比及体积之比.
思路分析:此题求解的第一个关键是搞清两个球的半径与正四面体的关系,第二个关键是两个球的半径之间的关系,依靠体积分割的方法来解决的.
【解析】如图,正四面体ABCD 的中心为O ,BCD ∆的中心为1O ,则第一个球半径为正四面体的中心到各面的距离,第二个球的半径为正四面体中心到顶点的距离.
设R OA r OO ==,1,正四面体的一个面的面积为S . 依题意得)(31r R S V BCD A +=-, 又S r V V BCD O BCD A ⋅⨯==--3
144 r r R 4=+∴即r R 3=.