八、焊接缺陷及检测方法

合集下载

焊接缺陷的检测与修复技术

焊接缺陷的检测与修复技术

焊接缺陷的检测与修复技术引言焊接是金属加工领域中一种重要的连接工艺,但由于操作不当或材料问题,焊接过程中常常会出现一些缺陷,这些缺陷可能对焊接接头的强度和耐久性产生不利影响。

因此,及时检测和修复焊接缺陷是保证焊接接头质量和安全性的重要环节。

本文将介绍常见的焊接缺陷类型、检测方法以及相应的修复技术。

一、焊接缺陷类型在焊接过程中常见的缺陷类型包括气孔、夹渣、裂纹、焊缝不良形态等。

它们的形成原因各异,下面将逐一介绍:1. 气孔气孔是焊接缺陷中最常见的一种,指的是焊缝内部存在的小气泡。

气孔的形成原因主要有以下几点: - 动作不稳定:焊工操作时不稳定的手部动作会导致气体陷入焊缝中。

- 材料问题:焊接材料中的含氧量过高,或者含有水分等气体,也会导致气孔的产生。

- 焊接工艺参数不合理:焊接电流、电压、焊接速度等参数设置不合理会导致气孔的形成。

2. 夹渣夹渣是指焊缝中存在的夹杂物,主要是一些未熔化的焊接剂、氧化物等。

夹渣的形成原因主要有以下几点: - 渣池不稳定:焊工操作不当,焊接电流过大、速度过快等会导致焊缝中存在未熔化的焊接剂。

- 焊接材料不洁净:焊接材料表面存在油污、铁锈等,会导致未熔化的金属残留在焊缝中。

- 焊接工艺不合理:焊接参数设置不合理,如电流过小、焊枪摆动过快等,会导致夹渣的产生。

3. 裂纹裂纹是焊接缺陷中最为严重的一种,它会导致焊接接头的强度降低甚至完全破坏。

裂纹的形成原因主要有以下几点: - 焊接变形过大:焊接时由于热收缩或冷却速度过快等会导致焊接接头产生应力,进而引起裂纹。

- 硬化层过脆:焊接过程中产生的硬化层过脆,受到外力影响容易发生裂纹。

- 焊接材料质量问题:焊接材料含有质量问题,如材料中存在夹杂物、劣质金属等,会影响焊接接头的强度。

4. 焊缝不良形态焊缝不良形态是指焊接接头的形态与规定要求不符,例如焊缝过宽、过窄、过高、过低等。

不良形态会降低焊接接头的强度和耐久性,需要及时予以修复。

焊接检验方法

焊接检验方法

焊接检验方法随着焊接技术的发展,焊接质量检验也变得越来越重要。

焊接检验是指通过检测焊接材料、焊接接头以及焊接工艺的质量,以保证焊接的质量和可靠性。

本文将介绍几种常见的焊接检验方法。

1. 目测检验目测检验是最为简单、快捷的一种检验方法,通过肉眼观察焊接接头的表面和截面,以判断焊接的质量。

目测检验可以检测出焊接接头的表面缺陷、气孔、裂纹、未熔合等质量问题,但对于深层次的质量问题无法检测出来。

2. 磁粉检验磁粉检验是一种利用磁性材料表面的裂纹和缺陷集中磁通量的变化来检测焊接接头的缺陷的方法。

它适用于检测铁磁性材料的焊接接头,可以检测出表面和近表面的裂纹、气孔等缺陷。

但是磁粉检验仅适用于磁性材料,且只能检测出裂纹等表面缺陷,对于深层次的缺陷无法检测。

3. 超声波检验超声波检验是一种利用超声波在检测材料内部缺陷时反射回来的信号来检测焊接接头的方法。

它可以检测出深层次的缺陷,如焊接接头中的气孔、夹杂、未熔合等问题。

超声波检验的优点是不破坏被检测材料,且对材料性质无影响,但需要专用设备和高技术水平的专业人员操作。

4. 射线检验射线检验是利用X射线或γ射线对焊接接头进行检测的方法。

它可以检测出接头内部的缺陷,如裂纹、气孔、未熔合等问题。

射线检验的优点是可以检测出深层次的缺陷,但需要专用设备和高技术水平的专业人员操作。

同时,射线检验对操作人员和周围环境有一定的辐射危害。

5. 拉伸试验拉伸试验是通过对焊接接头进行拉伸实验,来测试焊接接头在受力时的性能和质量。

拉伸试验可以检测出焊接接头的抗拉强度、屈服点、伸长率等性能参数,以判断焊接接头的质量和可靠性。

拉伸试验适用于薄板焊接接头和管道焊接接头等情况,但需要专用设备和高技术水平的专业人员操作。

不同的焊接检验方法各有优缺点,我们需要根据具体情况选择合适的检验方法。

在进行焊接检验时,需要专业人员操作,严格执行操作规程和标准,以保证焊接接头的质量和可靠性。

焊接检测方法

焊接检测方法

焊接检测方法焊接是工程中常见的连接方式,而焊接质量的好坏直接关系到工程结构的安全性和稳定性。

因此,对焊接质量的检测显得尤为重要。

本文将介绍几种常见的焊接检测方法,希望能为大家提供一些参考。

首先,一种常见的焊接检测方法是目视检测。

目视检测是最简单、最直接的一种检测方法,它通过肉眼观察焊缝的形态、颜色、气孔、裂纹等情况来判断焊接质量。

这种方法操作简单,成本低,但受到操作人员个人经验和视力的限制,无法对微小缺陷进行准确的检测。

其次,X射线检测是一种常用的非破坏性检测方法。

通过X射线穿透被检测材料,再通过感光或荧光屏观察被检材料内部的缺陷情况。

X射线检测可以对焊接接头的内部结构进行检测,对焊缝的气孔、夹杂物、裂纹等缺陷有较高的检测灵敏度。

但X射线检测设备昂贵,操作技术要求高,且对操作人员有一定的辐射危害。

另外,超声波检测是一种常用的焊接缺陷检测方法。

超声波检测是利用超声波在材料中传播的特性,通过对材料内部的声波反射、衍射、透射等现象进行分析,来判断焊接接头的质量。

这种方法操作简便,对焊缝的各种缺陷有较高的检测灵敏度,且不会对被检测材料产生辐射影响。

但超声波检测对操作人员的技术要求较高,且对被检测材料的形状、尺寸、材质等有一定的限制。

最后,磁粉检测是一种常用的表面缺陷检测方法。

磁粉检测利用磁场和磁性粉末的吸附作用,来检测被检测材料表面的裂纹、气孔等缺陷。

这种方法操作简单,成本较低,对被检测材料的形状、尺寸、材质等要求不高。

但磁粉检测只能对表面缺陷进行检测,对内部缺陷无法进行有效的检测。

总的来说,不同的焊接检测方法各有优缺点,可以根据具体的焊接对象和需求选择合适的检测方法。

在实际工程中,通常会采用多种检测方法相结合,以确保对焊接质量的全面检测和评估。

希望本文介绍的焊接检测方法能对大家有所帮助,谢谢阅读。

焊接质量的检验方法

焊接质量的检验方法

焊接质量的检验方法引言概述:焊接是一种常见的金属连接方式,广泛应用于工业生产和建筑行业。

焊接质量的检验是确保焊接连接的强度和可靠性的重要环节。

本文将详细介绍焊接质量的检验方法,包括非破坏性检测和破坏性检测两大类。

正文内容:一、非破坏性检测方法(1)目测检查:通过肉眼观察焊缝表面情况,检查是否存在焊接缺陷,如裂纹、气孔、夹渣等。

同时还要检查焊缝的外形是否符合规范要求。

(2)磁粉检测:利用磁粉法检查焊接缺陷,先将试件表面涂覆磁粉,然后施加磁场,通过观察磁粉的沉积情况来检测焊接缺陷。

(3)超声波检测:利用超声波检测焊接缺陷,通过送入和接收超声波信号来分析焊缝的内部结构和缺陷情况,如裂纹、气孔等。

(4)液体渗透检测:将试件表面涂覆一层渗透剂,然后用开水或巴布志石等粉末覆盖试件表面,在一定时间内观察渗透液是否透出来,以及是否有色素上浮,来检测焊接缺陷。

(5)射线检测:利用射线(X射线或γ射线)对焊缝进行探测,通过观察照片和比对标准来判断焊接缺陷的存在与否。

二、破坏性检测方法(1)拉伸试验:取一段焊接试样,通过施加拉力来确定焊缝的强度和可靠性。

拉伸试验可以检测焊缝的延伸性、抗拉强度和断裂强度等指标。

(2)扭转试验:取一段焊接试样,通过施加扭矩来确定焊缝的耐久性和可靠性。

扭转试验可以检测焊接结构的耐久性和变形情况。

(3)冲击试验:取一段焊接试样,在低温环境下施加冲击力,来测试焊缝的韧性和抗冲击性能。

冲击试验可以判断焊接结构在低温环境下的使用性能。

(4)硬度试验:通过测量焊缝的硬度来判断焊接结构的质量和可靠性。

硬度试验可以检测焊接材料的变硬情况,从而判断焊接缺陷。

(5)金相检查:通过将焊接试样切割成薄片,经过打磨、腐蚀、染色等处理,观察焊接缺陷和组织结构来判断焊接质量。

金相检查可以检测焊接材料的显微组织和晶粒大小等指标。

总结:焊接质量的检验方法包括非破坏性检测和破坏性检测两大类。

非破坏性检测方法主要包括目测检查、磁粉检测、超声波检测、液体渗透检测和射线检测。

常见焊接缺陷及X射线无损检测.

常见焊接缺陷及X射线无损检测.

前言船舶制造业自20世纪初开始研究焊接应用技术,并于1920年以英国船厂首次采用焊接技术建造远洋船为标志,焊接技术逐渐在船厂得到推广应用,并迅速取代铆接技术。

由于焊接过程中各种参数的影响,焊缝中有时候不可避免地会出现裂纹、气孔、央渣、未熔合和未焊透等缺陷。

为了保证焊接构件的产品质量,必须对其中的焊缝进行有效的检测和评价,尤其是在船舶压力管道、分段大接缝、外板及水密与强力接点等部位进行质量检测是十分必要的。

众所周知,船舶结构件发生焊接裂纹对结构强度和航行安全危害极大,特别是一些隐性裂纹不易发现,一旦船舶出厂,这些隐性裂纹后患无穷。

因此,船舶在建造焊接过程中产生的裂纹一经发现,就必须立即查明原因并采取果断的措施彻底根除。

焊接质量的检验方法,一般分无损检验和破坏检验两大类,采用何种方法,主要根据产品的技术要求和有关规范的规定。

无损探伤分渗透检验、磁粉探伤、超声波探伤和射线照相探伤。

破坏检验方法是用机械方法在焊接接头(或焊缝)上截取一部分金属,加工成规定的形状和尺寸,然后在专门的设备和仪器上进行破坏试验。

依据试验结果,可以了解焊接接头性能及内部缺陷情况,判断焊接工艺正确与否。

经检验,船体结构焊缝超过质量允许限值时,应首先查明产生缺陷的原因,确定缺陷在工件上的部位。

在确认允许修补时,再按规定对焊缝进行修补。

一、船舶焊接缺陷及无损探伤技术简介1、船舶焊接中的常见缺陷分析船舶焊接是保证船舶密性和强度的关键,是保证船舶质量的关键,是保证船舶安全航行和作业的重要条件。

如果焊接存在着缺陷,就有可能造成结构断裂、渗漏,甚至引起船舶沉没。

因此,在船舶建造中焊接质量是重点验收工作之一,规范也明确规定,焊缝必须进行外观检查,外板对接焊缝必须进行内部检查。

船体焊缝内部检查,可采用射线探伤与超声探伤等办法。

射线探伤能直接判断船体焊缝中存在的缺陷的种类、大小、部位及分布情况,直观可靠,重复性好,容易保存,当前船厂普遍采用X射线探伤来进行船体焊缝的内部质量检查。

《常见焊接缺陷》课件

《常见焊接缺陷》课件
焊接材料:材料选择不当, 材料质量差
焊接环境:温度、湿度、风 速等环境因素影响
操作人员:操作技能不足, 操作不当
焊接缺陷对结构性能的影响
强度降低:焊接缺陷可能导致结构强度降低,影响其承载能力 刚度下降:焊接缺陷可能导致结构刚度下降,影响其稳定性 疲劳寿命缩短:焊接缺陷可能导致结构疲劳寿命缩短,影响其使用寿命 耐腐蚀性降低:焊接缺陷可能导致结构耐腐蚀性降低,影响其耐久性
选择合适的焊接材料,如不锈钢、铝合金等 控制焊接材料的质量,如化学成分、机械性能等 控制焊接材料的厚度,如薄板、厚板等 控制焊接材料的表面处理,如打磨、清洗等
焊接过程监控与检验
焊接前检查:确保 焊接设备、材料、 工艺参数等符合要 求
焊接中监控:实时 监测焊接过程中的 温度、电流、电压 等参数
焊接后检验:对焊 接质量进行检验, 包括外观检查、无 损检测等
热处理修复:通过热处理技术修复缺 陷
复合修复:结合多种修复方法进行修 复
预防性修复:通过预防措施避免缺陷 产生
总结与展望
本次课件内容回顾总结
焊接缺陷的定义和分类
焊接缺陷产生的原因和影 响
焊接缺陷的预防和检测方 法
焊接缺陷的修复和补救措 施
焊接缺陷的案例分析和经 验分享
焊接缺陷的未来发展趋势 和展望
无损检测法
超声波检测:利用超声波 在金属中的传播和反射特 性,检测金属内部的缺陷
射线检测:利用X射线或γ 射线穿透金属,检测金属 内部的缺陷
磁粉检测:利用磁粉在金 属表面的吸附和显示特性, 检测金属表面的缺陷
渗透检测:利用渗透剂在 金属表面的渗透和显示特 性,检测金属表面的缺陷
涡流检测:利用涡流在金 属中的传播和反射特性, 检测金属内部的缺陷

焊接过程中的焊缝检测与分析方法

焊接过程中的焊缝检测与分析方法

焊接过程中的焊缝检测与分析方法焊接是一种常用的金属连接方法,广泛应用于制造业和建筑工程中。

焊接的质量直接关系到产品的安全性和可靠性,而焊缝是焊接质量的重要指标之一。

为了保证焊接质量,焊缝的检测与分析变得至关重要。

本文将介绍焊接过程中常用的焊缝检测与分析方法,以提供参考和指导。

一、目测检测法目测检测法是最简单、最常用的焊缝检测方法之一。

通过肉眼观察焊接后的焊缝,检测焊缝的形状、宽度、高度等指标,并与标准进行对比。

目测检测法适用于对焊缝进行初步评估,但其准确度和精度有限,无法检测到微小的缺陷。

二、射线检测法射线检测法是一种常用的无损检测方法,通过射线的透射或反射来检测焊缝中的缺陷。

常见的射线检测方法包括X射线检测和γ射线检测。

射线检测法能够检测到焊缝中的内部缺陷,如气孔、夹杂物、裂纹等,且检测结果准确可靠。

然而,射线检测法设备昂贵且操作复杂,需要专业的技术人员进行操作。

三、超声波检测法超声波检测法利用超声波的传播特性对焊缝进行检测。

通过超声波的发射和接收,可以检测焊缝中的缺陷并测量其尺寸和位置。

超声波检测法具有高灵敏度、高准确度和非破坏性的优点,广泛应用于焊缝的缺陷检测和评估。

然而,超声波检测法对操作人员的技术要求较高,需要进行专门的培训和认证。

四、磁粉检测法磁粉检测法是一种常用的焊缝表面缺陷检测方法。

通过在焊缝表面涂覆磁粉,利用磁场的作用将磁粉吸附在缺陷区域,并通过观察磁粉的分布情况来检测缺陷。

磁粉检测法适用于检测焊缝表面的开裂、夹杂物等缺陷,但无法检测到内部缺陷。

五、涡流检测法涡流检测法是一种常用的焊缝表面缺陷检测方法。

通过在焊缝表面引入交变磁场,当焊缝中存在缺陷时,会产生涡流效应。

通过检测涡流的变化,可以实现对焊缝表面缺陷的检测。

涡流检测法适用于检测焊缝表面的裂纹、沟槽等缺陷,但无法检测到内部缺陷。

总结:焊接过程中的焊缝检测与分析方法多种多样,每种方法都有其适用的场合和应用范围。

目测检测法简单易行,但准确度和精度有限;射线检测法、超声波检测法、磁粉检测法和涡流检测法能够检测到不同类型的缺陷,但设备昂贵且操作复杂。

焊接技术中常见的缺陷、检验及其解决措施分析

焊接技术中常见的缺陷、检验及其解决措施分析

焊接技术中常见的缺陷、检验及其解决措施分析摘要:焊接技术是指在高温或者高压的条件下,利用焊接材料将两块及两块以上的母体材料连接成一个完整的材料的操作技术。

在很多工业生产中,和金属电子相关的制作当中,都需要用到焊接技术。

焊接技术就是在元器件的连接处进行焊接,因此对于焊接人员的技术要求非常重要。

然而在实际工业生产中的焊接常常会遇到各种各样的问题。

基于此,本篇文章对焊接技术中常见的缺陷、检验及其解决措施进行研究,以供参考。

关键词:焊接技术;常见的缺陷;检验;解决措施引言金属材料在焊接的过程中可能会因为焊接环境的不同或者是焊接技术不同而出现不同的缺陷问题。

针对于各式各样的问题自然而然也需要相关的技术操作人员认认真真的思考问题的解决办法。

然而一部分比较特殊的金属材料则需要更为特殊的焊接技术以及焊接缺陷处理方法。

也会有一部分金属材料因为焊接缺陷问题而无法投入使用。

毕竟金属材料焊接的问题也会严重影响到金属材料焊接的质量。

1焊接技术常见的缺陷1.1裂纹裂纹缺陷对于焊接结构的力学性能有重要的影响,尤其是结构在疲劳载荷的作用下,很容易发生裂纹扩展和断裂。

裂纹缺陷的形成原因主要是焊接区域金属的结合力发生突变,在焊接材料和基体材料的交界位置出现新的界面。

焊接裂纹缺陷的类型非常多,裂纹缺陷包括横向裂纹、发散状裂纹等,此外,按照裂纹出现的温度也可以将裂纹分为高温裂纹和常温裂纹,其中,高温裂纹是焊接过程中就产生的裂纹缺陷,产生的原因是基体材料在焊接高温下出现晶体的形状突变,高温裂纹的分布方向通常沿焊缝的长度方向;常温裂纹是指焊接的材料凝固过程产生的裂纹,这种裂纹缺陷产生的原因是焊接材料凝固过程产生温度差和应力差,常温裂纹沿焊缝的长度和宽度方向均可能出现,由于焊接裂纹的危险性非常高,一旦出现裂纹就必须将该区域的材料进行彻底清除,然后重新调整焊接工艺进行二次补焊。

焊接裂纹出现的另一个原因是焊接区域存在杂质,在焊接过程中这些杂质的融化和凝固时间与焊接不同,导致应力分布不均匀。

焊接质量的检验方法

焊接质量的检验方法

一外观检验用肉眼或放大镜观察是否有缺陷,如咬边、烧穿、未焊透及裂纹等,并检查焊缝外形尺寸是否符合要求。

二密封性检验容器或压力容器如锅炉、管道等要进行焊缝的密封性试验。

密封性试验有水压试验、气压试验和煤油试验几种。

1水压试验水压试验用来检查焊缝的密封性,是焊接容器中用得最多的一种密封性检验方法。

2气压试验气压试验比水压试验更灵敏迅速,多用于检查低压容器及管道的密封性。

将压缩空气通入容器内,焊缝表面涂抹肥皂水,如果肥皂泡显现,即为缺陷所在。

3煤油试验在焊缝的一面涂抹白色涂料,待干燥后再在另一面涂煤油,若焊缝中有细微裂纹或穿透性气孔等缺陷,煤油会渗透过去,在涂料一面呈现明显油斑,显现出缺陷位置。

三焊缝内部缺陷的无损检测1 渗透检验渗透检验是利用带有荧光染料或红色染料的渗透剂的渗透作用,显示缺陷痕迹的无损检验法,常用的有荧光探伤和着色探伤。

将擦洗干净的焊件表面喷涂渗透性良好的红色着色剂,待渗透到焊缝表面的缺陷内,将焊件表面擦净。

再涂上一层白色显示液,待干燥后,渗入到焊件缺陷中的着色剂由于毛细作用被白色显示剂所吸附,在表面呈现出缺陷的红色痕迹。

渗透检验可用于任何表面光洁的材料。

2 磁粉检验磁粉检验是将焊件在强磁场中磁化,使磁力线通过焊缝,遇到焊缝表面或接近表面处的缺陷时,产生漏磁而吸引撒在焊缝表面的磁性氧化铁粉。

根据铁粉被吸附的痕迹就能判断缺陷的位置和大小。

磁粉检验仅适用于检验铁磁性材料表面或近表面处的缺陷。

3 射线检验射线检验有X射线和Y射线检验两种。

当射线透过被检验的焊缝时,如有缺陷,则通过缺陷处的射线衰减程度较小,因此在焊缝背面的底片上感光较强,底片冲洗后,会在缺陷部位显示出黑色斑点或条纹。

X射线照射时间短、速度快,但设备复杂、费用大,穿透能力较Y射线小,被检测焊件厚度应小于30mm。

而Y射线检验设备轻便、操作简单,穿透能力强,能照投300mm的钢板。

透照时不需要电源,野外作业方便。

但检测小于50mm 以下焊缝时,灵敏度不高。

焊接缺陷及检测方法

焊接缺陷及检测方法

八焊接缺陷及检测方法1.试述金属熔焊焊缝缺陷得分类及表示方法。

根据GB6417-86《金属熔化焊焊缝缺陷分类及说明》得规定,将金属熔焊焊缝缺陷分为以下几类:第1类裂纹;第2类孔穴;第3类固体夹杂;第4类未熔合与未焊透;第5类形状缺陷与第6类上述以外得其它缺陷。

本标准按缺陷性质分大类,按其存在得位置及状态分小类,以表格得方式列出。

缺陷用数字序号标记。

每一缺陷大类用一个三位阿拉伯数字标记,第一缺陷小类用一个四位阿拉伯数字标记。

因此,每一数字序号仅适合于某一特定类型得缺陷。

例如,1021表示“焊缝横向裂纹”,1023表示“热影响区横向裂纹”等。

2.试述熔焊接头中裂纹得种类及表示方法。

熔焊接头中裂纹得种类及表示方法,见表1。

3.试述熔焊接头中孔穴得种类及表示方法。

熔焊接头中孔穴得种类及表示方法,见表2。

4.试述熔焊接头中固体夹杂得种类及表示方法。

熔焊接头中固体夹杂得种类及表示方法,见表3。

5.试述熔焊接头中未熔合与未焊透得种类及表示方法。

熔焊接头中未熔合与未焊透得种类及表示方法,见表4。

6.试述熔焊接头中形状缺陷得种类及表示方法。

熔焊接头中形状缺陷得种类及表示方法,见表5。

7.试述熔焊接头中其它缺陷得种类及表示方法。

熔焊接头中其它缺陷得种类及表示方法,见表6。

8.什么就是热裂纹?促使形成热裂纹得因素有哪些?焊接过程中,焊缝与热影响区金属冷却到固相线附近得高温区间产生得焊接裂纹即热裂纹。

又称结晶裂纹。

其特征就是断口呈蓝黑色,即金属在高温被氧化得颜色,裂纹总就是产生在焊缝正中心或垂直于焊缝鱼鳞波纹,焊缝表面可见得热裂纹呈不明显得锯齿状,或与焊缝波纹相垂直呈放射状分布。

个别情况下,热裂纹也可能出现在热影响区。

热裂纹主要发生在杂质含量较多得钢、单相奥氏体钢、镍基合金、铝合金、钼合金等得焊缝金属中。

促使形成热裂纹得因素有:(1)焊缝金属得化学成分焊缝金属中C、S、P元素较多时,促使形成热裂纹。

锰在熔池中能与硫形成MnS进入熔渣,可减少硫得有害作用,适量时可减少焊缝得热裂纹倾向。

焊接缺陷及焊接质量检验

焊接缺陷及焊接质量检验

焊接缺陷及焊接质量检验1. 焊接缺陷:按焊接缺陷在焊缝中的位置,可分为外部缺陷和内部缺陷两大类。

外部缺陷位于焊缝区的外表面,用肉眼或低倍放大镜。

例如:焊缝尺寸不符合要求、咬边、焊瘤、弧坑、烧穿、下塌、表面气孔、表面裂纹等。

内部缺陷位于焊缝内部,需用破坏性实验或无损探伤方法来发现。

例如:未焊透、未熔合、夹渣、内部气孔、内部裂纹等。

2. 常见电焊缺陷:(1) 焊缝尺寸不符合要求主要指焊缝宽窄不一、高低不平、余高不足或过高等。

焊缝尺寸过小会降低焊接接头强度;尺寸过大将增加结构的应力和变形,造成应力集中,还增加焊接工作量。

(2) 咬边由于焊接参数选择不当,或操作工艺不正确,沿焊趾的母材部位产生的沟槽或凸陷即为咬边。

咬边使母材金属的有效截面减少,减弱了焊接接头的强度,而且在咬边处易引起应力集中,承载后有可能在咬边处产生裂纹,甚至引起结构的破坏。

(3) 焊瘤焊接过程中,熔化金属流淌到焊缝之外未熔化的母材上,所形成的金属瘤。

焊瘤不仅影响焊缝外表的美观,而且焊瘤下面常有未焊透缺陷,易造成应力集中。

(4) 烧穿焊接过程中,熔化金属自坡口背面流出,形成穿孔的缺陷称为烧穿。

烧穿常发生于打底焊道的焊接过程中。

(5) 未焊透焊接时接头根部未完全熔透的现象称为未焊透。

未焊透常出现在单面焊根部和双面焊的中部。

未焊透不仅使焊接接头的机械性能降低,而且在未焊透处的缺口和端部形成应力集中点,承载后会引起裂纹。

(6) 未熔合未熔合指焊接时,焊道与母材之间或焊道与焊道之间未完全熔化结合的部分;或指点焊时母材与母材之间未完全熔化结合的部分。

未熔合的危害大致与未焊透相同。

(7) 凹坑凹坑、塌陷及未焊满凹坑指在焊缝表面或焊缝背面形成的低于母材表面的局部低洼部分。

塌陷指单面熔化焊时,由于焊接工艺不当,造成焊缝金属过量透过背面,使焊缝正面塌陷,背面凸起的现象。

由于填充金属不足,在焊缝表面形成的连续或断续的沟槽,这种现象即未焊满。

上述缺陷削弱了焊缝的有效截面,容易造成应力集中,并使焊缝的强度严重减弱。

焊接缺陷的检测方法及其在实际工程中的应用

焊接缺陷的检测方法及其在实际工程中的应用

焊接缺陷的检测方法及其在实际工程中的应用焊接是一种常见的金属连接方法,广泛应用于工程领域。

然而,由于焊接过程的复杂性和材料的特性,焊接缺陷的产生是不可避免的。

焊接缺陷可能会导致结构的强度降低、疲劳寿命减少以及泄漏等问题。

因此,及时准确地检测焊接缺陷对于确保工程质量至关重要。

在实际工程中,焊接缺陷的检测方法有多种,下面将介绍几种常见的方法及其应用。

首先,X射线检测是一种广泛应用于焊接缺陷检测的方法。

X射线具有穿透性强的特点,可以透过金属材料进行检测。

通过对焊接接头进行X射线照射,并使用专业的设备接收和记录X射线的信息,可以获得焊接接头的内部结构情况。

这种方法可以有效地检测到焊接缺陷,如气孔、夹杂物、裂纹等。

然而,X射线检测设备昂贵且需要专业的操作技术,因此在实际应用中需要慎重考虑。

其次,超声波检测是另一种常用的焊接缺陷检测方法。

超声波检测利用超声波在材料中的传播和反射来检测焊接接头的内部缺陷。

通过超声波探头对焊接接头进行扫描,可以获取到材料内部的声波信号,并通过分析信号的变化来判断是否存在缺陷。

超声波检测方法具有操作简单、成本较低的优势,适用于各种焊接接头的检测。

然而,超声波检测对材料的传播速度和声阻抗等参数要求较高,对操作人员的技术要求也较高。

另外,磁粉检测是一种适用于检测表面和近表面缺陷的方法。

该方法通过在焊接接头表面涂覆磁性粉末,然后在施加磁场的条件下观察粉末的分布情况来判断是否存在缺陷。

磁粉检测方法可以检测到各种表面缺陷,如裂纹、夹杂物等,且操作简单、成本较低。

然而,磁粉检测方法只适用于磁性材料的检测,并且对于深埋在焊接接头内部的缺陷无法有效检测。

此外,还有一些其他的焊接缺陷检测方法,如涡流检测、红外热像检测等。

这些方法各有特点,适用于不同的焊接接头和缺陷类型。

在实际工程中,通常会根据具体情况选择合适的检测方法,以确保焊接接头的质量。

总之,焊接缺陷的检测在工程领域中具有重要的意义。

通过合适的检测方法,可以及时发现和修复焊接缺陷,确保工程的安全性和可靠性。

焊接缺陷及目视检验培训

焊接缺陷及目视检验培训

焊接缺陷及目视检验培训焊接缺陷是指在焊接过程中出现的不符合要求的缺陷或不良现象。

焊接缺陷的产生主要是由于操作不当、材料质量不良、设备故障或环境条件不佳等因素引起的。

常见的焊接缺陷包括:1. 焊缝未完全熔透:焊缝未完全熔透会导致焊接强度降低,易产生裂纹和漏气等问题。

这种缺陷一般可以通过增加焊接电流或延长焊接时间来解决。

2. 焊缝内夹杂物:焊缝内夹杂物是指未熔化的焊渣、气泡、氧化物等杂质。

这些夹杂物会影响焊缝的强度和密封性,甚至引起疲劳断裂。

通过净化焊接区域、提高焊接技术水平以及控制焊接过程中的气体等因素可以减少夹杂物的产生。

3. 焊缝表面缺陷:焊缝表面缺陷主要包括焊渣、烧穿、焊瘤等。

这些缺陷会导致焊缝的外观质量下降,并可能引发气体泄漏等安全隐患。

在目视检验过程中,焊接人员应该注意观察焊缝表面,并及时进行修复和处理。

针对以上焊接缺陷,进行目视检验是一种常用的检测方法。

目视检验是通过肉眼观察焊缝的质量和缺陷来评估其符合要求程度的一种检验方法。

目视检验需要经过专业的培训,掌握正确的观察技巧和判断标准。

焊接目视检验培训应包括以下内容:1. 焊缝质量标准和规范:学习了解各种焊接工艺和标准,熟悉焊接工艺符号及焊缝种类,掌握焊缝质量标准和规范。

2. 缺陷识别和分类:学习各种焊接缺陷的外观特点,了解缺陷产生的原因及危害,能够准确地识别和分类不同的焊接缺陷。

3. 观察技巧和判断标准:掌握正确的焊缝观察技巧,学会通过目视检查来判断焊缝是否合格,以及如何判断不同类型缺陷的严重程度。

4. 缺陷修复和处理:了解修复不合格焊缝的方法和技术,学习如何处理不同类型的焊接缺陷,以确保焊接接头的质量和安全性。

通过焊接缺陷及目视检验培训,焊接人员能够更好地掌握焊接缺陷的识别和防止技术,提高焊接质量和效率,保证焊接接头的安全可靠性。

同时,培训还有助于提高焊接人员的责任心和专业素养,增强对焊接工艺的控制和管理能力。

焊接缺陷及目视检验培训对焊接质量的影响是非常重要的。

焊接工艺检测方法

焊接工艺检测方法

焊接工艺检测方法
焊接工艺检测方法是指对焊接工艺进行检测和评估的方法。

焊接工艺是制造过程中最重要的环节之一,因此对焊接工艺的检测和评估非常重要。

本文将介绍几种常见的焊接工艺检测方法。

1. 目测检测法
目测检测法是最简单、最常用的焊接工艺检测方法之一。

通过肉眼观察焊缝的外观,可以初步判断焊接质量是否合格。

目测检测法主要适用于焊接表面的缺陷、气孔、裂纹等缺陷的检测。

2. X射线检测法
X射线检测法是一种非破坏性检测方法,可以检测焊接部位的内部缺陷。

通过X射线照射焊接部位,然后观察X射线照片上的缺陷情况,可以判断焊接质量是否合格。

X射线检测法主要适用于焊接部位的内部缺陷、裂纹等缺陷的检测。

3. 超声波检测法
超声波检测法也是一种非破坏性检测方法,可以检测焊接部位的内部缺陷。

通过超声波探头对焊接部位进行扫描,然后观察超声波图像上的缺陷情况,可以判断焊接质量是否合格。

超声波检测法主要适用于焊接部位的内部缺陷、裂纹等缺陷的检测。

4. 磁粉检测法
磁粉检测法是一种磁性材料表面缺陷检测方法,可以检测焊接部位的表面缺陷。

通过在焊接部位涂上磁粉,然后观察磁粉上的缺陷情况,可以判断焊接质量是否合格。

磁粉检测法主要适用于焊接表面的裂纹、气孔等缺陷的检测。

焊接工艺检测方法是非常重要的,可以保证焊接质量的合格性。

以上介绍的几种方法都有各自的优缺点,需要根据具体情况选择合适的方法进行检测。

焊接质量的检验方法有哪些2024

焊接质量的检验方法有哪些2024

引言:焊接质量的检验对于确保焊接结构的安全性和可靠性至关重要。

合格的焊接质量可以提高焊接结构的抗压能力、耐用性和耐腐蚀性。

本文将介绍焊接质量的检验方法,以便于及时发现和纠正焊接质量问题,确保焊接结构的质量。

概述:焊接质量的检验方法包括多个方面,如焊缝外观检验、焊接接头机械性能测试、无损检测、化学成分分析等。

在进行焊接质量的检验时,应综合采用多种方法,以确保焊接质量的综合评价和问题的全面发现。

接下来,本文将详细介绍焊接质量的检验方法。

正文内容:一、焊缝外观检验1.焊缝形貌检查:焊缝形貌检查是观察焊缝的形状、凹陷、错边等是否符合标准要求。

2.焊缝焊道检查:焊缝焊道检查是通过放大镜或显微镜观察焊缝焊道的尺寸和形态,判断焊接质量。

3.焊缝偏离度检查:焊缝偏离度检查是通过量测焊缝与参考线的距离,判断焊接的偏离度是否在规定范围内。

二、焊接接头机械性能测试1.拉伸试验:拉伸试验是将焊接接头制成试样,通过施加拉力来测试焊接接头的抗拉强度和延伸性能。

2.冲击试验:冲击试验是测试焊接接头在受冲击负载时的抗冲击能力。

3.硬度测试:硬度测试是通过在焊接接头的表面上进行压痕试验,来检测接头的硬度和金属结构的组织状态。

三、无损检测1.超声波检测:超声波检测是通过反射和散射来检测焊接接头中的缺陷,如气孔、裂纹等。

2.射线检测:射线检测是利用射线通过物体减弱的原理来检测焊接接头中的缺陷,如虚焊、夹渣等。

3.磁粉检测:磁粉检测是通过涂覆磁粉在焊接接头的表面,以观察磁粉颜色变化来检测焊接接头的缺陷。

四、化学成分分析1.化学成分分析是通过取样,进行金属元素的含量测试,用来确定焊接材料的质量是否符合要求。

2.化学成分分析可以通过光谱分析、X射线荧光分析等多种分析方法来实施,以确定焊接材料的化学成分是否合格。

五、其他检验方法1.焊缝断面组织观察:通过对焊接接头切割并腐蚀后,在显微镜下观察焊缝断面的组织结构,以评估焊缝质量。

2.焊接应力测试:焊接应力测试是通过放大畸变形成焊接结构应力,来测试焊接结构的强度和稳定性。

焊接质量检验方法

焊接质量检验方法

焊接质量检验方法焊接是一种常见的金属连接工艺,在工业生产中起着重要作用。

焊接质量的好坏直接关系到产品的安全性和可靠性。

因此,对焊接质量进行检验是很重要的。

本文将介绍几种常用的焊接质量检验方法。

1. 目测检验法目测是最简单和最常用的一种焊接质量检验方法。

通过对焊接表面进行肉眼观察,可以初步判断焊缝的形状、大小和表面质量等。

在目测检验时需要注意焊缝是否均匀,焊缝与母材的结合是否紧密,是否有裂纹、气孔、夹渣等焊接缺陷。

2. 渗透检验法渗透检验法是一种常用的焊接缺陷检测方法,主要用于检测焊缝中的裂纹和气孔等隐蔽缺陷。

该方法根据渗透液的性质不同可分为可见光渗透检验法和荧光渗透检验法。

可见光渗透检验法适用于一般焊接缺陷的检测,而荧光渗透检验法则适用于检测较小或不易观察到的缺陷。

3. X射线检测法X射线检测法是一种常用的无损检测方法,可以用于检测焊接接头中的焊缝缺陷,如裂纹、夹渣等。

该方法的原理是利用X射线的穿透性,通过对射线投射到被检测物体上进行成像,从而判断焊接缺陷的存在与否以及缺陷的性质和大小。

该方法对不同材料的成像效果有一定差异,需要根据具体情况选择合适的射线源和检测仪器。

4. 超声波检测法超声波检测法是一种常用的焊接质量检测方法,主要用于检测焊接接头中的焊缝缺陷和母材的质量。

该方法利用超声波在材料中的传播速度和反射特性,通过检测反射信号的强度和时间来分析焊接缺陷的存在与否,并对缺陷进行定性和定量分析。

超声波检测法具有非破坏性、高灵敏度和高精度等优点,并且适用于不同材料和焊接方式的检测。

综上所述,焊接质量的检验是确保产品质量和安全性的重要环节。

目测检验法、渗透检验法、X射线检测法和超声波检测法是常用的焊接质量检验方法。

选择合适的检验方法依赖于具体的焊接材料、接头形式和焊接要求等因素。

在进行焊接质量检验时,需要仔细观察焊接表面、使用合适的仪器和设备,以确保检验的准确性和可靠性。

只有通过科学有效的焊接质量检验方法,才能确保焊接接头的质量符合要求,从而提高产品的质量和可靠性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八焊接缺陷及检测方法1.试述金属熔焊焊缝缺陷的分类及表示方法。

根据GB6417-86《金属熔化焊焊缝缺陷分类及说明》的规定,将金属熔焊焊缝缺陷分为以下几类:第1类裂纹;第2类孔穴;第3类固体夹杂;第4类未熔合和未焊透;第5类形状缺陷和第6类上述以外的其它缺陷。

本标准按缺陷性质分大类,按其存在的位置及状态分小类,以表格的方式列出。

缺陷用数字序号标记。

每一缺陷大类用一个三位阿拉伯数字标记,第一缺陷小类用一个四位阿拉伯数字标记。

因此,每一数字序号仅适合于某一特定类型的缺陷。

例如,1021表示“焊缝横向裂纹”,1023表示“热影响区横向裂纹”等。

2.试述熔焊接头中裂纹的种类及表示方法。

熔焊接头中裂纹的种类及表示方法,见表1。

3.试述熔焊接头中孔穴的种类及表示方法。

熔焊接头中孔穴的种类及表示方法,见表2。

4.试述熔焊接头中固体夹杂的种类及表示方法。

熔焊接头中固体夹杂的种类及表示方法,见表3。

5.试述熔焊接头中未熔合和未焊透的种类及表示方法。

熔焊接头中未熔合和未焊透的种类及表示方法,见表4。

熔焊接头中形状缺陷的种类及表示方法,见表5。

7.试述熔焊接头中其它缺陷的种类及表示方法。

熔焊接头中其它缺陷的种类及表示方法,见表6。

表6 其它缺陷的种类及表示方法8.什么是热裂纹?促使形成热裂纹的因素有哪些?焊接过程中,焊缝和热影响区金属冷却到固相线附近的高温区间产生的焊接裂纹即热裂纹。

又称结晶裂纹。

其特征是断口呈蓝黑色,即金属在高温被氧化的颜色,裂纹总是产生在焊缝正中心或垂直于焊缝鱼鳞波纹,焊缝表面可见的热裂纹呈不明显的锯齿状,或与焊缝波纹相垂直呈放射状分布。

个别情况下,热裂纹也可能出现在热影响区。

热裂纹主要发生在杂质含量较多的钢、单相奥氏体钢、镍基合金、铝合金、钼合金等的焊缝金属中。

促使形成热裂纹的因素有:(1)焊缝金属的化学成分焊缝金属中C、S、P元素较多时,促使形成热裂纹。

锰在熔池中能与硫形成MnS进入熔渣,可减少硫的有害作用,适量时可减少焊缝的热裂纹倾向。

钢中含铜量过多时,会增大焊缝热裂纹倾向。

(2)焊缝横截面形状焊缝熔宽与厚度的比值越小,即熔宽较小、厚度较大时,容易产生热裂纹。

(3)焊接应力焊件刚性大,装配和焊接时产生较大的焊接应力,会促使形成热裂纹。

9.如何防止产生热裂纹?(1)控制焊缝金属中有害杂质的含量碳素结构钢用焊芯(丝)的含碳量均≤0.10%,硫、磷的含量应≤0.03%,焊接高合金钢时控制更严。

(2)预热能减小焊接熔池的冷却速度,降低焊接应力。

随着母材含碳量或碳当量的增加,应适当增高预热温度。

奥氏体不锈钢焊缝不能采用预热的方法来防止产生热裂纹。

(3)采用碱性焊条和焊剂由于碱性焊条和焊剂具有较强的脱硫、磷能力,因此具有较高的抗热裂能力。

(4)适当调整焊接工艺参数焊接工艺参数直接影响焊缝的横断面形状,因此适当减小焊接电流以减少焊缝厚度,有利于提高焊缝的抗裂性能。

(5)采用收弧板焊接终了断弧时,由于弧坑冷却速度较快,常因偏析而在弧坑处形成热裂纹,即所谓的弧坑裂纹。

所以终焊时应逐渐断弧,并填满弧坑。

必要时可采用收弧板,将弧坑移至焊件外,此时即使产生弧坑裂纹,也因焊后需将收弧板割掉,并不影响结构本身。

10.什么是冷裂纹、延迟裂纹?促使形成冷裂纹、延迟裂纹的因素有哪些?焊接接头冷却到较低温度下(对于钢来说在Ms温度以下)时产生的焊接裂纹称为冷裂纹。

钢的焊接接头冷却到室温后并在一定时间(几小时、几天、甚至十几天)才出现的焊接冷裂纹称为延迟裂纹。

冷裂纹(包括延迟裂纹)主要发生在中碳钢、高碳钢、低合金或中合金高强钢、钛及钛合金的焊接接头中。

冷裂纹多发生在接头热影响区或熔合线上,个别情况下出现在焊缝上。

根据冷裂纹产生的部位,可将冷裂纹分为如下三种见图1。

(1)焊道下裂纹在靠近堆焊焊道的热影响区内所形成的焊接冷裂纹。

其走向常与熔合线平行,但也有时垂直于熔合线。

(2)焊趾裂纹沿应力集中的焊趾处所形成的焊接冷裂纹。

其走向常与焊缝纵向平等,由焊趾的表面开始,向母材的深处延伸。

(3)焊根裂纹沿应力集中的焊缝根部所形成的焊接冷裂纹。

其走向从焊缝根部开始,伸向热影响区或焊缝中。

形成冷裂纹的三大因素是:钢种的淬硬倾向大、焊接接头的含氢量高和结构的焊接应力大。

特别是由氢促使形成的冷裂纹往往具有延迟的性质,常称为“氢致裂纹”。

11.如何防止产生冷裂纹?(1)控制焊缝金属的含氢量采用碱性低氢型焊条和焊剂;严格按规定烘干焊条和焊剂;仔细清除焊接区的污物、锈、油、水。

(2)预热减慢接头的冷却速度以降低淬硬倾向。

(3)后热(消氢处理)后热是指焊接结束或焊完一条焊缝后,将焊件或焊接区立即加热到150~250℃,并保温一段时间。

消氢处理是在300~400℃加热温度内进行。

两者均能促使氢逸出,但消氢处理效果更好。

(4)采用较大的焊接线能量减慢接头的冷却速度。

但线能量太大时,会促使热影响区形成过热组织,所以应适当控制,不能无限制地增大。

(5)采用奥氏体不锈钢焊条因奥氏体组织塑性好,可减少焊接应力,并能溶解较多的氢,所以可用来焊接淬硬倾向较强的低合金高强钢,避免产生冷裂纹。

12.什么是再热裂纹?防止产生再热裂纹的方法有哪些?焊后焊件在一定温度范围内再次加热(消除应力热处理或其它加热过程)而产生的裂纹称为再热裂纹。

再热裂纹通常发生在熔合线附近的粗晶区中,从焊趾部位开始,延向细晶区停止。

钢中Cr、Mo、V、Nb、Ti等元素会促使形成再热裂纹,其影响可用下式表示△G′=Cr+3.3Mo+8.1V+10C-2△G′>2时,对再热裂纹敏感;1.5<△G′<2时,一般;△G′<1.5时,对再热裂纹不敏感。

防止产生再热裂纹的方法:(1)预热预热温度为200~450℃。

若焊后能及时后热,可适当降低预热温度。

例如,18MnMoNb钢焊后在180℃热处理2h,预热温度可降低至180℃。

(2)应用低强度焊缝使焊缝强度低于母材以增高其塑性变形能力。

(3)减少焊接应力合理地安排焊接顺序、减少余高、避免咬边及根部未焊透等缺陷以减少焊接应力。

13.什么是层状撕裂?防止层状撕裂的方法有哪些?焊接时,在焊接构件中沿钢板轧层形成的呈阶梯状的一种裂纹称为层状撕裂。

层状撕裂经常发生在T形接头和角接接头中,其走向与钢板表面相平行见图2,图中箭头表示接头的受力方向。

产生层状撕裂的原因是在轧制钢板中存在硫化物、氧化物和硅酸盐等低熔点非金属夹杂物,其中尤以硫化物的作用为主,在轧制过程中被延展成片状,分布在与表面平行的各层中,在垂直于厚度方向的焊接应力作用下,夹杂物首先开裂并扩展,以后这种开裂在各层之间相断发生,连成一体,造成层状撕裂的阶梯性。

防止层状撕裂的方法:1)严格控制钢材的含硫量。

2)采用强度级别较低的焊接材料。

3)在与焊缝相连接的钢板表面堆焊几层低强度焊缝金属作为过渡层,以避免夹杂物处于高温区。

4)预热和使用低氢焊条。

14.常用的抗裂性试验方法有哪些?常用的抗裂性试验方法,见表7。

表7 抗裂性试验方法15.试述防止焊缝中产生气孔的常用方法。

1)仔细清除焊件表面上的污物,手弧焊时在坡口面两侧各10mm、埋弧焊时各20mm范围内去除锈、油,应打磨至露出金属表面光泽,特别是在使用碱性焊条和埋弧焊时,更应做好清洁工作。

2)焊条和焊剂一定要严格按照规定的温度进行烘焙:酸性焊条75~150℃;碱性焊条350~450℃;焊剂250℃,并保温1~2h。

烘焙后的焊条应放在焊条保温筒内,随用随取。

碱性焊条在露天存放4h以上时应重新烘焙,重复烘焙的次数不得超过3次。

3)不应使用过大的焊接电流。

4)采用直流电源施焊时,电源极性应为反接。

5)碱性焊条施焊时,应采用短弧焊。

6)引弧时应将焊条略作停顿,对引弧处进行预热,否则引弧处容易形成气孔。

7)采用手弧焊打底、埋弧焊盖面的工艺时,打底焊条应为碱性焊条,用酸性焊条打底极易产生气孔。

8)气体保护焊时应调节气体流量至适当值、流量太小,保护不良,易使空气侵入形成气孔。

16.试述常用无损检验方法的种类及其选择。

不损坏被检查材料或成品的性能和完整性而检测其缺陷的方法称为无损(探伤)检验。

常用的无损检验方法有超声、射线(X、γ)照相、磁粉、渗透(荧光、着色)和涡流探伤等。

其中超声探伤和射线探伤适于焊缝内部缺陷的检测;磁粉探伤和渗透探伤则用于焊缝表面质量检验。

每一种无损探伤方法均有其优点和局限性,各种方法对缺陷的检出机率既不会有100%,也不会完全相同。

因而应根据焊缝材质、结构及探伤方法的特点、验收标准等来进行选择。

不同焊缝材质探伤方法的选择见表8。

17.试述射线探伤的原理及焊接缺陷的影像特征。

射线探伤可分别采用X、γ两种射线,其探伤原理见图3。

当射线通过金属材料时,部分能量被吸收,使射线发生衰减。

如果透过金属材料的厚度不同(裂纹、气孔、未焊透等缺陷,该处发生空穴,使材料变薄)或体积质量不同(夹渣),产生的衰减也不同。

透过较厚或体积质量较大的物体时衰减大,因此射到底片上的强度就较弱,底片的感光度就较小,经过显影后得到的黑度就浅;反之,黑度就深。

根据底片上黑度深浅不同的影像,就能将缺陷清楚地显示出来。

射线探伤常见焊接缺陷的影像特征见表9。

18.试述射线探伤的质量标准。

根据GB3323-87《钢熔化焊对接接头射线照相和质量分级》的规定,射线探伤的质量标准分为照相质量等级和焊缝质量等级两部分。

根据采用的射源种类及其能量的高低、胶片的种类、增感方式、底片的黑度、射源与胶片间的距离等参数,照相质量等级分为A 、AB 和B 三级,质量级别顺次增高。

即后者比前者分辨相同尺寸的缺陷时,透照的厚度大。

锅炉压力容器的缝照相质量为AB 级。

焊缝质量等级共分四级,Ⅰ级焊缝内缺陷最少,质量最高;Ⅱ、Ⅲ级焊缝内的缺陷依次增多,质量逐次下降,缺陷数量超过Ⅲ级者为Ⅳ级,Ⅳ级最差。

缺陷数量的规定:Ⅰ级焊缝内不准有裂纹、未熔合、未焊透和条状夹渣(允许有少量气孔和点状夹渣 );Ⅱ、Ⅲ级焊缝内不准有裂纹、未熔合以及双面焊和加垫板的单面焊中的未焊透(允许有一定数量的气孔、条状夹渣和不加垫板单面焊中的未焊透)。

19.试述超声波探伤的原理及质量标准。

利用超声波探测材料内部缺陷的无损检验法称超声波探伤。

超声探伤的原理,是利用焊缝中的缺陷与正常组织具有不同的声阻抗(材料体积质量与声速的乘积)和声波在不同声阻抗的异质界面上,通过超声波时会产生反射现象来发现缺陷的。

探伤时由探头中的压电换能器发射脉冲超声波。

通过声耦合介质(水、油、甘油或浆糊等)传播到焊件中,遇到缺陷后产生反射波,然后再用另一个类似的探头或同一个探头接收反射的声波,经换能器转换成电信号,放大后显示在荧光屏上或打印在纸带上。

根据探头位置和声波的传播时间(荧光屏上回波位置)可求得缺陷位置;反射波的幅度可以近似地评估缺陷的大小,见图4。

相关文档
最新文档