阵列信号处理—music、Capon

合集下载

空间谱估计基本原理

空间谱估计基本原理

号,达到提取各个空间信号源信号及其特征信息和参数的目的。
阵列信号处理实质上是提高阵列输出的信噪比。 特征信息和参数一般包括:空间信号源的方向、数目、信号 的频率、相位、调制形式及波形等。
阵列信号处理具有的优点

灵活的波束控制 较高的信号增益


较强的干扰抑制能力
很好的空间分辨能力
阵列信号处理的两个主要研究方向
R UΣU i ei eiH , U [e1 eM ], Σ diag{1 , 2 ,M }
H i 1
特征值满足关系
1 2 N N 1 M 2
定义 ΣS diag[1,, N ], ΣN diag[N 1,, M ] 2 I 相对应的特征向量矩阵为
空间谱估计基本原理 MUSIC,ESPRIT算法
提纲

空间谱估计概述
阵列的数学模型及其统计特性 多重信号分类算法(MUSIC)及其性能
旋转不变子空间算法(ESPRIT)及其性能
一、空间谱估计概述
阵列信号处理
将多个传感器布置在空间的特定位置组成传感器阵列,接收
空间信号场中的信号,利用各个信号在空间位置上的差异,最大 程度地增强所需要的信号,同时抑制干扰和噪声或不感兴趣的信
ui (t ) ui (t ) (t ) (t )
si (t ) ui (t )e j(0 (t ) (t )) si (t )e j0
以阵列的某一阵元为参考阵元,则第l个阵元接收通道的信号为
xl (t ) gli si (t li ) nl (t ) l 1, 2,, M
H H U N ] = U S Σ SU S + U N Σ NU N

阵列信号处理中DOA算法分类总结(大全)讲述

阵列信号处理中DOA算法分类总结(大全)讲述

阵列信号处理中的DOA (窄带)/接收过程中的信号增强。

参数估计:从而对目标进行定位/给空域滤波提供空域参数。

(DOA)θ的函数,P(θ)./经典波束形成器 注,延迟相加法和CBF 法本质相同,仅仅是CBF 法的最优权向量是归一化了的。

CBF / Bartlett 波束形成器 CBF :Conventional Beam Former ) 最小方差法/Capon 波束形成器/ MVDR 波束形成器MVDR :minimum variance distortionless response )Root-MUSIC 算法多重信号分类法解相干的MUSIC 算法 (MUSIC )基于波束空间的MUSIC 算法 TAM 旋转不变子空间法 LS-ESPRIT TLS-ESPRIT 确定性最大似然法(DML :deterministic ML )随机性最大似然法(SML :stochastic ML )最大似然估计法是最优的方法,即便是在信噪比很低的环境下仍然具有良好的性能,但是通常计算量很大。

同子空间方法不同的是,最大似然法在原信号为相关信号的情况下也能保持良好的性能。

只要确定了阵列各阵元之间的延迟τ,就可以很容易地得出一个传统的波达方向估计方法是基于波束形成和零波导引概念的,并没有利用接收信号向量的模型(或信号和噪声的统计特性)。

知道阵列流形 A 以后,可以对阵列进行电子导引,利用电子导引可以把波束调整到任意方向上,从而寻找输出功率的峰值。

①常规波束形成(CBF)法CBF法,也称延迟—相加法/经典波束形成器法/傅里叶法/Bartlett波束形成法,是最简单的DOA 估计方法之一。

这种算法是使波束形成器的输出功率相对于某个信号为最大。

(参考自:阵列信号处理中DOA估计及DBF技术研究_赵娜)注意:上式中,导向矩阵A表示第K个天线阵元对N个不同的信号s(i)示第i个信号s(i)在M个不同的天线上的附加权值。

基于MUSIC算法的测向性能分析

基于MUSIC算法的测向性能分析

基于MUSIC算法的测向性能分析MUSIC(MUltiple SIgnal Classification)算法是一种常用的测向算法,广泛应用于无线通信领域。

它通过利用传感器阵列接收到的信号数据,实现对信号源的测向定位。

下面将从MUSIC算法的原理、性能分析以及应用场景等方面进行详细介绍。

MUSIC算法的性能可以通过两个指标进行评估:分辨能力和方位角估计误差。

分辨能力是指算法在相邻两个信号源之间能否准确判断是否存在第二个信号源,主要与阵列长度和信号源间距有关。

方位角估计误差是指算法对信号源的测向偏差,主要与阵列长度、信噪比(SNR)以及信号源的角度有关。

在信号源间距较大时,MUSIC算法的分辨能力较好,可以准确地定位多个信号源。

而当信号源间距较小时,由于其无法准确估计信号源的DOA (Direction Of Arrival),可能会出现无法区分多个信号源的情况。

此时,可以通过增加阵列长度或利用其他改进的算法来提高分辨能力。

在信噪比较高时,MUSIC算法的方位角估计误差较小,可以实现较准确的测向。

然而,信噪比较低时,由于噪声对信号的影响较大,可能会导致方向估计出现较大的误差。

在这种情况下,可以通过改进算法或加大信号源的功率来提高方位角估计的准确性。

此外,MUSIC算法还受到信号源角度选择的限制。

当信号源的角度选择在阵列的子空间中时,MUSIC算法无法准确测向。

因此,在实际应用中,需要选择合适的阵列几何结构及信号源角度。

MUSIC算法在无线通信领域具有广泛的应用。

例如,在移动通信中,可以利用MUSIC算法实现对移动信号源的快速测向,进而优化无线信号的覆盖和接收性能;在雷达领域,MUSIC算法可以应用于目标定位,实现对目标的精确测向。

综上所述,MUSIC算法是一种基于阵列信号处理的测向算法,能够实现对信号源的准确测向。

通过考虑阵列长度、信噪比、信号源间距和选择合适的阵列几何结构,可以进一步提高MUSIC算法的测向性能。

现代数字信号处理课件:阵列信号处理

现代数字信号处理课件:阵列信号处理

阵列信号处理
2. 阵列信号协方差矩阵分解 阵列信号协方差矩阵R=E[XXH]可以写作
R
E[ x1 x1 ] E[x2 x1]
E[ x1 x2 ] E[x2 x2]
E[ x1 xM E[x2 xM
] ]
E[
xM
x1
]
E[xM x2]
E[
xM
xM
]
(7.1.11)
这是一个Hermitian方阵,则其特征分解为
di l c
1 c
( xi
sin
cosj
yi
cos
cosj
zi
sinj )
(7.1.4)
通常情况下,考虑空间有N个独立远场窄带信号入射到
M个阵元的阵列上,且有零均值高斯白噪声n(t),可以得到
阵列的输出为
x1(t) exp( j2πf011)
x2 (t
)
exp(
j2πf0
21 )
UHRU=Σ
(7.1.13)
将R=ARSAH+σ2I代入上式,可得
UH(ARSAH+σ2I)U=Σ 而酉矩阵U满足UHU=I,因此
(7.1.14)
UHARSAHU=Σ-σ2I
(7.1.15)
由上面的分析可知,Σ可分为两部分: 一是与信号对应
的大特征值,由ARSAH和RN提供;二是与噪声对应的小特征 值σ2,由RN提供。即
则各阵元第k次快拍的采样值的矩阵形式为
X(k)=AS(k)+N(k)
(7.1.7)
由于S(k)随k变化,且其初相通常为均匀分布,一阶统
计量(均值)为零,所以不能直接采用一阶统计量来提取方向
信息。而二阶统计量可以消除信号S(k)的随机初相,可以用

阵列信号处理中的DOA估计算法

阵列信号处理中的DOA估计算法

阵列信号处理中的DOA估计算法摘要:本文简要介绍了阵列信号处理的基本知识和其数学模型,并且对阵列信号处理中很重要的来波方向(DOA)估计方法进行了比较,主要包括古典谱估计方法、Capon最小方差法、多重信号分类(MUSIC)算法以及旋转不变因子空间(ESPRIT)算法。

通过这些算法的介绍和比较,我们可以很方便地在不同的情况下选择不同的算法去对信号的来波方向进行估计。

关键词:阵列信号处理;来波方向(DOA);MUSIC;自相关矩阵;特征分解;ESPRIT DOA Estimation Algorithms in Array Signal Processing Abstract:In this paper, we have introduced the basic knowledge and data model of array signal processing and have compared many DOA estimation methods in array signal processing,which included classical spectrum estimation method、Capon minimum variance method、MUSIC method and ESPRIT method。

Through the introduction and comparison of these algorithms,we can choose different algorithm to estimate the DOA of signal in different situation,conveniently。

Key word s:array signal processing;DOA;MUSIC;self-correction matrix;eigendecomposition;ESPRIT1.引言近几十年来,阵列信号处理作为信号处理的一个重要分支,在声纳、雷达、通信以及医学诊断等领域得到了相当广泛的应用和发展。

MUSIC方法_清华大学《现代信号处理》讲义_-张贤达

MUSIC方法_清华大学《现代信号处理》讲义_-张贤达

改进方法1: (求根MUSIC方法)
基本思想:Pisarenko谐波分解 (不需一维搜索)
a H ( )G 0
j

j ( m 1)
G H a( ) 0

T
a( ) 1, e , , e
z e j
p( z ) 1, z, , z
m 1 T

波束形成器:
w opt
1 H R xx a (d ) 1 H a(d )R xx a (d )
5. 改进的MUSIC方法
改进方法1:
ˆ ( ) a H ( )Ua P( ) H a ( )GG H a( )
p
ˆ 2 U
i 1
2 i
i
H s s 2 k k
观测空间 = 信号子空间 + 噪声子空间
特征值分解后,与大特征值对 应 与小特征值对 应
子空间的几何意义:
U S, G
H H H S S S S G H U U H S, G H I H G S G G G
S S I p , GH G Im p , G H S 0 S H G 0
Vandermonde矩 阵
j p e j ( m 1) p e 1
方向矩阵
满列秩 1 2 p
1 j1 e j ( m 1)1 e
1 e j2 e j ( m 1)2
2
加性噪声

2

1 lim N N
2

n 1
N
z (n) w H E x(n)x H (n) w
2

MUSIC算法原理

MUSIC算法原理

MUSIC算法原理MUSIC (Multiple Signal Classification) 算法是一种用于频谱估计和波束形成的高分辨率算法。

它最早由Schmidt在 1986 年提出,用于空间谱估计。

MUSIC 算法的基本原理是将接收到的信号进行空间谱分解,并通过计算特征向量对信号源进行定位。

1.接收到的信号通过阵列天线进行采样,得到信号向量。

信号向量表示每个阵列元素接收到的信号振幅。

2.构建协方差矩阵。

协方差矩阵表示接收到的信号之间的相关性。

协方差矩阵可以通过信号向量的内积进行计算。

3.对协方差矩阵进行特征分解。

特征分解可以得到协方差矩阵的特征值和特征向量。

4.根据特征值和特征向量,计算谱估计。

谱估计是通过将信号向量投影到特征向量的子空间中,得到信号源的空间谱。

特征值较大的特征向量对应的子空间贡献较大,而特征值较小的特征向量则表示噪音。

5.根据谱估计结果,确定信号源的角度。

当信号源角度为0度时,谱估计结果最大,此时信号源沿阵列法线方向;而当信号源角度不为0度时,谱估计结果较小。

MUSIC算法的核心思想是通过计算信号的空间谱,从而实现高分辨率的信号源定位。

它可以处理多路径传播和相干信号,对于不同角度的信号源能够实现较好的角度分辨率。

MUSIC算法广泛应用于雷达、无线通信、声纳等领域。

1.高分辨率:MUSIC算法可以实现较好的信号源定位效果,通过计算信号的空间谱,可以对信号源进行准确的角度估计。

2.对多路径传播和相干信号有较好的处理能力:MUSIC算法可以通过计算协方差矩阵的特征值和特征向量,对多路径传播和相干信号进行分离和定位。

3.算法简单:MUSIC算法的步骤相对简单,容易实现和理解。

它不需要复杂的参数估计和信号模型,只需进行简单的矩阵运算即可得到信号源的定位结果。

1.阵列结构需知:MUSIC算法对阵列结构要求较高,需要事先知道阵列几何结构的具体信息,如阵列元素之间的距离、阵列元素的位置等。

阵列信号处理中基于MUSIC算法的空间谱估计

阵列信号处理中基于MUSIC算法的空间谱估计

技术创新中文核心期刊《微计算机信息》(管控一体化)2006年第22卷第4-3期360元/年邮局订阅号:82-946《现场总线技术应用200例》软件时空阵列信号处理中基于MUSI C算法的空间谱估计EstimationofSpatialSpectrumBasedonMUSICAlgorithm(1.海军91917部队;2.海军工程大学)刘刚1吕新华2攸阳1Liu,GangLv,XinhuaYou,Yang摘要:阐述了阵列信号处理中广泛采用的用于来波方向(DOA)估计的多信号分类(MUSIC)算法原理,理论分析了算法的实现过程,并结合Matlab实验,从理论和系统仿真两方面证明将此法用于确定目标方位角的实用价值,是一种有效的测量目标方位角的方法。

关键词:来波方向估计;多信号分类算法;阵列信号处理;中图分类号:TN911文献标识码:AAbstract:PrinciplesofMUSICalgorithm,whichiswidelyappliedinarraysignalprocessing,havebeendetailedintroduced.Imple-mentationofalgorithmhasbeenanalyzed.SimulationsresultsbasedonMatlabhaverevealedthatthealgorithmhaspracticalvalueintheestimationofdirectionofarrival.Keywords:DOAestimation;MUSICalgorithm;arraysignalprocessing文章编号:1008-0570(2006)04-3-0302-02作为信号处理的一个重要分支,阵列信号处理广泛应用在雷达、声纳、地震信息、无线通信,生物医学工程等多种军事和民用领域。

利用阵列信号处理技术实现对远场信号的来波方向(DOA———directionofar-rival)估计近年来一直是人们研究的热点。

现代信号处理讲义讲义

现代信号处理讲义讲义
信号S 噪声G
子空间:向量组 a1, ,ap 的线性组合的集合,称为 a1, ,ap 张成的空间。
p
span a1, ,a p close a1, ,a p ja j , j C
j1
信号子空间: span s1, ,sp span u1, ,up 噪声子空间: span g1, ,g p span up1, ,um
J (w) 0
w*
wopt Rxx1a(k )

wH opt
a(k
)
1
aH
(k
)wopt
,代入上式
aH
(k
1
)R xx1a( k
)
wopt
Rxx1a(k ) aH (k )Rxx1a(k )
最佳滤波器
由Capon提出,称为最小方差无畸变(MVDR)波束形成器
MVDR: minimum variance distortionless response
期望信号 干扰信号 加性噪声
E z(n) 2 lim 1 N z(n) 2 wH E x(n)xH (n) w
N N
n1
E sk (n) 2 wH a(k ) 2 p E si (n) 2 wH a(i ) 2 2 w 2 i 1,i k
wH a(k ) 1
(波束形成条件)
现代信号处理讲义
3.5 MUSIC方法
1. 阵列信号处理问题 2. 最优波束形成器 3. 子空间方法 4. MUSIC方法 5. 改进的MUSIC方法
3.5 MUSIC方法
MUSIC: Multiple Signal Classification 1. 阵列信号处理问题 (array signal processing)

空间谱估计基本原理

空间谱估计基本原理

将M个阵元在特定时刻的接收信号写成矩阵的形式,且假设各阵元是各 向同性的且通道一致、无互耦影响,gij =1
x1 (t )
x2
(t)
xM (t)
N
g1i ( i ) si
t
1i
N
si (t )e j01i
i1
N
g
2
i
(
i
)
si
t
2
i
i1
n1 (t ) n2 (t)
exp(j0Mi)
可见,一旦求得阵元间的延迟τ就会得到导向矢量阵A。
1 (xc o sc o s ysin c o s zsin ) c
阵元的位置 xk(k1,2, ,M )
信号入射方位角i(i1,2, ,N)
ki
1 c
yk
sini
阵元的位置 (x k,y k)(k 1 ,2 , ,M )
信号入射方位角和俯仰角 (i,i)(i 1 ,2 , ,N )
阵列信号处理实质上是提高阵列输出的信噪比。 特征信息和参数一般包括:空间信号源的方向、数目、信号 的频率、相位、调制形式及波形等。
阵列信号处理具有的优点
灵活的波束控制 较高的信号增益 较强的干扰抑制能力 很好的空间分辨能力
阵列信号处理的两个主要研究方向
自适应阵列处理(空域自适应滤波,自适应波束形成)
信号子空间与噪声子空间正交,且有 A H ei 0 U S U S H U N U N H I, U S U S H I, U N U N H I
具体实现中,数据协方差矩阵是用采样协方差矩阵的代替的
Rˆ 1 L XXH Li 1
数据协方差矩阵的最大似然估计 实际采样数据是有限长度的,影响了模型的假设,改变了数据的相关

(完整版)阵列信号处理中DOA算法分类总结(大全),推荐文档

(完整版)阵列信号处理中DOA算法分类总结(大全),推荐文档

阵列信号处理中的DOA (窄带)/接收过程中的信号增强。

参数估计:从而对目标进行定位/给空域滤波提供空域参数。

(DOA)空间谱:输出功率P 关于波达角θ的函数,P(θ).——相加法/经典波束形成器注,延迟相加法和CBF 法本质相同,仅仅是CBF 法的最优权向量是归一化了的。

CBF / Bartlett 波束形成器CBF :Conventional Beam Former )最小方差法/Capon 波束形成器/ MVDR 波束形成器MVDR :minimum variance distortionless response )Root-MUSIC 算法多重信号分类法解相干的MUSIC 算法(MUSIC )基于波束空间的MUSIC 算法TAM旋转不变子空间法LS-ESPRIT TLS-ESPRIT 确定性最大似然法(DML :deterministic ML )随机性最大似然法(SML :stochastic ML )最大似然估计法是最优的方法,即便是在信噪比很低的环境下仍然具有良好的性能,但是通常计算量很大。

同子空间方法不同的是,最大似然法在原信号为相关信号的情况下也能保持良好的性能。

阵列流形矩阵(导向矢量矩阵)只要确定了阵列各阵元之间的延迟τ,就可以很容易地得出一个特定阵列天线的阵列流形矩阵A。

传统的波达方向估计方法是基于波束形成和零波导引概念的,并没有利用接收信号向量的模型(或信号和噪声的统计特性)。

知道阵列流形 A 以后,可以对阵列进行电子导引,利用电子导引可以把波束调整到任意方向上,从而寻找输出功率的峰值。

①常规波束形成(CBF)法CBF法,也称延迟—相加法/经典波束形成器法/傅里叶法/Bartlett波束形成法,是最简单的DOA 估计方法之一。

这种算法是使波束形成器的输出功率相对于某个信号为最大。

(参考自:阵列信号处理中DOA估计及DBF技术研究_赵娜)注意:理解信号模型注意:上式中,导向矩阵A的行向量表示第K个天线阵元对N个不同的信号s(i)的附加权值,列向量表示第i个信号s(i)在M个不同的天线上的附加权值。

均匀面阵的music算法

均匀面阵的music算法

均匀面阵的music算法
均匀面阵的MUSIC算法是一种常用的信号处理技术,用于估计信号源的方向或位置。

以下是该算法的基本步骤:
1. 接收阵列布置:选择均匀平面阵列作为接收阵列,确保阵列的几何形状符合所需的定位要求。

2. 采集信号数据:在已布置好的接收阵列上,采集来自信号源的信号数据,并进行预处理,如去除噪声、增强信号质量等。

3. 构建协方差矩阵:使用传感器数据,构建接收阵列的协方差矩阵。

协方差矩阵反映了传感器之间的相互关系和接收到的信号特性。

4. MUSIC算法实施:利用MUSIC算法对协方差矩阵进行分解和分析,以估计信号源的方向或位置。

该算法通过空间谱估计方法,将信号源的DOA (方向到达)与干扰噪声进行区分。

5. 信号源定位:根据MUSIC算法的结果,确定信号源在空间中的位置或方向。

对于均匀平面阵,可以直接获得信号源的方向角度。

需要注意的是,MUSIC算法的实施涉及到信号处理、谱估计和空间波束形成等关键技术。

在实际应用中,还需要考虑传感器间距离、阵列元素数目、信噪比以及接收阵列的校准和校验等方面的因素。

以上是均匀面阵的MUSIC算法的基本步骤,如需了解更多信息,建议咨询专业人士或查阅相关书籍文献。

MUSIC算法原理

MUSIC算法原理

MUSIC 算法基本原理信号模型MUSIC 算法是针对多元天线阵列测向问题提出的,用含M 个阵元的阵列对()M K K <个目标信号进行测向,以均匀线阵为例,假设天线阵元在观测平面内是各向同性的,阵元的位置示意图如图1所示。

d图1 均匀线阵示意图来自各远场信号源的辐射信号到达天线阵列时均可以看作是平面波,以第一个阵元为参考,相邻阵元间的距离为d ,若由第k 个辐射元辐射的信号到达阵元1的波前信号为)(t S k ,则第i 个阵元接收的信号为()()()c /sin 1j ex p 0k k k d i t S a θω-- (1)其中,k a 为阵元i 对第k 个信号源信号的响应,这里可取1=k a ,因为己假定各阵元在观察平面内是无方向性的,0ω为信号的中心频率,c 为波的传播速度,k θ表示第k 个信号源的入射角度,是入射信号方向与天线法线的夹角。

计及测量噪声(包括来自自由空间和接收机内部的)和所有信号源的来波信号,则第i 个阵元的输出信号为()()()()()t n d i t S a t x i k Kk k k i +--=∑=c /sin 1j ex p 01θω (2)式中,)(t n i 为噪声,标号i 表示该变量属于第i 个阵元,标号k 表示第k 个信号源。

假定各阵元的噪声是均值为零的平稳白噪声过程,方差为2σ,并且噪声之间不相关,且与信号不相关,则有()()()t t t N AS X += (3)式中,T21)](,),(),([)(t x t x t x t M =X 为M 维的接收数据向量 T 21)](,),(),([)(t S t S t S t K =S 为K 维信号向量)](,),(),([21K θθθa a a A =为K M ⨯维的阵列流形矩阵T )1(j j ]e ,,e ,1[)(00k k M k τωτωθ---= a 为M 维的方向向量,sin k k d θτ=T 21)](,),(),([)(t n t n t n t M =N 为M 维的噪声向量算法原理由于各阵元的噪声互不相关,且也与信号不相关,因此接收数据)(t X 的协方差矩阵为()(){}t t E H XX R = (4)其中,上标H 表示共轭转置,即 I APA R 2H σ+= (5)P 为空间信号的协方差矩阵()(){}t t E H S S P = (6)由于假设空间各信号源不相干,并设阵元间隔小于信号的半波长λ,即2λ≤d ,0c π2λ=,这样矩阵A 将有如下形式⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=---------D θM λd θM λd θM λd D d d d sin )1(π2j 2sin )1(π2j 1sin )1(π2j sin π2j 2sin π2j 1sin π2j e e e e e e 1 1 1 θλθλθλA (7) 矩阵A 是范德蒙德阵,只要j i θθ≠)(j i ≠,它的列就相互独立。

MUSIC方法求解信号谱空间

MUSIC方法求解信号谱空间

MUSIC 方法求解信号谱空间一.原理:1.阵列信号处理问题阵列:多个天线的组合(每个天线称为一个阵元),这里讨论的阵元等间距的直线排列,这种阵列简称等距线阵。

令空间信号()n s i 与阵元的距离足够远,,以至于其电波到达各阵元的波前为平面波,这样的信号称为远场信号。

远场信号()n s i 到达各阵元的方向角相同,用i θ表示,称为波达方向(角),定义为信号()n s i 到达阵元的直射线与阵列法线方向之间的夹角。

以阵元1作为基准点,令信号()n s i 电波传播延迟在第2个阵元引起的相位差为i ω,ii dθλπωsin 2=d 是两个相邻阵元之间的距离,λ为信号波长。

应满足2λ≥d ,否则相位差i ω有可能大于π,而产生所谓的方向模糊。

假设阵列由m 个阵元组成,有p 个信号位于远场,接收信号为)()()()()()()(1n e n s w A n e n s a n x pi i i +=+=∑=ω 其中()],,,1[)1(im j ij a eeTi ωωω-= 为响应向量;T m n x n x n x )](,),([)(1 =为1⨯m 维观测数据向量;T m n e n e n e )](),([)(1 =为1⨯m 维观测噪声向量;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==---------wp m j w m j w m j jwp jw jw p e e ee e e a a w A )1(2)1(1)1(211111)](,),([)(ωω和Tpn s n s n s )](),([)(1 =分别为p m ⨯维方向矩阵和1⨯p 维信号向量。

阵列信号处理的问题是利用接收信号的观测值,求出某个期望信号的波达方向。

2.MUSIC 方法 做以下假设:假设1:对于不同的i ω值,向量a(i ω)相互线性独立;假设2:加性噪声向量e(n)的每个元素都是零均值的复白噪声,它们不相关,并且具有相同的方差2σ;假设3:矩阵P=E{()n s ()n s H }非奇异,即rank(P)=p 。

波束域music算法-概述说明以及解释

波束域music算法-概述说明以及解释

波束域music算法-概述说明以及解释1.引言1.1 概述概述波束域MUSIC算法是一种基于波束形成理论的信号处理算法,能够用于对多传感器阵列接收的信号进行方向估计和谱分析。

该算法的基本思想是通过对接收到的信号进行空间谱分析,实现对信号源的定位和分离。

相比传统的MUSIC算法,波束域MUSIC算法通过将接收信号投影到合适的波束域中,能够进一步提升方向估计的性能和精确度。

在波束域MUSIC算法中,首先需要对接收到的信号进行预处理,包括去除噪声、信号补偿等步骤。

然后,通过对预处理后的信号进行傅里叶变换,得到频域的信号数据。

接下来,将频域信号数据投影到波束域中,得到波束域权重矩阵。

通过对波束域权重矩阵进行特征值分解,可以得到信号源的方向估计结果。

波束域MUSIC算法已经在许多领域得到广泛应用,特别是在无线通信、雷达和声音处理等领域。

在无线通信中,波束域MUSIC算法可以实现对多路径信号的分离和定位,从而提升通信质量和信号传输速率。

在雷达领域,波束域MUSIC算法可以用于目标检测和跟踪,提高雷达系统的性能和灵敏度。

在声音处理中,波束域MUSIC算法可以实现语音信号的降噪和分离,提供清晰的音频效果。

总之,波束域MUSIC算法是一种强大的信号处理算法,具有较高的方向估计性能和灵活性。

随着无线通信和雷达技术的快速发展,波束域MUSIC算法在各个领域的应用前景非常广阔。

然而,目前该算法仍存在一些局限性,如对信号源数目和信号强度的限制等。

未来的研究可以进一步探索改进波束域MUSIC算法的方法,以提升其性能和适用范围。

文章结构是指文章整体的框架和组织方式,它有助于读者系统地理解和理解文章的主旨和内容。

本文的结构如下:1. 引言1.1 概述引言部分将介绍本文所讨论的主题——"波束域music算法",包括其基本概念和背景信息。

同时,也会提到该算法在实际应用中的重要性和研究意义。

1.2 文章结构文章结构部分将详细说明本文的组织结构和各章节的内容简介,以帮助读者快速了解全文的组成和主题展开。

阵列信号处理—music、Capon

阵列信号处理—music、Capon
1
X: 26 Y: 21 Z: 1
Capon
X: 36 Y: 31 Z: 0.9826
0.8
0.6
X: 16 Y: 11 Z: 0.6401
0.4
0.2
0 100 50 0 100
仰角
0
20
40 方位角
60
80
通信工程系
7/24/2017 3:00:26 PM
谢谢!
通信工程系
7/24/2017 3:00:26 PM
扩展到二维情况:
类似于二维MUSIC算法,我们可以进行二维谱峰搜索,寻找 谱峰值,即可得到波达方向。
通信工程系
7/24/2017 3:00:26 PM
二维Capon算法
仿真参数设置:快拍数L=100,目标数K=3,8×8的方
阵,假设源信号的仰角为10°,20°,30°,方位角 为15°,25°,35°,信噪比为20dB。仿真结果如下 图所示:
X: 36 Y: 31 Z: 1 X: 26 X: 16 Y: 21 Y: 11 Z: 0.8156 Z: 0.909
通信工程系
7/24/2017 3:00:26 PM
二维求根MUSIC算法源自 二维求根MUSIC算法一维求根MUSIC算法 顾名思义,求根MUSIC方法是MUSIC方法的一种多项式 求根形式,我们可以构造求根MUSIC的多项式: 式中 的幅度最大的K个根 计: , ,通过求上述多项式 ,就可以计算出波达方向估
沿x轴的方 向矩阵
沿y轴的方 向矩阵
通信工程系
7/24/2017 3:00:26 PM
二维MUSIC算法
二维MUSIC算法
一维MUSIC算法
阵列协方差矩阵通过奇异分解,可以划分为两个空 间,即

(完整word版)MUSIC算法

(完整word版)MUSIC算法

6.4.3MUSIC 算法基本原理6.4.3.1信号模型MUSIC 算法是针对多元天线阵列测向问题提出的,用含M 个阵元的阵列对()M K K <个目标信号进行测向,以均匀线阵为例,假设天线阵元在观测平面内是各向同性的,阵元的位置示意图如图6.23所示。

d图6.23均匀线阵示意图来自各远场信号源的辐射信号到达天线阵列时均可以看作是平面波,以第一个阵元为参考,相邻阵元间的距离为d ,若由第k 个辐射元辐射的信号到达阵元1的波前信号为)(t S k ,则第i 个阵元接收的信号为()()()c /sin 1j ex p 0k k k d i t S a θω-- (6.84)其中,k a 为阵元i 对第k 个信号源信号的响应,这里可取1=k a ,因为己假定各阵元在观察平面内是无方向性的,0ω为信号的中心频率,c 为波的传播速度,k θ表示第k 个信号源的入射角度,是入射信号方向与天线法线的夹角。

计及测量噪声(包括来自自由空间和接收机内部的)和所有信号源的来波信号,则第i 个阵元的输出信号为()()()()()t n d i t S a t x i k Kk k k i +--=∑=c /sin 1j ex p 01θω (6.85)式中,)(t n i 为噪声,标号i 表示该变量属于第i 个阵元,标号k 表示第k 个信号源。

假定各阵元的噪声是均值为零的平稳白噪声过程,方差为2σ,并且噪声之间不相关,且与信号不相关。

将式(2-13)写成向量形式,则有()()()t t t N AS X += (6.86)式中,T21)](,),(),([)(t x t x t x t M =X 为M 维的接收数据向量 T 21)](,),(),([)(t S t S t S t K =S 为K 维信号向量)](,),(),([21K θθθa a a A =为K M ⨯维的阵列流形矩阵T )1(j j ]e ,,e ,1[)(00k k M k τωτωθ---= a 为M 维的方向向量,sin k k d θτ=T 21)](,),(),([)(t n t n t n t M =N 为M 维的噪声向量6.4.3.2算法原理由于各阵元的噪声互不相关,且也与信号不相关,因此接收数据)(t X 的协方差矩阵为()(){}t t E H XX R = (6.87)其中,上标H 表示共轭转置,即 I APA R 2H σ+= (6.88)P 为空间信号的协方差矩阵()(){}t t E H S S P = (6.89)由于假设空间各信号源不相干,并设阵元间隔小于信号的半波长λ,即2λ≤d ,0c π2λ=,这样矩阵A 将有如下形式⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=---------D θM λd θM λd θM λd D d d d sin )1(π2j 2sin )1(π2j 1sin )1(π2j sin π2j 2sin π2j 1sin π2j e e e e e e 1 1 1 θλθλθλA (6.90) 矩阵A 是范德蒙德阵,只要j i θθ≠)(j i ≠,它的列就相互独立。

实验四:DOA估计

实验四:DOA估计

(3)
如果有 d 个入射源信号,它们的入射角分别为 1 , 2 ,, d ,则有
xi t sk t e
k 1
d
ni t
(4)
M 个阵元接收到的信号用矩阵表示为 x1 t x2 t X t As t n t xM t 其中 1 j 1 e A e j M 1 1
其中 E 1 e
1 E R 1Ε
H
(8)

j
e
j M 1

T
3. MUSIC 方法
(5)式的接收信号形式中, s t 为入射信号, n t 为白噪声,如果 p 个信 号彼此独立,且与噪声不相关,则有
H X t x1 t x2 t xM t ,其自相关矩阵为 R E XX 。本次实验中根
T


据各态历经假设,对 N 次快拍求平均估计自相关矩阵,从而有 1 N R X t X H t 。使用周期图方法进行角度谱估计的结果为 N t 1
(5)
s1 t n1 t j d j 2 s2 t n2 t e e , s t , n t j M 1 j M 1 s t n t M d e 2 e d
H
Capon 方法可以描述成一个优化问题:在约束条件 a 提下,使输出功率 a
1
H
E 1 或 EH a 1 的前
H
a EH R 1E R 1E ,对应的角度谱估计结果为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宽带信号中的三种二维平面阵DOA估计
一.
二.背景
目前关于阵列窄带信号的高分辨算法已比较成熟,但是随着信号处理技术的发展,信号环境日趋复杂,信号形式多样,信号密度日渐增大,窄带阵列探测系统的确定逐渐显示出来。

由于宽带信号具有目标回波携带的信息量大,有利于目标探测、参量估计和目标特征提取等特点,在有源探测系统中越来越多地得到应用。

而在无源探测系统中,利用目标辐射的宽带连续谱进行目标检测是有效发现目标的一种重要手段。

ISM方法把宽带信号在频域分解为J个窄带分量,然后在每一个子带上直接进行窄带处理。

因为信号为调频信号,所以信号在时域的分段实际上就是频域的分段。

将信号分解为窄带信号后,我们就可以利用窄带算法进行处理,最后将各个结果进行加权综合,即可得到最终的结果。

二维DOA估计是阵列信号处理中的重要内容,通过二维DOA估计可以得到信号源在平面中的角度信息。

一般采用L型、面阵和平行阵或矢量传感器实现二维参数的估计,多数有效的二维DOA估计算法是在一维DOA估计的基础上,直接针对空间二维谱提出的,如二维
MUSIC 算法以及二维CAPON 算法等。

这两种算法可以产生渐进无偏估计,但要在二维参数空间搜索谱峰,计算量相当大。

而采用二维ROOT MUSIC 算法可以减小计算量,但是需要付出精度下降的代价。

本次报告将结合宽带信号和二维DOA 估计算法,进行相关的算法介绍和仿真。

三. 算法介绍
1. 接收信号模型:
图 1 平面阵列示意图
如图1所示,设平面阵元数为M ×N ,信源数为K 。

信源的波达方向为11(,),,(,)k k θφθφ,
第i 个阵元与参考阵元之间的波程差为:
2(cos sin sin sin cos )/i i i x y z βπφθφθθλ=++
设子阵1沿x 轴的方向矩阵为x A ,而子阵2的每个阵元相对于参考阵元的波程差就等于子阵1的阵元的波程差加上2sin sin /d πφθλ,所以接收信号为
121()()()y x y x y M x A D A A D A X S N A D A -⎡⎤
⎢⎥⎢⎥=+⎢⎥
⎢⎥⎢⎥⎣⎦
协方差矩阵为
H H H s s s n n n R XX E D E E D E ==+
其中,s D 代表由最大的K 个特征值构成的一个K ×K 对角阵,n D 代表由MN-k 个较小的特征值构成的对角矩阵, s E 和n E 分别代表由s D 和n D 对应的特征值构成的特征矢量。

沿x 轴的方向矩阵可以表示为:
`11`11`11
`112cos sin /2cos sin /2(1)cos sin /2(1)cos sin /11
j d j d x j N d j N d e e A e e πφθλπφθλπφθλ
πφθλ
------⎡

⎢⎥


=⎢
⎥⎢⎥⎢⎥⎣
⎦ 沿y 轴的方向矩阵可以表示为:
`11`11`11
`112sin sin /2sin sin /2(1)sin sin /2(1)sin sin /11
j d j d y j N d j N d e e A e e πφθλπφθλπφθλ
πφθλ
------⎡

⎢⎥


=⎢
⎥⎢⎥⎢⎥⎣

2. 二维MUSIC 算法
2.1 原理介绍
阵列协方差矩阵通过奇异分解,可以划分为噪声子空间和信号子空间,即
H H s s s N N N R U U U U =∑+∑
因为方向矩阵A 中的各个列向量与噪声子空间正交,所以当方向矩阵中的角度为波达
方向时两者相乘的值会很小,根据这个性质,得到该阵列空间谱函数为
1
()()()()()MUSIC H
H
y x N N y x P a a E E a a θθφθφθφθφ=
⎡⎤⎡⎤⊗⊗⎣⎦⎣⎦
,,,,
通过变化角度,找到的波峰位置就是估计的信源的二维角度。

2.2 算法流程
2.3 算法仿真
快拍数L=100,目标数K=3,8×8的方阵,假设源信号的仰角为10°,25,方位角为
35°,45°,信噪比为20dB ,宽带信号为基带频率为80Hz ,带宽为40Hz
的信号。

并将该
信号在时域上均分为5段。

二维宽带MUSIC第1段
图 2 二维MUSIC第一段信号
图 3 二维MUSIC第二段信号
二维宽带MUSIC第3段
图 4 二维MUSIC第三段信号
图 5 二维MUSIC第四段信号
二维宽带MUSIC第5段
图 6 二维MUSIC第五段信号
二维宽带MUSIC平均值
图7 二维MUSIC平均值3.二维Capon算法
3.1 原理介绍
二维Capon 的算法类似于二维MUSIC 算法,只是他们的空间谱函数有所不同,二维Capon 的空间谱函数为:
1
1
()()()()()MUSIC H
y x y x P a a R a a θθφθφθφθφ-=
⎡⎤⎡⎤⊗⊗⎣⎦⎣⎦
,,,,
相比于二维MUSIC 算法,二维Capon 的空间谱函数的分母是信号协方差矩阵的逆矩阵,
而不是噪声子空间矩阵。

3.2 算法流程
3.3 仿真参数
快拍数L=100,目标数K=3,8×8的方阵,假设源信号的仰角为10°,25,方位角为35°,45°,信噪比为20dB ,宽带信号为基带频率为80Hz ,带宽为40Hz 的信号。

并将该信号在时域上均分为5段。

图8 二维Capon第一段
二维宽带CAPON第2段
图9二维Capon第二段
二维宽带CAPON第3段
图10二维Capon第三段
图 11二维Capon 第四段
图 12二维Capon 第五段
图 13 二维Capon 平均值
4. 二维求根MUSIC 算法
二维宽带CAPON 第5

二维宽带Capon 平均值
4.1 原理介绍
先将二维阵列看成是沿x 轴方向的一维阵列,对于空间理想的白噪声,且噪声功率为σ^2,频率fi 处对应的接收数据协方差矩阵可以表示为:
2()()()()()()()()()()()()()()()H
x i i i H H H
i i i i i i H i s i i N i i s i R f E X f X f A f E S f S f A f E N f N f A f R f A f R f A f R f I
σ⎡⎤=⎣⎦
⎡⎤⎡⎤=+⎣⎦⎣⎦
=+=+
对上式进行特征值分解,可以得到噪声子空间Un ,令H
n n C U U =,第j 个子带对应的矩阵C 为Cj ,由于对于一个阵元间距为d 的均匀线性阵列,第j 个子频带的方向矢量的第m
个元素(m=1~M ),
()exp(2cos sin )i
m i f a f i md
c
πφθ=- 定义如下多项式
1
1
1
()M j jl l M D z C z --=-+=

其中,Cjl 即矩阵Cj 中第l 条对角线的元素之和,求出该多项式的根,在没有噪声的理想情况下,多项式的零点落在单位圆上,位置由波达方向决定,所以应该找出在单位圆内,最接近单位圆的K 个根。

11[cos sin ,
,cos sin ]x k k r φθφθ=
同理,将矩阵沿y 轴方向再处理一次,得到
11[sin sin ,
,sin sin ]y k k r φθφθ=
联立求解
11[,]arcsin [,
,]arctan(/)
k k y x r r θθφφ==
4.2 算法流程
4.3 算法仿真
快拍数L=100,目标数K=3,8×8的方阵,假设源信号的仰角为10°,25,方位角为35°,45°,信噪比为10dB ,宽带信号为基带频率为80Hz ,带宽为40Hz 的信号。

并将该信号在时域上均分为5段。

图 14 二维ROOT-MUSIC 仿真
5
10
15
2025
30
35
101520253035
404550仰角
方位角
二维ROOT-MUSIC
蒙特卡洛仿真。

相关文档
最新文档