初中数学几何综合题汇总

合集下载

初中数学几何最值问题综合测试卷(含答案)

初中数学几何最值问题综合测试卷(含答案)

初中数学几何最值问题综合测试卷一、单选题(共6道,每道16分)1.如图,已知∠MON=40°,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,求∠APB的度数为( )A.100°B.110°C.140°D.80°答案:A解题思路:作定点P关于直线OM,ON的对称点,然后利用两点之间线段最短解题.试题难度:三颗星知识点:最值问题2.如图,当四边形PABN的周长最小时,a的值为( )A. B.1C.2D.答案:A解题思路:先平移AP或BN使P,N重合,然后作其中一个定点关于定直线l的对称点,然后利用两点之间线段最短解题.试题难度:三颗星知识点:最值问题3.如图,已知两点A,B在直线l的异侧,A到直线l的距离AC=6,B到直线l的距离BD=2,CD=3,点P在直线l上运动,则的最大值为( )A. B.3C.1D.5答案:D解题思路:作其中一个定点关于定直线l的对称点,然后利用三角形三边关系解题.试题难度:三颗星知识点:最值问题4.如图,直角梯形纸片ABCD中,AD⊥AB,AB=4,AD=2,CD=3,点E,F分别在线段AB,AD上,将△AEF 沿EF翻折,点A的落点记为P.当点P落在直角梯形ABCD内部时,PD的最小值为( )A.2B.1C. D.3答案:C解题思路:找运动过程中的不变特征进行转化,转化成求DP+PE+EB的最大值,减少变量,然后利用两点之间线段最短来解题.试题难度:三颗星知识点:最值问题5.如图,∠MON=90°,等腰Rt△ABC的顶点A,B分别在OM,ON上,当点B在ON上运动时,点A随之在OM上运动,且等腰Rt△ABC的形状和大小保持不变,若AB=2,则运动过程中点C到点O 的最大距离为( )A. B.2C. D.3答案:B解题思路:找运动过程中的不变特征:直角特征不变、AB的长度不变——取AB的中点M,连接OM、CM,则OM=1,CM=1,当且仅当O,M,C三点共线时OC取最大值2.试题难度:三颗星知识点:最值问题6.如图,AC=5,C为AB上一个动点,分别以AC,BC为边在AB的同侧作等边△ABD和等边△BCE,那么DE长的最小值是()A. B.3C. D.答案:A解题思路:分别过点D,E作DM⊥AC,EN⊥AC交于点M,N,DE的最小值即MN的值.试题难度:三颗星知识点:最值问题。

七年级数学下册专题08 期中-几何综合大题必刷(压轴题)(原卷版)

七年级数学下册专题08 期中-几何综合大题必刷(压轴题)(原卷版)

专题08 期中-几何综合大题必刷(压轴题)1.如图,直线CD与EF相交于点O,∠COE=60°,将一直角三角尺AOB的直角顶点与O重合,OA平分∠COE.(1)求∠BOD的度数;(2)将三角尺AOB以每秒3°的速度绕点O顺时针旋转,同时直线EF也以每秒9°的速度绕点O顺时针旋转,设运动时间为t秒(0≤t≤40).①当t为何值时,直线EF平分∠AOB;②若直线EF平分∠BOD,直接写出t的值.2.如图,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(1)填空:∠OBC+∠ODC=;(2)如图1:若DE平分∠ODC,BF平分∠CBM,求证:DE⊥BF:(3)如图2:若BF、DG分别平分∠CBM、∠NDC,判断BF与DG的位置关系,并说明理由.3.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角板OMN沿BA的方向平移至图②的位置,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角板OMN绕点O按逆时针方向旋转至如图③,当∠CON=5∠DOM 时,MN与CD相交于点E,请你判断MN与BC的位置关系,并求∠CEN的度数(3)将图①中的三角板OMN绕点O按每秒5°的速度按逆时针方向旋转一周,在旋转的过程中,三角板MON运动几秒后直线MN恰好与直线CD平行.(4)将如图①位置的两块三角板同时绕点O逆时针旋转,速度分别每秒20°和每秒10°,当其中一个三角板回到初始位置时,两块三角板同时停止转动.经过秒后边OC 与边ON互相垂直.(直接写出答案)4.【学科融合】物理学中把经过入射点O并垂直于反射面的直线ON叫做法线,入射光线与法线的夹角i叫做入射角,反射光线与法线的夹角r叫做反射角(如图①).由此可以归纳出如下的规律:在反射现象中,反射光线、入射光线和法线都在同一平面内;反射光线、入射光线分别位于法线两侧;反射角等于入射角.这就是光的反射定律(reflection law).【数学推理】如图1,有两块平面镜OM,ON,且OM⊥ON,入射光线AB经过两次反射,得到反射光线CD.由以上光的反射定律,可知入射角与反射角相等,进而可以推得他们的余角也相等,即:∠1=∠2,∠3=∠4.在这样的条件下,求证:AB∥CD.【尝试探究】两块平面镜OM,ON,且∠MON=α,入射光线AB经过两次反射,得到反射光线CD.(1)如图2,光线AB与CD相交于点E,则∠BEC=;(2)如图3,光线AB与CD所在的直线相交于点E,∠BED=β,则α与β之间满足的等量关系是.5.已知AB∥CD,点M、N分别是AB、CD上两点,点G在AB、CD之间,连接MG、NG.(1)如图1,若GM⊥GN,求∠AMG+∠CNG的度数;(2)如图2,若点P是CD下方一点,MG平分∠BMP,ND平分∠GNP,已知∠BMG =30°,求∠MGN+∠MPN的度数;(3)如图3,若点E是AB上方一点,连接EM、EN,且GM的延长线MF平分∠AME,NE平分∠CNG,2∠MEN+∠MGN=105°,求∠AME的度数.6.“一带一路”让中国和世界更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B 射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是每秒2度,灯B转动的速度是每秒1度.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD 的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.7.如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.8.如图1,MN∥EF,C为两直线之间一点.(1)如图1,若∠MAC与∠EBC的平分线相交于点D,若∠ACB=100°,求∠ADB的度数.(2)如图2,若∠CAM与∠CBE的平分线相交于点D,∠ACB与∠ADB有何数量关系?并证明你的结论.(3)如图3,若∠CAM的平分线与∠CBF的平分线所在的直线相交于点D,请直接写出∠ACB与∠ADB之间的数量关系:.9.(1)【问题】如图1,若AB∥CD,∠BEP=25°,∠PFC=150°.求∠EPF的度数;(2)【问题迁移】如图2,AB∥CD,点P在AB的上方,问∠PEA,∠PFC,∠EPF之间有何数量关系?请说明理由;(3)【联想拓展】如图3所示,在(2)的条件下,已知∠EPF=α,∠PEA的平分线和∠PFC的平分线交于点G,用含有α的式子表示∠G的度数.10.如图,已知直线AB∥射线CD,∠CEB=100°.P是射线EB上一动点,过点P作PQ ∥EC交射线CD于点Q,连接CP.作∠PCF=∠PCQ,交直线AB于点F,CG平分∠ECF.(1)若点P,F,G都在点E的右侧.①求∠PCG的度数;②若∠EGC﹣∠ECG=40°,求∠CPQ的度数.(2)在点P的运动过程中,是否存在这样的情形,使?若存在,求出∠CPQ 的度数;若不存在,请说明理由.11.如图,AB∥CD,∠ABE=120°.(1)如图①,写出∠BED与∠D的数量关系,并证明你的结论;(2)如图②,∠DEF=2∠BEF,∠CDF=∠CDE,EF与DF交于点F,求∠EFD的度数;(3)如图③,过B作BG⊥AB于G点,∠CDE=4∠GDE,求的值.12.已知:AB∥CD,点E在直线AB上,点F在直线CD上.(1)如图(1),∠1=∠2,∠3=∠4.①若∠4=36°,求∠2的度数;②试判断EM与FN的位置关系,并说明理由;(2)如图(2),EG平分∠MEF,EH平分∠AEM,试探究∠GEH与∠EFD的数量关系,并说明理由.13.已知M、N分别为直线AB,直线CD上的点,且AB∥CD,E在AB,CD之间.(1)如图1,求证:∠BME+∠DNE=∠MEN;(2)如图2,P是CD上一点,连PM,作MQ∥EN,若∠QMP=∠BME.试探究∠E与∠AMP的数量关系,并说明理由;(3)在(2)的条件下,作NG⊥CD交PM于G,若MP平分∠QME,NF平分∠ENG,若∠MGN=m°,∠MFN=n°,直接写出m与n的数量关系.14.如图,AD∥BC,∠BAD的平分线交BC于点G,∠BCD=90°.(1)试说明:∠BAG=∠BGA;(2)如图1,点F在AG的反向延长线上,连接CF交AD于点E,若∠BAG﹣∠F=45°,求证:CF平分∠BCD.(3)如图2,线段AG上有点P,满足∠ABP=3∠PBG,过点C作CH∥AG.若在直线AG上取一点M,使∠PBM=∠DCH,求的值.15.已知:如图,直线PQ∥MN,点C是PQ,MN之间(不在直线PQ,MN上)的一个动点.(1)若∠1与∠2都是锐角,如图1,请直接写出∠C与∠1,∠2之间的数量关系.(2)若小明把一块三角板(∠A=30°,∠C=90°)如图2放置,点D,E,F是三角板的边与平行线的交点,若∠AEN=∠A,求∠BDF的度数.(3)将图2中的三角板进行适当转动,如图3,直角顶点C始终在两条平行线之间,点G在线段CD上,连接EG,且有∠CEG=∠CEM,给出下列两个结论:①的②∠GEN﹣∠BDF的值不变.其中只有一个是正确的,你认为哪个是正确的?并求出不变的值是多少.16.已知AB∥CD,解决下列问题:(1)如图①,BP、DP分别平分∠ABE、∠CDE,若∠E=100°,求∠P的度数.(2)如图②,若∠ABP=∠ABE,∠CDP=∠CDE,试写出∠P与∠E的数量关系并说明理由.(3)如图③,若∠ABP=∠ABE,∠CDP=∠CDE,设∠E=m°,求∠P的度数(直接用含n、m的代数式表示,不需说明理由).17.如图1,AM∥CN,点B为平面内一点,AB⊥BC于B,过B作BD⊥AM.(1)求证:∠ABD=∠C;(2)如图2,在(1)问的条件下,分别作∠ABD、∠DBC的平分线交DM于E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,①求证:∠ABF=∠AFB;②求∠CBE的度数.18.已知AB∥CD,点M在直线AB上,点N、Q在直线CD上,点P在直线AB、CD之间,连接PM、PN、PQ,PQ平分∠MPN,如图①.(1)若∠PMA=α、∠PQC=β,求∠NPQ的度数(用含α,β的式子表示);(2)过点Q作QE∥PN交PM的延长线于点E,过E作EF平分∠PEQ交PQ于点F,如图②,请你判断EF与PQ的位置关系,并说明理由;(3)在(2)的条件下,连接EN,如图③,若∠NEF=∠PMA,求证:NE平分∠PNQ.19.如图1,AB∥CD,G为AB、CD之间一点.(1)若GE平分∠AEF,GF平分∠EFC.求证:EG⊥FG;(2)如图2,若∠AEP=∠AEF,∠CFP=∠EFC,且FP的延长线交∠AEP的角平分线于点M,EP的延长线交∠CFP的角平分线于点N,猜想∠M+∠N的结果并且证明你的结论;(3)如图3,若点H是射线EB之间一动点,FG平分∠EFH,MF平分∠EFC,过点G 作GQ⊥FM于点Q,请猜想∠EHF与∠FGQ的关系,并证明你的结论.20.如图1,直线AB∥CD,直线EF交AB于点E,交CD于点F,点G和点H分别是直线AB和CD上的动点,作直线GH,EI平分∠AEF,HI平分∠CHG,EI与HI交于点I.(1)如图1,点G在点E的左侧,点H在点F的右侧,若∠AEF=70°,∠CHG=60°,求∠EIH的度数.(2)如图2,点G在点E的右侧,点H也在点F的右侧,若∠AEF=α,∠CHG=β,其他条件不变,求∠EIH的度数.(3)如图3,点G在点E的右侧,点H也在点F的右侧,∠GHC的平分线HJ交∠KEG 的平分线EJ于点J.其他条件不变,若∠AEF=α,∠CHG=β,求∠EJH的度数.21.如图1,已知直线EF分别与直线AB,CD相交于点E,F,AB∥CD,EM平分∠BEF,FM平分∠EFD(1)求证:∠EMF=90°.(2)如图2,若FN平分∠MFD交EM的延长线于点N,且∠BEN与∠EFN的比为4:3,求∠N的度数.(3)如图3,若点H是射线EA之间一动点,FG平分∠HFE,过点G作GQ⊥FM于点Q,请猜想∠EHF与∠FGQ的关系,并证明你的结论.22.已知直线AB∥CD,直线EF分别交AB、CD于A、C,CM是∠ACD的平分线,CM交AB于H,过A作AG⊥AC交CM于G.(1)如图1,点G在CH的延长线上时,①若∠GAB=36°,则∠MCD=.②猜想:∠GAB与∠MCD之间的数量关系是.(2)如图2,点G在CH上时,(1)②猜想的∠GAB与∠MCD之间的数量关系还成立吗?如果成立,请给出证明;如果不成立,请写出∠GAB与∠MCD之间的数量关系,并说明理由.23.已知:直线AB∥CD,点M,N分别在直线AB,CD上,点E为平面内一点.(1)如图1,∠BME,∠E,∠END的数量关系为;(直接写出答案)(2)如图2,∠BME=m°,EF平分∠MEN,NP平分∠END,EQ∥NP,求∠FEQ的度数.(用含m的式子表示)(3)如图3点G为CD上一点,∠BMN=n•∠EMN,∠GEK=n•∠GEM,EH∥MN交AB于点H,探究∠GEK,∠BMN,∠GEH之间的数量关系(用含n的式子表示)24.如图1,AB∥CD,P为AB、CD之间一点(1)若AP平分∠CAB,CP平分∠ACD.求证:AP⊥CP;(2)如图(2),若∠BAP=∠BAC,∠DCP=∠ACD,且AE平分∠BAP,CF平分∠DCP,猜想∠E+∠F的结果并且证明你的结论;(3)在(1)的条件下,当∠BAQ=∠BAP,∠DCQ=∠DCP,H为AB上一动点,连HQ并延长至K,使∠QKA=∠QAK,再过点Q作∠CQH的平分线交直线AK于M,问当点H在射线AB上移动时,∠QMK的大小是否变化?若不变,求其值;若变化,求其取值范围.25.如图1,AB∥CD.G为AB、CD之间一点.(1)若GE平分∠AEF,GF平分∠EFC.求证:EG⊥FG;(2)如图2.若∠AEP=∠AEF,∠CFP=∠EFC,且FP的延长线交∠AEP的角平分线于点M,EP的延长线交∠CFP的角平分线于点N,猜想∠M+∠N的结果并且证明你的结论;(3)如图3,若点H是射线EB之间一动点,FG平分∠EFH,MF平分∠EFC,过点G 作GQ⊥FM于点Q,请猜想∠EHF与∠FGQ的关系;并证明你的结论.26.已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图1所示,求证:OB∥AC;(2)如图2,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF,此时∠EOC的度数等于(直接写出答案即可);(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,求此时∠OCA度数.27.如图1,AB∥CD,点E、F分别在AB、CD上,点O在直线AB、CD之间,且∠EOF =80°.(1)求∠BEO+∠OFD的值;(2)如图2,直线MN分别交∠BEO、∠OFC的角平分线于点M、N,直接写出∠EMN ﹣∠FNM的值(3)如图3,EG在∠AEO内,∠AEG=m∠OEG;FH在∠DFO内,∠DFH=m∠OFH,直线MN分别交EG、FH分别于点M、N,且∠FMN﹣∠ENM=80°,直接写出m的值.28.已知,两直线AB,CD,且AB∥CD,点M,N分别在直线AB,CD上,放置一个足够大的直角三角尺,使得三角尺的两边EP,EQ分别经过点M,N,过点N作射线NF,使得∠ENF=∠ENC.(1)转动三角尺,如图①所示,当射线NF与NM重合,∠FND=45°时,求∠AME的度数;(2)转动三角尺,如图②所示,当射线NF与NM不重合,∠FND=60°时,求∠AME 的度数.(3)转动直角三角尺的过程中,请直接写出∠FND与∠AME之间的数量关系.29.已知:直线EF分别与直线AB,CD相交于点G,H,并且∠AGE+∠DHE=180°.(1)如图1,求证:AB∥CD;(2)如图2,点M在直线AB,CD之间,连接GM,HM,求证:∠M=∠AGM+∠CHM;(3)如图3,在(2)的条件下,射线GH是∠BGM的平分线,在MH的延长线上取点N,连接GN,若∠N=∠AGM,∠M=∠N+∠FGN,求∠MHG的度数.30.如图1,BC⊥AF于点C,∠A+∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况)?并说明理由.31.已知:AB∥CD,E、G是AB上的点,F、H是CD上的点,∠1=∠2.(1)如图1,求证:EF∥GH;(2)如图2,过F点作FM⊥GH交GH延长线于点M,作∠BEF、∠DFM的角平分线交于点N,EN交GH于点P,求证:∠N=45°;(3)如图3,在(2)的条件下,作∠AGH的角平分线交CD于点Q,若3∠FEN=4∠HFM,直接写出的值.32.如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分∠AEF 交CD于点M,且∠FEM=∠FME.(1)判断直线AB与直线CD是否平行,并说明理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.①当点G在点F的右侧时,若β=56°,求α的度数;②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.33.如图1,G,E是直线AB上两点,点G在点E左侧,过点G的直线GP与过点E的直线EP交于点P.直线PE交直线CD于点H,满足点E在线段PH上,∠PGB+∠P=∠PHD.(1)求证:AB∥CD;(2)如图2,点Q在直线AB,CD之间,PH平分∠QHD,GF平分∠PGB,点F,G,Q在同一直线上,且2∠Q+∠P=120°,求∠QHD的度数;(3)在(2)的条件下,若点M是直线PG上一点,直线MH交直线AB于点N,点N 在点B左侧,请直接写出∠MNB和∠PHM的数量关系.(题中所有角都是大于0°且小于180°的角)34.已知,DE平分∠ADB交射线BC于点E,∠BDE=∠BED.(1)如图1,求证:AD∥BC;(2)如图2,点F是射线DA上一点,过点F作FG∥BD交射线BC于点G,点N是FG 上一点,连接NE,求证:∠DEN=∠ADE+∠ENG;(3)如图3,在(2)的条件下,连接DN,点P为BD延长线上一点,DM平分∠BDE 交BE于点M,若DN平分∠PDM,DE⊥EN,∠DBC﹣∠DNE=∠FDN,求∠EDN的度数.35.综合应用题:如图,有一副直角三角板如图①放置(其中∠D=45°,∠C=30°),P A、PB与直线MN重合,且三角板P AC,三角板PBD均可以绕点P逆时针旋转.(1)∠DPC=;(2)如图②,若三角板PBD保持不动,三角板∠P AC绕点P逆时针旋转,转速为10°/秒,转动一周三角板P AC就停止转动,在旋转的过程中,当旋转时间为多少时,有PC ∥DB成立;(3)如图③,在图①基础上,若三角板P AC的边P A从PN.处开始绕点P逆时针旋转,转速为3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2°/秒,(当PC转到与PM重合时,两三角板都停止转动),在旋转过程中,当∠CPD=∠BPM,求旋转的时间是多少?36.已知E,F分别是AB、CD上的动点,P也为一动点.(1)如图1,若AB∥CD,求证:∠P=∠BEP+∠PFD;(2)如图2,若∠P=∠PFD﹣∠BEP,求证:AB∥CD;(3)如图3,AB∥CD,移动E,F使得∠EPF=90°,作∠PEG=∠BEP,求的值.37.“一带一路”让中国和世界联系更紧密,“中欧铁路”为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图所示,灯A射线从AM开始顺时针旋转至AN便立即回转,灯B射线从BP开始顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视若灯A转动的速度是每秒2°,灯B转动的速度是每秒1°.假定主道路是平行的,即PQ∥MN,且∠BAM:∠BAN=2:1.(1)填空:∠BAN=°;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)若两灯同时开始转动,两灯射出的光束交于点C,且∠ACB=120°,则在灯B射线到达BQ之前,转动的时间为秒.38.已知AB∥CD,点E在AB上,点F在DC上,点G为射线EF上一点.(1)【基础问题】如图1,试说明:∠AGD=∠A+∠D.(完成图中的填空部分)证明:过点G作直线MN∥AB,又∵AB∥CD,∴∥CD∵MN∥AB,∴∠=∠MGA.∵MN∥CD,∴∠D=()∴∠AGD=∠AGM+∠DGM=∠A+∠D.(2)【类比探究】如图2,当点G在线段EF延长线上时,请写出∠AGD、∠A、∠D三者之间的数量关系,并说明理由.(3)【应用拓展】如图3,AH平分∠GAE,DH交AH于点H,且∠GDH=2∠HDF,∠HDF=22°,∠H=32°,直接写出∠DGA的度数为°.39.如图1,直线AB、CD被直线EF截,分别交AB于点G,交CD于点H,∠AGE与∠EHC互补.(1)求证:AB∥CD;(2)如图2,点P在直线AB、CD内部直线EF上,点M、N分别在直线AB、CD上,连接PM、PN,点K在∠PMB的角平分线上,连接KN,若∠MKN=180°∠MPN,求证:∠PNK=∠CNK;(3)如图3,在(2)的条件下,点O为AB上一点,连接ON、MN,MN平分∠PNO,若∠MNK:∠PMK=2:7,2∠MKN﹣∠PNO=180°,求∠NOM的度数.40.已知,AB∥CD,点F、G分别在AB、CD上,且点E为射线FG上一点.(1)如图1:当点E在线段FG上时,连接AE、DE,易得∠AED=∠EAF+∠EDG.小明给出的理由是:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,(平行于同一条直线的两条直线互相平行)∴∠EAF=∠AEH,∠EDG=∠DEH,(依据1)∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(依据2)填空:依据1:.依据2:.(2)如图2,当点E在FG延长线上时,求证:∠EAF=∠AED+∠EDG;(3)如图3,AI平分∠BAE,DI交AI于点I,交AE于点K,且∠EDI:∠CDI=2:1,∠AED=20°,∠I=30°,求∠EKD的度数.41.如图1,已知直线PQ∥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,∠P AC=50°,∠ADC=30°,AE平分∠P AD,CE平分∠ACD,AE与CE相交于E.(1)求∠AEC的度数;(2)若将图1中的线段AD沿MN向右平移到A1D1如图2所示位置,此时A1E平分∠AA1D1,CE平分∠ACD1,A1E与CE相交于E,∠P AC=50°,∠A1D1C=30°,求∠A1EC 的度数.(3)若将图1中的线段AD沿MN向左平移到A1D1如图3所示位置,其他条件与(2)相同,求此时∠A1EC的度数.42.阅读下面材料:小亮遇到这样问题:如图1,已知AB∥CD,EOF是直线AB、CD间的一条折线.判断∠O、∠BEO、∠DFO三个角之间的数量关系.小亮通过思考发现:过点O作OP∥AB,通过构造内错角,可使问题得到解决.请回答:∠O、∠BEO、∠DFO三个角之间的数量关系是.参考小亮思考问题的方法,解决问题:(2)如图2,将△ABC沿BA方向平移到△DEF(B、D、E共线),∠B=50°,AC与DF相交于点G,GP、EP分别平分∠CGF、∠DEF相交于点P,求∠P的度数;(3)如图3,直线m∥n,点B、F在直线m上,点E、C在直线n上,连接FE并延长至点A,连接BA、BC和CA,作∠CBF和∠CEF的平分线交于点M,若∠ADC=α,则∠M=(直接用含α的式子表示).。

初中数学几何全等100题

初中数学几何全等100题

第一部分 全等100题1.如图1.1所示,在Rt △ABC 中,∠ACB =90°,∠A =30°,BD 是∠ABC 的角平分线,DE ⊥AB 于点E . (1)如图(a )所示,连接EC ,求证:△EBC 为正三角形.(2)如图(a )所示,点M 是线段CD 上一点(与点C 、D 不重合),以为BM 一边,在BM 的下方作∠BMG =60°,MG 交DE 的延长线于点G ,求证:AD =DM +DG . (3)如图(c )所示,点M 是线段AD 上的一点(与点A 、D 不重合),以BM 为一边,在BM 的下方作∠BMG =60°,MG 交DE 的延长线于点G ,求证:探究DM 、DG 和AD 之间的数量关系,并说明理由.图1.1(c )(b )(a )AAAB BB2.如图1.2所示,在△ABC 中,AB =AC ,BD ⊥AC 于点D ,点E 为线段AD 上一点,点F 为线段BD 上一点,满足CE =BF ,且BE 平分∠ABD . 求证:∠EBC =∠BEF =45°.图1.23.如图1.3所示,在菱形ABCD 中,∠BAD =60°,M 为对角线AC 上异于A 、C 的一点,以AM 为边,作等边△AMN ,线段MN 与AD 交于点G ,连接NC 、DM ,Q 为线段NC 的中点,连接DQ 、MQ .求证:(1)DM =2DQ ;(2)DQ ⊥MQ .图1.3BN4.如图1.4所示,凸四边形ABCD 中,AB >AD ,AC 平分∠BAD ,过点C 作DE ⊥AB 于点E ,并且AE=(AB +AD ).求证:∠ABC 与∠ADC 互补.图1.45.如图1.5所示,在等腰Rt △ABC 中,∠ACB =90°,点E 是AC 上一点,连接BE ,点D 是线段BE 延长线上一点,过点A 作AF ⊥BD 于点F ,连接CD 、CF . 当AF =DF 时,求证:DC =BC .图1.5B6.如图1.6所示,在等腰Rt△ABC中,AD为斜边上的中线,以D为端点任作两条互相垂直的射线与两腰相交于点E、F,连接EF与AD相交于点G.求证:∠AED=∠AGF.7.如图1.7所示,AD是△ABC的中线,点E、F分别在AB、AC上,且DE⊥DF,求证:BE+CF>EF.8.如图1.8所示,已知正方形ABCD,点E为边AB上异于点A、B的一动点,EF∥AC,交BC于点F,点G为DA延长线上一定点,满足AG=AD,GE的延长线与DF交于点H,连接BH.探究:∠EHB是否为定值?如果是定值,请说明理由,并求出该定值;如果不是定值,请说明理由.9.如图1.9所示,在Rt△ABC中,∠ACB=90°,点D是线段AC上一点,BC=CD,过点A作AE⊥BD交BD的延长线于点E.(1)如图(a)所示,若BC=3,AEAB.(2)如图(b)所示,点F是AB的中点,连接FC、FE,探究CF、EF的位置关系与数量关系.(3)如图(c)所示,EF与AC交于点H,若AD=BD(a)(b)(c)10.如图1.10所示,已知矩形ABCD 中,点E 为AB 上一点,连接CE ,在CE 上找一点F ,连接AF ,使得∠FA C =∠ECB ,且∠DCA =∠DAF .求证:CF =2EB .11.如图1.11所示,点E 是正方形ABCD 边CD 上一动点,BE 的垂直平分线交对角线AC 于点G ,垂足为点H ,连接BG ,并延长交AD 于点F ,连接EF ;若AC =√2a ,探究:△DFE 的周长L 是否为定值?如果是定值,求出这个值;如果不是,请说明理由图1.11FBADE12.如图1.12所示,AD 为△ABC 的角平分线,直线MN ⊥AD 于点A ,点E 为MN 上一动点,且不与A 重合,若△AB C 的周长记为P A ,△EBC 的周长记为P B ,探究P A 、P B 的大小关系13.如图1.13所示,在△ABC 中,∠BAC =120°,AD 为中线,将AD 绕点A 顺时针旋转120°得到AE ,点F 为AC 上一点,连接BF ,∠ABE =∠AFB ,若AF =6,BE =7;求CF图1.12BN图1.13CB14.如图1.14所示,在△ABC 中,AD 平分∠BAC ,DG 垂直平分BC 于点G ,DE ⊥AB 于点E ,连接DC ,若AB =A ,AC =B (A >B ),求BE (用含A 、B 的代数式表示)15.如图1.15所示,在等腰Rt △ABC 中,∠ACB =90°,点D 、E 是斜边AB (不包括点A 、B )上的两点,且∠DCE =45°;求证:DE 2=AD 2+BE 2图1.14D BA图1.15B16.如图1.16所示,在△ABD中,∠ABD=60°,点C为△ABD外部一点,满足AB=AC,连接DC、BC,DE⊥AD交BC于点E,且DE平分∠BDCn(n>1)17.如图1.17所示,在等腰Rt△ABC中,∠BAC=90°,点E在Rt△ABC外部,连接BE,以BE为直角边作等腰Rt△BED,连接AD、AE,点H是AE的中点,过点C作CF∥AD,过点D作DF∥AC,两线交于点F,连接AF ,点G是AF的四等分点.求证:HG⊥AF.18.如图1.18所示,在等腰Rt△ABC中,∠BAC=90°,点D是△ABC内一点,且∠DAC=∠DCA=15°.若BD.S△ABC19.如图1.19所示,在△ABC中,∠ABC=45°,AD⊥BC于点D,点E在AD上,CD=DE,连接BE并延长交AC于点F,延长FD到点G,连接BG.若FG=BG,求证:BG⊥FG.20.如图1.20所示,在矩形ABCD中,点O为AC的中点,AO=AE=CF.若OE=OF=6,求AE.21.如图1.21所示,在△ABC中,点P为BC上一动点,且不与点B、C重合,AP⊥BE于点E,AP⊥CD 于点D,点F为BC的中点.求证:EF=DF.22.如图1.22所示,菱形ABCD是由两个正三角形拼成的,点P是△ABD内任意一点,现把△BPD绕点B旋转到△BQ C的位置.(1)若四边形BPDQ是平行四边形,求∠BPD.(2)若△PQD是等腰直角三角形,求∠BPD.(3)若∠APB=1000,且△PQD是等腰三角形,求∠BPD.23.如图1.23所示,AB=AC,∠ABC=β,EC=ED,∠CED=2β,点P为BD的中点,连接AE、PE.当060=β时,求PEAE.24.如图1.24所示,在等边△ABC中,点F在AC的延长线上,点D在BC上,延长BF与射线DA交于点E ,连接EC,且AF+CD=AD,DE=15,AF=4.求:(1)∠BEC;(2)AEBAECSS∆∆;(3)BECS∆.25.如图1.25所示,在等边△ABC中,BD⊥AC于点D,BE平分∠CBD交AC于点E,在BC上取一点G ,连接EG,且EG=2DE,点F是△ABC外一点,连接AF、BF、EF,满足∠FBE=∠FAB=600,连接GF交B E于点H,求证:GF⊥BE.26.如图1.26所示,在△ABC中,AB=a,AC=b,分别以AB、AC为边作正方形ABED、ACGF,连接BD ,点H、I分别是BD、BC的中点,连接HI.若HI=c,求△ABC的面积.27.如图1所示,在等腰Rt△ABC中,∠BAC=90°,在等腰Rt△EFC中,∠FEC=90°,连接AE、BF,点M为AE的中点,点N为BF的中点.探究AE与MN的位置关系和数量关系.28.如图1所示,点P为正方形ABCDDH⊥AP,点E为AP上一点,AH=EH,∠CDE的平分线交AP的延长线于点F,连接BF29.如图1所示,在等边△ABC内,点P为任意一点,连接AP、BP、CP.(1)求证:以AP、BP、CP为边,一定能构成一个三角形.(2)若∠APB=110°,∠BPC=135°,求以边AP、BP、CP所构成的三角形的三个内角的值.(3)若∠APB=110°,问∠BPC为何值时,以边AP、BP、CP所构成的三角形为直角三角形?30.如图1所示,在四边形ABDE中,点C是BD的中点,BD=DE=8,AB=2,∠ACE=135°,求AE的最大值.31.如图1.31所示,△ABF 、△ADE 都是等边三角形,BE 与DF 交于点C ,连接AC 。

初中数学几何图形复习题集与答案

初中数学几何图形复习题集与答案

初中数学几何图形复习题集与答案这里是初中数学几何图形复习题集与答案,共提供30道题目。

请同学们认真阅读题目,理解题意,并通过答案进行核对和巩固知识。

1.请画出两条平行线。

答案:参考图形略。

(画两条相互平行且不相交的直线)2.请画出一个等边三角形。

答案:参考图形略。

(画一个三个边长相等的三角形)3.请画出一个等腰直角三角形。

答案:参考图形略。

(画一个既有直角又有两条边相等的三角形)4.请画出一个菱形。

答案:参考图形略。

(画一个四边长度相等的平行四边形)5.请画出一个梯形。

答案:参考图形略。

(画一个有两边平行的四边形)6.已知三角形ABC,AB=5cm,BC=6cm,AC=7cm,请判断它是一个什么三角形?答案:这是一个一般三角形,因为三边的长度都不相等。

7.已知正方形ABCD,AB=3cm,请计算它的周长。

答案:正方形的周长等于4倍边长,所以周长为12cm。

8.已知正方形EFGH,EF=5cm,请计算它的面积。

答案:正方形的面积等于边长的平方,所以面积为25cm²。

9.请计算一个边长为4cm的等边三角形的周长。

答案:等边三角形的周长等于3倍边长,所以周长为12cm。

10.请计算一个底边长为6cm,高为8cm的梯形的面积。

答案:梯形的面积等于上底加下底乘以高再除以2,所以面积为56cm²。

11.已知矩形IJKL,IJ=5cm,JK=7cm,请计算它的周长。

答案:矩形的周长等于两个相邻边的长度之和乘以2,所以周长为24cm。

12.已知矩形MNOP,MN=4cm,请计算它的面积。

答案:矩形的面积等于两个相邻边的长度之积,所以面积为16cm²。

13.请计算一个底边长为6cm,高为9cm的等腰梯形的面积。

答案:等腰梯形的面积等于上底加下底乘以高再除以2,所以面积为45cm²。

14.请计算一个直径为8cm的圆的周长。

答案:圆的周长等于直径乘以π,所以周长为8πcm。

15.请计算一个半径为5cm的圆的面积。

初中数学几何题集

初中数学几何题集

初中数学几何题集一、直线与角度1. 已知直线AB与直线CD相交于E点,∠AEC = 45°,∠CED = 60°,求∠AEB的度数。

解析:根据两条直线相交的特性,可以得知∠AEC + ∠CED = 180°。

代入已知条件,得到45° + 60° = 105°,因此∠AEB = 180° - 105° = 75°。

2. 已知∠BAC = 110°,∠CAD = 30°,请问∠BAD的度数是多少?解析:根据三角形内角和定理,∠BAD = 180° - (∠BAC + ∠CAD)= 180° - (110° + 30°) = 40°。

二、三角形与四边形1. 已知△ABC中,∠C = 90°,AC = 5 cm,BC = 12 cm,求AB的长度。

解析:根据勾股定理,AB² = AC² + BC² = 5² + 12² = 25 + 144 = 169,因此AB = √169 = 13 cm。

2. 已知△ABC中,AB = BC = 8 cm,∠ACB = 120°,求△ABC的面积。

解析:根据正弦定理,面积 = 1/2 × AB × BC × sin(∠ACB) = 1/2 × 8 × 8 × sin(120°) = 32√3 cm²。

三、圆的性质1. 已知圆的半径为5 cm,求圆的周长和面积。

解析:圆的周长= 2πr = 2π × 5 = 10π cm,圆的面积= πr² = π × 5² = 25π cm²。

2. 已知半径为6 cm的圆内接在一个正方形内,求正方形的边长和面积。

函数与几何综合问题(共25题)(学生版)--2023年中考数学真题分项汇编(全国通用)

函数与几何综合问题(共25题)(学生版)--2023年中考数学真题分项汇编(全国通用)

专题32函数与几何综合问题(25题)一、填空题1(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy中,点B的坐标为-8,6,过点B分别作x轴、y轴的垂线,垂足分别为点C、点A,直线y=-2x-6与AB交于点D.与y轴交于点E.动点M在线段BC上,动点N在直线y=-2x-6上,若△AMN是以点N为直角顶点的等腰直角三角形,则点M的坐标为2(2023·四川自贡·统考中考真题)如图,直线y=-13x+2与x轴,y轴分别交于A,B两点,点D是线段AB上一动点,点H是直线y=-43x+2上的一动点,动点E m,0,F m+3,0,连接BE,DF,HD.当BE+DF取最小值时,3BH+5DH的最小值是.3(2023·江苏无锡·统考中考真题)二次函数y=a(x-1)(x-5)a>1 2的图像与x轴交于点A、B,与y轴交于点C,过点M3,1的直线将△ABC分成两部分,这两部分是三角形或梯形,且面积相等,则a 的值为.二、解答题4(2023·黑龙江牡丹江·统考中考真题)如图,在平面直角坐标系中,▱ABCD的顶点B,C在x轴上,D在y轴上,OB,OC的长是方程x2-6x+8=0的两个根(OB>OC).请解答下列问题:(1)求点B 的坐标;(2)若OD :OC =2:1,直线y =-x +b 分别交x 轴、y 轴、AD 于点E ,F ,M ,且M 是AD 的中点,直线EF 交DC 延长线于点N ,求tan ∠MND 的值;(3)在(2)的条件下,点P 在y 轴上,在直线EF 上是否存在点Q ,使△NPQ 是腰长为5的等腰三角形?若存在,请直接写出等腰三角形的个数和其中两个点Q 的坐标;若不存在,请说明理由.5(2023·湖南·统考中考真题)如图,点A ,B ,C 在⊙O 上运动,满足AB 2=BC 2+AC 2,延长AC 至点D ,使得∠DBC =∠CAB ,点E 是弦AC 上一动点(不与点A ,C 重合),过点E 作弦AB 的垂线,交AB 于点F ,交BC 的延长线于点N ,交⊙O 于点M (点M 在劣弧AC上).(1)BD 是⊙O 的切线吗?请作出你的判断并给出证明;(2)记△BDC ,△ABC ,△ADB 的面积分别为S 1,S 2,S ,若S 1⋅S =S 2 2,求tan D 2的值;(3)若⊙O 的半径为1,设FM =x ,FE ⋅FN ⋅1BC ⋅BN +1AE ⋅AC=y ,试求y 关于x 的函数解析式,并写出自变量x 的取值范围.6(2023·湖南·统考中考真题)我们约定:若关于x 的二次函数y 1=a 1x 2+b 1x +c 1与y 2=a 2x 2+b 2x +c 2同时满足a 2-c 1+(b 2+b 1)2+c 2-a 1 =0,b 1-b 22023≠0,则称函数y 1与函数y 2互为“美美与共”函数.根据该约定,解答下列问题:(1)若关于x 的二次函数y 1=2x 2+kx +3与y 2=mx 2+x +n 互为“美美与共”函数,求k ,m ,n 的值;(2)对于任意非零实数r ,s ,点P r ,t 与点Q s ,t r ≠s 始终在关于x 的函数y 1=x 2+2rx +s 的图像上运动,函数y 1与y 2互为“美美与共”函数.①求函数y 2的图像的对称轴;②函数y 2的图像是否经过某两个定点?若经过某两个定点,求出这两个定点的坐标;否则,请说明理由;(3)在同一平面直角坐标系中,若关于x 的二次函数y 1=ax 2+bx +c 与它的“美美与共”函数y 2的图像顶点分别为点A ,点B ,函数y 1的图像与x 轴交于不同两点C ,D ,函数y 2的图像与x 轴交于不同两点E ,F .当CD =EF 时,以A ,B ,C ,D 为顶点的四边形能否为正方形?若能,求出该正方形面积的取值范围;若不请说明理由.7(2023·江苏无锡·统考中考真题)如图,四边形ABCD 是边长为4的菱形,∠A =60°,点Q 为CD 的中点,P 为线段AB 上的动点,现将四边形PBCQ 沿PQ 翻折得到四边形PB C Q .(1)当∠QPB =45°时,求四边形BB C C 的面积;(2)当点P 在线段AB 上移动时,设BP =x ,四边形BB C C 的面积为S ,求S 关于x 的函数表达式.8(2023·江苏徐州·统考中考真题)如图,在平而直角坐标系中,二次函数y =-3x 2+23x 的图象与x 轴分别交于点O ,A ,顶点为B .连接OB ,AB ,将线段AB 绕点A 按顺时针方向旋转60°得到线段AC ,连接BC .点D ,E 分别在线段OB ,BC 上,连接AD ,DE ,EA ,DE 与AB 交于点F ,∠DEA =60°.(1)求点A ,B 的坐标;(2)随着点E 在线段BC 上运动.①∠EDA 的大小是否发生变化?请说明理由;②线段BF 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由;(3)当线段DE 的中点在该二次函数的因象的对称轴上时,△BDE 的面积为.9(2023·内蒙古·统考中考真题)如图,在平面直角坐标系中,抛物线y =-x 2+3x +1交y 轴于点A ,直线y =-13x +2交抛物线于B ,C 两点(点B 在点C 的左侧),交y 轴于点D ,交x 轴于点E .(1)求点D ,E ,C 的坐标;(2)F 是线段OE 上一点OF <EF ,连接AF ,DF ,CF ,且AF 2+EF 2=21.①求证:△DFC 是直角三角形;②∠DFC 的平分线FK 交线段DC 于点K ,P 是直线BC 上方抛物线上一动点,当3tan ∠PFK =1时,求点P 的坐标.10(2023·吉林·统考中考真题)如图,在正方形ABCD 中,AB =4cm ,点O 是对角线AC 的中点,动点P ,Q 分别从点A ,B 同时出发,点P 以1cm/s 的速度沿边AB 向终点B 匀速运动,点Q 以2cm/s 的速度沿折线BC -CD 向终点D 匀速运动.连接PO 并延长交边CD 于点M ,连接QO 并延长交折线DA -AB 于点N ,连接PQ ,QM ,MN ,NP ,得到四边形PQMN .设点P 的运动时间为x (s )(0<x <4),四边形PQMN 的面积为y (cm 2)(1)BP 的长为cm ,CM 的长为cm .(用含x 的代数式表示)(2)求y 关于x 的函数解析式,并写出自变量x 的取值范围.(3)当四边形PQMN 是轴对称图形时,直接写出x 的值.11(2023·广东·统考中考真题)综合运用如图1,在平面直角坐标系中,正方形OABC 的顶点A 在x 轴的正半轴上,如图2,将正方形OABC 绕点O 逆时针旋转,旋转角为α0°<α<45° ,AB 交直线y =x 于点E ,BC 交y 轴于点F .(1)当旋转角∠COF 为多少度时,OE =OF ;(直接写出结果,不要求写解答过程)(2)若点A (4,3),求FC 的长;(3)如图3,对角线AC 交y 轴于点M ,交直线y =x 于点N ,连接FN ,将△OFN 与△OCF 的面积分别记为S 1与S 2,设S =S 1-S 2,AN =n ,求S 关于n 的函数表达式.12(2023·湖北黄冈·统考中考真题)已知抛物线y =-12x 2+bx +c 与x 轴交于A ,B (4,0)两点,与y 轴交于点C (0,2),点P 为第一象限抛物线上的点,连接CA ,CB ,PB ,PC .(1)直接写出结果;b =,c =,点A 的坐标为,tan ∠ABC =;(2)如图1,当∠PCB =2∠OCA 时,求点P 的坐标;(3)如图2,点D 在y 轴负半轴上,OD =OB ,点Q 为抛物线上一点,∠QBD =90°,点E ,F 分别为△BDQ 的边DQ ,DB 上的动点,QE =DF ,记BE +QF 的最小值为m .①求m 的值;②设△PCB 的面积为S ,若S =14m 2-k ,请直接写出k 的取值范围.13(2023·湖北宜昌·统考中考真题)如图,已知A (0,2),B (2,0).点E 位于第二象限且在直线y =-2x 上,∠EOD =90°,OD =OE ,连接AB ,DE ,AE ,DB .(1)直接判断△AOB 的形状:△AOB 是三角形;(2)求证:△AOE ≌△BOD ;(3)直线EA 交x 轴于点C (t ,0),t >2.将经过B ,C 两点的抛物线y 1=ax 2+bx -4向左平移2个单位,得到抛物线y 2.①若直线EA 与抛物线y 1有唯一交点,求t 的值;②若抛物线y 2的顶点P 在直线EA 上,求t 的值;③将抛物线y 2再向下平移,2(t -1)2个单位,得到抛物线y 3.若点D 在抛物线y 3上,求点D 的坐标.14(2023·山东滨州·统考中考真题)如图,在平面直角坐标系中,菱形OABC 的一边OC 在x 轴正半轴上,顶点A 的坐标为2,23 ,点D 是边OC 上的动点,过点D 作DE ⊥OB 交边OA 于点E ,作DF ∥OB 交边BC 于点F ,连接EF .设OD =x ,△DEF 的面积为S .(1)求S 关于x 的函数解析式;(2)当x 取何值时,S 的值最大?请求出最大值.15(2023·天津·统考中考真题)在平面直角坐标系中,O 为原点,菱形ABCD 的顶点A (3,0),B (0,1),D (23,1),矩形EFGH 的顶点E 0,12 ,F -3,12 ,H 0,32.(1)填空:如图①,点C 的坐标为,点G 的坐标为;(2)将矩形EFGH 沿水平方向向右平移,得到矩形E F G H ,点E ,F ,G ,H 的对应点分别为E ,F ,G ,H .设EE =t ,矩形E F G H 与菱形ABCD 重叠部分的面积为S .①如图②,当边E F 与AB 相交于点M 、边G H 与BC 相交于点N ,且矩形E F G H 与菱形ABCD 重叠部分为五边形时,试用含有t 的式子表示S ,并直接写出t 的取值范围:②当233≤t ≤1134时,求S 的取值范围(直接写出结果即可).16(2023·浙江温州·统考中考真题)如图1,AB 为半圆O 的直径,C 为BA 延长线上一点,CD 切半圆于点D ,BE ⊥CD ,交CD 延长线于点E ,交半圆于点F ,已知OA =32,AC =1.如图2,连接AF ,P 为线段AF 上一点,过点P 作BC 的平行线分别交CE ,BE 于点M ,N ,过点P 作PH ⊥AB 于点H .设PH =x ,MN =y .(1)求CE 的长和y 关于x 的函数表达式.(2)当PH <PN ,且长度分别等于PH ,PN ,a 的三条线段组成的三角形与△BCE 相似时,求a 的值.(3)延长PN 交半圆O 于点Q ,当NQ =154x -3时,求MN 的长.17(2023·新疆·统考中考真题)【建立模型】(1)如图1,点B 是线段CD 上的一点,AC ⊥BC ,AB ⊥BE ,ED ⊥BD ,垂足分别为C ,B ,D ,AB =BE .求证:△ACB ≌△BDE ;【类比迁移】(2)如图2,一次函数y =3x +3的图象与y 轴交于点A 、与x 轴交于点B ,将线段AB 绕点B 逆时针旋转90°得到BC 、直线AC 交x 轴于点D .①求点C 的坐标;②求直线AC 的解析式;【拓展延伸】(3)如图3,抛物线y =x 2-3x -4与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于C点,已知点Q (0,-1),连接BQ .抛物线上是否存在点M ,使得tan ∠MBQ =13,若存在,求出点M 的横坐标.18(2023·江苏连云港·统考中考真题)【问题情境 建构函数】(1)如图1,在矩形ABCD 中,AB =4,M 是CD 的中点,AE ⊥BM ,垂足为E .设BC =x ,AE =y ,试用含x 的代数式表示y .【由数想形 新知初探】(2)在上述表达式中,y 与x 成函数关系,其图像如图2所示.若x 取任意实数,此时的函数图像是否具有对称性?若有,请说明理由,并在图2上补全函数图像.【数形结合 深度探究】(3)在“x 取任意实数”的条件下,对上述函数继续探究,得出以下结论:①函数值y 随x 的增大而增大;②函数值y 的取值范围是-42<y <42;③存在一条直线与该函数图像有四个交点;④在图像上存在四点A 、B 、C 、D ,使得四边形ABCD 是平行四边形.其中正确的是.(写出所有正确结论的序号)【抽象回归 拓展总结】(4)若将(1)中的“AB=4”改成“AB=2k”,此时y关于x的函数表达式是;一般地,当k≠0,x取任意实数时,类比一次函数、反比例函数、二次函数的研究过程,探究此类函数的相关性质(直接写出3条即可).19(2023·四川凉山·统考中考真题)阅读理解题:阅读材料:如图1,四边形ABCD是矩形,△AEF是等腰直角三角形,记∠BAE为α、∠FAD为β,若tanα=1 2,则tanβ=13.证明:设BE=k,∵tanα=12,∴AB=2k,易证△AEB≌△EFC AAS∴EC=2k,CF=k,∴FD=k,AD=3k∴tanβ=DFAD =k3k=13,若α+β=45°时,当tanα=12,则tanβ=13.同理:若α+β=45°时,当tanα=13,则tanβ=12.根据上述材料,完成下列问题:如图2,直线y=3x-9与反比例函数y=mx(x>0)的图象交于点A,与x轴交于点B.将直线AB绕点A顺时针旋转45°后的直线与y轴交于点E,过点A作AM⊥x轴于点M,过点A作AN⊥y轴于点N,已知OA=5.(1)求反比例函数的解析式;(2)直接写出tan ∠BAM 、tan ∠NAE 的值;(3)求直线AE 的解析式.20(2023·山东泰安·统考中考真题)如图1,二次函数y =ax 2+bx +4的图象经过点A (-4,0),B (-1,0).(1)求二次函数的表达式;(2)若点P 在二次函数对称轴上,当△BCP 面积为5时,求P 坐标;(3)小明认为,在第三象限抛物线上有一点D ,使∠DAB +∠ACB =90°;请判断小明的说法是否正确,如果正确,请求出D 的坐标;如果不正确,请说明理由.21(2023·湖北恩施·统考中考真题)在平面直角坐标系xoy 中,O 为坐标原点,已知抛物线y =-12x 2+bx +c 与y 轴交于点A ,抛物线的对称轴与x 轴交于点B .(1)如图,若A 0,3 ,抛物线的对称轴为x =3.求抛物线的解析式,并直接写出y ≥3时x 的取值范围;(2)在(1)的条件下,若P 为y 轴上的点,C 为x 轴上方抛物线上的点,当△PBC 为等边三角形时,求点P ,C 的坐标;(3)若抛物线y =-12x 2+bx +c 经过点D m ,2 ,E n ,2 ,F 1,-1 ,且m <n ,求正整数m ,n 的值.22(2023·辽宁营口·统考中考真题)如图,抛物线y =ax 2+bx -1a ≠0 与x 轴交于点A 1,0 和点B ,与y 轴交于点C ,抛物线的对称轴交x 轴于点D 3,0 ,过点B 作直线l ⊥x 轴,过点D 作DE ⊥CD ,交直线l 于点E .(1)求抛物线的解析式;(2)如图,点P为第三象限内抛物线上的点,连接CE和BP交于点Q,当BQPQ=57时.求点P的坐标;(3)在(2)的条件下,连接AC,在直线BP上是否存在点F,使得∠DEF=∠ACD+∠BED?若存在,请直接写出点F的坐标;若不存在,请说明理由.23(2023·山东日照·统考中考真题)在平面直角坐标系xOy内,抛物线y=-ax2+5ax+2a>0交y 轴于点C,过点C作x轴的平行线交该抛物线于点D.(1)求点C,D的坐标;(2)当a=13时,如图1,该抛物线与x轴交于A,B两点(点A在点B的左侧),点P为直线AD上方抛物线上一点,将直线PD沿直线AD翻折,交x轴于点M(4,0),求点P的坐标;(3)坐标平面内有两点E1a ,a+1,F5,a+1,以线段EF为边向上作正方形EFGH.①若a=1,求正方形EFGH的边与抛物线的所有交点坐标;②当正方形EFGH的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为52时,求a的值.24(2023·江苏无锡·统考中考真题)已知二次函数y=22x2+bx+c的图像与y轴交于点A,且经过点B(4,2)和点C(-1,2).(1)请直接写出b,c的值;(2)直线BC交y轴于点D,点E是二次函数y=22x2+bx+c图像上位于直线AB下方的动点,过点E作直线AB的垂线,垂足为F.①求EF的最大值;②若△AEF中有一个内角是∠ABC的两倍,求点E的横坐标.25(2023·辽宁·统考中考真题)如图,抛物线y=-12x2+bx+c与x轴交于点A和点B4,0,与y轴交于点C0,4,点E在抛物线上.(1)求抛物线的解析式;(2)点E在第一象限内,过点E作EF∥y轴,交BC于点F,作EH∥x轴,交抛物线于点H,点H在点E的左侧,以线段EF,EH为邻边作矩形EFGH,当矩形EFGH的周长为11时,求线段EH的长;(3)点M在直线AC上,点N在平面内,当四边形OENM是正方形时,请直接写出点N的坐标.11。

中考数学-几何综合压轴问题(共40题)(学生版)

中考数学-几何综合压轴问题(共40题)(学生版)

几何综合压轴问题(40题)1(2023·四川自贡·统考中考真题)如图1,一大一小两个等腰直角三角形叠放在一起,M,N分别是斜边DE,AB的中点,DE=2,AB=4.(1)将△CDE绕顶点C旋转一周,请直接写出点M,N距离的最大值和最小值;(2)将△CDE绕顶点C逆时针旋转120°(如图2),求MN的长.2(2023·山东烟台·统考中考真题)如图,点C为线段AB上一点,分别以AC,BC为等腰三角形的底边,在AB的同侧作等腰△ACD和等腰△BCE,且∠A=∠CBE.在线段EC上取一点F,使EF=AD,连接BF,DE.(1)如图1,求证:DE=BF;(2)如图2,若AD=2,BF的延长线恰好经过DE的中点G,求BE的长.3(2023·浙江绍兴·统考中考真题)在平行四边形ABCD中(顶点A,B,C,D按逆时针方向排列),AB= 12,AD=10,∠B为锐角,且sin B=45.(1)如图1,求AB边上的高CH的长.(2)P是边AB上的一动点,点C,D同时绕点P按逆时针方向旋转90°得点C ,D .①如图2,当点C 落在射线CA上时,求BP的长.②当△AC D 是直角三角形时,求BP的长.4(2023·甘肃武威·统考中考真题)【模型建立】(1)如图1,△ABC和△BDE都是等边三角形,点C关于AD的对称点F在BD边上.①求证:AE=CD;②用等式写出线段AD,BD,DF的数量关系,并说明理由.【模型应用】(2)如图2,△ABC是直角三角形,AB=AC,CD⊥BD,垂足为D,点C关于AD的对称点F在BD边上.用等式写出线段AD,BD,DF的数量关系,并说明理由.【模型迁移】(3)在(2)的条件下,若AD=42,BD=3CD,求cos∠AFB的值.5(2023·江西·统考中考真题)课本再现思考我们知道,菱形的对角线互相垂直.反过来,对角线互相垂直的平行四边形是菱形吗?可以发现并证明菱形的一个判定定理;对角线互相垂直的平行四边形是菱形.(1)定理证明:为了证明该定理,小明同学画出了图形(如图1),并写出了“已知”和“求证”,请你完成证明过程.己知:在▱ABCD中,对角线BD⊥AC,垂足为O.求证:▱ABCD是菱形.(2)知识应用:如图2,在▱ABCD中,对角线AC和BD相交于点O,AD=5,AC=8,BD=6.①求证:▱ABCD是菱形;②延长BC至点E,连接OE交CD于点F,若∠E=12∠ACD,求OFEF的值.6(2023·湖北随州·统考中考真题)1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.(1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,③处填写角度数,④处填写该三角形的某个顶点)当△ABC的三个内角均小于120°时,如图1,将△APC绕,点C顺时针旋转60°得到△A P C,连接PP ,由PC=P C,∠PCP =60°,可知△PCP 为三角形,故PP =PC,又P A =PA,故PA+PB+PC =PA +PB+PP ≥A B,由可知,当B,P,P ,A在同一条直线上时,PA+PB+PC取最小值,如图2,最小值为A B,此时的P点为该三角形的“费马点”,且有∠APC=∠BPC=∠APB=;已知当△ABC有一个内角大于或等于120°时,“费马点”为该三角形的某个顶点.如图3,若∠BAC≥120°,则该三角形的“费马点”为点.(2)如图4,在△ABC中,三个内角均小于120°,且AC=3,BC=4,∠ACB=30°,已知点P为△ABC的“费马点”,求PA+PB+PC的值;(3)如图5,设村庄A,B,C的连线构成一个三角形,且已知AC=4km,BC=23km,∠ACB=60°.现欲建一中转站P沿直线向A,B,C三个村庄铺设电缆,已知由中转站P到村庄A,B,C的铺设成本分别为a 元/km,a元/km,2a元/km,选取合适的P的位置,可以使总的铺设成本最低为元.(结果用含a的式子表示)7(2023·山东枣庄·统考中考真题)问题情境:如图1,在△ABC中,AB=AC=17,BC=30,AD是BC边上的中线.如图2,将△ABC的两个顶点B,C分别沿EF,GH折叠后均与点D重合,折痕分别交AB,AC,BC于点E,G,F,H.猜想证明:(1)如图2,试判断四边形AEDG的形状,并说明理由.问题解决;(2)如图3,将图2中左侧折叠的三角形展开后,重新沿MN折叠,使得顶点B与点H重合,折痕分别交AB, BC于点M,N,BM的对应线段交DG于点K,求四边形MKGA的面积.8(2023·湖南·统考中考真题)(1)[问题探究]如图1,在正方形ABCD中,对角线AC、BD相交于点O.在线段AO上任取一点P(端点除外),连接PD、PB.①求证:PD=PB;②将线段DP绕点P逆时针旋转,使点D落在BA的延长线上的点Q处.当点P在线段AO上的位置发生变化时,∠DPQ的大小是否发生变化?请说明理由;③探究AQ与OP的数量关系,并说明理由.(2)[迁移探究]如图2,将正方形ABCD换成菱形ABCD,且∠ABC=60°,其他条件不变.试探究AQ与CP的数量关系,并说明理由.9(2023·湖南岳阳·统考中考真题)如图1,在△ABC中,AB=AC,点M,N分别为边AB,BC的中点,连接MN.初步尝试:(1)MN与AC的数量关系是,MN与AC的位置关系是.特例研讨:(2)如图2,若∠BAC=90°,BC=42,先将△BMN绕点B顺时针旋转α(α为锐角),得到△BEF,当点A,E,F在同一直线上时,AE与BC相交于点D,连接CF.(1)求∠BCF的度数;(2)求CD的长.深入探究:(3)若∠BAC<90°,将△BMN绕点B顺时针旋转α,得到△BEF,连接AE,CF.当旋转角α满足0°<α<360°,点C,E,F在同一直线上时,利用所提供的备用图探究∠BAE与∠ABF的数量关系,并说明理由.10(2023·湖北黄冈·统考中考真题)【问题呈现】△CAB和△CDE都是直角三角形,∠ACB=∠DCE=90°,CB=mCA,CE=mCD,连接AD,BE,探究AD,BE的位置关系.(1)如图1,当m=1时,直接写出AD,BE的位置关系:;(2)如图2,当m≠1时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.【拓展应用】(3)当m=3,AB=47,DE=4时,将△CDE绕点C旋转,使A,D,E三点恰好在同一直线上,求BE的长.11(2023·河北·统考中考真题)如图1和图2,平面上,四边形ABCD中,AB=8,BC=211,CD=12, DA=6,∠A=90°,点M在AD边上,且DM=2.将线段MA绕点M顺时针旋转n°(0<n≤180)到MA ,∠A MA的平分线MP所在直线交折线AB-BC于点P,设点P在该折线上运动的路径长为x(x>0),连接A P.(1)若点P在AB上,求证:A P=AP;(2)如图2.连接BD.①求∠CBD的度数,并直接写出当n=180时,x的值;②若点P到BD的距离为2,求tan∠A MP的值;(3)当0<x≤8时,请直接写出点A 到直线AB的距离.(用含x的式子表示).12(2023·四川达州·统考中考真题)(1)如图①,在矩形ABCD的AB边上取一点E,将△ADE沿DE翻折,使点A落在BC上A 处,若AB=6,BC=10,求AEEB的值;(2)如图②,在矩形ABCD 的BC 边上取一点E ,将四边形ABED 沿DE 翻折,使点B 落在DC 的延长线上B 处,若BC ⋅CE =24,AB =6,求BE 的值;(3)如图③,在△ABC 中,∠BAC =45°,AD ⊥BC ,垂足为点D ,AD =10,AE =6,过点E 作EF ⊥AD 交AC 于点F ,连接DF ,且满足∠DFE =2∠DAC ,直接写出BD +53EF 的值.13(2023·湖南郴州·统考中考真题)已知△ABC 是等边三角形,点D 是射线AB 上的一个动点,延长BC 至点E ,使CE =AD ,连接DE 交射线AC 于点F .(1)如图1,当点D 在线段AB 上时,猜测线段CF 与BD 的数量关系并说明理由;(2)如图2,当点D 在线段AB 的延长线上时,①线段CF 与BD 的数量关系是否仍然成立?请说明理由;②如图3,连接AE .设AB =4,若∠AEB =∠DEB ,求四边形BDFC 的面积.14(2023·湖北宜昌·统考中考真题)如图,在正方形ABCD 中,E ,F 分别是边AD ,AB 上的点,连接CE ,EF ,CF .(1)若正方形ABCD 的边长为2,E 是AD 的中点.①如图1,当∠FEC =90°时,求证:△AEF ∽△DCE ;②如图2,当tan ∠FCE =23时,求AF 的长;(2)如图3,延长CF ,DA 交于点G ,当GE =DE ,sin ∠FCE =13时,求证:AE =AF .15(2023·湖北武汉·统考中考真题)问题提出:如图(1),E 是菱形ABCD 边BC 上一点,△AEF 是等腰三角形,AE =EF ,∠AEF =∠ABC =αa ≥90° ,AF 交CD 于点G ,探究∠GCF 与α的数量关系.问题探究:(1)先将问题特殊化,如图(2),当α=90°时,直接写出∠GCF 的大小;(2)再探究一般情形,如图(1),求∠GCF 与α的数量关系.问题拓展:(3)将图(1)特殊化,如图(3),当α=120°时,若DG CG =12,求BECE的值.16(2023·山西·统考中考真题)问题情境:“综合与实践”课上,老师提出如下问题:将图1中的矩形纸片沿对角线剪开,得到两个全等的三角形纸片,表示为△ABC 和△DFE ,其中∠ACB =∠DEF =90°,∠A =∠D .将△ABC 和△DFE 按图2所示方式摆放,其中点B 与点F 重合(标记为点B ).当∠ABE =∠A 时,延长DE 交AC 于点G .试判断四边形BCGE 的形状,并说明理由.(1)数学思考:谈你解答老师提出的问题;(2)深入探究:老师将图2中的△DBE 绕点B 逆时针方向旋转,使点E 落在△ABC 内部,并让同学们提出新的问题.①“善思小组”提出问题:如图3,当∠ABE =∠BAC 时,过点A 作AM ⊥BE 交BE 的延长线于点M ,BM 与AC 交于点N .试猜想线段AM 和BE 的数量关系,并加以证明.请你解答此问题;②“智慧小组”提出问题:如图4,当∠CBE=∠BAC时,过点A作AH⊥DE于点H,若BC=9,AC=12,求AH的长.请你思考此问题,直接写出结果.17(2023·湖北十堰·统考中考真题)过正方形ABCD的顶点D作直线DP,点C关于直线DP的对称点为点E,连接AE,直线AE交直线DP于点F.(1)如图1,若∠CDP=25°,则∠DAF=°;(2)如图1,请探究线段CD,EF,AF之间的数量关系,并证明你的结论;(3)在DP绕点D转动的过程中,设AF=a,EF=b请直接用含a,b的式子表示DF的长.18(2023·辽宁大连·统考中考真题)综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知AB=AC,∠A>90°,点E为AC上一动点,将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时,∠EDC=2∠ACB.”小红:“若点E为AC中点,给出AC与DC的长,就可求出BE的长.”实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰△ABC中,AB=AC,∠A>90°,△BDE由△ABE翻折得到.(1)如图1,当点D落在BC上时,求证:∠EDC=2∠ACB;(2)如图2,若点E为AC中点,AC=4,CD=3,求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形,可以将问题进一步拓展.问题2:如图3,在等腰△ABC中,∠A<90°,AB=AC=BD=4,2∠D=∠ABD.若CD=1,则求BC的长.19(2023·山东·统考中考真题)(1)如图1,在矩形ABCD中,点E,F分别在边DC,BC上,AE⊥DF,垂足为点G.求证:△ADE∽△DCF.【问题解决】(2)如图2,在正方形ABCD中,点E,F分别在边DC,BC上,AE=DF,延长BC到点H,使CH=DE,连接DH.求证:∠ADF=∠H.【类比迁移】(3)如图3,在菱形ABCD中,点E,F分别在边DC,BC上,AE=DF=11,DE=8,∠AED=60°,求CF 的长.20(2023·福建·统考中考真题)如图1,在△ABC中,∠BAC=90°,AB=AC,D是AB边上不与A,B重合的一个定点.AO⊥BC于点O,交CD于点E.DF是由线段DC绕点D顺时针旋转90°得到的,FD,CA的延长线相交于点M.(1)求证:△ADE∽△FMC;(2)求∠ABF的度数;(3)若N是AF的中点,如图2.求证:ND=NO.21(2023·四川·统考中考真题)如图1,已知线段AB,AC,线段AC绕点A在直线AB上方旋转,连接BC,以BC为边在BC上方作Rt△BDC,且∠DBC=30°.(1)若∠BDC=90°,以AB为边在AB上方作Rt△BAE,且∠AEB=90°,∠EBA=30°,连接DE,用等式表示线段AC与DE的数量关系是;(2)如图2,在(1)的条件下,若DE⊥AB,AB=4,AC=2,求BC的长;(3)如图3,若∠BCD=90°,AB=4,AC=2,当AD的值最大时,求此时tan∠CBA的值.22(2023·广西·统考中考真题)【探究与证明】折纸,操作简单,富有数学趣味,我们可以通过折纸开展数学探究,探索数学奥秘.【动手操作】如图1,将矩形纸片ABCD对折,使AD与BC重合,展平纸片,得到折痕EF;折叠纸片,使点B 落在EF上,并使折痕经过点A,得到折痕AM,点B,E的对应点分别为B ,E ,展平纸片,连接AB ,BB ,BE .请完成:(1)观察图1中∠1,∠2和∠3,试猜想这三个角的大小关系;(2)证明(1)中的猜想;【类比操作】如图2,N为矩形纸片ABCD的边AD上的一点,连接BN,在AB上取一点P,折叠纸片,使B ,P 两点重合,展平纸片,得到折痕EF ;折叠纸片,使点B ,P 分别落在EF ,BN 上,得到折痕l ,点B ,P 的对应点分别为B ,P ,展平纸片,连接,P B .请完成:(3)证明BB 是∠NBC 的一条三等分线.23(2023·重庆·统考中考真题)在Rt △ABC 中,∠ACB =90°,∠B =60°,点D 为线段AB 上一动点,连接CD .(1)如图1,若AC =9,BD =3,求线段AD 的长.(2)如图2,以CD 为边在CD 上方作等边△CDE ,点F 是DE 的中点,连接BF 并延长,交CD 的延长线于点G .若∠G =∠BCE ,求证:GF =BF +BE .(3)在CD 取得最小值的条件下,以CD 为边在CD 右侧作等边△CDE .点M 为CD 所在直线上一点,将△BEM 沿BM 所在直线翻折至△ABC 所在平面内得到△BNM .连接AN ,点P 为AN 的中点,连接CP ,当CP 取最大值时,连接BP ,将△BCP 沿BC 所在直线翻折至△ABC 所在平面内得到△BCQ ,请直接写出此时NQ CP的值.24(2023·湖南·统考中考真题)如图,在等边三角形ABC 中,D 为AB 上的一点,过点D 作BC 的平行线DE 交AC 于点E ,点P 是线段DE 上的动点(点P 不与D 、E 重合).将△ABP 绕点A 逆时针方向旋转60°,得到△ACQ ,连接EQ 、PQ ,PQ 交AC 于F .(1)证明:在点P 的运动过程中,总有∠PEQ =120°.(2)当AP DP为何值时,△AQF 是直角三角形?25(2023·黑龙江·统考中考真题)如图①,△ABC和△ADE是等边三角形,连接DC,点F,G,H分别是DE,DC和BC的中点,连接FG,FH.易证:FH=3FG.若△ABC和△ADE都是等腰直角三角形,且∠BAC=∠DAE=90°,如图②:若△ABC和△ADE都是等腰三角形,且∠BAC=∠DAE=120°,如图③:其他条件不变,判断FH和FG之间的数量关系,写出你的猜想,并利用图②或图③进行证明.26(2023·黑龙江齐齐哈尔·统考中考真题)综合与实践数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.(1)发现问题:如图1,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=30°,连接BE,CF,延长BE交CF于点D.则BE与CF的数量关系:,∠BDC=°;(2)类比探究:如图2,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=120°,连接BE,CF,延长BE,FC交于点D.请猜想BE与CF的数量关系及∠BDC的度数,并说明理由;(3)拓展延伸:如图3,△ABC和△AEF均为等腰直角三角形,∠BAC=∠EAF=90°,连接BE,CF,且点B,E,F在一条直线上,过点A作AM⊥BF,垂足为点M.则BF,CF,AM之间的数量关系:;(4)实践应用:正方形ABCD中,AB=2,若平面内存在点P满足∠BPD=90°,PD=1,则S△ABP=.27(2023·广东深圳·统考中考真题)(1)如图,在矩形ABCD中,E为AD边上一点,连接BE,①若BE=BC,过C作CF⊥BE交BE于点F,求证:△ABE≌△FCB;=20时,则BE⋅CF=.②若S矩形ABCD(2)如图,在菱形ABCD中,cos A=13,过C作CE⊥AB交AB的延长线于点E,过E作EF⊥AD交AD =24时,求EF⋅BC的值.于点F,若S菱形ABCD(3)如图,在平行四边形ABCD中,∠A=60°,AB=6,AD=5,点E在CD上,且CE=2,点F为BC上一点,连接EF,过E作EG⊥EF交平行四边形ABCD的边于点G,若EF⋅EG=73时,请直接写出AG的长.28(2023·内蒙古·统考中考真题)如图,在菱形ABCD中,对角线AC,BD相交于点O,点P,Q分别是边BC,线段OD上的点,连接AP,QP,AP与OB相交于点E.(1)如图1,连接QA.当QA=QP时,试判断点Q是否在线段PC的垂直平分线上,并说明理由;(2)如图2,若∠APB=90°,且∠BAP=∠ADB,①求证:AE=2EP;②当OQ=OE时,设EP=a,求PQ的长(用含a的代数式表示).29(2023·内蒙古赤峰·统考中考真题)数学兴趣小组探究了以下几何图形.如图①,把一个含有45°角的三角尺放在正方形ABCD中,使45°角的顶点始终与正方形的顶点C重合,绕点C旋转三角尺时,45°角的两边CM ,CN 始终与正方形的边AD ,AB 所在直线分别相交于点M ,N ,连接MN ,可得△CMN .【探究一】如图②,把△CDM 绕点C 逆时针旋转90°得到△CBH ,同时得到点H 在直线AB 上.求证:∠CNM =∠CNH ;【探究二】在图②中,连接BD ,分别交CM ,CN 于点E ,F .求证:△CEF ∽△CNM ;【探究三】把三角尺旋转到如图③所示位置,直线BD 与三角尺45°角两边CM ,CN 分别交于点E ,F .连接AC 交BD 于点O ,求EFNM的值.30(2023·山东东营·统考中考真题)(1)用数学的眼光观察.如图,在四边形ABCD 中,AD =BC ,P 是对角线BD 的中点,M 是AB 的中点,N 是DC 的中点,求证:∠PMN =∠PNM .(2)用数学的思维思考.如图,延长图中的线段AD 交MN 的延长线于点E ,延长线段BC 交MN 的延长线于点F ,求证:∠AEM =∠F .(3)用数学的语言表达.如图,在△ABC 中,AC <AB ,点D 在AC 上,AD =BC ,M 是AB 的中点,N 是DC 的中点,连接MN 并延长,与BC 的延长线交于点G ,连接GD ,若∠ANM =60°,试判断△CGD 的形状,并进行证明.31(2023·甘肃兰州·统考中考真题)综合与实践【思考尝试】(1)数学活动课上,老师出示了一个问题:如图1,在矩形ABCD中,E是边AB上一点,DF⊥CE于点F,GD⊥DF,AG⊥DG,AG=CF.试猜想四边形ABCD的形状,并说明理由;【实践探究】(2)小睿受此问题启发,逆向思考并提出新的问题:如图2,在正方形ABCD中,E是边AB上一点,DF⊥CE于点F,AH⊥CE于点H,GD⊥DF交AH于点G,可以用等式表示线段FH,AH,CF的数量关系,请你思考并解答这个问题;【拓展迁移】(3)小博深入研究小睿提出的这个问题,发现并提出新的探究点:如图3,在正方形ABCD中,E是边AB上一点,AH⊥CE于点H,点M在CH上,且AH=HM,连接AM,BH,可以用等式表示线段CM,BH的数量关系,请你思考并解答这个问题.32(2023·贵州·统考中考真题)如图①,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC中,CA=CB,∠C=90°,过点B作射线BD⊥AB,垂足为B,点P在CB上.(1)【动手操作】如图②,若点P在线段CB上,画出射线PA,并将射线PA绕点P逆时针旋转90°与BD交于点E,根据题意在图中画出图形,图中∠PBE的度数为度;(2)【问题探究】根据(1)所画图形,探究线段PA与PE的数量关系,并说明理由;(3)【拓展延伸】如图③,若点P在射线CB上移动,将射线PA绕点P逆时针旋转90°与BD交于点E,探究线段BA,BP, BE之间的数量关系,并说明理由.33(2023·辽宁·统考中考真题)在RtΔABC中,∠ACB=90°,CA=CB,点O为AB的中点,点D在直线AB上(不与点A,B重合),连接CD,线段CD绕点C逆时针旋转90°,得到线段CE,过点B作直线l⊥BC,过点E作EF⊥l,垂足为点F,直线EF交直线OC于点G.(1)如图,当点D与点O重合时,请直接写出线段AD与线段EF的数量关系;(2)如图,当点D在线段AB上时,求证:CG+BD=2BC;(3)连接DE,△CDE的面积记为S1,△ABC的面积记为S2,当EF:BC=1:3时,请直接写出S1S2的值.34(2023·四川成都·统考中考真题)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究.在Rt△ABC中,∠C=90°,AC=BC,D是AB边上一点,且ADBD=1n(n为正整数),E是AC边上的动点,过点D作DE的垂线交直线BC于点F.【初步感知】(1)如图1,当n=1时,兴趣小组探究得出结论:AE+BF=22AB,请写出证明过程.【深入探究】(2)①如图2,当n=2,且点F在线段BC上时,试探究线段AE,BF,AB之间的数量关系,请写出结论并证明;②请通过类比、归纳、猜想,探究出线段AE,BF,AB之间数量关系的一般结论(直接写出结论,不必证明)【拓展运用】(3)如图3,连接EF,设EF的中点为M.若AB=22,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示).35(2023·江苏徐州·统考中考真题)【阅读理解】如图1,在矩形ABCD中,若AB=a,BC=b,由勾股定理,得AC2=a2+b2,同理BD2=a2+b2,故AC2+BD2=2a2+b2.【探究发现】如图2,四边形ABCD为平行四边形,若AB=a,BC=b,则上述结论是否依然成立?请加以判断,并说明理由.【拓展提升】如图3,已知BO为△ABC的一条中线,AB=a,BC=b,AC=c.求证:BO2=a2+b22-c24.【尝试应用】如图4,在矩形ABCD中,若AB=8,BC=12,点P在边AD上,则PB2+PC2的最小值为.36(2023·四川南充·统考中考真题)如图,正方形ABCD中,点M在边BC上,点E是AM的中点,连接ED,EC.(1)求证:ED=EC;(2)将BE绕点E逆时针旋转,使点B的对应点B 落在AC上,连接MB′.当点M在边BC上运动时(点M 不与B,C重合),判断△CMB′的形状,并说明理由.(3)在(2)的条件下,已知AB=1,当∠DEB′=45°时,求BM的长.37(2023·安徽·统考中考真题)在Rt△ABC中,M是斜边AB的中点,将线段MA绕点M旋转至MD 位置,点D在直线AB外,连接AD,BD.(1)如图1,求∠ADB的大小;(2)已知点D和边AC上的点E满足ME⊥AD,DE∥AB.(ⅰ)如图2,连接CD,求证:BD=CD;(ⅱ)如图3,连接BE,若AC=8,BC=6,求tan∠ABE的值.38(2023·浙江宁波·统考中考真题)定义:有两个相邻的内角是直角,并且有两条邻边相等的四边形称为邻等四边形,相等两邻边的夹角称为邻等角.(1)如图1,在四边形ABCD中,AD∥BC,∠A=90°,对角线BD平分∠ADC.求证:四边形ABCD为邻等四边形.(2)如图2,在6×5的方格纸中,A,B,C三点均在格点上,若四边形ABCD是邻等四边形,请画出所有符合条件的格点D.(3)如图3,四边形ABCD是邻等四边形,∠DAB=∠ABC=90°,∠BCD为邻等角,连接AC,过B作BE∥AC交DA的延长线于点E.若AC=8,DE=10,求四边形EBCD的周长.39(2023·江苏扬州·统考中考真题)【问题情境】在综合实践活动课上,李老师让同桌两位同学用相同的两块含30°的三角板开展数学探究活动,两块三角板分别记作△ADB和△A D C,∠ADB=∠A D C=90°,∠B=∠C=30°,设AB=2.【操作探究】如图1,先将△ADB和△A D C的边AD、A D 重合,再将△A D C绕着点A按顺时针方向旋转,旋转角为α0°≤α≤360°,旋转过程中△ADB保持不动,连接BC.(1)当α=60°时,BC=;当BC=22时,α=°;(2)当α=90°时,画出图形,并求两块三角板重叠部分图形的面积;(3)如图2,取BC的中点F,将△A D C绕着点A旋转一周,点F的运动路径长为.40(2023·四川乐山·统考中考真题)在学习完《图形的旋转》后,刘老师带领学生开展了一次数学探究活动【问题情境】刘老师先引导学生回顾了华东师大版教材七年级下册第121页“探索”部分内容:如图,将一个三角形纸板△ABC绕点A逆时针旋转θ到达△AB C 的位置,那么可以得到:AB=AB ,AC =AC ,BC=B C ;∠BAC=∠B AC ,∠ABC=∠AB C ,∠ACB=∠AC B ()刘老师进一步谈到:图形的旋转蕴含于自然界的运动变化规律中,即“变”中蕴含着“不变”,这是我们解决图形旋转的关键;故数学就是一门哲学.【问题解决】(1)上述问题情境中“( )”处应填理由:;(2)如图,小王将一个半径为4cm,圆心角为60°的扇形纸板ABC绕点O逆时针旋转90°到达扇形纸板A BC 的位置.①请在图中作出点O;②如果BB =6cm,则在旋转过程中,点B经过的路径长为;【问题拓展】小李突发奇想,将与(2)中完全相同的两个扇形纸板重叠,一个固定在墙上,使得一边位于水平位置,另一个在弧的中点处固定,然后放开纸板,使其摆动到竖直位置时静止,此时,两个纸板重叠部分的面积是多少呢?如图所示,请你帮助小李解决这个问题.。

初中数学几何综合-含答案

初中数学几何综合-含答案

一.选择题(共13小题)1.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M 不与B、C重合),过点C作CN垂直DM交AB于点N,连结OM、ON、MN.下列四个结论:其中正确结论是()①S四边形ABCD=4S四边形ONBM;②BM2+CM2=2ON2;③△CON≌△DOM;④若AB=2,则S△OMN的最小值是1.A.①②③B.①③④C.①②④D.②③④2.如图,正方形ABCD中,∠EAF=45°,BD分别交AE、AF于M、N,连MF、EF,下列结论:①MN2=BN2+DM2;②DE+BF=EF;③AM=MF且AM⊥MF;④若E为CD 中点,则=.其中正确的有()A.1个B.2个C.3个D.4个3.如图,在正方形ABCD中,AB=4,AC与BD相交于点O,N是AO的中点,点M在BC边上,且BM=3,P为对角线BD上一点,当对角线BD平分∠NPM时,PM﹣PN值为()A.1B.C.2D.4.如图,在正方形ABCD内一点E连接BE、CE,过C作CF⊥CE与BE延长线交于点F,连接DF、DE.CE=CF=1,DE=,下列结论中:①△CBE≌△CDF;②BF⊥DF;③点D到CF的距离为2;④S四边形DECF=+1.其中正确结论的个数是()A.1B.2C.3D.45.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M.则下列结论:①∠AME=90°,②∠BAF=∠EDB,③AM=MF,④ME+MF=MB.其中正确结论的有()A.4个B.3个C.2个D.1个6.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,EH与CF交于点O.则HE的长为()A.2B.C.2D.或27.如图,在正方形ABCD中,E为BC上一点,过点E作EF∥CD,交AD于F,交对角线BD于G,取DG的中点H,连结AH,EH,FH.下列结论:①FH∥AE;②AH=EH且AH⊥EH;③∠BAH=∠HEC;④△EHF≌△AHD;⑤若,则.其中哪些结论是正确()A.①②④⑤B.②③④C.①②③D.②③④⑤8.如图,在正方形ABCD中,AC、BD相交于点O,E、F分别为BC、CD上的两点,BE =CF,AE、BF分别交BD、AC于M、N两点,连OE、OF.下列结论:①AE=BF;②AE⊥BF;③CE+CF=BD;④S四边形OECF=S正方形ABCD,其中正确的是()A.①②B.①④C.①②④D.①②③④9.如图,在正方形ABCD中,M是对角线BD上的一点,点E在AD的延长线上,连接AM、EM、CM,延长EM交AB于点F,若AM=EM,∠E=30°,则下列结论:①FM=ME;②BF=DE;③CM⊥EF;④BF+MD=BC,其中正确的结论序号是()A.①②③B.①②④C.②③④D.①②③④10.如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE ⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个11.如图,以正方形ABCD的顶点A为圆心,以AD的长为半径画弧,交对角线AC于点E,再分别以D,E为圆心,以大于DE的长为半径画弧,两弧交于图中的点F处,连接AF并延长,与BC的延长线交于点P,则∠P=()A.90°B.45°C.30°D.22.5°12.如图,正方形ABCD中,点E在边CD上,连接AE,过点A作AF⊥AE交CB的延长线于点F,连接EF,AG平分∠F AE,AG分别交BC,EF于点G,H,连接EG,DH.则下列结论中:①AF=AE;②∠EGC=2∠BAG;③DE+BG=EG;④AD+DE=DH;⑤若DE=CE,则CE:CG:EG=3:4:5,其中正确的结论有()A.2个B.3个C.4个D.5个13.如图,矩形ABCD中,O为AC的中点,过点O的直线分别与AB、CD交于点E、F,连接BF交AC于点M,连接DE、BO.若∠COB=60°,FO=FC=2,则下列结论:①FB⊥OC;②△EOB≌△CMB;③四边形EBFD是菱形;④MB=2.其中正确结论的个数是()A.1个B.2个C.3个D.4个二.填空题(共3小题)14.如图,点E为正方形ABCD外一点,且ED=CD,连接AE,交BD于点F.若∠CDE =40°,则∠DFC的度数为.15.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G,下列结论:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S四边形DHGE;④图中只有8个等腰三角形.其中正确的有(填番号).16.如图,在正方形ABCD中,P为AB的中点,BE⊥PD的延长线于点E,连接AE、BE、F A⊥AE交DP于点F,连接BF,FC.若AE=2,则FC=.三.解答题(共24小题)17.如图,在直线l上将正方形ABCD和正方形ECGF的边CD和边CE靠在一起,连接DG,过点A作AH∥DG,交BG于点H.连接HF,AF,其中FH交DG于点M.(1)求证:△AHF为等腰直角三角形.(2)若AB=3,EC=4,求DM的长.18.如图,已知正方形ABCD的面积是8,连接AC、BD交于点O,CM平分∠ACD交BD 于点M,MN⊥CM,交AB于点N,(1)求∠BMN的度数;(2)求BN的长.19.如图示,正方形ABCD的对角线交于点O,点E、F分别在AB,BC的延长线上,且∠EOF=90°,OE与BC交于点M,连接EF,G是EF的中点,连接OG.(1)求证:OE=OF(2)若∠BOG=65°,求∠BOE的度数;(3)是否存在点M是BC中点,且使(1)的结论成立,若存在,请给予证明;若不存在,请说明理由.20.如图,正方形ABCD中,AB=,在边CD的右侧作等腰三角形DCE,使DC=DE,记∠CDE为α(0°<α<90°),连接AE,过点D作DG⊥AE,垂足为G,交EC的延长线于点F,连接AF.(1)求∠DEA的大小(用α的代数式表示);(2)求证:△AEF为等腰直角三角形;(3)当CF=时,求点E到CD的距离.21.如图1,在正方形ABCD中,点E在边CD上(不与点C,D重合),AE交对角线BD 于点G,GF⊥AE交BC于点F.(1)求证:AG=FG.(2)若AB=10,BF=4,求BG的长.(3)如图2,连接AF,EF,若AF=AE,求正方形ABCD与△CEF的面积之比.22.在正方形ABCD中,点E是DC上一点,连结AC,AE.(1)如图1,若AC=8,AE=10,求△ACE的面积.(2)如图2,EF⊥AC于点F,连结BF.求证:AE=BF.23.如图1,正方形ABCD中,点E是边BC延长线上一点,连接DE,过点B作BF⊥DE,垂足为点F,BF与CD相交于点G.(1)求证:△BCG≌△DCE;(2)如图2,连接BD,若,求BG的长.24.如图,在正方形ABCD中,对角线AC、BD相交于点O,E为OC上动点(不与O、C 重合),作AF⊥BE,垂足为G,分别交BC、OB于F、H,连接OG、CG.(1)求证:△AOH≌△BOE;(2)求∠AGO的度数;(3)若∠OGC=90°,BG=,求△OGC的面积.25.如图,O为正方形ABCD对角线的交点,E为AB边上一点,F为BC边上一点,△EBF 的周长等于BC的长.(1)若AB=24,BE=6,求EF的长;(2)求∠EOF的度数;(3)若OE=OF,求的值.26.如图,正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG至点F使∠CFB=45°(1)求证:∠BAG=∠CBF;(2)求证:AG=FG;(3)若GF=2BG,CF=,求AB的长.27.如图1,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且P A=PE,PE交CD于点F,(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.28.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.29.如图,已知平行四边形ABCD中,对角线AC、BD交于点O,E是DB延长线上一点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AEB=2∠EAB,求证:四边形ABCD是正方形.30.如图1,在正方形ABCD中,G为线段BD上一点,连接AG,过G作AG⊥GE交BC 于E,连接AE.(1)求证:BG=DG+BE;(2)如图2,AB=4,E为BC中点,P,Q分别为线段AB,AE上的动点,满足QE=AP,则在P,Q运动过程中,当以PQ为对角线的正方形PRQS的一边恰好落在△ABE的某一边上时,直接写出正方形PRQS的面积.31.如图,在平行四边形ABCD中,AC⊥AD,延长DA于点E,使得DA=AE,连接BE.(1)求证:四边形AEBC是矩形;(2)过点E作AB的垂线分别交AB,AC于点F,G,连接CE交AB于点O,连接OG,若AB=6,∠CAB=30°,求△OGC的面积.32.如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=2,AC=4,求OE的长.33.如图,在菱形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若BF=8,DF=4,求CD的长.34.已知:如图,点E为▱ABCD对角线AC上的一点,点F在线段BE的延长线上,且EF =BE,线段EF与边CD相交于点G.(1)求证:DF∥AC;(2)如果AB=BE,DG=CG,联结DE、CF,求证:四边形DECF是矩形.35.如图,▱ABCD的对角线AC,BD交于点O,过点D作DE⊥BC于E,延长CB到点F,使BF=CE,连接AF,OF.(1)求证:四边形AFED是矩形.(2)若AD=7,BE=2,∠ABF=45°,试求OF的长.36.如图,平行四边形ABCD中,AC⊥BC,过点D作DE∥AC交BC的延长线于点E,点M为AB的中点,连接CM.(1)求证:四边形ADEC是矩形;(2)若CM=5,且AC=8,求四边形ADEC的周长.37.如图,已知△OAB中,OA=OB,分别延长AO、BO到点C、D.使得OC=AO,OD =BO,连接AD、DC、CB.(1)求证:四边形ABCD是矩形;(2)以OA、OB为一组邻边作▱AOBE,连接CE,若CE⊥BD,求∠AOB的度数.38.如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC到点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)连接OE,若AD=10,EC=4,求OE的长度.39.如图,在平行四边形BPCD中,点O为BD中点,连接CO并延长交PB延长线于点A,连接AD、BC,若AC=CP,(1)求证:四边形ABCD为矩形;(2)在BA的延长线上取一点E,连接OE交AD于点F,若AB=9,BC=12,AE=3,则AF的长为.40.如图,菱形ABCD中,AC与BD交于点O,DE∥AC,DE=AC.(1)求证:四边形OCED是矩形;(2)连结AE,交OD于点F,连结CF,若CF=CE=1,求AC长.2021年01月06日杨莲莲的初中数学组卷参考答案与试题解析一.选择题(共13小题)1.如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M 不与B、C重合),过点C作CN垂直DM交AB于点N,连结OM、ON、MN.下列四个结论:其中正确结论是()①S四边形ABCD=4S四边形ONBM;②BM2+CM2=2ON2;③△CON≌△DOM;④若AB=2,则S△OMN的最小值是1.A.①②③B.①③④C.①②④D.②③④【分析】根据正方形的性质,依次判定△CNB≌△DMC,△AON≌△BOM,根据全等三角形的性质以及勾股定理进行计算即可得出结论.【解答】解:∵四边形ABCD是正方形,∴AC⊥BD,AO=AC,BO=BD,AC=BD,∴AO=BO,∠OAN=∠OBM=45°,∠AOB=90°,∵CN⊥DM,∴∠MCN+∠CMD=∠CMD+∠CDM=90°,∴∠CDM=∠BCN,∵CD=BC,∠DCM=∠CBN,∴△CDM≌△BCN(AAS),∴CM=BN,∴AN=BM,∴△AON≌△BOM(SAS),∴S△AON=S△BOM,∴S四边形ONBM=S△AOB=S正方形ABCD,∴S四边形ABCD=4S四边形ONBM;故①正确;∵△AON≌△BOM,∴ON=OM,∠AON=∠BOM,∴∠NOM=∠AOB=90°,∴△NOM是等腰直角三角形,∴MN2=2ON2,∵BN2+BM2=MN2,∴CM2+BM2=2ON2,故②正确;∵∠MON=∠COD=90°,∴∠NOC=∠MOD,∵OD=OC,ON=OM,∴△CON≌△DOM(SAS),故③正确;∵AB=2,∴S正方形ABCD=4,∵△AON≌△BOM,∴四边形BMON的面积=△AOB的面积=1,即四边形BMON的面积是定值1,∴当△MNB的面积最大时,△MNO的面积最小,设BN=x=CM,则BM=2﹣x,∴△MNB的面积=x(2﹣x)=﹣x2+x=﹣(x﹣1)2+,∴当x=1时,△MNB的面积有最大值,此时S△OMN的最小值是1﹣=,故④不正确,故选:A.【点评】本题主要考查了正方形的性质、全等三角形的判定与性质,二次函数的最值以及勾股定理的综合应用,解题时注意二次函数的最值的运用.2.如图,正方形ABCD中,∠EAF=45°,BD分别交AE、AF于M、N,连MF、EF,下列结论:①MN2=BN2+DM2;②DE+BF=EF;③AM=MF且AM⊥MF;④若E为CD 中点,则=.其中正确的有()A.1个B.2个C.3个D.4个【分析】①过B作BD的垂线,截取BH=MD,连接AH,HN,如图,易证△ADM≌△ABH,△AHN≌△AMN,得MN=HN,最后根据勾股定理可作判断;②延长CB,截取BI=DE,连接AI,如图,易证△ADE≌△ABI,△AIF≌△AEF,得IF=EF,即DE+BF=EF,成立.③作辅助线,则可证△AFJ为等腰直角三角形,CK=BF=KJ,证明∠JCK=45°,推出四边形BCJK为平行四边形,所以GJ=BC=AD,可证△GJM≌△DAM,则M为AJ的中点,又∠AFJ=90°,故AM=MF且AM⊥MF,成立.④延长CB,截取BL=DE,连接AL,可设DE=a,BF=x,则EF=LF=a+x,CF=2a﹣x,CE=a,由勾股定理可知:3x=2a,则==,成立.【解答】解:①过B作BD的垂线,截取BH=MD,连接AH,HN,如图,∵四边形ABCD是正方形,∴AD=AB,∠ADB=∠ABD=45°,∠BAD=90°,∴∠ABH=45°=∠ADM,在△ADM和△ABM中,∵,∴△ADM≌△ABH(SAS),∴∠DAM=∠BAH,AM=AH,∵∠EAF=45°,∠BAD=90°,∴∠DAM+∠BAN=∠BAH+∠BAN=45°,∴∠MAN=∠HAN=45°,在△AHN和△AMN中,∵,∴△AHN≌△AMN(SAS),∴MN=HN,Rt△BHN中,HN2=BH2+BN2,∴MN2=BN2+DM2,成立.②延长CB,截取BI=DE,连接AI,如图,在△ADE和△ABI中,∵∴△ADE≌△ABI(SAS),同理得△AIF≌△AEF(SAS),∴IF=EF,即DE+BF=EF,成立;③如图,过F作FJ⊥AF交AE的延长线于J,过J作JK⊥BC于K,连接CJ,过J作JG ∥BC交BD于G,∴∠AFJ=∠AFB+∠JFK=90°,∵∠AFB+∠BAF=90°,∴∠BAF=∠JFK,∵∠EAF=45°,∠AFJ=90°,∴△AFJ是等腰直角三角形,在△ABF和△FKJ中,∵,∴△ABF≌△FKJ(SAS),∴AB=FK=BC,BF=KJ,∴CK=BF=KJ,∴∠JCK=45°,∴∠DBC=∠JCK,∴BG∥CJ,∵JG∥BC,∴四边形BCJK为平行四边形,∴GJ=BC=AD,∵AD∥BC∥GJ,∴∠DAM=∠MJK,在△GJM和△DAM中,∵,∴△GJM≌△DAM(AAS),∴AM=MJ,则M为AJ的中点,又∠AFJ=90°,故AM=MF且AM⊥MF,成立.④延长CB,截取BL=DE,连接AL,可设DE=a,BF=x,则EF=LF=a+x,∵E为CD中点,∴CD=BC=2a,∴CF=2a﹣x,CE=a,在Rt△EFC中,由勾股定理得:EF2=CE2+CF2∴(a+x)2=a2+(2a﹣x)2解得:3x=2a,则==,成立.故选:D.【点评】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.3.如图,在正方形ABCD中,AB=4,AC与BD相交于点O,N是AO的中点,点M在BC边上,且BM=3,P为对角线BD上一点,当对角线BD平分∠NPM时,PM﹣PN值为()A.1B.C.2D.【分析】作以BD为对称轴作N的对称点N',连接MN',PN',根据PM﹣PN=PM﹣PN'≤MN',当P,M,N'三点共线时,取“=”,再证得△MCN'∽△BCA,从而推得△MCN'为等腰直角三角形,结合BM=3.正方形的边长为4,求得CM,即为MN',问题可解.【解答】解:如图所示,∵对角线BD平分∠NPM,∴作以BD为对称轴N的对称点N',连接MN',PN',根据轴对称性质可知,PN=PN',∠NPO=N′PO,NO=N′O∵在正方形ABCD中,AB=4∴AC=AB=4,∵O为AC中点∴OA=OC=2∵N为OA的中点∴ON=∴ON'=CN'=∴AN'=3∵BM=3∴CM=4﹣3=1∴==∵∠MCN'=∠BCA∴△MCN'∽△BCA∴∠CMN'=∠ABC=90°∵∠MCN'=45°∴△MCN'为等腰直角三角形∴MN'=CM=1∴PM﹣PN的值为1.故选:A.【点评】本题主要考查了正方形的性质,明确正方形的相关性质及相似三角形的判定、勾股定理等知识点,是解题的关键.4.如图,在正方形ABCD内一点E连接BE、CE,过C作CF⊥CE与BE延长线交于点F,连接DF、DE.CE=CF=1,DE=,下列结论中:①△CBE≌△CDF;②BF⊥DF;③点D到CF的距离为2;④S四边形DECF=+1.其中正确结论的个数是()A.1B.2C.3D.4【分析】根据正方形的性质、全等三角形的判定和性质、勾股定理等知识逐项判断即可.【解答】解:∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°,∵CF⊥CE,∴∠ECF=∠BCD=90°,∴∠BCE=∠DCF,在△BCE与△DCF中,,∴△BCE≌△DCF(SAS),故①正确;∵△BCE≌△DCF,∴∠CBE=∠CDF,∴∠DFB=∠BCD=90°,∴BF⊥DF,故②正确,过点D作DM⊥CF,交CF的延长线于点M,∵∠ECF=90°,FC=EC=1,∴∠CFE=45°,∵∠DFM+∠CFB=90°,∴∠DFM=∠FDM=45°,∴FM=DM,∴由勾股定理可求得:EF=,∵DE=,∴由勾股定理可得:DF=2,∵EF2+BE2=2BE2=BF2,∴DM=FM=,故③错误,∵△BCE≌△DCF,∴S△BCE=S△DCF,∴S四边形DECF=S△DCF+S△DCE=S△ECF+S△DEF=+,故④错误,故选:B.【点评】本题考查四边形的综合问题,涉及正方形的性质、全等三角形的性质与判定、勾股定理、三角形面积公式等知识内容,综合程度高,需要学生灵活运用知识解答.5.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M.则下列结论:①∠AME=90°,②∠BAF=∠EDB,③AM=MF,④ME+MF=MB.其中正确结论的有()A.4个B.3个C.2个D.1个【分析】根据正方形的性质可得AB=BC=AD,∠ABC=∠BAD=90°,再根据中点定义求出AE=BF,然后利用“边角边”证明△ABF和△DAE全等,根据全等三角形对应角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,从而求出∠AMD =90°,再根据邻补角的定义可得∠AME=90°,得出①正确;根据中线的定义判断出∠ADE≠∠EDB,然后求出∠BAF≠∠EDB,判断出②错误;设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出③正确;过点M作MN⊥AB于N,由相似三角形的性质得出==,解得MN=a,AN=a,得出NB=AB﹣AN=2a﹣a=a,根据勾股定理得BM=a,求出ME+MF=+a=a,MB=a,得出ME+MF=MB,故④正确.于是得到结论.【解答】解:在正方形ABCD中,AB=BC=AD,∠ABC=∠BAD=90°,∵E、F分别为边AB,BC的中点,∴AE=BF=BC,在△ABF和△DAE中,,∴△ABF≌△DAE(SAS),∴∠BAF=∠ADE,∵∠BAF+∠DAF=∠BAD=90°,∴∠ADE+∠DAF=∠BAD=90°,∴∠AMD=180°﹣(∠ADE+∠DAF)=180°﹣90°=90°,∴∠AME=180°﹣∠AMD=180°﹣90°=90°,故①正确;∵DE是△ABD的中线,∴∠ADE≠∠EDB,∴∠BAF≠∠EDB,故②错误;设正方形ABCD的边长为2a,则BF=a,在Rt△ABF中,AF===a,∵∠BAF=∠MAE,∠ABC=∠AME=90°,∴△AME∽△ABF,∴=,即=,解得:AM=a,∴MF=AF﹣AM=a﹣a=a,∴AM=MF,故③正确;如图,过点M作MN⊥AB于N,则MN∥BC,∴△AMN∽△AFB,∴==,即==,解得MN=a,AN=a,∴NB=AB﹣AN=2a﹣a=a,根据勾股定理得:BM===a,∵ME+MF=+a=a,MB=a,∴ME+MF=MB,故④正确.综上所述,正确的结论有①③④共3个.故选:B.【点评】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识;仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键.6.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,EH与CF交于点O.则HE的长为()A.2B.C.2D.或2【分析】利用直角三角形斜边上的中线等于斜边的一半,分别求得HO和OE的长后即可求得HE的长.【解答】解:∵AC、CF分别是正方形ABCD和正方形CGFE的对角线,∴∠ACD=∠GCF=45°,∴∠ACF=90°,又∵H是AF的中点,∴CH=HF,∵EC=EF,∴点H和点E都在线段CF的中垂线上,∴HE是CF的中垂线,∴点H和点O是线段AF和CF的中点,∴OH=AC,在Rt△ACD和Rt△CEF中,AD=DC=1,CE=EF=3,∴AC=,∴CF=3,又OE是等腰直角△CEF斜边上的高,∴OE=,∴HE=HO+OE=2.故选:C.【点评】本题考查了正方形的性质、直角三角形的性质及勾股定理的知识,综合性较强,难度较大.7.如图,在正方形ABCD中,E为BC上一点,过点E作EF∥CD,交AD于F,交对角线BD于G,取DG的中点H,连结AH,EH,FH.下列结论:①FH∥AE;②AH=EH且AH⊥EH;③∠BAH=∠HEC;④△EHF≌△AHD;⑤若,则.其中哪些结论是正确()A.①②④⑤B.②③④C.①②③D.②③④⑤【分析】①根据正方形对角线互相垂直、过一点有且只有一条直线与已知直线垂直即可得结论;②根据矩形的判定和性质、直角三角形的性质,证明三角形全等即可得结论;③根据全等三角形性质、矩形的性质进行角的计算即可得结论;④根据边边边证明三角形全等即可得结论;⑤根据割补法求四边形的面积,再求等腰直角三角形的面积,即可得结论.【解答】证明:①在正方形ABCD中,∠ADC=∠C=90°,∠ADB=45°,∵EF∥CD∴∠EFD=90°,得矩形EFDC.在Rt△FDG中,∠FDG=45°,∴FD=FG,∵H是DG中点,∴FH⊥BD∵正方形对角线互相垂直,过A点只能有一条垂直于BD的直线,∴AE不垂直于BD,∴FH与AE不平行.所以①不正确.②∵四边形ABEF是矩形,∴AF=EB,∠BEF=90°,∵BD平分∠ABC,∴∠EBG=∠EGB=45°,∴BE=GE,∴AF=EG.在Rt△FGD中,H是DG的中点,∴FH=GH,FH⊥BD,∴∠AFH=∠AFE+∠GFH=90°+45°=135°,∠EGH=180°﹣∠EGB=180°﹣45°=135°,∴∠AFH=∠EGH,∴△AFH≌△EGH,∴AH=EH,∠AHF=∠EHG,∴∠AHF+AHG=∠EHG+∠AHG,即∠FHG=∠AHE=90°,∴AH⊥EH.所以②正确.③∵△AFH≌△EGH,∴∠F AH=∠GEH,∵∠BAF=CEG=90°,∴∠BAH=∠HEC.所以③正确.④∵EF=AD,FH=DH,EH=AH,∴△EHF≌△AHD所以④正确.⑤如图,过点H作HM⊥AD于点M,设EC=FD=FG=x,则BE=AF=EG=2x,∴BC=DC=AB=AD=3x,HM=x,AM=x,∴AH2=(x)2+(x)2=x2,S四边形DHEC=S梯形EGDC﹣S△EGH=(2x+3x)•x﹣×=2x2S△AHE=AH•EH=AH2=x2∴==.所以⑤不正确.故选:B.【点评】本题考查了正方形的性质、矩形的判定和性质、全等三角形的判定和性质、直角三角形的性质、三角形和梯形的面积等内容,解题关键是综合利用以上知识解决问题.8.如图,在正方形ABCD中,AC、BD相交于点O,E、F分别为BC、CD上的两点,BE =CF,AE、BF分别交BD、AC于M、N两点,连OE、OF.下列结论:①AE=BF;②AE⊥BF;③CE+CF=BD;④S四边形OECF=S正方形ABCD,其中正确的是()A.①②B.①④C.①②④D.①②③④【分析】①易证得△ABE≌△BCF(ASA),则可证得结论①正确;②由△ABE≌△BCF,可得∠FBC=∠BAE,证得AE⊥BF,选项②正确;③证明△BCD是等腰直角三角形,求得选项③错误;④证明△OBE≌△OCF,根据正方形被对角线将面积四等分,即可得出选项④正确.【解答】解:①∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,∵,∴△ABE≌△BCF(SAS),∴AE=BF,故①正确;②由①知:△ABE≌△BCF,∴∠FBC=∠BAE,∴∠FBC+∠ABF=∠BAE+∠ABF=90°,∴AE⊥BF,故②正确;③∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°,∴△BCD是等腰直角三角形,∴BD=BC,∴CE+CF=CE+BE==BC,故③错误;④∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,在△OBE和△OCF中,∵,∴△OBE≌△OCF(SAS),∴S△OBE=S△OCF,∴S四边形OECF=S△COE+S△OCF=S△COE+S△OBE=S△OBC=S正方形ABCD,故④正确;故选:C.【点评】此题属于四边形的综合题.考查了正方形的性质,全等三角形的判定与性质、勾股定理以及等腰直角三角形的性质.注意掌握全等三角形的判定与性质是解此题的关键.9.如图,在正方形ABCD中,M是对角线BD上的一点,点E在AD的延长线上,连接AM、EM、CM,延长EM交AB于点F,若AM=EM,∠E=30°,则下列结论:①FM=ME;②BF=DE;③CM⊥EF;④BF+MD=BC,其中正确的结论序号是()A.①②③B.①②④C.②③④D.①②③④【分析】①证明△AFM是等边三角形,可判断;②③证明△CBF≌△CDE(ASA),可作判断;④设MN=x,分别表示BF、MD、BC的长,可作判断.【解答】解:①∵AM=EM,∠AEM=30°,∴∠MAE=∠AEM=30°,∴∠AMF=∠MAE+∠AEM=60°,∵四边形ABCD是正方形,∴∠F AD=90°,∴∠F AM=90°﹣30°=60°,∴△AFM是等边三角形,∴FM=AM=EM,故①正确;②连接CE、CF,∵四边形ABCD是正方形,∴∠ADB=∠CDM,AD=CD,在△ADM和△CDM中,∵,∴△ADM≌△CDM(SAS),∴AM=CM,∴FM=EM=CM,∴∠MFC=∠MCF,∠MEC=∠ECM,∵∠ECF+∠CFE+∠FEC=180°,∴∠ECF=90°,∵∠BCD=90°,∴∠DCE=∠BCF,在△CBF和△CDE中,∵,∴△CBF≌△CDE(ASA),∴BF=DE;故②正确;③∵△CBF≌△CDE,∴CF=CE,∵FM=EM,∴CM⊥EF,故③正确;④过M作MN⊥AD于N,设MN=x,则AM=AF=2x,AN=x,DN=MN=x,∴AD=AB=x+x,∴DE=BF=AB﹣AF=x+x﹣2x=x﹣x,∴BF+MD=(x﹣x)+x=x,∵BC=AD=x+x x,故④错误;所以本题正确的有①②③;故选:A.【点评】本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质和判定,熟记正方形的性质确定出△AFM是等边三角形是解题的关键.【点评】此题考查的是正方形的性质,等腰直角三角形的性质和判定以及菱10.如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF =BE,正确的有()A.2个B.3个C.4个D.5个【分析】①根据正方形的性质和角平分线的定义得:∠BAG=∠CAG=22.5°,由垂直的定义计算∠AED=90°﹣22.5°=67.5°,∠EAD=∠EAD=22.5°,得ED是AG的垂直平分线,则AE=EG,△BEG是等腰直角三角形,则AD=AB>2AE,可作判断;②证明△DAF≌△ABG(ASA),可作判断;③分别计算∠CDF=∠CFD=67.5°,可作判断;④根据对角线互相平分且垂直的四边形是菱形可作判断;⑤设BG=x,则AF=AE=x,表示OF和BE的长,可作判断.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=90°,∠BAC=45°,∵AG平分∠BAC,∴∠BAG=∠CAG=22.5°,∵AG⊥ED,∴∠AHE=∠EHG=90°,∴∠AED=90°﹣22.5°=67.5°,∴∠ADE=22.5°,∵∠ADB=45°,∴∠EDG=22.5°=∠ADE,∵∠AHD=∠GHD=90°,∴∠DAG=∠DGA,∴AD=DG,AH=GH,∴ED是AG的垂直平分线,∴AE=EG,∴∠EAG=∠AGE=22.5°,∴∠BEG=45°=∠ABG,∴∠BGE=90°,∴AE=EG<BE,∴AD=AB>2AE,故①不正确;②∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠ABG=45°,∵∠ADF=∠BAG=22.5°,∴△DAF≌△ABG(ASA),∴DF=AG,故②正确;③∵∠CDF=45°+22.5°=67.5°,∠CFD=∠AFE=90°﹣22.5°=67.5°,∴∠CDF=∠CFD,∴CF=CD,故③正确;④∵∠EAH=∠F AH,∠AHE=∠AHF,∴∠AEF=∠AFE,∴AE=AF,∴EH=FH,∵AH=GH,AG⊥EF,∴四边形FGEA是菱形;故④正确;⑤设BG=x,则AF=AE=x,由①知△BEG是等腰直角三角形,∴BE=x,∴AB=AE+BE=x+x=(+1)x,∴AO==,∴OF=AO﹣AF=﹣x=,∴==,∴OF=BE;故⑤正确;本题正确的结论有:②③④⑤;故选:C.形的判定与性质等知识.此题综合性较强,难度较大,注意掌握正方形的性质,注意数形结合思想的应用.11.如图,以正方形ABCD的顶点A为圆心,以AD的长为半径画弧,交对角线AC于点E,再分别以D,E为圆心,以大于DE的长为半径画弧,两弧交于图中的点F处,连接AF并延长,与BC的延长线交于点P,则∠P=()A.90°B.45°C.30°D.22.5°【分析】根据正方形的性质得到∠DAC=∠ACD=45°,由作图知,∠CAP=∠DAC =22.5°,根据三角形的内角和即可得到结论.【解答】解:∵四边形ABCD是正方形,∴∠DAC=∠ACD=45°,由作图知,∠CAP=∠DAC=22.5°,∴∠P=180°﹣∠ACP﹣∠CAP=22.5°,故选:D.【点评】本题考查了正方形的性质,角平分线定义,正确的理解题意是解题的关键.12.如图,正方形ABCD中,点E在边CD上,连接AE,过点A作AF⊥AE交CB的延长线于点F,连接EF,AG平分∠F AE,AG分别交BC,EF于点G,H,连接EG,DH.则下列结论中:①AF=AE;②∠EGC=2∠BAG;③DE+BG=EG;④AD+DE=DH;⑤若DE=CE,则CE:CG:EG=3:4:5,其中正确的结论有()A.2个B.3个C.4个D.5个【分析】①正确.证明△ADE≌△ABF(ASA)可得结论.②正确.证明△AGF≌△AGE(SAS),推出∠AGF=∠AGE=90°﹣∠BAG,推出∠EGF =180°﹣2∠BAG可得结论.③正确.证明△GAF≌△GAE,推出GF=GE可得结论.④正确.过点H作HM⊥AD于M,HN⊥CD于N,证明△HMA≌△HNE(AAS),推出AM=EN,HM=HN,再证明四边形HMDN是正方形可得结论.⑤正确.当DE=EC时,设DE=EC=a,BG=x,则EG=a+x,GC=2a﹣x,利用勾股定理构建方程求出x即可解决问题.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠ABC=∠ABF=∠ADE=∠BAD=90°,∵AE⊥AF,∴∠EAF=∠BAD=90°,∴∠BAF=∠DAE,∴△ADE≌△ABF(ASA),∴AE=AF,故①正确,∵AG平分∠EAF,∴∠GAF=∠GAE,∵AF=AE,AG=AG,∴△AGF≌△AGE(SAS),∴∠AGF=∠AGE=90°﹣∠BAG,∴∠EGF=180°﹣2∠BAG,∵∠EGF=180°﹣∠EGC,∴∠EGC=2∠BAG,故②正确,∵△ADE≌△ABF,∴DE=BF,∵△GAF≌△GAE,∴GF=GE,∵FG=BF+BG=DE+BG,∴EG=BG+DE,故③正确,过点H作HM⊥AD于M,HN⊥CD于N,∵AE=AF,∠EAF=90°,AH平分∠EAF,∴AH⊥EF,HF=HE,∴HA=HE=HF,∵∠ADE+∠AHE=180°,∴∠HAD+∠DEH=180°,∵∠DEH+∠HEN=180°,∴∠HAM=∠HEN,∵∠AMH=∠ENH=90°,∴△HMA≌△HNE(AAS),∴AM=EN,HM=HN,∵∠HMD=∠HND=∠MDN=90°,∴四边形HMDN是矩形,∵HM=HN,∴四边形HMDN是正方形,∴DM=DN=HM=HN,DH=DM,∴DA+DE=DM+AM+DN﹣EN=2DM=DH,故④正确,当DE=EC时,设DE=EC=a,BG=x,则EG=a+x,GC=2a﹣x,在Rt△ECG中,∵EG2=EC2+CG2,∴(x+a)2=a2+(2a﹣x)2,解得x=a,∴CG=a,EG=a,∴CE:CG:EG=a:a:=3:4:5,故⑤正确,故选:D.【点评】本题考查正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数构建方程解决问题,属于中考选择题中的压轴题.13.如图,矩形ABCD中,O为AC的中点,过点O的直线分别与AB、CD交于点E、F,连接BF交AC于点M,连接DE、BO.若∠COB=60°,FO=FC=2,则下列结论:①FB⊥OC;②△EOB≌△CMB;③四边形EBFD是菱形;④MB=2.其中正确结论的个数是()A.1个B.2个C.3个D.4个【分析】连接BD,先证明△BOC是等边三角形,得FO=FC,BO=BC,故①正确;因为△EOB≌△FOB≌△FCB,故△EOB不会全等于△CBM,故②错误;再证明四边形EBFD是平行四边形,由OB⊥EF推出四边形EBFD是菱形故③正确,先判断出CM=,再由∠CBM=30°,判断出BC=2,进而判断出④,由此不难得到答案.【解答】解:连接BD,∵四边形ABCD是矩形,∴AC=BD,AC、BD互相平分,∵O为AC中点,∴BD也过O点,∴OB=OC,∵∠COB=60°,OB=OC,∴△OBC是等边三角形,∴OB=BC=OC,∠OBC=60°,在△OBF与△CBF中,,∴△OBF≌△CBF(SSS),∴△OBF与△CBF关于直线BF对称,∴FB⊥OC,OM=CM;∴①正确,∵∠OBC=60°,∴∠ABO=30°,∵△OBF≌△CBF,∴∠OBM=∠CBM=30°,∴∠ABO=∠OBF,∵AB∥CD,∴∠OCF=∠OAE,∵OA=OC,∠AOE=∠FOC∴△AOE≌△COF(ASA),∴OE=OF,∴OB⊥EF,∴四边形EBFD是菱形,∴③正确,∵△EOB≌△FOB≌△FCB,∴△EOB≌△CMB错误.∴②错误;∵FO=FC=2,FM⊥OC,∠FCM=30°,∴CM=,∵∠CBM=30°,∴BC=2,∴BM=3,∴④错误.综上可知其中正确结论的个数是2个,故选:B.【点评】本题属于四边形的综合题,考查矩形的性质、等边三角形的判定和性质.全等三角形的判定和性质、菱形的判定、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.二.填空题(共3小题)14.如图,点E为正方形ABCD外一点,且ED=CD,连接AE,交BD于点F.若∠CDE =40°,则∠DFC的度数为110°.【分析】根据正方形性质和已知得:AD=DE,利用等腰三角形性质计算∠DAE=25°,由三角形的内角和定理得:∠AFD=110°,证明△ADF≌△CDF(SAS),∠DFC=∠AFD =110°.【解答】解:∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°,∴∠ADB=∠BDC=45°,∵DC=DE,∴AD=DE,∴∠DAE=∠DEA,∵∠ADE=90°+40°=130°,∴∠DAE==25°,∴∠AFD=180°﹣25°﹣45°=110°,在△ADF和△CDF中,∵,∴△ADF≌△CDF(SAS),∴∠DFC=∠AFD=110°,故答案为:110°.【点评】本题考查了正方形的性质、三角形全等的性质和判定、等腰三角形的性质、三角形内角和定理,属于基础题,熟练掌握正方形的性质是关键.15.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G,下列结论:①EC=2DG;②∠GDH=∠GHD;③S△CDG=S四边形DHGE;④图中只有8个等腰三角形.其中正确的有②③(填番号).【分析】根据正方形的性质和已知推出四边形DECB是平行四边形,得到BD=CE,BD ∥CE,无法证出G为CE的中点;得到BD∥CE,推出∠DCG=∠BDC=45°,求出∠BGC=∠GBC,得到BC=CG=CD,求出∠CDG=∠DHG即可;根据三角形的面积公式推出△CDG和四边形DHGE的面积相等;可得有9个等腰三角形.【解答】解:∵正方形ABCD,DE=AD,∴AD∥BC,DE=BC,∠EDC=90°,∴四边形DECB是平行四边形,∴BD=CE,BD∥CE,∵DE=BC=AD,∴∠DCE=∠DEC=45°,要使CE=2DG,只要G为CE的中点即可,但DE=DC,DF=BD,∴EF≠BC,即△EFG和△BCG不全等,∴G不是CE中点,∴①错误;∵∠ADB=45°,DF=BD,∴∠F=∠DBH=∠ADB=22.5°,∴∠DHG=180°﹣90°﹣22.5°=67.5°,∵BD∥CE,∴∠DCG=∠BDC=45°,∵∠DHG=67.5°,∴∠HGC=22.5°,∠DEC=45°,∵∠BGC=180°﹣22.5°﹣135°=22.5°=∠GBC,∴BC=CG=CD,∴∠CDG=∠CGD=(180°﹣45°)=67.5°=∠DHG,∴②正确;∵CG=DE=CD,∠DCE=∠DEC=45,∠HGC=22.5°,∠GDE=90﹣∠CDG=90﹣67.5=22.5°,∴△DEG≌△CHG,要使△CDG和四边形DHGE的面积相等,只要△DEG和△CHG的面积相等即可,根据已知条件△DEG≌△CHG,∴③S△CDG=S四边形DHGE;正确,等腰三角形有△ABD,△CDB,△BDF,△CDE,△BCG,△DGH,△EGF,△CDG,△DGF;∴④错误;故答案为:②③.【点评】本题主要考查对三角形的内角和定理,等腰三角形的性质和判定,正方形的性质,平行四边形的性质和判定等知识.综合运用这些性质进行推理是解此题的关键.16.如图,在正方形ABCD中,P为AB的中点,BE⊥PD的延长线于点E,连接AE、BE、F A⊥AE交DP于点F,连接BF,FC.若AE=2,则FC=2.【分析】根据正方形的性质可得AB=AD,再求出∠BAE=∠DAF,∠ABE=∠ADF,然后利用“角边角”证明△ABE和△ADF全等,根据全等三角形对应边相等可得AE=AF,从而判断出△AEF是等腰直角三角形,根据AE的长度求出EF,过点A作AH⊥EF于H,连接BH,根据等腰直角三角形的性质可得AH=EH=FH,利用“角边角”证明△APH 和△BPE全等,根据全等三角形对应边相等可得BE=AH,然后求出△BEH是等腰直角三角形,根据等腰直角三角形的性质可得∠EHB=45°,然后求出∠AHB=∠FHB,再利用“边角边”证明△ABH和△FBH全等,根据全等三角形对应边相等可得AB=BF,再根据全等三角形对应边相等求出BE=DF,全等三角形对应角相等求出∠BAH=∠BFE,然后求出∠BFE=∠ADF,根据等角的余角相等求出∠EBF=∠FDC,再利用“边角边”证明△BEF和△DFC全等,根据全等三角形对应边相等可得FC=EF.【解答】解:在正方形ABCD中,AB=AD,∠BAD=90°,∵F A⊥AE,∴∠EAF=90°,∴∠BAE=∠DAF,∵∠ABE+∠BPE=∠ADF+∠APD=90°,∴∠ABE=∠ADF,在△ABE和△ADF中,,∴△ABE≌△ADF(ASA),∴AE=AF,BE=DF,∵F A⊥AE,∴△AEF是等腰直角三角形,∴EF=AE=2,过点A作AH⊥EF于H,连接BH,。

初中数学几何综合题及答案

初中数学几何综合题及答案

最新初中数学几何综合题及答案1、已知:如图,四边形ABCD为平行四边形,以CD为直径作⊙O,⊙O与边BC相交于点F,⊙O的切线DE与边AB相交于点E,且AE=3EB.(1)求证:△ADE∽△CDF;(2)当CF:FB=1:2时,求⊙O与▱ABCD的面积之比.解:(1)证明:∵CD是⊙O的直径,∴∠DFC=90°,∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,∴∠ADF=∠DFC=90°,∵DE为⊙O的切线,∴DE⊥DC,∴∠EDC=90°,∴∠ADF=∠EDC=90°,∴∠ADE=∠CDF,∵∠A=∠C,∴△ADE∽△CDE;(2)解:∵CF:FB=1:2,∴设CF=x,FB=2x,则BC=3x,∵AE=3EB,∴设EB=y,则AE=3y,AB=4y,∵四边形ABCD是平行四边形,∴AD=BC=3x,AB=DC=4y,∵△ADE∽△CDF,∴=,∴=,∵x、y均为正数,∴x=2y,∴BC=6y,CF=2y,在Rt△DFC中,∠DFC=90°,由勾股定理得:DF===2y,∴⊙O的面积为π•(DC)2=π•DC2=π(4y)2=4πy2,四边形ABCD的面积为BC•DF=6y•2y=12y2,∴⊙O与四边形ABCD的面积之比为4πy2:12y2=π:3.2、半径为2cm的⊙O与边长为2cm的正方形ABCD在水平直线L的同侧,⊙O与L相切于点F,DC在L上.(1)过点B作⊙O的一条切线BE,E为切点.①填空:如图1,当点A在⊙O上时,∠EBA的度数是;②如图2,当E,A,D三点在同一直线上时,求线段OA的长;(2)以正方形ABCD的边AD与OF重合的位置为初始位置....,向左移动正方形(图3),至边BC与OF重合时结束移动,M,N分别是边BC,AD与⊙O的公共点,求扇形MON的面积的范围.解:(1)①∵半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,当点A在⊙O上时,过点B作的一条切线BE,E为切点,∴OB=4,EO=2,∠OEB=90°,∴∠EBA的度数是:30°;②如图2,∵直线l与⊙O相切于点F,∴∠OFD=90°,∵正方形ADCB中,∠ADC=90°,∴OF∥AD,∵OF=AD=2,∴四边形OFDA为平行四边形,∵∠OFD=90°,∴平行四边形OFDA为矩形,∴DA⊥AO,∵正方形ABCD中,DA⊥AB,∴O,A,B三点在同一条直线上;∴EA⊥OB,∵∠OEB=∠AOE,∴△EOA∽△BOE,∴=,∴OE2=OA•OB,∴OA(2+OA)=4,解得:OA=﹣1±,∵OA>0,∴OA=﹣1;方法二:在Rt△OAE中,cos∠EOA==,在Rt△EOB中,cos∠EOB==,∴=,解得:OA=﹣1±,∵OA>0,∴OA=﹣1;方法三:∵OE⊥EB,EA⊥OB,∴由射影定理,得OE2=OA•OB,∴OA(2+OA)=4,解得:OA=﹣1±,∵OA>0,∴OA=﹣1;(2)如图3,设∠MON=n°,S扇形MON=×22=n(cm2),S随n的增大而增大,∠MON取最大值时,S扇形MON最大,当∠MON取最小值时,S扇形MON最小,过O点作OK⊥MN于K,∴∠MON=2∠NOK,MN=2NK,在Rt△ONK中,sin∠NOK==,∴∠NOK随NK的增大而增大,∴∠MON随MN的增大而增大,∴当MN最大时∠MON最大,当MN最小时∠MON最小,①当N,M,A分别与D,B,O重合时,MN最大,MN=BD,∠MON=∠BOD=90°,S扇形MON最大=π(cm2),②当MN=DC=2时,MN最小,∴ON=MN=OM,∴∠NOM=60°,S扇形MON最小=π(cm2),∴π≤S扇形MON≤π.故答案为:30°.3、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E为底AD上一点,将△ABE沿直线BE折叠,点A落在梯形对角线BD上的G 处,EG的延长线交直线BC于点F.(1)点E可以是AD的中点吗?为什么?(2)求证:△ABG∽△BFE;(3)设AD=a,AB=b,BC=c①当四边形EFCD为平行四边形时,求a,b,c应满足的关系;②在①的条件下,当b=2时,a的值是唯一的,求∠C的度数.解:(1)不是.据题意得:AE=GE,∠EGB=∠EAB=90°,∴Rt△EGD中,GE<ED,∴AE<ED,故,点E不可以是AD的中点;(注:大致说出意思即可;反证法叙述也可)(2)方法一:证明:∵AD∥BC,∴∠AEB=∠EBF,∵△EAB≌△EGB,∴∠AEB=∠BEG,∴∠EBF=∠BEF,∴FE=FB,∴△FEB为等腰三角形.∵∠ABG+∠GBF=90°,∠GBF+∠EFB=90°,∴∠ABG=∠EFB,在等腰△ABG和△FEB中,∠BAG=(180°﹣∠ABG)÷2,∠FBE=(180°﹣∠EFB)÷2,∴∠BAG=∠FBE,…5分∴△ABG∽△BFE,方法二:∠ABG=∠EFB(见方法一),证得两边对应成比例:,由此可得出结论.(3)①方法一:∵四边形EFCD为平行四边形,∴EF∥DC,证明两个角相等,得△ABD∽△DCB,∴,即,∴a2+b2=ac;…8分方法二:如图,过点D作DH⊥BC,∵四边形EFCD为平行四边形∴EF∥DC,∴∠C=∠EFB,∵△ABG∽△BFE,∴∠EFB=∠GBA,∴∠C=∠ABG,∵∠DAB=∠DHC=90°,∴△ABD∽△HCD,∴,∴,∴a2+b2=ac;方法三:证明△ABD∽△GFB,则有,∴,则有BF=,∵四边形EFCD为平行四边形,∴FC=ED=c﹣,∵ED∥BC,∴△EDG∽△FBG,∴,∴,∴a2+b2=ac;…8分方法一②:解关于a的一元二次方程a2﹣ac+22=0,得:a1=,a2=由题意,△=0,即c2﹣16=0,∵c>0,∴c=4,∴a=2…10分∴H为BC的中点,且ABHD为正方形,DH=HC,∠C=45°;方法二:设关于a的一元二次方程a2﹣ac+22=0两根为a1,a2,a1+a2=c>0,a1•a2=4>0,∴a1>0,a2>0,…9分由题意,△=0,即c2﹣16=0,∵c>0,∴c=4,∴a=2,…10分∴H为BC的中点,且ABHD为正方形,DH=HC,∠C=45°.4、如图1,Rt△ABC两直角边的边长为AC=1,BC=2.图1Z O YXC BAP 1(1)如图2,⊙O 与Rt △ABC 的边AB 相切于点X ,与边CB 相切于点Y .请你在图2中作出并标明⊙O 的圆心O ;(用尺规作图,保留作图痕迹,不写作法和证明)(2)P 是这个Rt △ABC 上和其内部的动点,以P 为圆心的⊙P 与Rt △ABC 的两条边相切.设⊙的面积为s ,你认为能否确定s 的最大值?若能,请你求出s 的最大值;若不能,请你说明不能确定s 的最大值的理由.解:(1看见垂足为Y (X )的一 条 垂 线 (或 者∠ABC 的平分线)即评1分,(2)①当⊙P 与Rt △ABC 的边 AB 和BC 相切时,由角平分线的性质,动点P 是∠ABC 的平分线BM 上的点.如图1,在∠ABC 的平分线BM 上任意确定点P 1 (不为∠ABC 的顶点),∵ OX =BOsin ∠ABM, P 1Z =BP 1sin ∠ABM .当 BP 1>BO 时 ,P 1Z >OX,即P 与B 的距离越大,⊙P 的面积越大. 这时,BM 与AC 的交点P 是符合题意的、BP 长度最大的点. 如图2,∵∠BPA >90°,过点P 作PE ⊥AB ,垂足为E ,则E 在边AB 上.∴以P 为圆心、PC 为半径作圆,则⊙P 与边CB 相切于C ,与边第23题图2图1YXC BC AA图2E图3DA AB 相切于E ,即这时的⊙P 是符合题意的圆. 这时⊙P 的面积就是S 的最大值.∵∠A =∠A ,∠BCA =∠AEP =90°,∴ Rt △ABC ∽Rt △APE , ∴BCPEAB PA =. ∵AC =1,BC =2,∴AB =5.设PC =x ,则PA =AC -PC =1-x, PC =PE ,∴251x x =-, ∴x =522+ . ②如图3,同理可得:当⊙P 与Rt △ABC 的边AB 和AC 相切时,设PC =y ,则152y y =-, ∴y=512+. (7分)21世纪教育网③如图4,同理可得:当⊙P 与Rt △ABC 的边BC 和AC 相切时,设PF =z ,则122z z =-, ∴z=32. (8分) 由①,②,③可知:∵ 5 >2,∴ 5+2>5+1>3,∵当分子、分母都为正数时,若分子相同,则分母越小,这个分数越大, (或者:∵x=522+=25-4, y=512+ =215- 5,∴y-x=24549->0, ∴y>x. ∵z-y=645721532-=-->0)∴52251232+>+>2, (9分,没有过程直接得出酌情扣1分)∴ z >y >x. ∴⊙P 的面积S 的最大值为π94.5、如图①,P 是△ABC 边AC 上的动点,以P 为顶点作矩形PDEF ,顶点D,E 在边BC 上,顶点F 在边AB 上;△ABC 的底边BC 及BC 上的高的长分别为a , h,且是关于x 的一元二次方程20mx nx k ++=的两个实数根,设过D,E,F 三点的⊙O 的面积为O S ๏,矩形PDEF 的面积为PDEF S 矩形。

几何综合题型试题(含解答)

几何综合题型试题(含解答)

- 1 - 几何综合题几何综合题是中考试卷中常见的题型,大致可分为几何计算型与几何论证型综合题,它主要考查考生综合运用几何知识的能力。

一、几何论证型综合题例1、(盐城)如图,已知:⊙O 1与⊙O 2是等圆,它们相交于A 、B 两点,⊙O 2在⊙O 1上,AC 是⊙O 2的直径,直线CB 交⊙O 1于D ,E 为AB 延长线上一点,连接DE 。

(1)请你连结AD ,证明:AD 是⊙O 1的直径;(2)若∠E=60°,求证:DE 是⊙O 1的切线。

分析:解几何综合题,一要注意图形的直观提示,二要注意分析挖掘题目的隐含条件,不断地由已知想可知,发展条件,为解题创条件打好基础。

证明:(1)连接AD ,∵AC 是⊙O 2的直径,AB ⊥DC ∴∠ABD=90°ABD=90°, , ∴AD 是⊙O 1的直径(2)证法一:∵AD 是⊙O 1的直径,∴O 1为AD 中点连接O 1O 2,∵点O 2在⊙O 1上,⊙O 1与⊙O 2的半径相等,∴O 1O 2=AO 1=AO 2∴△AO 1O 2是等边三角形,∴∠AO 1O 2=60°由三角形中位线定理得:O 1O 2∥DC ,∴∠ADB=∠AO 1O 2=60°∵AB ⊥DC ,∠E=60,∴∠BDE=30,∠ADE=∠ADB+∠BDE=60°BDE=60°+30°+30°+30°=90°=90°又AD 是直径,∴DE 是⊙O 1的切线证法二:连接O 1O 2,∵点O 2在⊙O 1上,O 1与O 2的半径相等,∴点O 1在⊙O 2∴O 1O 2=AO 1=AO 2,∴∠O 1AO 2=60°∵AB 是公共弦,∴AB ⊥O 1O 2,∴∠O 1AB=30°∵∠∵∠E=60E=60E=60°°∴∠∴∠ADE=180ADE=180ADE=180°°-(6060°°+30+30°)°)°)=90=90=90°°由(1)知:AD 是的⊙O 1直径,∴DE 是⊙O 1的切线. 说明:本题考查了三角形的中位线定理、圆有关概念以及圆的切线的判定定理等。

初中数学几何综合试题1及答案

初中数学几何综合试题1及答案

初中数学几何综合试题班级____ 学号____ 姓名____ 得分____一、 单选题(每道小题 3分 共 9分 )1. 下列各式中正确的是[ ]A.sin12=30 B.tg1=45C.tg30=3D.cos60=122. 如图,已知AB 和CD 是⊙O 中两条相交的直径,连AD 、CB 那么α和β的关系是 [ ]A B C D ....αββαβαβα=><=121223. 在一个四边形中,如果两个内角是直角,那么另外两个内角可以 [ ] A .都是钝角 B .都是锐角C .一个是锐角一个是直角D .都是直角或一个锐角一个钝角二、 填空题(第1小题 1分, 2-7每题 2分, 8-9每题 3分, 10-14每题 4分, 共 39分)1. 人们从实践经验中总结出来的图形的基本性质,我们把它叫做_______.2. 小于直角的角叫做______;大于直角而小于平角的角叫做________.3. 已知正六边形外接圆的半径为R , 则这个正六边形的周长为_______.4. 在中若则Rt ABC ,C =90,cosB =23,sinA =∆∠ .5. 如果圆的半径R 增加10% , 则圆的面积增加_____________.6. cos sin cos sin .45306030-+=7. 已知∠a=60°,∠AOB=3∠a,OC 是∠AOB 的平分线,则∠a=___∠AOC .8. 等腰Rt △ABC, 斜边AB 与斜边上的高的和是12厘米, 则斜边AB= 厘米.9. 已知:如图△ABC 中AB=AC, 且EB=BD=DC=CF, ∠A=40°, 则∠EDF 的度数为________.10. 在同一个圆中, 当圆心角不超过180°时, 圆心角越大, 所对的弧______;所对的弦_______, 所对弦的弦心距_______.11. 如图,在直角三角形ABC 中,∠C=90°,D 、E 分别是AB 、AC 中点, AC=7,BC=4,若以C 为圆心,BC 为半径做圆,则ED 与⊙o 的位置关 系是:D 在______, E 在_____.12. 在△ABC 中,∠C=90°若a=5,则S △ABC =12.5,则c=_________,∠A=_________13. 如图:CB ⊥AB,CE 平分∠BCD,DE 平分∠CDA,∠1+∠2=90° 求证:DA ⊥AB证明:∵∠1+∠2=90°(已知)∠2=∠4,∠1=∠3(角平分线定义) ∴∠3+∠4=90°(等量代换)∴∠ADC+∠BCD=180°(等量代换) AD ∥BC( )∵BC ⊥AB(已知)∴AD ⊥AB( )14. 圆外切四边形ABCD 中,如果AB=2,BC=3,CD=8,那么 AD= .三、 计算题(第1小题 4分, 2-3每题 6分, 共 16分)1. 求值:cos 245°+tg30°sin60°2. 已知正方形ABCD ,E 是BC 延长线上一点,AE 交CD 于F ,如果AC=CE , 求∠AFC 的度数.3. 如图:AB 是半圆的直径,O 为圆心,C 是AB 延长线上的一点,CD 切半圆于,于,已知:,,求之长.D DE AB E EB AB CD BC ⊥==152四、 解答题(1-2每题 4分, 第3小题 6分, 第4小题 7分, 共 21分)1. 在△Rt △ABC 中,∠C=90°,AB+AC=a,∠B=a,求AC.2. 如图:铁路的路基的横截面是等腰梯形斜坡的坡度为为米基面宽米求路基的高,基底的宽及坡角的度数答案可带根号,AB 13,33,AD 2,AE BEC B .():BE3. 如图,某厂车间的人字屋架为等腰三角形,跨度AB=12米,∠A=30°,求中柱CD 和上弦AC 的长(答案可带根号)4. 如图:已知AB∥CD , ∠BAE=40°, ∠ECD=62°, EF平分∠AEC , 则∠AEF是多少度?五、证明题(第1小题 4分, 2-4每题 7分, 共 25分)1. 已知:如图 , AB=AC , ∠B=∠C.BE、DC交于O点.求证:BD=CE2. 已知:如图,PA=PB,PA切⊙O于A,BCD交⊙O于C、D,PC延长交⊙O于E,连结BE交⊙O于F.求证:DF∥PB.3. 如图:EG∥AD , ∠BFG=∠E.求证:AD平分∠BAC.4. 已知:如图 , 在∠AOB的两边OA , OB上分别截取OQ=OP , OT=OS , PT 和QS相交于点C.求证:OC平分∠AOB六、画图题(第1小题 2分, 2-3每题 4分, 共 10分)1. 已知:如图, ∠AOB求作:射线OC, 使∠AOC=∠BOC.(不写作法)2. 已知:两角和其中一个角的对边 ,求作:三角形ABC(写出已知 , 求作 , 画图,写作法)3. 如图, 要在河边修建一个水泵站, 分别向张村, 李村送水.修在河边什么地方, 可使所用的水管最短?(写出已知, 求作, 并画图)初中数学模拟考试题答案一、单选题1. D2. D3. D二、填空题1. 公理2. 锐角,钝角3. 6R4. 2 35. 0.21πR26. 21 27. 2 38. 89. 70°10. 越长, 越长, 越短11. 在圆外,在圆内12. 5245,13. 同旁内角互补,两直线平行;一条直线和两条平行线中的一条垂直,也和另一条垂直14. 7三、计算题1. 解:原式=+⨯=+=()2233321212122. 解:∵AC=CE 则∠1=∠2 又∵∠ACE=135°∴∠1=(180°-135°)÷2=22.5°故∠AFC=180°-(45°+22.5°)=112.5°3. 解:如图,连结、,为直径∴又∵,∽∴·同理·而,∴··∴::∵切半圆于,∽,:::AD DB ABADBDE AB ADE ABDADABAEADAD AE ABBD BE AB BE ABADBDAE ABBE ABC CAD BDCD D CDB A ADC DBC DC BC AD BD CDBC∠=⊥======∠=∠=∠=∠====︒9015412121212222∆∆∆∆四、解答题1. 解:在中则即即Rt ABC CACABAC ABACaACACa∆∠==+=+=+=+∴90111sinsinsinsinsinsinsinααααααα2. 解:米米AEAEBCB3313326330===+∠=∴()()()3. CDAC为米为米2343解:过E作EG∥AB∵∠BAE=40°∴∠AEG=40°同理∠CEG=62°∴∠AEC=102°又∵EF平分∠AEC ∴∠AEF=51°五、证明题4.1. 证:∵∠A=∠A , AB=AC , ∠B=∠C.∴△ADC≌△AEB(ASA)∴AD=AE∵AB=AC,∴BD=CE.2. 证明:如图,切⊙于,交⊙于、,又的公用∽又∥PA O A BCD O C DAP PC PEPA PB PB PC PEPBPCPEPBBPC PBC PEBEE BDF BDF DF PB∴=⋅=∴=⋅∴=∠∴∴∠=∠∴∠=∠∴∠=∠∴2211∆∆证明:∵∠BFG=∠E=∠EFAEG∥AD∴∠E=∠DAC ∠BFG=∠BAD∴AD平分∠BAC4. 证:作射线OC , 连结TS.在△SOP和△TOQ中 ,OS=OT , OQ=OP , ∠AOB=∠BOA.∴△SOP≌△TOQ(SAS) ∴∠1=∠2.∵OT=OS , ∴∠OST=∠OTS3.∴∠3=∠4 ∴CT=CS∵OC=OC , OS=OT , CT=CS∴△OCS≌△OCT (SSS)∴∠5=∠6∴OC平分∠AOB六、画图题1. 射线OC为所求.2. 已知:∠a、∠b、线段a求作:△ABC使∠A=∠a , ∠B=∠b, BC=a作法:1.作线段BC=a2.在BC的同侧作∠DBC=∠b,∠ECB=180-∠a-∠b,BD和CE交于A, 则△ABC为所求的三角形.3. 已知:直线a和a的同侧两点A、B.求作:点C, 使C在直线a上, 并且AC+BC最小.作法:1.作点A关于直线a的对称点A'.2.连结A'B交a于点C.则点C就是所求的点.证明:在直线a上另取一点C', 连结AC,AC', A'C', C'B.∵直线a是点A, A'的对称轴, 点C, C'在对称轴上∴AC=A'C, AC'=A'C'∴AC+CB=A'C+CB=A'B在△A'C'B中,∵A'B<A'C'+C'B∴AC+CB<AC'+C'B即AC+CB最小.。

初中数学四边形、三角形几何综合题目汇总(动点、旋转)大全

初中数学四边形、三角形几何综合题目汇总(动点、旋转)大全

初中数学几何四边形、三角形综合题大全(含动点、旋转等类型)如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F.(1)若AB=4,BC=6,求EC的长;(2)若∠F=55°,求∠BAE和∠D的度数.如图,在△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、E,连接EC.(1)求证:AD=EC.(2)当∠BAC=90°时,证明四边形ADCE是菱形.如图.在△ABC中,D是AB的中点.E是CD的中点,过点C作CF∥AB 交AE的延长线于点F,连接BF.(1)求证:DB=CF;(2)如果AC=BC.试判断四边形BDCF的形状.并证明你的结论.已知四边形ABCD是正方形,M、N分别是边BC、CD上的动点,正方形ABCD的边长为4cm.(1)如图①,O是正方形ABCD对角线的交点,若OM⊥ON,求四边形MONC的面积;(2)连接线段MN,探究当MN取到最小值时,判断MN与对角线BD 的数量关系和位置关系,并说明你的理由.已知四边形ABCD 是边长为2的菱形,∠BAD =60°,对角线AC 与BD 交于点O ,过点O 的直线EF 交AD 于点E ,交BC 于点F .(1)求证:△AOE ≌△COF ;(2)若∠EOD =30°,求CF 的长.已知,如图,在Rt △ABC 中,CD 是斜边上的中线,DE ⊥AB 交BC 于点F ,交AC 的延长线于点E .(1)△ADE ∽△FDB 吗?为什么?(2)你能推出结论CD 2=DE ·DF 吗?请试一试.如图,在四边形ABCD 中,AC 、BC 相交于点O ,∠ABD=∠ACD ,试找出图中的相似三角形,并加以证明.如图,E 、F 是□ABCD 的对角线AC 上的两点,且AE =CF .请你以点F 为一个端点与图中已标明字母的某一点连成一条线段,猜想并说明它与图中已有的某一条线段相等(只需说明一组线段相等即可).(1)连结;(2)猜想:=;(3)证明:如图,将?ABCD 的边DC 延长到点E ,使CE=DC ,连接AE ,交BC 于点F .(1)求证:△ABF ≌△ECF ;(2)若∠AFC=2∠D ,连接AC 、BE ,求证:四边形ABEC 是矩形.ODCBABCDE FA在平行四边形ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,AD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2) ∠BAD=60°,AC平分∠BAD ,AC=2,求BN的长。

【初三数学】代数几何综合题(含答案)(共15页)

【初三数学】代数几何综合题(含答案)(共15页)

代数几何综合题代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。

例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式;(2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。

解:(1) PC PB BO PO ⊥⊥,∴∠+∠=︒∠+∠=︒∴∠=∠CPA OPB PBO OPB CPA PBO 9090, A (2,0),C (2,y )在直线a 上 ∴∠=∠=︒BOP PAC 90∴∆∆BOP PAC ~∴=PO AC BOPA,∴=+||||||x y x 22, x y x y x<<∴=-0022,,∴=-+y x x 122(2) x <0,∴x 的最大整数值为-1 ,当x =-1时,y =-32,∴=CA 32BO a BOQ CAQ OQ AQ BOCA//~,,∴∴=∆∆ 设Q 点坐标为()m ,0,则AQ m =-2∴-=∴=m m m 223287,Q 点坐标为()870,说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。

关键是搞清楚用坐标表示的数与线段的长度的关系。

练习1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO.(1)求证:CD ∥AO ;(3分)(2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。

(4分)B2.如图,A、B两点的坐标分别是(x1,0)、(x2,O),其中x1、x2是关于x的方程x2+2x+m-3=O 的两根,且x1<0<x2.(1)求m的取值范围;(2)设点C在y轴的正半轴上,∠ACB=90°,∠CAB=30°,求m的值;(3)在上述条件下,若点D在第二象限,△DAB≌△CBA,求出直线AD的函数解析式.3.一张矩形纸片OABC 平放在平面直角坐标系内,O 为原点,点A 在x 的正半轴上,点C 在y 轴的正半轴上,OA =5,OC =4。

(完整版)初二数学几何类综合题及参考答案

(完整版)初二数学几何类综合题及参考答案

初中几何综合测试题(时间120分满分100分)一.填空题(本题共22分,每空2分)1.一个三角形的两条边长分别为9和2,第三边长为奇数,则第三边长为 .2.△ABC三边长分别为3、4、5,与其相似的△A′B′C′的最大边长是 10,则△A′B′C′的面积是.4.弦AC,BD在圆内相交于E ,且,∠BEC=130°, 则∠ACD= .5.点O是平行四边形ABCD对角线的交点,若平行四边行ABCD的面 积为8cm,则△AOB的面积为 .6.直角三角形两直角边的长分别为5cm和12cm,则斜边上的中线长为 .7.梯形上底长为2,中位线长为5,则梯形的下底长为 .9.如图,分别延长四边形ABCD两组对边交于E、F,若DF=2DA,10.在Rt△ABC中,AD是斜边BC上的高,如果BC=a,∠B=30°, 那么AD等于 .二.选择题(本题共44分,每小题4分) 1.一个角的余角和它的补角互为补角,则这个角是 [ ]A.30°B.45°C.60°D.75° 2.依次连结等腰梯形的各边中点所得的四边形是 [ ]A.矩形B.正方形C.菱形D.梯形 3.如图,DF∥EG∥BC,AD=DE=EB,△ABC被分成三部分的 面积之比为 [ ]A.1∶2∶3B.1∶1∶1C.1∶4∶9D.1∶3∶5 4.如果两个圆的半径分别为4cm和5cm,圆心距为1cm,那么这两个圆 的位置关系是 [ ]A.相交B.内切C.外切D.外离 5.已知扇形的圆心角为120°,半径为3cm,那么扇形的面积为[ ] 6.已知Rt△ABC的斜边为10,内切圆的半径为2,则两条直角边的 长为 [ ] 7.和距离为2cm的两条平行线都相切的圆的圆心的轨迹是 [ ] A.和两条平行线都平行的一条直线。

B.在两条平行线之间且与两平行线都平行的一条直线。

C.和两平行线的距离都等于2cm的一条平行线。

初三数学 几何综合-中考必做题(详解版)

初三数学 几何综合-中考必做题(详解版)

中,点 是 边的中点,延长 至点 ,使
,连接
, .将
绕点 按顺时针方向旋转.当点 恰好落在 上的点 处时,连接 、
、 ,则 的长是

答案
解析 如图,过 作
于 ,过 作
于 ,过 作




∵四边形
是正方形,




由勾股定理得:














由旋转得















,交 于 ,交 于

,连接 、 , 与 的延长线交于点 ,下列结论:①
;②
;③

的中线;④
,其中,正确结论的个数是 ( ).
A.
B.
答案 A
解析 在正方形

中,
C.


D. ,




∵在

中,





,(故①正确);
设 、 相交于点 ,










,(故②正确);
过点 作
的延长线于 ,过点 作
于,



圆 圆的基础知识 圆心角、弧、弦的关系
, 不一定成立,因此④不正确.
10
如图,已知 是⊙ 的直径,点 在 上,过点 的直线与 的延长线交于点 ,

初中数学100道优质几何试题汇编(附经典解析)

初中数学100道优质几何试题汇编(附经典解析)

全国名校初中数学100道优质几何试题汇编(附经典解析)第一题: (6)第二题: (7)第三题: (9)第四题: (10)第五题: (12)第六题: (14)第七题: (15)第八题: (16)第九题: (17)第十题: (18)第十一题: (20)第十二题: (21)第十三题: (23)第十四题: (25)第十五题: (27)第十六题: (29)第十七题: (31)第十八题: (33)第十九题: (34)第二十题: (36)第二十一题: (38)第二十三题: (42)第二十四题: (44)第二十五题: (46)第二十六题: (48)第二十七题: (50)第二十八题: (52)第二十九题: (53)第三十题: (55)第三十一题: (57)第三十二题: (58)第三十三题: (60)第三十四题: (62)第三十五题: (63)第三十六题: (64)第三十七题: (65)第三十八题: (67)第三十九题: (69)第四十题: (71)第四十一题: (72)第四十二题: (73)第四十三题: (74)第四十五题: (77)第四十六题: (78)第四十七题: (80)第四十八题: (82)第四十九题: (83)第五十题: (84)第五十一题: (85)第五十二题: (86)第五十三题: (88)第五十四题: (89)第五十五题: (90)第五十六题: (91)第五十七题: (93)第五十八题: (94)第五十九题: (95)第六十题: (96)第六十一题: (97)第六十二题: (99)第六十三题: (101)第六十四题: (103)第六十五题: (104)第六十七题: (106)第六十八题: (108)第六十九题: (109)第七十题: (110)第七十一题: (111)第七十二题: (112)第七十三题: (113)第七十四题: (114)第七十五题: (115)第七十六题: (116)第七十七题: (118)第七十八题: (119)第七十九题: (120)第八十题: (121)第八十一题: (122)第八十二题: (123)第八十三题: (125)第八十四题: (127)第八十五题: (128)第八十六题: (130)第八十七题: (131)第八十九题: (134)第九十题: (135)第九十一题: (136)第九十二题: (137)第九十三题: (138)第九十四题: (139)第九十五题: (140)第九十六题: (141)第九十七题: (142)第九十八题: (144)第九十九题: (145)第一百题: (147)第一题:已知:ABCAE⊥,ABCF⊥,AE、CFBAC,BC∆外接于⊙O,︒=∠60相交于点H,点D为弧BC的中点,连接HD、AD.求证:AHD∆为等腰三角形第二题:如图,F为正方形ABCD边CD上一点,连接AC、AF,延长AF交AC 的平行线DE于点E,连接CE,且AC=AE.求证:CFCEE第三题:已知:ABC=BDC.∠30BAC,︒∠20AB=,︒∆中,AC=求证:BCAD=B第四题:已知:ABC∆中,D为AC边的中点,CA∠=∠3,︒=∠45ADB. 求证:BCAB⊥AC第五题:如图,四边形ABCD的两条对角线AC、BD交于点E,︒BAC,∠50=CAD,︒∠30=∠.=ADB,求ACD∠40∠20CBD,︒︒∠60==ABD,︒BD第六题:已知,︒=∠30ABC ,︒=∠60ADC ,DC AD =,求证:222BD BC AB =+.DB第七题:如图,PC切⊙O于C,AC为圆的直径,PEF为⊙O的割线,AE、AF 与直线PO相交于B、D.求证:四边形ABCD为平行四边形第八题:已知:在ABC ∆中,AC AB =,︒=∠80A ,︒=∠10OBC ,︒=∠20OCA . 求证:OB AB =CB第九题:已知:正方形ABCD中,︒OAD,求证:OBC∆为正三角形.ODA==∠∠15第十题:已知:正方形ABCD中,E、F为AD、DC的中点,连接BE、AF,相交于点P,连接PC.求证:BCPC第十一题:如图,ACB ∆与ADE ∆都是等腰直角三角形,︒=∠=∠90ACB ADE ,︒=∠45CDF ,DF 交BE 于F ,求证:︒=∠90CFD .EB第十二题:已知:ABC∠的角平分线BD与CAB∠2,CBA∠的角平=∆中,CABCBA∠分线AD相交于点D,且ADBC=.求证:︒=ACB.∠60A第十三题:已知:在ABC∠100∠,C,AD平分CAB=∆中,BCAC=,︒求证:AB+.CDAD=A B第十四题:已知:ABC∆中,BCAB=,D是AC的中点,过D作BCDE⊥于E,连接AE,取DE中点F,连接BF.求证:BFAE⊥.AC第十五题:已知:ABC ∆中,︒=∠24A ,︒=∠30C ,D 为AC 上一点,CD AB =,连接BD .求证:AC BD BC AB ⋅=⋅.A第十六题:已知:ABCD 与1111D C B A 均为正方形,2A 、2B 、2C 、2D 分别为1AA 、1BB 、1CC 、1DD 的中点.求证:2222D C B A 为正方形.A第十七题:如图,在ABC∆三边上,向外做三角形ABR、BCP、CAQ,使∠=ACQBCP,︒CBP,︒∠30=︒CAQ∠=∠45=BARABR.∠15∠==求证:RQ与RP垂直且相等.Q第十八题:如图,已知AD是⊙O的直径,D是BC中点,AB、AC交⊙O于点E、F,EM、FM是⊙O的切线,EM、FM相交于点M,连接DM.求证:BCDM .B第十九题:如图,三角形ABC 内接于⊙O ,两条高AD 、BE 交于点H ,连接AO 、OH 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、基本图形
1、与相似及圆有关的基本图形
2、正方形中的基本图形
3、基本辅助线
(1)角平分线——过角平分线上的点向角的两边作垂线(角平分线的性质)、翻折;(2)与中点相关——倍长中线(八字全等),中位线,直角三角形斜边中线;

3)共端点的等线段——旋转基本图形(60°,90°),构造圆;垂直平分线,角平分线——翻折;转移线段——平移基本图形(线段)翻折;(4)特殊图形的辅助线及其迁移——梯形的辅助线等....作双高——上底、下底、高、腰(等腰梯形)三推一;面积;锐角三角函数平移腰——上下底之差;两底角有特殊关系(延长两腰);梯形——三角形
第1页
平移对角线——上下底之和;对角线有特殊位置、数量关系。

注:在绘制辅助线时要注意同样辅助线的不同说法,可能会导致解题难度有较大差异。

三.题目举例
(一)基本图形与辅助线的添加
#角平分线(【类】P5——2006北京,23;西城中考总复习P57-例6)
1、(2010宣武一模,23)已知: AC平分
(1)在图1中,若,,AC。

(填写或或)
(2)在图2中,若,,则(1)中结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)在图3中:
①若,,判断与AC的数量关系,并说明理由;
,②若,则
(用
含的三角函数表示,直接写出结果,不必证明)
中位线/中线*
2、(2010海淀一模,25)已知:△AOB中,,△COD中,
∠∠DCO. 连接AD、BC,点M、N、P分别为OA、OD、BC的中点.
图; BC(1) 如图1,若A、O、C三点在同一直线上,且
∠,则△
PMN的形状是________________,此时
(2) 如图2,若A、O、C三点在同一直线上,且∠,证明
△PMN∽△BAO,并计算AD的值(用含的式子表示); BC
第2页
(3) 在图2中,固定△AOB,将△COD绕点O旋转,直接写出PM的最大值.
#直角三角形斜边中线
3、(2011海淀一模,25)在Rt△ABC中,∠ACB=90°,tan∠BAC=
与A,C重合),连结BD,F为BD中点.
(1)若过点D作DE⊥AB于E,连结CF、EF、CE,如图1.设,则k = ;
(2)若将图1中的△ADE绕点A旋转,使得D、E、B三点共线,点F仍为BD 中点,如图2所示.求证:BE-DE=2CF;
(3)若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD中点,
求线段CF长度的最大值.
AA
D
EE D
1. 点D在边AC上(不2CB
图1CB图2CB备图
#直角三角形斜边中线+四点共圆(【类】西城中考总复习P61-17)*
4、已知:在△ABC中,∠点E在直线AB上, ED与直线AC垂直, 垂足为D,且点M为EC中点, 连接BM, DM.
(1)如图1,若点E在线段AB上,探究线段BM与DM及∠BMD与∠BCD所满足
的数量关系, 并直接写出你得到的结论;
(2)如图2,若点E在BA延长线上,你在(1)中得到的结论是否发生变化?写出
你的猜想并加以证明;
(3)若点E在AB延长线上,请你根据条件画出相应的图形,并直接写出线段BM
与DM及∠BMD与∠BCD所满足的数量关系. B
第3页
MDDDEEA图1 图2
#倍长过中点的线段
5、(2008年北京,25)请阅读下列材料:
P是线段DF问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,
的中点,连结PG,PC.若,探究PG与PC的位置关系及值.
小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.
C D P F F A E B 图2 图1
请你参考小聪同学的思路,探究并解决下列问题: PG的PC
PG的值; PC
(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到(1)写出上面问题中线段PG与PC的位置关系及的两个结论是否发生变化?写出你的猜想并加以证明.
(3)若图1中,将菱形BEFG绕点B顺时针旋转任意角度,原问题中的其他条件不变,请你直接写出
#共端点的等线段,旋转
6、(2010西城一模,24)如图1,在□ABCD中,AE⊥BC于E,E恰为BC的中点,
(1)求证:AD=AE;
(2)如图2,点P在BE上,作EF⊥DP于点F,连结AF. 求证:

(3)请你在图3中画图探究:当P为射线EC上任意一点(P不与点E重合)时,作
EF⊥DP于点F,连结AF,线段DF、EF与AF之间有怎样的数量关系?直接写出你的结论
. PG的值(用含的式子表示). PC
第4页
利用平移变换转移线段,类比梯形平移对角线 7、(2006年北京,25)我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形。

请解答下列问题:
(1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;(2)探究:当等对角线四边形中两条对角线所夹锐角为60°时,这对60°角所对的两
边之和与其中一条对角线的大小关系,并证明你的结论。

利用平移变换转移线段+作图
8、(2011西城一模,25)在Rt△ABC中,∠C=90°,D,E分别为CB,CA延长线上的点,BE与AD的交点为P.
(1)若BD=AC,AE=CD,在图1中画出符合题意的图形,并直接写出∠APE 的度数;
(2
)若AC
,,求∠APE的度数.
翻折全等+等腰(与角平分线类比)
9、(2007年北京,25)我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.
(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;
(2)如图,在△ABC中,点D,E分别在AB,AC上,设CD,BE相交于点O,若,
哪个四边形是等对边四边形;.请你写出图中一个与相等的角,并猜想图中2
(3)在△ABC中,如果是不等于60°的锐角,点D,E分别在AB,AC上,且
你的结论.
.探究:满足上述条件的图形中是否存在等对边四边形,并证明2A E
BC
第5页。

相关文档
最新文档