2004年陕西省高考数学试卷(文科数学)

合集下载

2004年高考全国卷(4)文科数学

2004年高考全国卷(4)文科数学

2004年普通高等学校招生全国统一考试全国卷(Ⅳ)文科数学(甘肃、青海、宁夏、贵州、新疆等地)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{0,1,2,3,4,5}U =,集合{0,3,5}M =,{1,4,5}N =,则()U MC N =A .{5}B .{0,3}C .{0,2,3,5}D .{0,1,3,4,5} 2.函数)(2R x e y x ∈=的反函数为A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.正三棱柱侧面的一条对角线长为2,且与底面成45角,则此三棱柱的体积为 A .26 B .6 C .66 D .36 4.函数)1()1(2-+=x x y 在1=x 处的导数等于A .1B .2C .3D .45.为了得到函数x y )31(3⨯=的图象,可以把函数x y )31(=的图象A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度 6.等差数列}{n a 中,12324a a a ++=-,18192078a a a ++=,则此数列前20项和等于A .160B .180C .200D .2207.已知函数14log y x =与y kx =的图象有公共点A ,且点A 的横坐标为2,则kA .41-B .41C .21- D .218.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为A .03222=--+x y xB .0422=++x y xC .03222=-++x y xD .0422=-+x y x9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有 A .210种 B .420种 C .630种 D .840种 10.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于A .3-B .2-C .1- D.11.已知球的表面积为20π,球面上有,,A B C 三点.如果AB AC BC ===, 则球心到平面ABC 的距离为A .1B .2C .3D .2 12.ABC ∆中,,,a b c 分别为角,,A B C 的对边.如果,,a b c 成等差数列,30B ∠=,ABC ∆的面积为23,那么b =A .231+ B .31+ C .232+ D .32+ 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.已知函数)0(sin 21>+=A Ax y π的最小正周期为3π,则A = . 15.向量a 、b 满足()(2)4a b a b -+=-,且2a =,4b =,则a 与b 夹角的余弦值等于 .16.设y x ,满足约束条件:10x y y x y +≤⎧⎪≤⎨⎪≥⎩,则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知α为第二象限角,且sin 4α=,求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)已知数列{}n a 为等比数列,26a =,5162a =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设n S 是数列{}n a 的前n 项和,证明2211n n n S S S ++⋅≤. 19.(本小题满分12分)已知直线1l 为曲线22-+=x x y 在点(1,0)处的切线,2l 为该曲线的另一条切线,且.21l l ⊥(Ⅰ)求直线2l 的方程;(Ⅱ)求由直线1l 、2l 和x 轴所围成的三角形的面积. 20.(本小题满分12分)某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响. (Ⅰ)求这名同学得300分的概率; (Ⅱ)求这名同学至少得300分的概率. 21.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,8AB =,AD =侧面PAD为等边三角形,并且与底面所成二面角为60. (Ⅰ)求四棱锥P ABCD -的体积; (Ⅱ)证明PA BD ⊥. 22.(本小题满分14分)双曲线22221x ya b-=(1a >,0b >),的焦点距为2c ,直线l 过点(,0)a 和(0,)b ,且点(1,0)到直线l 的距离与点(1,0)-到直线l 的距离之和45s c ≥.求双曲线的离ABCDP心率e 的取值范围.2004年普通高等学校招生全国统一考试 文科数学(必修+选修Ⅱ)参考答案一、选择题1—12 B C A D D B A D B C A B二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.28 14.23 15.21- 16.2三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++=当α为第二象限角,且415sin =α时 41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α18.(本小题主要考查等比数列的概念、前n 项和公式等基础知识,考查学生综合运用基础知识进行运算的能力.满分12分.解:(I )设等比数列{a n }的公比为q ,则a 2=a 1q, a 5=a 1q 4. a 1q=6, 依题意,得方程组a 1q 4=162. 解此方程组,得a 1=2, q=3. 故数列{a n }的通项公式为a n =2·3n -1.(II ) .1331)31(2-=--=n n n S.1,113231332313231)33(3212122222122222212≤⋅=+⋅-+⋅-≤+⋅-++-=⋅++++++++++++n n n n n n n n n n n n n n n n S S S S S S 即19.本小题主要考查导数的几何意义,两条直线垂直的性质以及分析问题和综合运算能力.满分12分. 解:y ′=2x +1.直线l 1的方程为y=3x -3.设直线l 2过曲线y=x 2+x -2上 的点B (b, b 2+b -2),则l 2的方程为y=(2b+1)x -b 2-2因为l 1⊥l 2,则有2b+1=.32,31-=-b所以直线l 2的方程为.92231--=x y(II )解方程组⎪⎩⎪⎨⎧--=-=92231,33x y x y 得⎪⎪⎩⎪⎪⎨⎧-==.25,61y x 所以直线l 1和l 2的交点的坐标为).25,61(-l 1、l 2与x 轴交点的坐标分别为(1,0)、)0,322(-. 所以所求三角形的面积 .12125|25|32521=-⨯⨯=S20.本小题主要考查相互独立事件同时发生的概率和互斥事件有一个发生的概率的计算方法,应用概率知识解决实际问题的能力.满分12分. 解:记“这名同学答对第i 个问题”为事件)3,2,1(=i A i ,则 P (A 1)=0.8,P (A 2)=0.7,P (A 3)=0.6. (Ⅰ)这名同学得300分的概率 P 1=P (A 12A A 3)+P (1A A 2A 3)=P (A 1)P (2A )P (A 3)+P (1A )P (A 2)P (A 3) =0.8×0.3×0.6+0.2×0.7×0.6 =0.228.(Ⅱ)这名同学至少得300分的概率P 2=P 1+P (A 1A 2A 3)=0.228+P (A 1)P (A 2)P (A 3) =0.228+0.8×0.7×0.6 =0.564.21.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析问题能力.满分12分.解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD. 作PO ⊥平面在ABCD ,垂足为O ,连结OE. 根据三垂线定理的逆定理得OE ⊥AD ,所以∠PEO 为侧面PAD 与底面所成的二面角的平面角, 由已知条件可知∠PEO=60°,PE=6, 所以PO=33,四棱锥P —ABCD 的体积V P —ABCD =.963334831=⨯⨯⨯(Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得 P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--= 因为,002424=++-=⋅ 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.能过计算可得EO=3,AE=23, 又知AD=43,AB=8, 得.ABADAE EO = 所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD. 所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.22.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分.解:直线l 的方程为1=+bya x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是 .525≤≤e。

2004年高考.全国卷Ⅱ.文科数学试题及答案四川、吉林、黑龙江、云南等地区)

2004年高考.全国卷Ⅱ.文科数学试题及答案四川、吉林、黑龙江、云南等地区)

2004年高考试题全国卷Ⅱ文科数学(必修+选修Ⅰ)(四川、吉林、黑龙江、云南等地区)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.(1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)函数y =51+x (x ≠-5)的反函数是 (A )y =x1-5(x ≠0) (B )y =x +5(x ∈R ) (C )y =x1+5(x ≠0) (D )y =x -5(x ∈R ) (3)曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为(A )y =3x -4 (B )y =-3x +2 (C )y =-4x +3 (D )y =4x -5(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为(A )75° (B )60° (C )45° (D )30° (7)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称(D )与y =e -x 的图象关于坐标原点对称(8)已知点A (1,2),B(3,1),则线段AB 的垂直平分线的方程为(A )4x +2y =5 (B )4x -2y =5 (C )x +2y =5 (D )x -2y =5 (9)已知向量a 、b 满足:|a |=1,|b |=2,|a -b |=2,则|a +b |=(A )1 (B )2 (C )5 (D )6 (10)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36 (11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π (12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. (13)已知a 为实数,(x +a )10展开式中x 7的系数是-15,则a = 。

2004年高考全国卷(3)文科数学

2004年高考全国卷(3)文科数学

2004年普通高等学校招生全国统一考试全国卷(Ⅲ)文科数学(内蒙古、海南、西藏、陕西、广西等地)一、选择题1.设集合(){}22,1,,M x y x y x R y R =+=∈∈,(){}2,0,,N x y x y x R y R =-=∈∈, 则集合M N 中元素的个数为A .1B .2C .3D .42.函数sin2x y =的最小正周期是 A .2π B .π C .2π D .4π 3.记函数13x y -=+的反函数为()y g x =,则(10)g =A .2B .2-C .3D .1-4.等比数列{}n a 中,29a =,5243a =,则{}n a 的前4项和为A .81B .120C .168D .1925.圆2240x y x +-=在点P 处的切线方程是A .20x +-=B .40x -=C .40x -+=D .20x +=6.61)x展开式中的常数项为 A .15 B .15- C.20 D .20-7.设复数z 的幅角的主值为23π,则2z =A .2--B .2i -C .2+D .2i8.设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =A .5B 2.549.不等式113x <+<的解集为A .()0,2B .()()2,02,4-C .()4,0-D .()()4,20,2-- 10正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为A C .3 D11.在ABC ∆中,3AB =,BC =,4AC =,则边AC 上的高为A .32 D .12.4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有A.12种B.24种C.36种D.48种二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在题中横线上.13.函数)1(log 21-=x y 的定义域是 .14.用平面α截半径为R 的球,如果球心到平面α的距离为2R ,那么截得小圆的面积与球的表面积的比值为 .15.函数)(cos 21sin R x x x y ∈-=的最大值为 . 16.设P 为圆122=+y x 上的动点,则点P 到直线01043=--y x 的距离的最小值为 .三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)解方程.012242=--+x x18.(本小题满分12分)已知α为锐角,且1tan 2α=,求sin 2cos sin sin 2cos 2ααααα-的值. 19.(本上题满分12分)设数列{}n a 是公差不为零的等差数列,n S 是数列{}n a 的前n 项和,且,9221S S = 244S S =,求数列{}n a 的通项公式.20.(本小题满分12分)某村计划建造一个室内面积为2800m 的矩形蔬菜温室.在温室内,沿左.右两侧与后侧内墙各保留1m 宽的通道,沿前侧内墙保留3m 宽的空地.当矩形温室的边长各为多少时?蔬菜的种植面积最大.最大种植面积是多少?21.(本小题满分12分)三棱锥P ABC -中,侧面PAC 与底面ABC 垂直,3PA PB PC ===,(1)求证:AB BC ⊥;(2)设AB BC ==,求PBC 与平面PAC 所成角的大小.22.(本小题满分14分) 设椭圆1122=++y m x 的两个焦点是)0,(1c F -与)0(),0,(2>c c F ,且椭圆上存在一点P ,使得直线1PF 与2PF 垂直.(1)求实数m 的取值范围;(2)设L 是相应于焦点2F 的准线,直线2PF 与L 相交于点Q ,若3222-=PF QF ,求直线2PF 的方程.PA B C。

2004年高考试题全国卷2文科数学及答案(必修+选修Ⅰ四川吉林黑龙江云南等地区)(1)

2004年高考试题全国卷2文科数学及答案(必修+选修Ⅰ四川吉林黑龙江云南等地区)(1)

2004年高考试题全国卷2文科数学(必修+选修Ⅰ)(四川、吉林、黑龙江、云南等地区)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的(1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3}(2)函数y =51+x (x ≠-5)的反函数是 (A )y =x1-5(x ≠0) (B )y =x +5(x ∈R ) (C )y =x1+5(x ≠0) (D )y =x -5(x ∈R ) (3)曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为(A )y =3x -4 (B )y =-3x +2 (C )y =-4x +3 (D )y =4x -5(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1 (5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π(6)正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为(A )75° (B )60° (C )45° (D )30° (7)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称 (B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称(D )与y =e -x 的图象关于坐标原点对称(8)已知点A (1,2),B(3,1),则线段AB 的垂直平分线的方程为(A )4x +2y =5 (B )4x -2y =5 (C )x +2y =5 (D )x -2y =5(9)已知向量a 、b 满足:|a |=1,|b |=2,|a -b |=2,则|a +b|=(A )1 (B )2 (C )5 (D )6 (10)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,则球心O 到平面ABC 的距离为 (A )31 (B )33 (C )32 (D )36(11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π(C )π (D )2π (12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. (13)已知a 为实数,(x +a )10展开式中x 7的系数是-15,则a = (14)设x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥≥,y x y ,x ,x 120 则z =3x +2y 的最大值是 .(15)设中心在原点的椭圆与双曲线2x 2-2y 2=1有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . (16)下面是关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱 ③若四个侧面两两全等,则该四棱柱为直四棱柱④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱 其中,真命题的编号是 (写出所有真命题的编号).三、解答题:本大题共6个小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本题满分12分)已知等差数列{a n },a 2=9,a 5 =21(Ⅰ)求{a n }的通项公式;(Ⅱ)令b n =n a2,求数列{b n }的前n 项和S n(18) (本小题满分12分)已知锐角三角形ABC 中,sin(A +B )=53,sin(A -B )=51. (Ⅰ)求证:tan A =2tan B ;(Ⅱ)设AB =3,求AB 边上的高. (19)(本小题满分12分)已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求 (Ⅰ)A 、B 两组中有一组恰有两支弱队的概率;(Ⅱ)A 组中至少有两支弱队的概率. (20)(本小题满分12分) .如图,直三棱柱ABC -A 1B 1C 1中,∠ACB =90o ,AC =1,CB =2,侧棱AA 1=1,侧面AA 1B 1B 的两条对角线交点为D ,B 1C 1的中点为M . (Ⅰ)求证:CD ⊥平面BDM ;(Ⅱ)求面B 1BD 与面CBD 所成二面角的大小. (21)(本题满分12分)若函数f (x )=31x 3-21ax 2+(a -1)x +1在区间(1,4) 内为减函数,在区间(6,+∞)上为增函数,试求实数a 的取值范围(22)(本小题满分14分)给定抛物线C :y 2=4x ,F 是C 的焦点,过点F 的直线l 与C 相交于A 、B 两点.(Ⅰ)设l 的斜率为1,求OA 与OB 夹角的大小;(Ⅱ)设FB =AF λ,若λ∈[4,9],求l 在y 轴上截距的变化范围.2004年高考试题全国卷2文科数学(必修+选修Ⅰ)(四川、吉林、黑龙江、云南等地区)参考答案:一、选择题:本大题共12小题,每小题5分,共60分.(1)C (2)A (3)B (4)C (5)A (6)C (7)D (8)B (9)D (10)B (11)B (12)C二、填空题:本大题共4小题,每小题4分,共16分. (13)-21 (14)5 (15)21x 2+y 2=1 (16)②④ 17.解:a 5-a 2=3d,d=4,a n =a 2+(n-2)d=9+4(n-2)=4n+1 {b n }是首项为32公比为16的等比数列,Sn=)12(15324-n. 18.(I)证明:∵sin(A+B)=53,sin(A-B)=51∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A ⎪⎪⎩⎪⎪⎨⎧==⇒51sin cos 52cos sin B A B A ⇒2tan tan =B A ,∴B A tan 2tan =. (II)解:∵2π<A+B<π, 53)sin(=+B A , ∴54)cos(-=+B A , 43)tan(-=+B A即43tan tan 1tan tan -=-+B A B A ,将B A tan 2tan =代入上式并整理得01tan 4tan 22=--B B 解得262tan ±=B ,因为B 为锐角,所以262tan +=B ,∴B A tan 2tan = =2+6设AB 上的高为CD ,则AB=AD+DB=623tan tan +=+CDB CD A CD ,由AB=3得CD=2+6 故AB 边上的高为2+619.(I) 解:有一组恰有两支弱队的概率762482523=C C C(II)解:A 组中至少有两支弱队的概率21481533482523=+C C C C C C 20.解法一:(I)如图,连结CA 1、AC 1、CM ,则CA 1=2,∵CB=CA 1=2,∴△CBA 1为等腰三角形, 又知D 为其底边A 1B 的中点,∴CD ⊥A 1B , ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3, 又BB 1=1,∴A 1B=2,∵△A 1CB 为直角三角形,D 为A 1B 的中点,CD=21A 1B=1,CD=CC 1又DM=21AC 1=22,DM=C 1M ,∴△CDN ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM ,因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM(II)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F ,则FG ∥CD ,FG=21CD ∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D,知BD=B 1D=21A 1B=1, 所以△BB 1D 是边长为1的正三角形,于是B 1G ⊥BD ,B 1G=23, ∴∠B 1GF 是所求二面角的平面角又B 1F 2=B 1B 2+BF 2=1+(22)2=23. ∴cos ∠B 1GF=332123223)21()23(222121221-=∙∙-+=∙-+FGG B FB FG G B即所求二面角的大小为π-arccos33 解法二:如图以C 为原点建立坐标系(I):B(2,0,0),B 1(2,1,0),A 1(0,1,1),D(22,21,21), M(22,1,0),=CD (22,21,21),=B A 1(2,-1,-1), =DM (0,21,-21),,0,01=∙=∙DM CD B A CD∴CD ⊥A 1B,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线, 所以CD ⊥平面BDM(II):设BD 中点为G ,连结B 1G ,则G ),41,41,423(=BD (-22,21,21),=G B 1),41,43,42(--∴01=∙G B BD ,∴BD ⊥B 1G ,又CD ⊥BD ,∴CD 与G B 1的夹角θ等于所求二面角的平面角,cos .33||||11-=∙∙=G B CD G B CD θ AB CA'B'C'DM A'CBAC'B'MDA BC A'B'C'DM F Gz XyA'C B AC'B'F MD G所以所求二面角的大小为π-arccos33 21.解:=)('x f x 2-ax+a-1, 函数f(x)在区间(1,4)内为减函数,在区间(6,+∞)上为增函数. 设=)('x f x 2-ax+a-1=0的两根为1,a-1,则614≤-≤a ,75≤≤a . 22.解:(I )C 的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y=x-1. 将y=x-1代入方程y 2=4x ,并整理得x 2-6x+1=0.设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1,OB OA ∙=(x 1,y 1)·(x 2,y 2)=x 1x 2+y 1y 2=2x 1x 2-(x 1+x 2)+1=-3. 41]16)(4[||||21212122222121=+++=+∙+=∙x x x x x x y x y x OB OAcos<OB OA ,>=.41413||||-=∙∙OB OA OB OA 所以OA 与OB 夹角的大小为π-arccos41413. 解:(II)由题设知AF FB λ=得:(x 2-1,y 2)=λ(1-x 1,-y 1),即⎩⎨⎧-=-=-)2()1()1(11212 y y x x λλ由 (2)得y 22=λ2y 12, ∵y 12=4x 1,y 22=4x 2,∴x 2=λ2x 1 (3)联立(1)(3)解得x 2=λ.依题意有λ>0. ∴B(λ,2λ)或B(λ,-2λ),又F(1,0),得直线l 的方程为(λ-1)y=2λ(x-1)或(λ-1)y=-2λ(x-1)当λ∈[4,9]时,l 在y 轴上的截距为12-λλ或-12-λλ由12-λλ=1212-++λλ,可知12-λλ在[4,9]上是递减的, ∴≤4312-λλ34≤,-≤34-12-λλ43-≤直线l 在y 轴上截距的变化范围是]34,43[]43,34[ --解:(II)由定比分点公式求解考的范围不出超出这些公式的^_^ 等差数列: 通项公式:an=a1+(n-1)d ; 求和公式1:Sn=a1n +n (n-1)d/2; 求和公式2:Sn=n (a1+an )/2; 中间公式:如果m+n=2k ;m ,n ,k ∈N ;则对于等差数列有:2ak=am+an ; 相等公式:如果m+n=p+q ;m ,n ,p ,q ∈N ,则对于等差数列:am+an=ap+aq ; 等比数列: 通项公式:an=a1q^(n-1); 求和公式1:Sn=a1(1-q^n )/(1-q )(q≠1); 求和公式2:Sn=(a1-anq )/(1-q )(q≠1); 中间公式:如果m+n=2k ;m ,n ,k ∈N ;则对于等比数列有:(ak )²=am*an ; 相等公式:如果m+n=p+q ;m ,n ,p ,q ∈N ,则对于等差数列:am*an=ap*aq ; 解题时常用: n=1时,a1=s1=? n≥2时,an=Sn-S (n-1)=? 遇到无法求解通项公式时,想办法讲所给已知条件化成等比数列或者等差数列;还有利用所求出的前几项(比如求出了a1,a2,a3),猜想数列的通项公式,然后利用数学归纳法去证明;数学归纳法的步骤是:第一步,当n=1时,成立;第二步,假设n=k 时成立,证明n=k+1时也成立。

2004年陕西省高考数学试卷(理科)

2004年陕西省高考数学试卷(理科)

2004年陕西省高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设集合22{(,)|1M x y x y =+=,x R ∈,}y R ∈,2{(,)|0N x y x y =-=,x R ∈,}y R ∈,则集合M N I 中元素的个数为( )A .1B .2C .3D .42.(5分)函数|sin |2x y =的最小正周期是( )A .2π B .π C .2π D .4π3.(5分)设数列{}n a 是等差数列,26a =-,86a =,n S 是数列{}n a 的前n 项和,则()A .45S S <B .45S S =C .65S S <D .65S S =4.(5分)圆2240x y x +-=在点P 处的切线方程为( )A .20x +-=B .40x +-=C .40x -+=D .20x -+=5.(5分)函数y =的定义域是( )A .[,1)(1-⋃B .(1)(1-⋃C .[2-,1)(1-⋃,2]D .(2-,1)(1-⋃,2)6.(5分)设复数z 的幅角的主值为23π2(z = )A .2--B .2i -C .2+D .2i7.(5分)设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率(e =)A .5BC D .548.(5分)不等式1|1|3x <+<的解集为( ) A .(0,2) B .(2-,0)(2⋃,4) C .(4,0)-D .(4-,2)(0-⋃,2)9.(5分)正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( )A B C D10.(5分)在ABC ∆中,3,4AB BC AC ===,则边AC 上的高为( )A B C .32D .11.(5分)设函数2(1)1()41x x f x x ⎧+<⎪=⎨⎪⎩…则使得()1f x …的自变量x 的取值范围为( )A .(-∞,2][0-U ,10]B .(-∞,2][0-U ,1]C .(-∞,2][1-U ,10]D .[2-,0][1U ,10]12.(5分)将4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( ) A .12种B .24种C .36种D .48种二、填空题(共4小题,每小题4分,满分16分)13.(4分)用平面α截半径为R 的球,如果球心到截面的距离为2R,那么截得小圆的面积与球的表面积的比值为 .14.(4分)函数sin y x x =在区间[0,]2π的最小值为 .15.(4分)已知函数()y f x =是奇函数,当0x …时,()31x f x =-,设()f x 的反函数是()y g x =,则(8)g -=16.(4分)设P 是曲线24(1)y x =-上的一个动点,则点P 到点(0,1)的距离与点P 到y 轴的距离之和的最小值是 . 三、解答题(共6小题,满分74分) 17.(12分)已知α为锐角,且1tan 2α=,求sin 2cos sin sin 2cos2ααααα-的值.18.(12分)解方程4|12|11x x +-=.19.(12分)某村计划建造一个室内面积为2800m 的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1m 宽的通道,沿前侧内墙保留3m 宽的空地.当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?。

2004年陕西高考文科综合真题及答案

2004年陕西高考文科综合真题及答案

2004年陕西高考文科综合真题及答案本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

第I卷1至7页,第II卷8至15页。

考试结束后,将本试卷和答题卡一并交回。

第I卷注意事项:1. 答第I卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。

2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

3. 本卷共35小题,每小题4分,共140分。

在每题给出的四个选项中,只有一项是最符合题目要求的。

图1是某地区土地利用现状示意图,读图1回答1-3题。

1. 如果现状布局合理,则当地盛行风向可能是A. 东南风B. 东北风C. 南风D. 西南风2. 如果要布局新的居住用地,较合理的地区是A. (1)B. (2)C. (3)D. (4)3. 适宜在P点布局的是A. 钢铁厂B. 造纸厂C. 印染厂D. 自来水厂我国沿海某省一个课外小组某日测得当地日出、日落时间分别为北京时间6:40、16:40。

据此回答4-6题。

4. 该地的经度约为A. 120°EB. 125°EC. 115°ED. 110°E5. 该日可能在A. 11月B. 9月C. 7月D. 5月6. 该月可能出现的现象是A. 南海海水经马六甲海峡流向印度洋B. 印度洋海水经马六甲海峡流向南海C. 拉普拉塔河进入枯水期D. 印度河进入丰水期图2示意大气垂直分层,读图2回答7-9题。

7. 图中正确表示大气层气温垂直变化的曲线是A. (1)B. (2)C. (3)D. (4)8. 对短波通信具有重要意义的电离层位于A. I层顶部B. II层底部C. II层中部D. III层9. 2003年10月我国发射的“神州5号”飞船运行轨道所在的大气层A. 气温在-50℃到20℃之间B. 气温随高度增加平稳下降C. 最低气温约为-80℃D. 最高气温约为40℃下表为2002年我国四个地区的相关数据,据此回答10-11题。

2004高考全国卷4文科数学试题含答案(必修+选修Ⅰ甘肃青海宁夏贵州新疆等地区)

2004高考全国卷4文科数学试题含答案(必修+选修Ⅰ甘肃青海宁夏贵州新疆等地区)

因为 l1⊥l2,则有 2b+1= − 1 , b = − 2 .
3
3
所以直线 l2 的方程为 y = − 1 x − 22 . 39
y = 3x − 3,
(II)解方程组
y
=

1 3
x

22 9

x y
= =
1 6

,
5 2
.
所以直线 l1 和 l2 的交点的坐标为 (1 ,− 5). 62
32n+2 − 2 3n+1 + 1
32n+2 − 2 3n+1 + 1
即 Sn Sn+2 S2
n+1
1.
19.本小题主要考查导数的几何意义,两条直线垂直的性质以及分析问题和综合运算能力.
满分 12 分.
解:y′=2x+1.
直线 l1 的方程为 y=3x-3.
设直线 l2 过曲线 y=x2+x-2 上 的点 B(b, b2+b-2),则 l2 的方程为 y=(2b+1)x-b2-2
P D
F EO A
图2
C B
因为 直线 AF 为直线 PA 在平面 ABCD 内的身影,所以 PA⊥BD.
22.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分 12 分.
解:直线 l 的方程为 x + y = 1,即 bx + ay − ab = 0. ab
由点到直线的距离公式,且 a 1 ,得到点(1,0)到直线 l 的距离
20.(本小题满分 12 分) 某同学参加科普知识竞赛,需回答 3 个问题.竞赛规则规定:答对第一、二、三问题分

2004年全国Ⅱ高考数学试题(文)

2004年全国Ⅱ高考数学试题(文)

2004年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.参考公式:如果事件A 、B 互斥,那么)()()(B P A P B A P +=+如果事件A 、B 相互独立,那么)()()(B P A P B A P ⋅=⋅如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率:()(1)kkn kn n P k C P P -=-球是表面积公式24R S π=其中R 表示球的半径 球的体积公式334R V π=其中R 表示球的半径第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|4M x x =<,{}2|230N x x x =--<,则集合M N ⊃=A .{}|2x x <-B .{}|3x x >C .{}|12x x -<<D .{}|23x x <<2.函数1(5)5y x x =≠-+的反函数是 A .15(0)y x x=-≠B .5()y x x R =+∈C .15(0)y x x=+≠D .5()y x x R =-∈3.曲线3231y x x =-+A .34y x =-B .32y x =-+C .43y x =-+D .45y x =-4.已知圆C 与圆22(1)1x y -+=关于直线y x =-对称,则圆C 的方程为A .22(1)1x y ++= B .221x y += C .22(1)1x y ++= D .22(1)1x y +-= 5.已知函数tan(2)y x ϕ=+的图像过点(,0)12π,则ϕ可以是A .6π-B .6πC .12π-D .12π6.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为A .75°B .60°C .45°D .30°7.函数x y e =-的图像A .与x y e =的图像关于y 轴对称B .与x y e =的图像关于坐标原点对称C .与x y e -=的图像关于y 轴对称D .与x y e -=的图像关于坐标原点对称8.已知点(1,2)A ,(3,1)B ,则线段的垂直平分线的方程是A .425x y +=B .425x y -=C .25x y +=D .25x y -=9.已知向量a ,b 满足:||1a = ,||2b = ,||2a b -= ,则||a b +=A .1B .C D10.已知球O 的半径为1,,,A B C 三点都在球面上,且每两点间的球面距离均为2π,则球心O 到平面ABC 的距离为A .13B .3C .23D 311.函数42sin cos y x x =+的最小正周期为A .4πB .2πC .πD .2π12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有A .56个B .57个C .58个D .60个第Ⅱ卷(非选择题共90分)注意事项:用钢笔或圆珠笔直接答在答题卡上.二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上.13.已知a 为实数,10()x a +展开式中7x 的系数是-15,则a = . 14.设,x y 满足约束条件:0,,21,x x y x y ≥⎧⎪≥⎨⎪-≤⎩则32z x y =+的最大值是 .15.设中心在原点的椭圆与双曲线22221x y -=有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . 16.下面关于四棱柱的四个命题:①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱; ③若两个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该四棱柱为直四棱柱.其中,真命题的编号是 .(写出所有正确结论的编号)三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知等差数列{}n a ,29a =,521a =. (1)求{}n a 的通项公式;(2)令2na nb =,求数列{}n b 的前n 项和n S .18.(本小题满分12分)已知锐角△ABC 中,3sin()5A B +=,1sin()5A B -=.(1)求证:tan 2tan A B =;(2)设3A B =,求A B 边上的高.已知8支球队中有3支弱队,以抽签方式将这8支球队分为A ,B 两组,每组4支.求: (1)A ,B 两组中有一组恰有两支弱队的概率; (2)A 组中至少有两支弱队的概率.19.(本小题满分12分)数列{}n a 的前n 项和记为n S ,已知11a =,12(1,2,3,)n n n a S n n++== ,证明:(1)数列n S n ⎧⎫⎨⎬⎩⎭是等比数列; (2)14n n S a +=.20.(本小题满分12分)如图,直三棱柱111ABC A B C -中,90ACB ∠= ,1A C =,CB =11A A =,侧面11AA B B 的两条对角线交点为D ,11B C 的中点为M .(1)求证:C D ⊥平面BD M ;(2)求面1B B D 与面C BD 所成二面角的大小.21.(本小题满分12分)若函数3211()(1)132f x x ax a x =-+-+在区间(1,4)内为减函数,在区间(6,)+∞上为增函数,试求实数a 的取值范围.22.(本小题满分14分)给定抛物线2:4C y x =,F 是C 的焦点,过点F 的直线l 与C 相交于A ,B 两点. (1)设l 的斜率为1,求O A 与OB的夹角的大小;(2)设FB AF λ=,若[]4,9λ∈,求l 在y 轴上截距的变化范围.数学试题参考答案A BC DM B 1C 1A 1一、选择题,本题考查基础知识,基本概念和基本运算能力13. 14. 15. 16. 三、解答题 17.2004年普通高等学校招生全国统一考试文科数学(必修+选修Ⅱ)参考答案一、选择题C A B C A CD B D B B C二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.21-14.5 15.1222=+yx16.②④三、解答题17.本小题主要考查等差、等比数列的概念和性质,考查运算能力,满分12分. 解:(Ⅰ)设数列}{n a 的公差为d ,依题意得方程组 ⎩⎨⎧=+=+,214,911d a d a 解得.4,51==d a所以}{n a 的通项公式为.14+=n a n(Ⅱ)由,21414+=+=n n n b n a 得所以}{n b 是首项512=b ,公式42=q 的等比数列. 于是得}{n b 的前n 项和 .15)12(3212)12(24445-⨯=--⨯=nnn S18.本小题主要考查三角函数概念,两角和、差的三角函数值以及应用、分析和计算能力,满分12分.(Ⅰ)证明:,51)sin(,53)sin(=-=+B A B A.2tan tan 51sin cos ,52cos sin .51sin cos cos sin ,53sin cos cos sin =⇔⎪⎪⎩⎪⎪⎨⎧==⇔⎪⎪⎩⎪⎪⎨⎧=-=+∴B A B A B A B A B A B A B A所以.tan 2tan B A =(Ⅱ)解:ππ<+<B A 2,,43)tan(,53)sin(-=+∴=+B A B A即43tan tan 1tan tan -=-+BA BA ,将B A tan 2tan =代入上式并整理得.01t a n 4t a n 22=--B B解得262tan ±=B ,舍去负值得262tan +=B ,.62tan 2tan +==∴B A 设AB 边上的高为CD.则AB=AD+DB=.622tan tan +=+CD BCD ACD由AB=3,得CD=2+6. 所以AB 边上的高等于2+6.19.本小题主要考查组合、概率等基本概念,相互独立事件和互斥事件等概率的计算,运用 数学知识解决问题的能力,满分12分. (Ⅰ)解法一:三支弱队在同一组的概率为.7148354815=+C C C C故有一组恰有两支弱队的概率为.76711=-解法二:有一组恰有两支弱队的概率.76482523482523=+CC C CC C(Ⅱ)解法一:A 组中至少有两支弱队的概率21481533482523=+C C C C C C解法二:A 、B 两组有一组至少有两支弱队的概率为1,由于对A 组和B 组来说,至少有两支弱队的概率是相同的,所以A 组中至少有两支弱队的概率为.2120.本小题主要考查线面关系和直棱柱等基础知识,同时考查空间想象能力和推理运算能力. 满分12分.解法一:(Ⅰ)如图,连结CA 1、AC 1、CM ,则CA 1=.2∵CB=CA 1=2,∴△CBA 1为等腰三角形,又知D 为其底边A 1B 的中点,∴CD ⊥A 1B. ∵A 1C 1=1,C 1B 1=2,∴A 1B 1=3又BB 1=1,A 1B=2. ∵△A 1CB 为直角三角形,D 为A 1B 的中点, ∴CD=21A 1B=1,CD=CC 1,又DM=21AC 1=22,DM=C 1M.∴△CDM ≌△CC 1M ,∠CDM=∠CC 1M=90°,即CD ⊥DM.因为A 1B 、DM 为平在BDM 内两条相交直线,所以CD ⊥平面BDM. (Ⅱ)设F 、G 分别为BC 、BD 的中点,连结B 1G 、FG 、B 1F ,则FG//CD ,FG=21CD.∴FG=21,FG ⊥BD.由侧面矩形BB 1A 1A 的对角线的交点为D 知BD=B 1D=21A 1B=1,所以△BB 1D 是边长为1的正三角形. 于是B 1G ⊥BD ,B 1G=.23 ∴∠B 1GF 是所求二面角的平面角,又 B 1F 2=B 1B 2+BF 2=1+(2)22=23,∴ .332123223)21()23(2c o s 221212211-=⋅⋅-+=⋅-+=∠FGC B FB FGGB GF B即所求二面角的大小为.33arccos-π解法二:如图,以C 为原点建立坐标系. (Ⅰ)B (2,0,0),B 1(2,1,0),A 1(0,1,1),D ()21,21,22,M (22,1,0),),21,21,0(),1,1,2(),21,21,22(1-=--==DM B A CD则,0,01=⋅=⋅DM CD B A CD ∴CD ⊥A 1B ,CD ⊥DM.因为A 1B 、DM 为平面BDM 内两条相交直线,所以CD ⊥平面BDM.(Ⅱ)设BD 中点为G ,连结B 1G ,则G (41,41,423),22(-=BD 、21、21),),41,43,42(1--=G B.,.,0111面角等于所求的二面角的平的夹角与又θG B BD BD CD G B BD G B BD ∴⊥⊥∴=⋅∴.33cos 1-=⋅=∴G B CD θ所以所求的二面角等于.33arccos-π21.本小题主要考查导数的概念的计算,应用导数研究函数单调性的基本方法,考查综合运用数学知识解决问题的能力.满分12分. 解:函数)(x f 的导数 .1)(2-+-='a ax x x f 令0)(='x f ,解得),1(,)1,1(,)1,()(,211,),1()(,211.11+∞---∞>>-+∞≤≤--==a a x f a a x f a a a x x 在内为减函数在上为增函数在函数时即当不合题意上是增函数在函数时即当或为增函数.依题意应有 当.0)(,),6(,0)(,)4,1(>'+∞∈<'∈x f x x f x 时当时 所以 .614≤-≤a 解得.75≤≤a所以a 的取值范围是[5,7].22.本小题主要考查抛物线的性质,直线与抛物线的关系以及解析几何的基本方法、思想和综合解题能力。

2004高考全国卷4文科数学试题及答案(必修+选修Ⅰ甘肃青海宁夏贵州新疆等地区)

2004高考全国卷4文科数学试题及答案(必修+选修Ⅰ甘肃青海宁夏贵州新疆等地区)

13. (x 1 )8 展开式中 x5 的系数为
.
x
14.已知函数 y 1 sin x ( A 0) 的最小正周期为 3 ,则 A=
.
2A
15.向量
a
、b
满足(
a

b
)·(2
a
+
b
)=-4,且|
a
|=2,|
b
|=4,则
a

b
夹角的余弦值
等于
.
16.设 x, y 满足约束条件:
x y 1,
参考答案
一、选择题
1—12 B C A D D B A D B C A B
二、填空题:本大题共 4 小题,每小题 4 分,共 16 分.把答案填在题中横线上.
A.1
B. 2
C. 3
D.2
12.△ABC 中,a、b、c 分别为∠A、∠B、∠C 的对边.如果 a、b、c 成等差数列,
∠B=30°,△ABC 的面积为 3 ,那么 b= 2
()
1 3
A.
2
B.1 3
2 3
C.
2
D. 2 3
第Ⅱ卷
二、填空题:本大题共 4 小题,每小题 4 分,共 16 分.把答案填在题中横线上
()
A.160
B.180
C.200
D.220
7.已知函数 y log 1 x与y kx 的图象有公共点 A,且点 A 的横坐标为 2,则 k ( )
4
A. 1 4
1
B.
4
C. 1 2C 的半径为 2,圆心在 x 轴的正半轴上,直线 3x 4 y 4 0 与圆 C 相切,则圆
B. y ln(2x)(x 0)

2004年高考数学试题(全国4文)及答案

2004年高考数学试题(全国4文)及答案

2004年高考试题全国卷Ⅳ文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率 P n (k)=C k n P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合U={0,1,2,3,4,5},集合M={0,3,5},N={1,4,5},则M ∩(N C U )= ( )A .{5}B .{0,3}C .{0,2,3,5}D . {0,1,3,4,5} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为 ( )A .26B .6C .66 D .36 4. 函数)1()1(2-+=x x y 在1=x 处的导数等于 ( )A .1B .2C .3D .45.为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度 6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .2207.已知函数kx y x y ==与41log 的图象有公共点A ,且点A 的横坐标为2,则k ( )A .41-B .41 C .21-D .21 8.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆 C 的方程为( )A .03222=--+x y xB .0422=++x y x球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π其中R 表示球的半径C .03222=-++x y xD .0422=-+x y x9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有 ( )A .210种B .420种C .630种D .840种 10.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于( )A .-3B .-2C .-1D .-511.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=BC=23,则球心到平面ABC 的距离为A .1B .2C .3D .212.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上 13.8)1(xx -展开式中5x 的系数为 .14.已知函数)0(sin 21>+=A Ax y π的最小正周期为3π,则A= . 15.向量a 、b 满足(a -b )·(2a +b )=-4,且|a |=2,|b |=4,则a 与b夹角的余弦值等于 .16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值. 18.(本小题满分12分)已知数列{n a }为等比数列,.162,652==a aC(Ⅰ)求数列{n a }的通项公式;(Ⅱ)设n S 是数列{n a }的前n 项和,证明.1212≤⋅++n n n S S S 19.(本小题满分12分)已知直线1l 为曲线22-+=x x y 在点(1,0)处的切线,2l 为该曲线的另一条切线,且.21l l ⊥(Ⅰ)求直线2l 的方程;(Ⅱ)求由直线1l 、2l 和x 轴所围成的三角形的面积.20.(本小题满分12分)某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.(Ⅰ)求这名同学得300分的概率; (Ⅱ)求这名同学至少得300分的概率. 21.(本小题满分12分)如图,四棱锥P —ABCD 中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD 为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P —ABCD 的体积; (Ⅱ)证明PA ⊥BD. 22.(本小题满分14分)双曲线)0,1(12222>>=-b a by a x 的焦距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围.2004年高考试题全国卷4文科数学(必修+选修Ⅰ)参考答案一、选择题1—12 B C A D D B A D B C A B二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.23 15.21- 16.2 三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++=当α为第二象限角,且415sin =α时41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α18.(本小题主要考查等比数列的概念、前n 项和公式等基础知识,考查学生综合运用基础知识进行运算的能力.满分12分. 解:(I )设等比数列{a n }的公比为q ,则a 2=a 1q, a 5=a 1q 4.依题意,得方程组⎩⎨⎧=1626411q a q a 解此方程组,得a 1=2, q=3.故数列{a n }的通项公式为a n =2·3n -1. (II ) .1331)31(2-=--=n n n S .1,113231332313231)33(3212122222122222212≤⋅=+⋅-+⋅-≤+⋅-++-=⋅++++++++++++n n n n n n n n n n n n n n n n S S S S S S 即19.本小题主要考查导数的几何意义,两条直线垂直的性质以及分析问题和综合运算能力.满分12分. 解:y ′=2x +1.直线l 1的方程为y=3x -3.设直线l 2过曲线y=x 2+x -2上 的点B (b, b 2+b -2),则l 2的方程为y=(2b+1)x -b 2-2因为l 1⊥l 2,则有2b+1=.32,31-=-b 所以直线l 2的方程为.92231--=x yy图1(II )解方程组⎪⎩⎪⎨⎧--=-=92231,33x y x y 得⎪⎪⎩⎪⎪⎨⎧-==.25,61y x 所以直线l 1和l 2的交点的坐标为).25,61(-l 1、l 2与x 轴交点的坐标分别为(1,0)、)0,322(-. 所以所求三角形的面积 .12125|25|32521=-⨯⨯=S20.本小题主要考查相互独立事件同时发生的概率和互斥事件有一个发生的概率的计算方法,应用概率知识解决实际问题的能力.满分12分. 解:记“这名同学答对第i 个问题”为事件)3,2,1(=i A i ,则 P (A 1)=0.8,P (A 2)=0.7,P (A 3)=0.6. (Ⅰ)这名同学得300分的概率P 1=P (A 12A A 3)+P (1A A 2A 3)=P (A 1)P (2A )P (A 3)+P (1A )P (A 2)P (A 3) =0.8×0.3×0.6+0.2×0.7×0.6=0.228. (Ⅱ)这名同学至少得300分的概率P 2=P 1+P (A 1A 2A 3)=0.228+P (A 1)P (A 2)P (A 3)=0.228+0.8×0.7×0.6=0.564.21.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析 问题能力.满分12分. 解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD. 作PO ⊥平面在ABCD ,垂足为O ,连结OE.根据三垂线定理的逆定理得OE ⊥AD ,所以∠PEO 为侧面PAD 与底面所成的二面角的平面角,由已知条件可知∠PEO=60°,PE=6,所以PO=33,四棱锥P —ABCD 的体积V P —ABCD =.963334831=⨯⨯⨯(Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--= 因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.能过计算可得EO=3,AE=23,又知AD=43,AB=8,得.ABADAE EO =所以 Rt △AEO ∽Rt △BAD. 得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的身影,所以PA ⊥BD.22.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+bya x ,即 .0=-+ab a y b x 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(ba ab d +-=,同理得到点(-1,0)到直线l 的距离222)1(ba ab d ++=.222221cabb a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即解不等式,得.5452≤≤e 由于,01>>e 所以e 的取值范围是 .525≤≤e。

2004年高考数学全国卷Ⅲ文科(必修+选修Ⅰ)

2004年高考数学全国卷Ⅲ文科(必修+选修Ⅰ)

2004年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率 P n (k)=C k n P k(1-P)n -k 一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合U={0,1,2,3,4,5},集合M={0,3,5},N={1,4,5},则M ∩( U N )=( )A .{5}B .{0,3}C .{0,2,3,5}D . {0,1,3,4,5} 2.函数)(2R x e y x∈=的反函数为( )A .)0(ln 2>=x x yB .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .()1ln 2(0)2y x x => 3.正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为 ( )A .26 B .6C .66 D .36 4. 函数)1()1(2-+=x x y 在1=x 处的导数等于 ( )A .1B .2C .3D .4球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式V=334R π其中R 表示球的半径5.为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象 ( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 ( )A .160B .180C .200D .2207.已知函数kx y x y ==与41log 的图象有公共点A ,且点A 的横坐标为2,则k ( )A .41-B .41 C .21-D .21 8.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y x B .0422=++x y xC .03222=-++x y xD .0422=-+x y x9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任), 要求这3位班主任中男、女教师都要有,则不同的选派方案共有 ( )A .210种B .420种C .630种D .840种 10.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于( )A .-3B .-2C .-1D .-511.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=BC=23,则球心到平 面ABC 的距离为 ( )A .1B .2C .3D .212.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b = ( )A .231+ B .31+C .232+ D .32+第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.8)1(xx -展开式中5x 的系数为 .14.已知函数)0(sin 21>+=A Ax y π的最小正周期为3π,则A= . 15.向量a 、b 满足(a -b )·(2a+b )=-4,且|a |=2,|b |=4,则a 与b 夹角的余弦值等于 .16.设y x ,满足约束条件:⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知α为第二象限角,且 sin α=,415求12cos 2sin )4sin(+++ααπα的值.已知数列{n a }为等比数列,.162,652==a a(Ⅰ)求数列{n a }的通项公式;(Ⅱ)设n S 是数列{n a }的前n 项和,证明.1212≤⋅++n n n S S S已知直线1l 为曲线22-+=x x y 在点(1,0)处的切线,2l 为该曲线的另一条切线,且.21l l ⊥(Ⅰ)求直线2l 的方程;(Ⅱ)求由直线1l 、2l 和x 轴所围成的三角形的面积.某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.(Ⅰ)求这名同学得300分的概率;(Ⅱ)求这名同学至少得300分的概率.如图,四棱锥P—ABCD中,底面ABCD 为矩形,AB=8,AD=43,侧面PAD为等边三角形,并且与底面所成二面角为60°.(Ⅰ)求四棱锥P—ABCD的体积;(Ⅱ)证明PA⊥BD.双曲线)0,1(12222>>=-b a by a x 的焦距为2c ,直线l 过点(a ,0)和(0,b ),且点(1,0)到直线l 的距离与点(-1,0)到直线l 的距离之和.54c s ≥求双曲线的离心率e 的取值范围.2004年普通高等学校招生全国统一考试文科数学(必修+选修Ⅱ)参考答案一、选择题1—12 B C A D D B A D B C A B二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.28 14.23 15.21- 16.2 三、解答题17.本小题主要考查同角三角函数的基本关系式,二倍角公式以及三角函数式的恒等变形等 基础知识和基本技能.满分12分.解:αααααααπα2cos 2cos sin 2)cos (sin 2212cos 2sin )4sin(++=+++.)cos (sin cos 4)cos (sin 2ααααα++=当α为第二象限角,且415sin =α时 41cos ,0cos sin -=≠+ααα, 所以12cos 2sin )4sin(+++ααπα=.2cos 42-=α18.(本小题主要考查等比数列的概念、前n 项和公式等基础知识,考查学生综合运用基础知识进行运算的能力.满分12分. 解:(I )设等比数列{a n }的公比为q ,则a 2=a 1q, a 5=a 1q 4. a 1q=6, 依题意,得方程组a 1q 4=162. 解此方程组,得a 1=2, q=3.故数列{a n }的通项公式为a n =2·3n -1.(II ) .1331)31(2-=--=n n n S.1,113231332313231)33(3212122222122222212≤⋅=+⋅-+⋅-≤+⋅-++-=⋅++++++++++++n n n n n n n n n n n n n n n n S S S S S S 即19.本小题主要考查导数的几何意义,两条直线垂直的性质以及分析问题和综合运算能力.满分12分. 解:(Ⅰ)y ′=2x +1.直线l 1的方程为y=3x -3.设直线l 2过曲线y=x 2+x -2上 的点B (b, b 2+b -2),则l 2的方程为y=(2b+1)x -b 2-2因为l 1⊥l 2,则有2b+1=.32,31-=-b 所以直线l 2的方程为.92231--=x y(II )解方程组⎪⎩⎪⎨⎧--=-=92231,33x y x y 得⎪⎪⎩⎪⎪⎨⎧-==.25,61y x 所以直线l 1和l 2的交点的坐标为).25,61(-l 1、l 2与x 轴交点的坐标分别为(1,0)、)0,322(-. 所以所求三角形的面积 .12125|25|32521=-⨯⨯=S20.本小题主要考查相互独立事件同时发生的概率和互斥事件有一个发生的概率的计算方法,应用概率知识解决实际问题的能力.满分12分. 解:记“这名同学答对第i 个问题”为事件)3,2,1(=i A i ,则 P (A 1)=0.8,P (A 2)=0.7,P (A 3)=0.6. (Ⅰ)这名同学得300分的概率 P 1=P (A 12A A 3)+P (1A A 2A 3)=P (A 1)P (2A )P (A 3)+P (1A )P (A 2)P (A 3) =0.8×0.3×0.6+0.2×0.7×0.6 =0.228.(Ⅱ)这名同学至少得300分的概率 P 2=P 1+P (A 1A 2A 3)=0.228+P (A 1)P (A 2)P (A 3)=0.228+0.8×0.7×0.6=0.564.21.本小题主要考查棱锥的体积、二面角、异面直线所成的角等知识和空间想象能力、分析 问题能力.满分12分.解:(Ⅰ)如图1,取AD 的中点E ,连结PE ,则PE ⊥AD.作PO ⊥平面在ABCD ,垂足为O ,连结OE.根据三垂线定理的逆定理得OE ⊥AD ,所以∠PEO 为侧面PAD 与底面所成的二面角的平面角,由已知条件可知∠PEO=60°,PE=6,所以PO=33,四棱锥P —ABCD 的体积 V P —ABCD =.963334831=⨯⨯⨯ (Ⅱ)解法一:如图1,以O 为原点建立空间直角坐标系.通过计算可得P (0,0,33),A (23,-3,0),B (23,5,0),D (-23,-3,0) 所以).0,8,34(),33,3,32(--=--=BD PA因为,002424=++-=⋅BD PA 所以PA ⊥BD.解法二:如图2,连结AO ,延长AO 交BD 于点F.能过计算可得EO=3,AE=23,又知AD=43,AB=8,得.ABAD AE EO = 所以 Rt △AEO ∽Rt △BAD.得∠EAO=∠ABD.所以∠EAO+∠ADF=90° 所以 AF ⊥BD.因为 直线AF 为直线PA 在平面ABCD 内的射影,所以PA ⊥BD.22.本小题主要考查点到直线距离公式,双曲线的基本性质以及综合运算能力.满分12分. 解:直线l 的方程为1=+by a x ,即 .0=-+ab ay bx 由点到直线的距离公式,且1>a ,得到点(1,0)到直线l 的距离221)1(b a a b d +-=,同理得到点(-1,0)到直线l 的距离222)1(b a a b d ++=.222221c ab b a ab d d s =+=+= 由,542,54c c ab c s ≥≥得 即 .25222c a c a ≥- 于是得 .025254,2152422≤+-≥-e e e e 即 解不等式,得 .5452≤≤e 由于,01>>e 所以e 的取值范围是 .525≤≤e。

2004年全国高考数学文科试卷含答案

2004年全国高考数学文科试卷含答案

2004年普通高等学校招生全国统一考试数学(文史类)(老课程)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页,第Ⅱ卷3至10页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷参考公式:三角函数的和差化积公式)]sin()[sin(21cos sin βαβαβα-++=)]sin()[sin(21sin cos βαβαβα--+= )]cos()[cos(21cos cos βαβαβα-++= )]cos()[cos(21sin sin βαβαβα--+-=一、选择题 (1)设集合(){}22,1,,M x y xy x R y R =+=∈∈,(){}2,0,,N x y xy x R y R =-=∈∈,则集合MN 中元素的个数为( )A .1B .2C .3D .4(2)函数sin2xy =的最小正周期是( ) A .2πB .πC .2πD .4π(3) 记函数13xy -=+的反函数为()y g x =,则(10)g =( ) A . 2B . 2-C . 3D . 1-(4) 等比数列{}n a 中,29,a = 5243a =,则{}n a 的前4项和为( )A . 81B . 120C .168D . 192正棱台、圆台的侧面积公式l c c S )(21+'=台侧其中c ′、c 分别表示上、下底面周长,l 表示 斜高或母线长 台体的体积公式334R V π=球 其中R 表示球的半径(5) 圆2240x y x +-=在点(P 处的切线方程是( )A . 20x +-=B . 40x +-=C . 40x -+=D . 20x +=(6) 61x ⎫⎪⎭展开式中的常数项为( )A . 15B . 15-C .20D . 20-(7) 设复数z 的幅角的主值为23π2z =( )A . 2--B . 2i -C . 2+D . 2i(8) 设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =( )A . 5B .C .2 D . 54(9) 不等式113x <+<的解集为( )A . ()0,2B . ()()2,02,4-C . ()4,0-D . ()()4,20,2--(10) 正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( )A .B .C .3D .(11) 在ABC 中,3,4AB BC AC ===,则边AC 上的高为( )A .B .C .32D .(12) 4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( )A . 12 种B . 24 种C 36 种D . 48 种第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在题中横线上. (13) 函数)1(log 21-=x y 的定义域是 .(14) 用平面α截半径为R 的球,如果球心到平面α的距离为2R,那么截得小圆的面积与球 的表面积的比值为 . (15) 函数)(cos 21sin R x x x y ∈-=的最大值为 . (16) 设P 为圆122=+y x 上的动点,则点P 到直线01043=--y x 的距离的最小值为 .三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)解方程.012242=--+x x(18) (本小题满分12分)已知α为锐角,且αααααα2cos 2sin sin cos 2sin ,21tan -=求的值.(19) (本上题满分12分)设数列}{n a 是公差不为零的等差数列,S n 是数列}{n a 的前n 项和,且,9221S S =244S S =,求数列}{n a 的通项公式.20.(本小题满分12分)某村计划建造一个室内面积为800m 2的矩形蔬菜温室,在温室内,沿左、右两侧与后侧内墙各保留1m宽的通道,沿前侧内墙保留3m宽的空地。

2004年全国高考文科数学试题(1、2、3、4卷)

2004年全国高考文科数学试题(1、2、3、4卷)

2004年普通高等学校招生全国统一考试 文科数学(必修+选修I )(全国Ⅰ卷)第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.1.设集合{1,2,3,4,5}U =,{1,2,3}A =,{2,5}B =,则()u A C B =A .{2}B .{2,3}C .{3}D .{1,3}2.已知函数1()lg 1x f x x -=+,若1()2f a =,则()f a -=A .21B .-21C .2D .-23.已知a,b 均为单位向量,它们的夹角为60°,那么|3|b a +=A .7B .10C .13D .44.函数)1(11>+-=x x y 的反函数是A .)1(222<+-=x x x yB .)1(222≥+-=x x x y C .)1(22<-=x x x y D .)1(22≥-=x x x y 5.73)12(xx -的展开式中常数项是A .14B .-14C .42D .-42 6.设)2,0(πα∈,若3sin 5α=,则 )4cos(2πα+=A .57B .51C .27D .47.椭圆1422=+y x 的两个焦点为12,F F ,过1F 作垂直于x 轴的直线与椭圆相交,一个交点为P ,则2||PF =A .23 B .3 C .27 D .4 8.设抛物线x y 82=的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是 A .]21,21[-B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为,,,E F G H ,设四面体EFGH 的表面积为T ,则ST等于A .91B .94C .41D .3111.从1,2,…,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是A .95 B .94 C .2111 D .211012.已知22221,2a b b c +=+=,22c a + 2=,则ab bc ca ++的最小值为A .213-B .321-C .321-- D .321+第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式03≥+x x 的解集是 . 14.已知等比数列{}n a 中,33a = ,10384a =,则该数列的通项n a = .15.由动点P 向圆122=+y x 引两条切线,PA PB ,切点分别为,A B ,=60APB ∠︒,DCB A P 则动点P 的轨迹方程为 .16.已知a ,b 为不垂直的异面直线,α是一个平面,则a ,b 在α上的射影有可能是 . ①两条平行直线②两条互相垂直的直线 ③同一条直线④一条直线及其外一点 在上面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)等差数列{}n a 的前n 项和记为n S .已知102030,50a a ==.(Ⅰ)求通项n a ; (Ⅱ)若242=n S ,求n . 18.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值. 19.(本小题满分12分) 已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围. 20.(本小题满分12分)从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为54,每位男同学能通过测验的概率均为53.试求: (I )选出的3位同学中,至少有一位男同学的概率;(II )10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率. 21.(本小题满分12分)如图,已知四棱锥P ABCD -,PB ⊥AD ,侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°. (I )求点P 到平面ABCD 的距离;(II )求面PAB 与面PBC 所成二面角的大小.22.(本小题满分14分)设双曲线C :2221(0)x y a a-=>与直线l :1x y +=相交于两个不同的点,A B .(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且512PA PB =,求a 的值.2004年普通高等学校招生全国统一考试(四川、吉林、黑龙江、云南等地)文科数学(全国Ⅱ卷) 第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合2{|4}M x x =<,2{|230}N x x x =--<,则M N =A .{2|-<x x }B .{3|>x x }C .{21|<<-x x }D . {32|<<x x }2.函数)5(51-≠+=x x y 的反函数是A .)0(51≠-=x x y B .)(5R x x y ∈+=C .)0(51≠+=x xy D .)(5R x x y ∈-=3.曲线1323+-=x x y 在点(1,1)-处的切线方程为 A .43-=x yB .23+-=x yC .34+-=x yD .54-=x y 4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为 A .22(1)1x y ++= B .221x y += C .22(1)1x y ++= D .22(1)1x y +-= 5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是A .6π-B .6πC .12π-D .12π6.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为A .75°B .60°C .45°D .30° 7.函数xe y -=的图象A .与xe y =的图象关于y 轴对称 B .与x e y =的图象关于坐标原点对称 C .与x e y -=的图象关于y 轴对称 D .与x ey -=的图象关于坐标原点对称8.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是A .524=+y xB .524=-y xC .52=+y xD .52=-y x 9.已知向量a ,b 满足:1||=a ,2||=b ,2||=-b a ,则=+||b aA .1B .2C .5D .6 10.已知球O 的半径为1,,,A B C 三点都在球面上,且每两点间的球面距离均为2π,则球心O 到平面ABC 的距离为A .31B .33C .32D .3611.函数x x y 24cos sin +=的最小正周期为 A .4π B .2πC .πD .2π 12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有 A .56个 B .57个 C .58个 D .60个第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.已知a 为实数,10)(a x +展开式中7x 的系数是-15,则=a .14.设y x ,满足约束条件:⎪⎩⎪⎨⎧≤-≥≥,12,,0y x y x x则y x z 23+=的最大值是 .15.设中心的原点的椭圆与双曲线12222=-y x 有公共的焦点,且它们的离心率互为倒数,则该椭圆的方程是 . 16.下面是关于四棱柱的四个命题: ①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条对角线两两相等,则该DC 1B 1A 1M CBA四棱柱为直四棱柱.其中,真命题的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等差数列}{n a ,259,21a a ==. (Ⅰ)求}{n a 的通项公式;(Ⅱ)令n an b 2=,求数列}{n b 的前n 项和n S .18.(本小题满分12分)已知锐角三角形ABC 中,3sin()5A B +=,1sin()5A B -=. (Ⅰ)求证B A tan 2tan =;(Ⅱ)设3=AB ,求AB 边上的高. 19.(本小题满分12分)已知8支球队中有3支弱队,以抽签方式将这8支球队分为,A B 两组,每组4支.求:(Ⅰ),A B 两组中有一组恰有两支弱队的概率;(Ⅱ)A 组中至少有两支弱队的概率. 20.(本小题满分12分)如图,直三棱柱111ABC A B C -中, ∠ACB =90°,1,AC BC ==11AA =,侧面11AA B B 的两条对角线交点为D ,11B C 的中点为M .(Ⅰ)求证CD ⊥平面BDM ; (Ⅱ)求面1B BD 与面BCD 所成二面角的大小.21.(本小题满分12分)若函数1)1(2131)(23+-+-=x a ax x x f 在区间(1,4)内为减函数,在区间),6(+∞上为增函数,试求实数a 的取值范围.22.(本小题满分14分)给定抛物线C :x y 42=,F 是C 的焦点,过点F 的直线l 与C 相交于,A B 两点.(Ⅰ)设l 的斜率为1,求OA 与OB 的夹角的大小;(Ⅱ)设AF FB λ=,若λ∈[4,9],求l 在y 轴上截距的变化范围.2004年普通高等学校招生全国统一考试 (内蒙古、海南、西藏、陕西、广西等地)数学 (文史类) (全国Ⅲ卷) 第Ⅰ卷(选择题 共60分)一、选择题 1.设集合(){}R y R x y x y x M ∈∈=+=,,1,22,(){}R y R x y x y x N ∈∈=-=,,0,2,则集合N M 中元素的个数为 A.1 B.2 C.3 D.4 2.函数sin2xy =的最小正周期是 A .2πB . πC .π2D .π43.记函数13xy -=+的反函数为()y g x =,则(10)g =A .2B .2-C .3D .1-4.等比数列{}n a 中,29,a = 5243a =,则{}n a 的前4项和为A .81B .120C .168D .192 5.圆0422=-+x y x 在点)3,1(P 处的切线方程为 A .023=-+y x B .043=-+y xC .043=+-y xD .023=+-y x6.61x ⎫⎪⎭展开式中的常数项为 A .15 B .15- C .20 D .20-7.设复数z 的辐角的主值为32π,虚部为3,则2z =A .i 322--B .i 232--C .i 32+D .i 232+8.设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =A .5 B.549.不等式113x <+<的解集为 A .()0,2 B .()()2,02,4-C .()4,0-D .()()4,20,2--10.正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为ABC.3 D11.在△ABC中,3,AB BC ==,4AC =,则边AC 上的高为 A .223 B .233 C .23 D .3312.4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有 A .12种 B .24种 C 36种 D .48种第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分. 把答案填在题中横线上. 13.函数)1(log 21-=x y 的定义域是 .14.用平面α截半径为R 的球,如果球心到平面α的距离为2R,那么截得小圆的面积与球的表面积的比值为 . 15.函数)(cos 21sin R x x x y ∈-=的最大值为 .16.设P 为圆122=+y x 上的动点,则点P 到直线01043=--y x 的距离的最小值为 . 三、解答题:本大题共6小题,共74分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 解方程242120xx +--=. 18.(本小题满分12分) 已知α为锐角,且21tan =α,求 ααααα2cos 2sin sin cos 2sin -的值.C B A P 19.(本上题满分12分)设数列}{n a 是公差不为零的等差数列,nS 是数列}{n a 的前n 项和,且2129S S =,424S S =,求数列}{n a 的通项公式.20.(本小题满分12分)某村计划建造一个室内面积为8002m 的矩形蔬菜温室.在温室内,沿左、右两侧与后侧内墙各保留1m 宽的通道,沿前侧内墙保留3m 宽的空地.当矩形温室的边长各为多少时?蔬菜的种植面积最大,最大种植面积是多少? 21.(本小题满分12分)三棱锥P ABC -中,侧面PAC 与底面ABC 垂直,3PA PB PC ===. (Ⅰ)求证:AB BC ⊥;(Ⅱ)设AB BC ==,求侧面PBC 与侧面PAC 所成二面角的大小.22.(本小题满分14分)设椭圆1122=++y m x 的两个焦点是)0,(1c F -与)0(),0,(2>c c F ,且椭圆上存在一点P ,使得直线1PF 与2PF 垂直. (Ⅰ)求实数m 的取值范围;(Ⅱ)设L 是相应于焦点2F 的准线,直线2PF 与L 相交于点Q ,若3222-=PF QF ,求直线2PF 的方程.2004年普通高等学校招生全国统一考试 (甘肃、青海、宁夏、贵州、新疆等地) 文科数学(必修+选修Ⅰ)(全国Ⅳ卷)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2,3,4,5}U =,集合{0,3,5}M =,{1,4,5}N =,则()U MC N =A .{5}B .{0,3}C .{0,2,3,5}D .{0,1,3,4,5}2.函数)(2R x e y x∈=的反函数为 A .)0(ln 2>=x x y B .)0)(2ln(>=x x yC .)0(ln 21>=x x y D .)0(2ln 21>=x x y3.正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为A .26 B .6 C .66 D .36 4.函数)1()1(2-+=x x y 在1=x 处的导数等于 A .1 B .2C .3D .45.为了得到函数xy )31(3⨯=的图象,可以把函数13xy ⎛⎫= ⎪⎝⎭的图象A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度6.等差数列}{n a 中,12324a a a ++=-,18192078a a a ++=,则此数列前20项和等于A .160B .180C .200D .220 7.已知函数14log y x =与y kx =的图象有公共点A ,且点A 的横坐标为2,则kA .41-B .41C .21- D .218.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为A .03222=--+x y xB .0422=++x y x C .03222=-++x y xD .0422=-+x y x9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有 A .210种 B .420种 C .630种 D .840种 10.函数2sin()cos()36y x x ππ=--+ ()x ∈R 的最小值等于A .-3B .-2C .-1D .-511.已知球的表面积为20π,球面上有,,A B C 三点.如果AB AC BC ===则球心到平ABC 的距离为 A .1 B .2 C .3 D .2 12.△ABC 中,,,a b c 分别为∠A ,∠B ,∠C 的对边.如果,,a b c 成等差数列,∠B =30°,△ABC 的面积为23,那么=bA .231+B .31+C .232+ D .32+第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.8(x 展开式中5x 的系数为 . 14.已知函数)0(sin21>+=A Ax y π的最小正周期为3π,则A = .15.向量a ,b 满足4)2()(-=+⋅-b a b a ,且2||=a ,4||=b ,则a 与b 夹角的余弦值等于 .16.设y x ,满足约束条件⎪⎩⎪⎨⎧≥≤≤+,0,,1y x y y x 则y x z +=2的最大值是 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知α为第二象限角,且415sin =α,求12cos 2sin )4sin(+++ααπα的值.18.(本小题满分12分)已知数列}{n a 为等比数列,256,a a ==162.(Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设n S 是数列}{n a 的前n 项和,证明2211n n n S S S ++⋅≤. 19.(本小题满分12分)已知直线1l 为曲线22-+=x x y 在点 (1,0)处的切线,2l 为该曲线的另一条切线,且12l l ⊥. (Ⅰ)求直线2l 的方程;(Ⅱ)求由直线1l ,2l 和x 轴所围成的三角形的面积. 20.(本小题满分12分)某同学参加科普知识竞赛,需回答3个问题.竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.(Ⅰ)求这名同学得300分的概率; (Ⅱ)求这名同学至少得300分的概率.21.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD为矩形,8,3AB AD ==侧面PAD 为等边三角形,并且与底面所成二面角为 60°.(Ⅰ)求四棱锥P ABCD -的体积; (Ⅱ)证明PA ⊥BD . 22.(本小题满分14分)双曲线)0,1(12222>>=-b a by a x 的焦点距为2c ,直线l 过点(,0)a 和(0,)b ,且点(1,0)到直线l 的距离与点(1,0)-到直线l的距离之和45S c ≥,求双曲线的离心率e的取值范围.。

2004年普通高等学校招生全国统一考试数学试卷全国卷I文

2004年普通高等学校招生全国统一考试数学试卷全国卷I文

2004年普通高等学校招生全国统一考试文科数学(必修+选修I )第I 卷参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率P n(k)=C knP k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分.(1)设集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A ∩( U B )=(A ){2}(B ){2,3}(C ){3}(D ) {1,3}(2)已知函数=-=+-=)(,21)(,11lg)(a f a f x x x f 则若(A )21(B )-21(C )2 (D )-2(3)已知a +b 均为单位向量,它们的夹角为60°,那么|a +3b |=(A )7(B )10(C )13(D )4 (4)函数)1(11>+-=x x y 的反函数是(A ))1(222<+-=x x x y (B ))1(222≥+-=x x x y(C ))1(22<-=x x x y (D ))1(22≥-=x x x y (5)73)12(xx -的展开式中常数项是(A )14(B )-14(C )42(D )-42(6)设)2,0(πα∈若,53sin =α则)4cos(2πα+=(A )57 (B )51 (C )27(D )4(7)椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =(A )23(B )3(C )27(D )4(8)设抛物线x y 82=的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是(A )]21,21[-(B )[-2,2] (C )[-1,1] (D )[-4,4](9)为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象(A )向右平移6π个单位长度 (B )向右平移3π个单位长度(C )向左平移6π个单位长度(D )向左平移3π个单位长度(10)已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则S T等于(A )91(B )94(C )41 (D )31(11)从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是(A )95 (B )94 (C )2111 (D )2110(12)已知ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为 (A )3-21 (B )21-3 (C )-21-3 (D )21+3第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)不等式x +x 3≥0的解集是 . (14)已知等比数列{,384,3,}103==a a a n 中则该数列的通项na = .(15)由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P 的轨迹方程为 . (16)已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 .①两条平行直线 ②两条互相垂直的直线 ③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号). 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)等差数列{na }的前n 项和记为S n .已知.50,302010==a a(Ⅰ)求通项na ;(Ⅱ)若S n =242,求n. (18)(本小题满分12分)求函数x xx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.(19)(本小题满分12分)已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围. (20)(本小题满分12分)从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为54,每位男同学能通过测验的概率均为53.试求:(I )选出的3位同学中,至少有一位男同学的概率;(II )10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率. (21)(本小题满分12分)如图,已知四棱锥 P-ABCD,PB⊥AD,侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°.(I)求点P到平面ABCD的距离;(II)求面APB与面CPB所成二面角的大小.(22)(本小题满分14分)设双曲线C:1:)0(1222=+>=-yxlayax与直线相交于两个不同的点A、B.(I)求双曲线C的离心率e的取值范围:(II)设直线l与y轴的交点为P,且.125=求a的值.。

2004年高考试题全国卷1文科数学及答案(必修+选修Ⅰ河南河北山东山西安徽江西)范文

2004年高考试题全国卷1文科数学及答案(必修+选修Ⅰ河南河北山东山西安徽江西)范文

2004年高考试题全国卷1 文科数学(必修+选修I )(河南、河北、山东、山西等地区)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分. 共150分. 考试时间120分钟.第I 卷(选择题 共60分)参考公式: 如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么 n 次独立重复试验中恰好发生k 次的概率P n (k)=C k n P k (1-P)n -k一、选择题:本大题共12小题,每小题5分,共60分 .1.设集合U={1,2,3,4,5},A={1,2,3},B={2,5},则A ∩(U C B )= ( )A .{2}B .{2,3}C .{3}D . {1,3} 2.已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若 ( )A .21 B .-21 C .2D .-23.已知,a b 均为单位向量,它们的夹角为60°,那么|3a b +|= ( )A .7B .10C .13D .4 4.函数1(1)y x =≥的反函数是( )A .)1(222<+-=x x x y B .)1(222≥+-=x x x yC .)1(22<-=x x x yD .)1(22≥-=x x x y球的表面积公式S=42R π其中R 表示球的半径, 球的体积公式 V=334R π, 其中R 表示球的半径25.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-42 6.设)2,0(πα∈若,53sin =α则)4cos(2πα+= ( )A .57B .51C .27D .47.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( )A .23 B .3C .27 D .48.设抛物线x y 82=的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线 l 的斜率的取值范围是( )A .]21,21[- B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )A .向右平移6π个单位长度 B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则ST等于( )A .91B .94C .41 D .31 11.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是 ( )A .95B .94 C .2111 D .2110 12.已知ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为( )2004年高考试题全国卷1 文科数学必修+选修I(河南、河北、山东、山西 王新敞新疆奎屯市第一高级中学王新敞 当前第3 页共8页A .3-21 B .21-3 C .-21-3 D .21+3 第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.不等式x +x 3≥0的解集是 .14.已知等比数列{,384,3,}103==a a a n 中则该数列的通项n a = . 15.由动点P 向圆x 2+y 2=1引两条切线PA 、PB ,切点分别为A 、B ,∠APB=60°,则动点P的轨迹方程为 .16.已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是 . ①两条平行直线 ②两条互相垂直的直线 ③同一条直线④一条直线及其外一点在一面结论中,正确结论的编号是 (写出所有正确结论的编号).三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)等差数列{n a }的前n 项和记为S n .已知.50,302010==a a (Ⅰ)求通项n a ; (Ⅱ)若S n =242,求n.18.(本小题满分12分)求函数xxx x x x f 2sin 2cos sin cos sin )(2244-++=的最小正周期、最大值和最小值.419.(本小题满分12分)已知13)(23+-+=x x ax x f 在R 上是减函数,求a 的取值范围.20.(本小题满分12分)从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为54,每位男同学能通过测验的概率均为53.试求: (I )选出的3位同学中,至少有一位男同学的概率;(II )10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率.21.(本小题满分12分)如图,已知四棱锥 P —ABCD ,PB ⊥AD ,侧面PAD 为边长等于2的正三角形,底面ABCD 为菱形,侧面PAD 与底面ABCD 所成的二面角为120°.(I )求点P 到平面ABCD 的距离;(II )求面APB 与面CPB 所成二面角的大小.22.(本小题满分14分)设双曲线C :1:)0(1222=+>=-y x l a y ax 与直线相交于两个不同的点A 、B.(I )求双曲线C 的离心率e 的取值范围: (II )设直线l 与y 轴的交点为P ,且.125=求a 的值.2004年高考试题全国卷1 文科数学必修+选修I(河南、河北、山东、山西 王新敞新疆奎屯市第一高级中学王新敞 当前第5 页共8页2004年高考试题全国卷1 文科数学(必修+选修I ) (河南、河北、山东、山西)参考答案一、选择题DBCBABCCBACB二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.{x |x ≥0} 14.3·2n -3 15.422=+y x 16.①②④三、解答题17.本小题主要考查等差数列的通项公式、求和公式,考查运算能力.满分12分.解:(Ⅰ)由,50,30,)1(20101==-+=a a d n a a n 得方程组 ⎩⎨⎧=+=+.5019,30911d a d a ……4分 解得.2,121==d a 所以 .102+=n a n ……7分(Ⅱ)由242,2)1(1=-+=n n S d n n na S 得方程 .24222)1(12=⨯-+n n n ……10分 解得).(2211舍去或-==n n ………12分 18.本小题主要考查三角函数基本公式和简单的变形,以及三角函数的有关性质.满分12分.解:xx xx x x x f cos sin 22cos sin )cos (sin )(22222--+=.212sin 41)cos sin 1(21)cos sin 1(2cos sin 122+=+=--=x x x x x x x所以函数)(x f 的最小正周期是π,最大值是,43最小值是.41…………12分 19.本小题主要考查导数的概念和计算,应用导数研究函数单调性的基本方法,考查综合运用数学知识解决问题的能力.满分12分.………………6分6解:函数f (x )的导数:.163)(2-+='x ax x f ………………3分 (Ⅰ)当0)(<'x f (R x ∈)时,)(x f 是减函数.)(01632R x x ax ∈<-+ .3012360-<⇔<+=∆<⇔a a a 且所以,当))((,0)(,3R x x f x f a ∈<'-<知由时是减函数;………………9分(II )当3-=a 时,133)(23+-+-=x x x x f =,98)31(33+--x 由函数3x y =在R 上的单调性,可知 当3-=a 时,R x x f ∈)(()是减函数;(Ⅲ)当3->a 时,在R 上存在一个区间,其上有,0)(>'x f所以,当3->a 时,函数))((R x x f ∈不是减函数. 综上,所求a 的取值范围是(].3,-∞-………………12分20.本小题主要考查组合,概率等基本概念,独立事件和互斥事件的概率以及运用概率知识 解决实际问题的能力,满分12分. 解:(Ⅰ)随机选出的3位同学中,至少有一位男同学的概率为1-6531036=C C ;………………6分(Ⅱ)甲、乙被选中且能通过测验的概率为.1254535431018=⨯⨯C C ;………………12分21.本小题主要考查棱锥,二面角和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.满分12分.(I )解:如图,作PO ⊥平面ABCD ,垂足为点O.连结OB 、OA 、OD 、OB 与AD 交于点E ,连结PE.∵AD ⊥PB ,∴AD ⊥OB ,∵PA=PD ,∴OA=OD ,于是OB 平分AD ,点E 为AD 的中点,所以PE ⊥AD. 由此知∠PEB 为面PAD 与面ABCD所成二面角的平面角,………………4分 ∴∠PEB=120°,∠PEO=60°2004年高考试题全国卷1 文科数学必修+选修I(河南、河北、山东、山西 王新敞新疆奎屯市第一高级中学王新敞 当前第7 页共8页由已知可求得PE=3∴PO=PE ·sin60°=23233=⨯, 即点P 到平面ABCD 的距离为23.………………6分 (II )解法一:如图建立直角坐标系,其中O 为坐标原点,x 轴平行于DA.)43,433,0(),0,233,0(),23,0,0(的坐标为中点G PB B P .连结AG.又知).0,233,2(),0,23,1(-C A 由此得到: 0,0).0,0,2(),23,233,0(),43,43,1(=⋅=⋅-=-=--=PB BC PB GA BC PB 于是有所以θ,.⊥⋅⊥等于所求二面角的平面角,…………10分 于是,772cos -==θ 所以所求二面角的大小为772arccos-π.…………12分 解法二:如图,取PB 的中点G ,PC 的中点F ,连结EG 、AG 、GF ,则AG ⊥PB ,FG//BC ,FG=21BC. ∵AD ⊥PB ,∴BC ⊥PB ,FG ⊥PB ,∴∠AGF 是所求二面角的平面角.……9分 ∵AD ⊥面POB ,∴AD ⊥EG.又∵PE=BE ,∴EG ⊥PB ,且∠PEG=60°. 在Rt △PEG 中,EG=PE ·cos60°=23.8在Rt △PEG 中,EG=21AD=1. 于是tan ∠GAE=AE EG =23, 又∠AGF=π-∠GAE. 所以所求二面角的大小为π-arctan23.…………12分 22.(本小题主要考查直线和双曲线的概念和性质,平面向量的运算等解析几何的基本思想和综合解题能力.满分14分. 解:(I )由C 与t 相交于两个不同的点,故知方程组⎪⎩⎪⎨⎧=+=-.1,1222y x y ax 有两个不同的实数解.消去y 并整理得 (1-a 2)x 2+2a 2x -2a 2=0. ① ……2分.120.0)1(84.012242≠<<⎪⎩⎪⎨⎧>-+≠-a a a a a a 且解得所以双曲线的离心率分的取值范围为即离心率且且6).,2()2,26(226,120.11122+∞≠>∴≠<<+=+=e e e a a aa a e(II )设)1,0(),,(),,(12211P y x B y x A.125).1,(125)1,(,125212211x x y x y x =-=-∴=由此得 ……8分 由于x 1,x 2都是方程①的根,且1-a 2≠0,分所以由得消去所以14.1317,06028912,,.12125,1212172222222222 =>=----=--=a a a a x a a x a a x。

2004年高考试题全国卷2文科数学及答案(必修+选修Ⅰ四川吉林黑龙江云南等地区)

2004年高考试题全国卷2文科数学及答案(必修+选修Ⅰ四川吉林黑龙江云南等地区)

实用文档2004年高考试题全国卷2文科数学(必修+选修Ⅰ)(四川、吉林、黑龙江、云南等地区)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.(1)已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =(A ){x |x <-2} (B ){x |x >3}(C ){x |-1<x <2} (D ){x |2<x <3}(2)函数y =51 x (x ≠-5)的反函数是 (A )y =x1-5(x ≠0) (B )y =x +5(x ∈R ) (C )y =x 1+5(x ≠0) (D )y =x -5(x ∈R ) (3)曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为(A )y =3x -4 (B )y =-3x +2(C )y =-4x +3 (D )y =4x -5(4)已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为(A )(x +1)2+y 2=1 (B )x 2+y 2=1实用文档 (C )x 2+(y +1)2=1 (D )x 2+(y -1)2=1(5)已知函数y =tan(2x +φ)的图象过点(12π,0),则φ可以是 (A )-6π (B )6π (C )-12π (D )12π (6)正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为(A )75° (B )60° (C )45° (D )30°(7)函数y =-e x 的图象(A )与y =e x 的图象关于y 轴对称(B )与y =e x 的图象关于坐标原点对称(C )与y =e -x 的图象关于y 轴对称(D )与y =e -x 的图象关于坐标原点对称(8)已知点A (1,2),B(3,1),则线段AB 的垂直平分线的方程为(A )4x +2y =5 (B )4x -2y =5(C )x +2y =5 (D )x -2y =5(9)已知向量a 、b 满足:|a |=1,|b |=2,|a -b |=2,则|a +b |=(A )1 (B )2 (C )5 (D )6(10)已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离为2π,实用文档则球心O 到平面ABC 的距离为(A )31 (B )33 (C )32 (D )36 (11)函数y =sin 4x +cos 2x 的最小正周期为(A )4π (B )2π (C )π (D )2π (12)在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有(A )56个 (B )57个 (C )58个 (D )60个二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.(13)已知a 为实数,(x +a )10展开式中x 7的系数是-15,则a = 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2004年陕西省高考数学试卷(文)
一、选择题(共12小题,每小题5分,满分60分)
1.(5分)设集合22{(,)|1M x y x y =+=,x R ∈,}y R ∈,2{(,)|0N x y x y =-=,x R ∈,
}y R ∈,则集合M N I 中元素的个数为( )
A .1
B .2
C .3
D .4
2.(5分)函数|sin |2
x y =的最小正周期是( ) A .2π B .π C .2π D .4π
3.(5分)记函数13x y -=+的反函数为()y g x =,则(10)g 等于( )
A .2
B .2-
C .3
D .1-
4.(5分)等比数列{}n a 中,29a =,5243a =,{}n a 的前4项和为( )
A .81
B .120
C .168
D .192
5.(5分)圆2240x y x +-=在点P 处的切线方程为( )
A .20x +-=
B .40x +-=
C .40x -+=
D .20x -+=
6.(5分)61)x
展开式中的常数项为( ) A .15 B .15- C .20
D .20-
7.(5分)设复数z 的幅角的主值为
23π2(z = )
A .2--
B .2i -
C .2+
D .2i
8.(5分)设双曲线的焦点在x 轴上,两条渐近线为12
y x =±,则双曲线的离心率(e = )
A .5
B
C
D .54
9.(5分)不等式1|1|3x <+<的解集为( )
A .(0,2)
B .(2-,0)(2⋃,4)
C .(4,0)-
D .(4-,2)(0-⋃,2)
10.(5分)正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( )
A B C D
11.(5分)在ABC ∆中,3,4AB BC AC ===,则边AC 上的高为( )
A B C .32 D .12.(5分)将4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案
共有( )
A .12种
B .24种
C .36种
D .48种
二、填空题(共4小题,每小题4分,满分16分)
13.(4分)函数y =的定义域是 (用区间表示).
14.(4分)用平面α截半径为R 的球,如果球心到截面的距离为
2
R ,那么截得小圆的面积与球的表面积的比值为 .
15.(4分)函数1sin cos ()2y x x x R =-∈的最大值为 . 16.(4分)设P 为圆221x y +=上的动点,则点P 到直线34100x y --=的距离的最小值
为 .
三、解答题(共6小题,满分74分)
17.(12分)解方程242120x x +--=.
18.(12分)已知α为锐角,且1tan 2
α=,求sin 2cos sin sin 2cos2ααααα-的值. 19.(12分)设公差不为零的等差数列{}n a ,n S 是数列{}n a 的前n 项和,且2329S S =,424S S =,
求数列{}n a 的通项公式.
20.(12分)某村计划建造一个室内面积为2800m 的矩形蔬菜温室.在温室内,沿左、右两
侧与后侧内墙各保留1m 宽的通道,沿前侧内墙保留3m 宽的空地.当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?。

相关文档
最新文档