矿井通风的基本要求(一)

矿井通风的基本要求(一)
矿井通风的基本要求(一)

矿井通风的基本要求(一)

1.井下空气成分。采掘工作面的进风流中,O2浓度不低于20%,CO2不超过0.5%;所有有关人员工作的地点,CO不超过0.0024%,NO2不超过0.00025%,SO2不超过0.0005%,H2S不超过0.00066%,NH3不超过0.004%。

2.井巷的最高最低风速,各井巷的空气温度,风量都必须符合《煤矿安全规程》要求。

3.矿井必须有完整独立的通风系统,改变全矿井通风系统时,必须编制通风设计及安全措施。掘进巷道贯通时,综合机械化掘进巷道在相距50m前,其它巷道在相距20m前,必须停止一个工作面作业,做好调整通风系统的准备工作,贯通的整个过程中,必须有防止瓦斯、爆炸、火灾等事故的安全措施。

4.矿井开拓新水平和准备新采区的回风,必须引入总回风巷或主要回风巷中。在未构成通风系统前,可将此种回风引入生产水平的进风中,但在有瓦斯喷出或有煤与瓦斯空出危险的矿井中,开拓新水平和准备新采区时,必须先在无喷出或空出危险的煤层中掘进巷道并构成通风系统。

5.生产水平和采区必须实行分区通风。准备采区,必须在采区构成通风系统后,方可开掘其它巷道。采煤工作面必须在采区构成完整的通风、排水系统后,方可回采。高、突矿井的每个采区和有自然发火危险的采区,必须设置至少1条专用回风巷。低瓦斯矿井开采煤层群和分层

矿井通风系统的安全措施

矿井通风系统的安全措 施 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

矿井通风系统的安全措施矿井通风系统是矿井生产系统的重要组成部分,它对矿井的稳产高产、防灾抗灾能力和矿井的经济效益有着重大的影响。矿井通风系统由多个要素组成,各要素之间存在着有机的联系,彼此又相互影响。为了保证矿井通风系统的安全、稳定和可靠,应采取如下措施: 1要有稳定的通风网络结构,保证风流稳定①采煤工作面、掘进工作面应采用独立通风。②在布置通风系统时要尽量避免和减少角联风道,特别是采煤工作面不允许布置在角联风道上,以保证风流的稳定。对存在角联通风的巷道必须采取有效的风流稳定控制措施。③矿井不应多水平同时开采。机电硐室应独立通风,且风量符合要求。井下火药库应有单独的进风道,回风必须直接引入矿井主要回风道或独立回风,且保证有足够的新鲜风流。 2要有足够的通风能力,保证有效通风①矿井应有足够的通风能力,满足各个用风地点的风量要求,严禁超通风能力生产。②按规定进行通风网络解算,预测风量分配和阻力分布,合理进行通风机的选型。③经常检查矿井供风量、漏风量大小及其漏风分布情况,使矿井的有效风量率和外部漏风率均控制在矿井通风质量标准规定的范围内。④在设计过程应充分考虑自然风压的影响,并根据气候条件的变化情况及时调节主要通风机工况,以保证主要通风机高效运行。⑤生产布局合理,加强回

风巷维护和通风构筑物保护措施,减少通风阻力,使通风系统处于最佳状态。 3要有可靠的通风设施和装备,保证正常通风时期有效控制风流并符合抗灾救灾能力的要求①根据矿井通风网络的布置与结构,合理布置通风设施和通风构筑物,且尽量做到数量少位置正确和质量可靠。②矿井要有完善的反风装置。③风硐必须按规定安装防爆门。 4要有合理的通风网络,以保证巷道的阻力分布能够满足各用风地点的通风需求在通风网络中,风流按巷道风阻进行风量分配,分配到各个工作面的风量,往往不能满足要求,需要采取控制与调节风量的措施。此外,随着生产的发展和变化,工作面的推进和更替,巷道风阻、网络结构及风量均在不断变化,相应的要求及时进行风量调节。 为降低矿井通风阻力,满足用风地点的通风需求,必须对全矿井通风网络进行全面调查和阻力测定,在关键分支上进行降阻,降低通风阻力的途径有以下几种方法:①扩大巷道断面;②降低巷道局部阻力;③开掘新井巷,缩短通风长度;④增加并联风路;⑤调整采掘布局,实现均衡生产。 5建立完善的矿井通风管理制度和通风管理机构,并配足人员。严格执行井下动火安全技术措施的审批制度。局部通风机专人管理,制定专

第七章---矿井通风系统与通风设计

第七章 矿井通风系统与通风设计 本章主要内容 1、矿井通风系统----类型、适应条件、主要通风机工作方式 、安装地点、通风系统的选择 2、采区通风----基本要求、进回风上山选择、采煤工作面通风系统 3、通风构筑物及漏风----风门、风桥、密闭、导风板;矿井漏风、漏风率、有效风量率、减少漏风措施 4、矿井通风设计----内容与要求、优选通风系统、矿井风量计算、阻力计算、通风设备选择 5、可控循环通风 第一节 矿井通风系统 矿井通风系统是向矿井各作业地点供给新鲜空气、排出污浊空气的通风网路、通风动力和通风控制设施的总称。 一、矿井通风系统的类型及其适用条件 按进、回井在井田内的位置不同,通风系统可分为中央式、对角式、区域式及混合式。 1、中央式 进、回风井均位于井田走向中央。根据进、回风井的相对位置,又分为中央并列式和中央边界式(中央分列式)。 2、对角式 1)两翼对角式 进风井大致位于井田走向的中央,两个回风井位于井田边界的两翼(沿倾斜方向的浅部),称为两翼对角式,如果 只有一个回风井,且进、回风分别位于井田的两翼称为单翼对角式。 2)分区对角式

进风井位于井田走向的中央,在各采区开掘一个不深的小回风井,无总回风巷。 在井田的每一个生产区域开凿进、回风井, 分别构成独立的通风系统。如图。 4、混合式 由上述诸种方式混合组成。例如,中央分列与两翼对角混合式,中央并列与两翼对角混合式等等。 二、主要通风机的工作方式与安装地点 主要通风机的工作方式有三种:抽出式、压入式、压抽混合式。 1、抽出式 主要通风机安装在回风井口,在抽出式主要通风机的作用下,整个矿井通风系统处在低于当地大气压力的负压状态。当主要通风机因故停止运转时,井下风流的压力提高,比较安全。 2、压入式 主要通风机安设在入风井口,在压入式主要通风机作用下,整个矿井通风系统处在高于当地大气压的正压状态。在冒落裂隙通达地面时,压入式通风矿井采区的有害气体通过塌陷区向外漏出。当主要通风机因故停止运转时,井下风流的压力降低。 3、压抽混合式 在入风井口设一风机作压入式工作,回风井口设一风机作抽出式工作。通风系统的进风部分处于正压,回风部分处于负压,工作面大致处于中间,其正压或负压均不大,采空区通连地表的漏风因而较小。其缺点是使用的通风机设备多,管理复杂。 三、矿井通风系统的选择 根据矿井设计生产能力、煤层赋存条件、表土层厚度、井田面积、地温、矿井瓦斯涌出量、煤层自燃倾向性等条件,在确保矿井安全、兼顾中、后期生产需要的前提下,通过对多种个可行的矿井通风系统方案进行技术经济比较后确定。 中央式通风系统具有井巷工程量少、初期投资省的优点。因此,矿井初期宜优先采 用。

矿井通风安全工程

第二章矿井空气流动的基础理论 本章的重点: 1、空气的物理参数----T、P、Φ、μ、ρ; 2、风流的能量与点压力----静压,静压能;动压、动能;位能;全压;抽出式和压入式相对静压、相对全压与动压的关系 3、能量方程 连续性方程;单位质量能量方程、单位体积能量方程 4、能量方程在矿井中的应用----边界条件、压力坡度图 本章的难点: 点压力之间的关系 能量方程及其在矿井中的应用 主要研究内容:矿井空气沿井巷流动过程中宏观力学参数的变化规律以及能量的转换关系。介绍空气的主要物理参数、性质,讨论空气在流动过程中所具有的能量(压力)及其能量的变化。根据热力学第一定律和能量守恒及转换定律,结合矿井风流流动的特点,推导了矿井空气流动过程中的能量方程,介绍了能量方程在矿井通风中的应用。 第一节空气的主要物理参数 一、温度 温度是描述物体冷热状态的物理量。矿井表示气候条件的主要参数之一。热力学绝对温标的单位K,摄式温标:T=273.15+t 二、压力(压强) 1、定义:空气的压力也称为空气的静压,用符号P表示。压强在矿井通风中习 惯称为压力。它是空气分子热运动对器壁碰撞的宏观表现。P=2/3n(1/2mv2) 2、压头:如果将密度为 的某液体注入到一个断面为A的垂直的管中,当液体的高度为h 时,液体的体积为:V = hA m3 3、矿井常用压强单位:Pa Mpa mmHg mmH20 mmbar bar atm 等。 换算关系:1 atm = 760 mmHg = 1013.25 mmbar = 101325 Pa (见P396) 1mmbar = 100 Pa = 10.2 mmH20, 1mmHg = 13.6mmH20 = 133.32 Pa

矿井通风系统设计

课程设计说明书 设计题目: 矿井通风系统设计 助学院校: 理工大学 自考助学专业: 采矿工程 姓名: 自考助学学号: 成绩: 指导教师签名: 理工大学成人高等教育 2O 年月日

前言 矿井通风指借助于机械或自然风压,向井下各用风点连续输送适量的新鲜空气,供给人员呼吸,降低井下工作面的温度,稀释并排出各种粉尘及有毒有害气体,创造良好的气候条件,为井下作业人员提供安全舒适的工作环境。随着浅部矿产资源的日渐枯竭,矿产资源开采向纵深发展是必然的趋势。随着开采深度的增加,矿井必将出现岩温增高、风路延长、阻力增大、风流压缩放热、风量调节困难、漏风突出、有毒有害物质和热湿排除受阻等问题。因此,矿井通风与安全的意义将更加重大。 80年代以来,随着煤矿机械化水平的提高,采煤方法和巷道布置及支护的改革,电子和计算机技术的发展,我国矿井通风技术有了长足的进步。通风管理日益规化、系列化、制度化,通风新技术和新装备越来越多地投入应用,以低耗、高效、安全为准则的通风系统优化改造在许多煤矿得以实施,使矿井通风更好地为高产、高效、安全的集约化生产提高安全保障。 近年来,为适应综合机械化采煤的要求,原煤炭工业部在总结建设经验、借鉴国外先进技术的基础上于1984颁发了《关于改革矿井开拓部署的若干技术规定》,作为新井建设、生产矿井技术改造和开拓延深的依据。为适应生产集中化,开采深度增加、瓦斯涌出量大的情况,以“针对现实、着眼长远、因地制宜、对症下药、综合治理、节能增风”为指导思想,对数百座国有煤矿进行通风系统优化改造,配合一批有条件的生产矿井通过合并井田、扩大开采围、增加储量进行改扩建的任务。

矿井通风设计范例.

4 矿井通风 4.1 通风系统 4.1.1 通风系统 4.1.1.1 通风方式和通风方法 根据煤层赋存条件,矿井采用平硐开拓,根据矿井开拓方式,本矿井走向较短,只有一个采区的走向长度,采用分列式通风方式,抽出式通风方法,采煤工作面利用全矿井负压通风,采用“U”型通风方式,掘进工作面采用局部通风机压入式通风。 4.1.1.2 通风系统 根据矿井开拓部署,该矿为平硐开拓方式,主平硐、副平硐和后期排水进风行人平硐进风,回风平硐回风。 矿井初期主要通风线路为: 主平硐/副平硐→+1690m水平运输巷/+1690m双龙炭运输巷 /+1728m运输巷/+1728m双龙炭运输巷→+1690m运输石门/+1728m运输石门→一采区轨道上山/一采区行人上山→+1756m运输石门→11011工作面运输巷→11011采煤工作面→11011工作面回风巷→回风石门 →+1798m正炭回风巷→总回风斜巷→+1788m总回风巷→回风平硐→ 地面。 矿井后期主要通风线路为: 主平硐/副平硐/排水进风行人平硐→+1690m水平运输大巷/+1728m运输巷和通风行人斜巷/+1630m排水行人巷→二采区轨道上山/二采区行人上山→+1548m水平运输巷→三采区轨道上山/三采区行人上山→区段运输石门→23013工作面运输巷→23013采煤工作面→23013工作面回风巷→区段回风石门→三采区回风上山→回风暗斜井→总回风斜巷→+1788m总回风巷→回风平硐→地面。

矿井初期开采一采区时为通风容易时期,后期二、三采区同采时为通风困难时期。通风系统图(初、后期)和通风网络图(初、后期)详见图C1795-171-1(修改)、C1795-171-2(修改)。 4.1.1.3 井筒数目、位置、服务范围及时间 矿井开采一采区时有3个井筒,即:主平硐、副平硐和回风平硐,主平硐、副平硐进风,回风平硐回风。矿井二、三采区开采时4个井筒,即主平硐、副平硐、排水进风行人平硐和回风平硐。主平硐、副平硐和排水进风行人平硐进风,回风平硐回风。各井筒均位于井田东部。主平硐为改造利用原基地一号井主平硐;副平硐为改造利用原基地一号井副主平硐;回风平硐为改造利用原基地一号井回风平硐;排水进风行人平硐为改造利用原顺风煤矿主平硐。矿井回风平硐井口坐标为:X=3278284,Y=18267648,Z=+1788.867,服务于全矿井生产期间。 通风系统(初、后期)详见图4-1-1、4-1-2; 通风网络(初、后期)详见图4-1-3、4-1-4。

第七章矿井通风

第七章矿井通风与安全技术 7.1概述 凤凰山铜矿III矿体是一个板状的大理岩矿床,SiO2含量低;矿脉含硫量少,达不到自然危害性,井下最多工人190人,因此,工作面的通风应保证排尘及排除炮烟的需要,以最大可能减少矿尘危害。 根据安全规程,对凤凰山铜III矿体的矿井下通风安全做如下要求:(1)有人工作或可能有人到达的井巷,其空气成份(按体积计算)应为O2≥20%,CO2≤0.5%。空气的温度不得高于25℃,总回风流中的CO2不得超过1%。 (2)井下空气需经常保持新鲜,空气中有害气体含量不得超过规定:CO2:0.2,SiO2:0.02,H2S:0.01(按重量计算mg/升) (3)所有矿井均应实行全面机械通风,在浅部矿井,也可采用自然通风,主扇要求连续运转。 7.2矿井通风条件 凤凰山铜矿Ⅲ号矿带30线至35线间,其年产矿量13万吨,服务年限14年;采用竖井开拓,有轨运输;阶段的开采顺序采用下行式,阶段中矿块的开采顺序采用双翼开采;主要的采矿方法为分段凿岩阶段矿房法,垂直方向中深孔凿岩,每个矿房配置1台YQ-80新型钻机,井下回采的矿块数为3个,每天井下工作人数共190多人。 7.3通风方式与通风系统 7.3.1通风系统确定的依据 (1)风路短、阻力小、通风网络简单、风流容易控制,在主要人行运输坑道和工作点上污风不串联; (2)风量分配满足生产需要,漏风少; (3)通风构筑物少,便于维护管理; (4)专用通风井巷工程量少,施工方便; (5)通风动力消耗少,通风费用低。 7.3.2风井位置的确定 风井布置方式有中央对角式,中央并列式以及侧翼对角式。 根据该矿山的的实际情况、确定其它井筒的原则及所选用的通风系统,这里选用二种方案。 方案一:中央对角式布置

矿井通风系统设计范本

目录 前言3 第一章矿井基本简况5 第一节矿井简况4 一、井田简况4 二、煤层地质简况4 三、瓦斯简况5 四、水文简况5 五、煤尘、煤炭自燃简况5 六、通风简况5 第二章通风系统设计可行性论证8 第一节矿井通风系统优化背景8 一、矿井目前通风及生产能力情况8 二、矿井生产能力发展前景8 第二节通风系统改造的必要性分析、论证9 第三节通风系统改造的主要手段10

第四节通风系统改造总体技术方案的选择10 第三章矿井通风参数计算14 第一节通风系统改造后矿井需要风量的计算14 一、矿井风量计算原则14 二、矿井需风量的计算14 第二节通风系统改造后矿井通风阻力的计算19 一、矿井通风总阻力计算原则19 二、矿井通风总阻力计算19 第三节通风系统改造技术方案比较33 第四章矿井通风设备的选择35 第一节主要通风机选型35 一、设计依据35 二、通风设备选型35 第二节矿井主要通风设备的配置要求38 第五章通风费用概算40 第六章矿井安全技术措施43

第一节粉尘灾害防治43 一、防尘措施43 二、防爆措施43 三、隔爆措施43 第二节瓦斯灾害防治44 第三节防灭火44 一、煤的自燃预防措施44 二、外因火灾防治44 第四节矿井防治水45 第五节井下其它灾害预防45 一、顶板灾害防治45 二、机电运输事故防治45 前言 矿井通风是一个运用多种技术手段输送、调度空气在井下流动,维护矿井正常生产和劳动安全的动态过程。在生产期间其任务是利用通风动力,以最经济的方式,向井下各用风地点供给质优量足的新鲜空气,保证工作人员

的呼吸,稀释并排除瓦斯、粉尘等各种有害物质,降低热害,给井下创造良好的劳动环境;在发生灾变时,能有效、及时地控制风向及风量,并与其它措施结合,防止灾害的扩大,最大限度地减少事故损失。 剖析历次煤矿重大灾害事故发生及扩大的原因,无不与矿井通风系统有着密切的关系。因此,建立一个既能满足日常生产需风,保证风向稳定、风质合格,在灾害时期又能保持通风设备运行可靠、稳定、能快速实现风流控制的通风系统是至关重要的。 本设计基于郑兴义兴(新密)煤矿的现状,本着为矿井的长期发展,提高矿井生产能力进行的矿井通风系统改造。总设计技术方案:维修扩大矿井东回风巷的断面,回收矿井西回风巷,对皮带巷进行扩修增大通风断面减小阻力,并经过矿井通风设施改造。通过风量、风阻等计算,选择出主要通风机以及配套的电机型号。通过各种论证,本设计可靠可行,提高矿井的抗灾能力,提高了矿井的经济效益。

矿井通风系统图图例电子版本

矿井通风系统图图例

附件二: 序号名称 图例 颜色说明1:5000 1:2000 1 进风风流红色1:2000平面图在巷道中间划;1:5000平面图风流与巷道间隔1mm。(网络图只划风流方向)。 2 回风风流蓝色1:2000平面图在巷道中间划;1:5000平面图风流与巷道间隔1mm。(网络图只划风流方向)。 3 测风站棕色 4 永久风门棕色门扇迎向风流。 5 临时风门棕色门扇迎向风流。 6 正反风门棕色 7 防火密闭红色 8 永久密闭棕色 9 临时密闭棕色 10 风桥棕色 11 局部通风机红色1:5000平面图及立体示意图直径3mm,1:2000平面图直径4mm。 12 风筒在风机处和工作面各标注三节,其余不标。 13 调节风窗棕色 14 轴流式主扇棕色 15 离心式主扇棕色 16 防爆门 棕色 棕色 17 抽排风机棕色 18 抽放泵棕色 19 抽放管路红色 仅供学习与交流,如有侵权请联系网站删除谢谢2

分类设备名称颜 色 图例符号图例尺寸(毫米) 传感器 甲烷传感器绿直径=8,线宽0.5mm 一氧化碳传感器红直径=8,线宽0.5mm 风速传感器黑直径=8,线宽0.5mm 负压传感器黄直径=8,线宽0.5mm 温度传感器紫直径=8,线宽0.5mm 设备开停传感器蓝直径=8,线宽0.5mm 馈电传感器红直径=8,线宽0.5mm 风门开关传感器蓝直径=8,线宽0.5mm 井下设备 分站(干线扩展器)红 方框:长12 宽4, 线宽0.5mm 分站(干线扩展器)电源箱红 方框:长12 宽4, 线宽0.5mm 断电仪红直径=8,线宽0.5mm 线缆 光纤蓝 在光纤上标出型号, 线宽0.5mm 主通讯电缆黑 在电缆上标出型号, 线宽0.5mm 传感器电缆红 在电缆上标出型号, 线宽0.3mm 其它防雷器(通讯、电源) 红 方框:长12 宽4, 线宽0.5mm 监测中心红 方框:长30 宽15, 线宽0.5mm,0.3mm 仅供学习与交流,如有侵权请联系网站删除谢谢3

改变矿井通风系统设计与安全技术措施(标准版)

改变矿井通风系统设计与安全技术措施(标准版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0999

改变矿井通风系统设计与安全技术措施 (标准版) 龙马矿业隶属于吉林省杉松岗矿业集团有限责任公司,座落于白山市靖宇县东兴乡马当村境内,行政划归靖宇县东兴乡管辖。 矿井地理座标为东经:126°59′24″~127°00′42″,北纬:42°26′46″~42°28′14″。 主要河流珠子河全长45km,在矿区下游2km汇入松花江。白山水库蓄水后,最高水位为416.5m。珠子河与松花江合成白山湖,珠子河流域面积95.5km2。靖宇水文站观测记录断面平均流速0.35m/s最大流速2m/s,最大流量244m3/s,最小流量0.1m3/s,珠子河流流经现生产矿区西及西北、北部,两岸形成陡峭的悬崖,每年的11月份开始水位下降至+406m左右。 地质构造简单,为瓦斯矿井,井田内批准开采煤层三层,即一

号层、二号层、三号层,煤层自燃倾向性等级鉴定为Ⅲ级,属不易自燃煤层。发火期大于12个月。煤层没有爆炸性。 我矿准备队305上、下顺同时施工。305上顺掘进距离为365米,305下顺350米、开切眼上山100米。通风设计为采用正压通风,安设局部通风机,风机为系列化,可自动切换。局部通风机型号为FBD2X11,功率为2x11千瓦、风量410-230m?/min。可满足掘进风量需要。矿井主通风机型号为FBCDZ№17.90×2,功率为2×90kw,矿井现在总入风量为2574m?/min,总回风量为2688m?/min。我矿现采掘布置有206综采准备工作面、207综采面、305上顺掘进工作面、305下顺掘进工作面、306上顺掘进工作面、306下顺掘进工作面。按采区设计方案,需要改变通风系统,为了保证矿井通风系统的平稳过渡,经矿班子研究决定成立以矿长为组长的改变矿井通风系统领导小组,并制定相应的安全技术措施,具体实施方案如下: 一、领导小组: 组长:周家会(矿长) 副组长:张立波(总工程师)王志刚(通风副总)

矿井通风网络的解算

矿井通风网络的解算 摘要:矿井通风是矿山生产的重要环节之一。安全、可靠、经济、实用的矿井通风系统对保证井下安全生产具有重要的意义。随着计算机技术的飞速发展,现有的通风软件存在功能比较单一,针对这种情况,本文以Visual C++6.0为开发工具、SQL Server2000为后台数据库,进行了矿井通风网络解算的研究。 关键词:通风系统,网络解算 1.引言 矿井通风是矿山生产的一个重要环节。安全、可靠、经济、实用的矿井通风系统,对保证井下安全生产具有重要意义。煤矿生产过程的瓦斯爆炸、煤尘爆炸、矿井火灾、有毒气体窒息等灾害的发生都与矿井通风有直接关系[1]。可以说通风状况的好坏直接影响工人的安全、健康和劳动效率,直接关系到煤矿的安全生产、经济效益和可持续发展。 随着煤矿产量增加,开采深度加大和机械化程度提高,需要加大风量,形成多进风井、多回风井的复杂通风系统。如果矿井通风管理跟不上,事故隐患不能及时发现,矿井通风安全事故将会不断发生。不但严重危害职工的健康和生命安全,而且破坏正常的通风系统,使安全生产无法正常进行。因此,开展矿井通风网络解算、调节与评价的一体化系统研究,对保障矿井安全生产具有十分重要的理论意义和应用价值。 2.矿井通风网络的建模研究 2.1流体网络建模 数学模型是程序算法设计的灵魂。能否选取恰当的方法,并建立起准确而全面的数学模型,是软件设计成功与否的决定性因素。 ①数学模型 对复杂的对象或系统进行计算或仿真时,首先要建立它的数学模型。所谓数学模型就是由一系列数学方程(包括代数方程、微分方程)描述系统的每一个具体过程,最终组成一个联立方程组。数学模型比较抽象,但它可以比较全面地反映一个复杂系统的性质。当对一个系统的内部机理比较清楚时,就可以利用数学模型对其进行进一步的研究。数学模型又可分为静态数学模型和动态数学模型。②静态数学模型 静态数学模型用来描述系统在稳定状态或平衡状态下各种输入变量与输出变量之间的关系。静态数学模型主要用于设计计算和校核计算,一般要求具有较高的精度。 ③动态数学模型 动态数学模型用来描述系统在不稳定状态下各种变量随时间的变化关系。当系统从一个稳定状态变化到另一个稳定状态时,哪些参数会发生变化,其变化的速度及变化过程如何,这些都属于动态数学模型要解决的问题。 矿井通风网络建模一般都采用动态数学模型。为了程序设计的简单、方便,在建模时往往进行许多的简化以使动态数学模型及其计算不至于过分复杂。这样,由动态数学模型所得的计算结果的误差往往大于静态数学模型的误差。 由于矿井的通风系统都是由具有复杂的网络拓扑结构的巷道组成,这就给人们的建模带来了许多困难。 传统的建模方法大部分都是针对具体的系统结构编制计算程序,系统的藕合关系处于模型程序的各个地方。所建模型虽然精度比较高,能与现场实际过程很

矿井通风系统图纸绘制及图例

矿井通风图纸绘制 为规范矿井通风图纸的绘制质量,便于指导矿井“一通三防”工作,提高矿井通风管理水平,根据公司实际,特对矿井通风图纸绘制及管理规范如下:一、总体要求: 1、图纸整体布局合理、美观,图面整洁,线条均匀光滑。 2、标注内容完整、准确,充分反映井下的实际情况。为保证图的正确、美观和统一,要求按照附表《煤矿通风安全图例》绘制。 3、图名一律标在图框内,位置在图的上框线下方。图框距左边界25 mm,距其它三个边界各10 mm,图框线宽度2 mm。 4、在每张图的右下角绘制图签,并有相关领导签字。图签上方绘制该图图例,要求完整、准确。 5、需要标明的内容用直线引出,引线不宜过长,并且方向一致。 6、图纸绘制及内容标注,线条宽度0.3mm(通风系统平面图中经常变动的通风设施、风流风向的标注可用铅笔绘制)。二、矿井通风图纸的绘制要求及标注内容 1、矿井通风系统图 (1)在1:2000、1:3000或1:5000采掘工程平面图上绘制。 (2)图上标注内容:风机、各类通风设施(含密闭、风门、风桥等)、风流方向、局扇、测风站、测风点、防爆门。 (3)主扇标注的内容:主扇型号、电机型号、铭牌功率、实际功率、实际叶片角度、转速、排风量、主扇风压等,标注格式自定。 (4)测风(站)点标注的内容:断面积、风速、风量、温度、编号,标注格式自定。 (5)风流方向均用箭头线标注,风流分支处必须标明风流方向。图纸的上方绘制指北针长30mm,宽4mm的箭头标示。 (6)多煤层同时开采的矿井还应绘制分层通风系统图。(7)有矿长、总工程师签字,并随着采掘变化及时修改。2、避灾线路图 (1)在采掘工程平面图上绘制。 (2)使用不同符号标志采掘工作面发生火灾、瓦斯/煤尘爆炸、水灾事故后

矿井通风1

矿井通风 本章培训与考核要点 了解矿井通风的基本任务 掌握矿井空气中的各种有害气体的来源、性质和危害、熟练掌握《煤矿安全规程》对井下空气中氧气及有害气及有害气体浓度的规定,熟练掌握《煤矿安全规程》对井下空气温度及采掘工作面风速的规定; 了解矿井通风方法、通风方式、通风网络和通风设施;; 了解矿井反风、风速测定及通过井巷的风量计算; 熟练掌握掘进通风的方法、方式及管理措施。 一、矿井通风基本任务要点: 1、矿井通风基本任务是:供人员呼吸;冲淡和排除有毒有害所体;创造良好的气候条件。 2、在安排矿井生产工作时,要坚持“以风定产”。 二、矿井空气的相关要点 3、采掘工作面进风巷道内的空气成分比例与进风井口地表大气成分比例有较大并别。 4、在地表大气中,O2所点比例为20.96%;当人所处环境氧含量低于12%时,会有生命危险。 5、由于瓦斯具有可燃烧的特性,所以可将瓦斯作为民

用燃料。瓦斯无毒,人处在瓦斯浓度较高的环境中时,不会中毒,但空气中瓦斯含量较大时,会因缺氧而窒息。 6、H2S气体有臭鸡蛋味;在煤矿井下,H2S的危害主要表现为:有毒性、爆炸性和常用的瓦斯探头“中毒”而失效。 7、CO、H2S和SO2均为有毒气体。 8、煤层中有时也会涌出CO。 9、《煤矿安全规程》规定,井下空气中CO的浓度不得超过0.0024%。 10、氮气无色、无味、无毒,不能助燃,空气中氮气含量过高时,会使人缺氧窒息。 11、《煤矿安全规程》规定,采掘工作面空气有温度不得超过26℃。 三、矿井气候条件的相关要点 12、矿井气候条件是指空气温度、湿度和风速三者综合作用的结果。 13、影响矿井气候条件的因素有温度、湿度、风速。 四、矿井通风方法相关要点 1、压入式能风:瓦斯突出煤层掘进工作面局部通风机的通风方式是压入式通风。 2、压入式局部通风机:压入式局部通风机及其启动装置必须安装在进风巷道中,距离进巷道回风口不得小于10m;

矿井通风系统设计

矿井通风系统设计 第一章:概述 1、矿井概况 新城煤矿于2002年5月9日接手于司法局煤矿,成立筹备处,10月17日正式成立新城煤矿。该矿隶属于鸡西矿业集团,地理位置在城子河西采区二太堡车站以北一公里处,矿区范围:东部以F48断层与城子河矿机邻,西部以F31米标高。东西走向约4.5公里,南北宽约4公里,面积约为18平方公里,其拐点座标如下:点号X Y 1 5023680 44415650 2 5023826 44418123 3 5025500 44420410 4 5019920 44418485 5 5019840 44418454 6 5019730 44417700 开采深度:由-250米~-900米标高。 本矿区内有城子河、正阳等矿的运煤专用铁路通过,并与国铁林密线西鸡西车站相接,距离约为6公里,此外,沿有公路西至滴道、麻山、林口。东达鸡西、城子河、密山等地,交通极为方便。 新城煤矿现开采3#、4#、24#、25#、27#、29#、六个煤层。现有工作面为138采煤工作面(24#)、139采煤工作面(4#)、102掘进工作面(3#下巷)、105掘进工作面(3#上巷)、106掘进工作面(29

#上巷)、101掘进工作面(29#下巷)、103掘进工作面(穿层岩石) 2、矿井通风系统概况 主扇型号:70-B2-21-24#功率475kw 备扇型号:70-B2-21-24# 功率570kw 通风方式:抽出式 通风方法:中央并列抽出式 总入风量:2310m3/min 总排风量:2610m3/min 新城煤矿与城子河煤矿九采区一井相联。矿井负压240mmH2O。 A= h Q ? 38 .0 = 97 . 254 60 / 2610 38 .0? =1.03米2 由于1﹤1.03﹤2故通风难易程度为中等。 新城煤矿与城子河煤矿九采区一井采用隔绝密闭已将两井隔离。 3、该矿井为煤与瓦斯突出矿井,矿井的绝对瓦斯涌出量为14m3/min,相对瓦斯涌出量为65.9m3/min。 第二章:矿井通风系统技术可靠性分析 1、新城矿共5个掘进队,两个采煤队,其中:105掘进队、102掘进队、103掘进队、106掘进队、139采煤队均为独立的通风系统。101掘进队回风串138采煤队,按保安规程规定已在138采煤工作面入风处安设探头,CH4浓度不得超过0.5%,否则停止作业,进行处理。矿井主扇及备扇均具有反风及闭锁装置,主扇运行情况良好。 2、附矿井通风网路图 3、该矿井没有不合理的通风现象,没有风速超过规定的地点。

矿井通风设计毕业论文

矿井通风课程设计 ?姓名: 专业:通风与安全 日期:

目录前言 (一)矿井概况 (二)拟定矿井通风系统 (三)矿井总风量计算与分配 1、矿井需风量计算原则 2、矿井需风量计算方法 3、矿井总风量的分配 (四)矿井通风总阻力计算 1、矿井通风总阻力计算的原则 2、矿井通风总阻力的计算方法 3、绘制矿井通风网络图 (五)选择矿井通风设备 1、选择矿井通风设备的要求 2、主要通风机的选择 (六)通风耗电费用概算 1、主要通风机的耗电量 2、局部通风机的耗电量 3、通风总耗电量 4、吨煤通风耗电量 5、吨煤通风耗电成本 (七)矿井通风系统评述

1、系统的合理性 2、阻力分布的合理性 3、主要通风机工作的安全性、经济性 前言 《矿井通风》设计是学完《矿井通风》课程后学生理论联系实际的重要实践教学环节,是对学生进行的一次综合性专业设计训练。通过课程设计使学生获得以下几个方面能力,为毕业设计打下基础。 1、进一步巩固和加深我们所学矿井通风理论知识,培养我们设计计算、工程绘图、计算机应用、文献查阅、运用标准与规范、报告撰写等基本技能。 2、培养学生实践动手能力及独立分析和解决工程实际的能力。 3、培养学生创新意识、严肃认真的治学态度和理论联系实际的工作作风。 依照老师精心设计的题目,按照大纲的要求进行,要求我们在规定的时间内独立完成计算,绘图及编写说明书等全部工作。 设计中要求严格遵守和认真贯彻《煤炭工业设计政策》、《煤矿安全规程》、《煤矿工业矿井设计规范》以及国家制定的其它有关煤炭工业的方针政策,设计力争做到分析论证清楚,论据确凿,并积极采用切实可行的先进技术,力争使自己的设计达到较高水平,但由于本人水平有限,难免有疏漏和错误之处,敬请老师指正。

矿井通风网络中风量分配与调节汇总

第五章矿井通风网络中风量分配与调节 本章主要内容及重点和难点 1、风量分配基本定律----三大定律 2、网络图及网络特性 1)简单网络 2)角联及复杂网络 3、网络的动态分析 4、矿井风量调节 5、计算机解算复杂网络 矿井通风系统是由纵横交错的井巷构成的一个复杂系统。用图论的方法对通风系统进行抽象描述,把通风系统变成一个由线、点及其属性组成的系统,称为通风网络。 第一节风量分配基本规律 一、矿井通风网络与网络图 (一)矿井通风网络 通风网络图:用直观的几何图形来表示通风网络。 1. 分支(边、弧):表示一段通风井巷的有向线 段,线段的方向代表井巷中的风流方向。每条分 支可有一个编号,称为分支号。 2. 节点(结点、顶点):是两条或两条以上分支的交点。 3. 路(通路、道路):是由若干条方向相同的分支首尾相连而成的线路。如图中,1-2-5、1-2-4-6和1-3-6等均是通路。 4. 回路:由两条或两条以上分支首尾相连形成的闭合线路称为回路。 如图中,2-4-3、2-5-6-3和1-3-6-7 5、树:是指任意两节点间至少存在一条通路但不含回路的一类特殊图。由于这类图的几何形状与树相似,故得名。树中的分支称为树枝。包含通风网络的全部节点的树称为其生成树,简称树。 (二)矿井通风网络图 特点:1)通风网络图只反映风流方向及节点与分支间的相互关系,节点位置与

分支线的形状可以任意改变。 2)能清楚地反映风流的方向和分合关系,并且是进行各种通风计算的基础,因此是矿井通风管理的一种重要图件。 网络图两种类型:一种是与通风系统图形状基本一致的网络图,如图5-1-3所示;另一种是曲线形状的网络图,如图5-1-4所示。但一般常用曲线网络图。 绘制步骤: (1) 节点编号在通风系统图上给井巷的交汇点标上特定的节点号。 (2) 绘制草图在图纸上画出节点符号,并用单线条(直线或弧线)连接有风流连通的节点。 (3) 图形整理按照正确、美观的原则对网络图进行修改。 通风网络图的绘制原则: (1) 用风地点并排布置在网络图中部,进风节点位于其下边;回风节点在网络图的上部,风机出口节点在最上部; (2)分支方向基本都应由下至上; (3) 分支间的交叉尽可能少; (4) 网络图总的形状基本为“椭圆”形。 (5) 合并节点,某些距离较近、阻力很小的几个节点,可简化为一个节点。 (6) 并分支,并联分支可合并为一条分支。 二、网络中风流流动的基本定律 1、风量平衡定律 风量平衡定律是指在稳态通风条件下,单位时间流入某节点的空气质量等于流出该节点的空气质量;或者说,流入与流出某节点的各分支的质量流量的代数和等于零,即 ∑=0i M

第二章矿井通风管理规定2

第二章矿井通风管理规定 第一节矿井通风管理机构设置 为建立健全安全生产长效机制,强化井下通风系统管理能力,提升我矿“一通三防”工作成效,达到以通风促进安全,实现安全高效生产的工作目标,保障企业安全生产形式持续好转,确保矿井“通风可靠、监控有效、管理到位”。根据煤矿安全质量标准化新标准容,结合我矿实际,经研究决定,设立矿井通风管理小组: 第一条组织机构 组长:矿长 副组长:总工程师、生产矿长、安全矿长、机电矿长 成员:通风副总、开拓副总、机电副总、地测副总、防突科、安检科、调度室、生产科、机运科、供应科、劳资科、财务科以及各区队管理人员。 为确保矿井通风安全管理工作执行有力、落实到位,矿专门设立通风安全管理办公室,办公室设在防突科,防突科长兼任办公室主任,防突科配备一名管理人员协助科长专职分管通风工作。

鹤煤十矿通风机构示意图 第二条机构成员工作责任制 (一)矿长 1.对通风工作全面负责,听取总工程师及计划、通风、安全等部门关于通风工作的计划及“一通三防”安全技措资金安排的汇报,保证“一通三防”资金的投入。 2.每月主持“一通三防”例会,听取情况汇报、分析存在问题,采取相应措施,及时解决人、财、物问题,保证“一通三防”

工作的正常进行。 3.每天审阅瓦斯日报和瓦斯监测报表,对瓦斯超限和“一通三防”隐患,要采取措施,立即组织解决。 4.负责建立健全“一通三防”队伍,配足相应人员。 5.负责灾害预防和处理计划的贯彻实施,每年至少组织一次反风演习。 (二)总工程师 1.总工程师在矿长直接领导下,分管“一通三防”工作。 2.负责组织制定通风管理工作规划、计划,经审批后督促落实。 3.每月至少主持一次通风隐患排查和回风巷排查,对查出的问题按照“五定”原则安排整改。 4.负责组织编制通风资金计划,合理安排通风工程项目和资金。 5.每月至少组织一次通风系统审查,每季度至少组织一次反讽设施检查,按规定进行通风阻力测定。 6.调动矿井通风所需人员、资金和物资,组织完成矿井通风管理技术业务工作,确保矿井安全生产计划。 7.组织召开通风工作例会,安排布置通风管理工作。 8.负责通风管理工程技术人员配备。 9.每日审阅通风和瓦斯监测日报,每月审批通风月报等有关报表。

煤矿矿井通风设计_百度文库.

一、矿井通风设计的内容与要求 1、矿井通风设计的内容 ? 确定矿井通风系统; ? 矿井风量计算和风量分配; ? 矿井通风阻力计算; ? 选择通风设备; ? 概算矿井通风费用。 2、矿井通风设计的要求 ? 将足够的新鲜空气有效地送到井下工作场所,保证生产和良好的劳动条件; ? 通风系统简单,风流稳定,易于管理,具有抗灾能力; ? 发生事故时,风流易于控制,人员便于撤出; ? 有符合规定的井下环境及安全监测系统或检测措施; ? 通风系统的基建投资省,营运费用低、综合经济效益好。 二、优选矿井通风系统 1、矿井通风系统的要求 1 每一矿井必须有完整的独立通风系统。 2进风井囗应按全年风向频率,必须布置在不受粉尘、煤尘、灰尘、有害气体和高温气体侵入的地方。

3箕斗提升井或装有胶带输送机的井筒不应兼作进风井,如果兼作回风井使用,必须采取措施,满足安全的要求。 4多风机通风系统,在满足风量按需分配的前提下,各主要通风机的工作风压应接近。 5每一个生产水平和每一采区,必须布置回风巷,实行分区通风。 6井下爆破材料库必须有单独的新鲜风流,回风风流必须直接引入矿井的总回风巷或主要回风巷中。 7井下充电室必须单独的新鲜风流通风,回风风流应引入回风巷。 2、确定矿井通风系统 根据矿井瓦斯涌出量、矿井设计生产能力、煤层赋存条件、表土层厚度、井田面积、地温、煤层自燃倾向性及兼顾中后期生产 需要等条件,提出多个技术上可行的方案,通过优化或技术经济比较后确定矿井通风系统。 三、矿井风量计算 (一、矿井风量计算原则 矿井需风量,按下列要求分别计算,并必须采取其中最大值。 (1按井下同时工作最多人数计算,每人每分钟供给风量不得少于 4m 3; (2按采煤、掘进、硐室及其他实际需要风量的总和进行计算。 (二矿井需风量的计算 1、采煤工作面需风量的计算

矿井通风知识点

名词解释。。。。。。。。。。。。。。。。。。。。。。。第一章 1.新鲜空气:在矿井通风中,习惯把进入采掘工作面等用风地点之前,空气状态成分或状态变化不大的风流。 2.污浊空气:经过用风地点后,空气成分或状态变化较大的风流。 3.绝对湿度:单位体积湿空气中所含水蒸气的质量。 4.相对湿度:空气中水蒸气的实际含量与同湿度下饱和水蒸气量比值的百分比。 第二章 5.密度:单位体积的空气所具有的质量。 6.比容:单位质量空气所具有的体积。 7.重度:单位体积的空气所具有的重量。 8.粘性:相邻两流层之间的接触面上产生粘性阻力,以阻止其相对运动。 9.大气压力:地面空气压力习惯上称为大气压力。 10.标准大气压:以真空为基准测算的压力 11.相对压力:以当地当时同标高的大气压为基准测算的压力 12.正压和负压:在压入式通风矿井中,井下空气的绝对压力都高于当地当时间标高的大气压力,相对压力是正值,叫正压;抽出式通风矿井中,井下空气的绝对压力都低于当地当时同标高的大气压力,相对压力值是负值,叫负压。 13.正压通风和负压通风:在压入式通风矿井中,井下空气的绝对压力都高于当地当时同标高的大气压力,相对压力值是正值,是正压通风;在抽入式通风矿井中,井下空气的绝对压力值都低于当地当时间同标高大气压力,相对压力是负值,是负压通风。 14.压差:两点间的压力差 第三章 15.层流与紊流:层流间指流体各层的质点相互不混合,呈束状,为有秩序的流动,各流束的质点没有能量交换。紊流和层流相反,流体质点在流动过程中有强烈混合和相互碰撞,质点间有能量交换。 16.摩擦阻力:井下风流沿井巷或管道流动时,由于空气的粘性受到井巷壁面的限制,造成了空气分子之间相互摩擦以及空气与与井巷或管道壁面间的摩擦,从而产生阻力。 17.局部阻力:在风流运动的过程中,由于井巷边壁条件的变化,风流在局部地区受到局部阻力物的影响和破坏,引起风流流速大小、方向和分布的突然变化,导致风流本身长生很强的冲击,形成极为絮乱得涡流,造成风流能量的损失。 第四章 18.矿井通风系统:是矿井通风方式、通风方式、通风网络与通风设备的总称。 19.自然通风与机械通风:由自然因素作用而形成的通风叫自然通风。 第五章 20.矿井通风网络:矿井空气在井巷中流动中,风流分叉,汇合路线的结构形式。 21.串联通风:两条或两条以上风路彼此首尾相连在一起,中间没有风流分合点得通风。?22.并联通风:两条或两条以上风支在某一节点分开后,又在另一节点汇合,其间无分支的通风 23.角联通风:在并联的两条分支之间,还有一条或几条分支相通的连接形式。 24.通风网络图:用不按比例、不反应空间关系的单线条来表示矿井通风的图纸。 第七章

矿井通风复习题(有答案)

矿井通风复习题(有答案)

矿井通风复习题 一、名词解释 1.空气的粘性 2.相对压力 3.摩擦阻力 4.等积孔 5.通风网络图 6.空气的静压 7.空气的动压 8.空气的位压 9.矿井气候条件 10.层流11.紊流12.工况点13.局部风量调节14.漏风 二、判断题 1.风表在使用一段时间后必须重新进行校正。(√)。 2.每一矿井的产量是以矿井的实际通风能力的大小而定的。(√)。 3.矿井通风的任务就是为了排除井下的有害气体。(×) 4.矿井必须建立测风制度,每7天进行1次全面测风。( ×) 5.矿井需风量按井下同时工作的最多人数计算,每人每分钟供风量不得少于30m3。(×)。 6. 1atm=101325Pa (√) 7.风流总是从全压大的地方流向全压小的地方。(×)。 8.压入式矿井是负压通风。(×)。 9.抽出式矿井是负压通风。(√)。 10.风阻是一个表征通风难易程度的指标。(√)。 11.等级孔是一个表征通风难易程度的指标。(√)。 12.等级孔的作用是用来调节矿井风量的。(×)。

13.小型矿井可以用2台或2台以上的局部通风机代替主通风机工作。(×)。 14.生产矿井现有的2套不同能力的主通风机,在满足生产要求的前提下,可以继续使用。(√)。 15.矿井主通风机每季度应进行一次反风演习。(×)。 16.采用增阻调节法时,会造成矿井总风量的减少,减少的大小与主通风机特性曲线的陡缓无关。(×)。 17.主要通风机房的水柱计读数大小就是矿井通风阻力。(×) 18.矿井自然风压可能帮助通风,也可能反对通风。(√) 19.矿井总风阻就是矿井通风总阻力。(×) 20. 轴流式通风机个体风压特性曲线上有一段不稳定的“马鞍形”驼峰。(√) 21.由于某种原因导致矿井主要通风机停止运转。这时可以采用自然通风的方式继续维持生产,等待主要通风机重新运转起来。(×)22.中央边界式通风的风井位置是在井田倾斜方向的上部边界。(√) 23.角联网络中角联巷道的风流方向和风量均是不稳定的,可能发生变化。(√) 24.选择合理的通风系统,防止漏风,是减少煤层自燃最有效的措施之一。( √) 25.采区进、回风巷必须贯穿整个采区。(√)。 26.高瓦斯矿井必须设置至少1条专用回风道。(√)。 27.低瓦斯矿井必须设置至少1条专用回风道。

相关文档
最新文档