第五章整数规划【模板】

合集下载

目标规划整数规划第三、四、五章

目标规划整数规划第三、四、五章

销地 产地 A1 A2 4
B1
B2
B3 2
B4
B5
产量
3
11 3 6 4 3
12 7 5
5
3 2 5 1 4
6
4 2 9 2 5
4
0 8 0 5 0 9
A3
销量
当产大于销时,即
a b
i 1 i j 1 m
m
n
j
加入假想销地(假想仓库),销量为
a b
i 1 i j 1
n
(二)对偶变量法(位势法) 1.基本原理
检验数的计算: 一般问题:σj = C j- CBB-1 Pj = Cj - Y Pj 运输问题: σij = C ij- CBB-1 Pij = Cij - Y Pij = Cij - (u1,u2, …,um, v1, v2, …,vn) Pij = Cij - ( ui+ vj ) 当xij 为基变量时, σij = Cij - ( ui+ vj )=0 由此,任选一个对偶变量为0,可求出其余所有 的ui, vj 。 再根据σij = Cij - ( ui+ vj )求出所有非基变量的检验 数。
A 1 A2 A3
销量
B1 B2 B3 B4
4 12
产量
16 10 2 3 9 10 8 2 8 14 5 11 8 6 22 8 14 12 14 48
10
4
6
11
z 0 8 2 14 5 10 4 2 3 6 11 8 6 246 优点:就近供应,即优先供应运价小的业务。
4. 计划利润不少于48元。
- , P d + , P d -} Min{ P1 d16 maxZ= x1 +8 2 2x2 3 3 5x1 + 10x2 60 • 原材料使用不得超过限额 x1 - 2x2 +d1- -d1+ =0 • 产品II产量要求必须考虑 - -d + =36 4x + 4 x +d 1 2 2 2 • 设备工时问题其次考虑

运筹学第五章 整数规划ppt课件

运筹学第五章  整数规划ppt课件
,求解过程停止。 3.B有最优解,但不符合A的整数条件,记其目标函数值为z1。
第二步:确定A的最优目标函数值z*的上下界,其上界即为 z ,再用观察法
找到A的一个整数可行解,求其目标函数值作为z*的下界,记为z。
第三步:判断 z 是否等于z 。若相等,则整数规划最优解即为其目标函
数值等于z的A的那个整数可行解;否则进行第四步。
2020/3/2
11
•割平面法,即通过添加约束条件,逐步切割可行区域的 边角余料,让其整数解逐步的露到边界或顶点上来,只要 整数解能曝露到顶点上来,则就可以利用单纯形法求出来。
•关键是通过添加什么样的约束条件,既能让整数解往边 界露,同时又不要切去整数解,这个条件就是Gomory约束 条件。 •Gomory约束只是割去线性规划可行域的一部分,保留了 全部整数解。
2020/3/2
7
7
第二节 割平面法
2x1 2x2 11
13/4,5/2
松弛问题 x1+x2≤5 第二次切割
2020/3/2
第一次切割 4,1
8
设纯整数规划
n
m a x Z c j x j j 1

s
.t
.

n j 1
aij x j

bi

x
j

0且




j

1,L
引入约束 xi ≤ M yi ,i =1,2,3,M充分大,以保证yi=0 xi=0 这样我们可建立如下的数学模型:
Max z = 4x1 + 5x2 + 6x3 - 100y1 - 150y2 - 200y3 s.t. 2x1 + 4x2 + 8x3 ≤ 500

运筹学 第四版 第五章 整数规划

运筹学 第四版 第五章 整数规划

货物/箱 甲 乙
托运限制/集 装箱
体积/米3 5 4
24
重量/百斤 2 5
13
利润/百元 20 10
表 3.1
货物/箱 甲 乙
托运限制/集 装箱
体积/米3 5 4
24
重量/百斤 2 5
13
利润/百元 20 10
解 设 x1,分x2 别为甲、乙两种货物的托运箱数.则这是一个
纯整数规划问题 .其数学模型为:
(pzreorgor-aomnme iinngte)ger linear
若不考虑整数条件,由余下的目标函数和约束条件构成
的规划问题称为该整数规划问题的松弛问题(slack
problem)
n
max Z (或 min Z ) c j x j j 1
整数线性规划数学
n
st. j1 aij x j
max Z 20 x1 10 x2
5x1 4x2 24 s.t 2x1 5x2 13
x1, x2 0, 整数
(1)
若暂且不考虑 x1, x取2 整数这一条件.则(1)就变为下列 线性规划 :
max Z 20 x1 10 x2
s.t
52xx11
4x2 5x2
24 13
x1, x2 0
目前,常用的求解整数规划的方法有: 分支定界法和割平面法; 对于特别的0-1规划问题采用隐枚举法和匈牙利法。
§2 解纯整数规划的割平面法
考虑纯整数规划问题
n
max Z cjxj j 1
n
aijxj bis.tj 1xj0
xj取整数
i 1, 2....m
j 1, 2...n j 1, 2,..n
n
max Z (或 min Z ) c j x j j 1

运筹学 第五章 整数规划

运筹学 第五章 整数规划

M是足够大的整数,y 是0-1变量
14
f(x)-5 0
f(x) 0
(1)
(2)
-f(x)+5 M(1-y)
f(x) My
(3)
(4)
当y=1时,(1)(3)无差别,(4)式显然成立;
当y=0时,(2)(4)无差别,(3)式显然成立。
以上方法可以处理绝对值形式的约束
f(x) a (a>0)
31
5.1 分枝定界法 (Branch and Bound Method)
原问题的松驰问题: 任何整数规划(IP),凡放弃某些约束 条件(如整数要求)后,所得到的问题 (P) 都称为(IP)的松驰问题。 最通常的松驰问题是放弃变量的整数性 要求后,(P)为线性规划问题。
32
去掉整数约束,用单纯形法 IP LP
23
解法概述
当人们开始接触整数规划问题时,常会有 如下两种初始想法: 因为可行方案数目有限,因此经过穷举 法一一比较后,总能求出最好方案,例如, 背包问题充其量有2n种方式,实际上这种 方法是不可行。
设想计算机每秒能比较1000000个方式,那 么比较完260种方式,大约需要360世纪。
24
先放弃变量的整数性要求,解一个 线性规划问题,然后用“四舍五入” 法取整数解,这种方法,只有在变量 的取值很大时,才有成功的可能性, 而当变量的取值较小时,特别是0-1规 划时,往往不能成功。
Yes xI* = xl*
xl*
判别是否整数解
No 去掉非整数域 多个LP ……
33
分枝定界法步骤
一般求解对应的松驰问题,可能会出现 下面几种情况:
若所得的最优解的各分量恰好是整数, 则这个解也是原整数规划的最优解,计 算结束。

第五章-整数规划

第五章-整数规划

在E点取得最优解。即
x2
x1=2, x2 =3, Z(211)=-17
找到整数解,问题已探明,此枝 3
停止计算。
求(LP212),如图所示。此时
F在点取得最优解。即x1=3, x2
=2.5,
1
Z(212)=-31/2≈-15.5 > Z(211)
如对LP212继续分解,其最小值
也不会低于-15.5 ,问题探明,
例5.2 现有资金总额为B。可供选择的投资项目有n个,项目j 所需投资额和预期收益分别为aj和cj(j=1,2,..,n),此外由 于种种原因,有三个附加条件:
若选择项目1,就必须同时选择项目2。反之不一定; 项目3和4中至少选择一个; 项目5,6,7中恰好选择2个。 应该怎样选择投资项目,才能使总预期收益最大。
现求整数解(最优解):如用舍
入取整法可得到4个点即(1,3),(2 x2


,3),(1,4),(2,4)。显然,它们 都不可能是整数规划的最优解。 3
(3/2,10/3)
按整数规划约束条件,其可行 解肯定在线性规划问题的可行域 内且为整数点。故整数规划问题 的可行解集是一个有限集,如右
图所示。其中(2,2),(3,1)点的目 标函数值最大,即为Z=4。
考虑纯整数规划问题:
设其中aij和bi皆为整数(若不为整数时,可乘上 一个倍数化为整数)。
割平面法(纯整数)
割平面法是R.E.Gomory于1958年提出的一种方法, 它主要用于求解纯ILP。
割平面法是用增加新的约束来切割可行域,增加的新 约束称为割平面方程或切割方程。其基本思路为:
若其松弛问题的最优解X*不满足整数约束,则从X*的 非整分量中选取一个,用以构造一个线性约束条件,将其加 入原松弛问题中,形成一个新的线性规划,然后求解之。若 新的最优解满足整数要求,则它就是整数规划的最优解;否 则重复上述步骤,直到获得整数最优解为止。

第五章 整数规划

第五章 整数规划
整数规划
1.整数规划的数学模型及解的特点 2.分支定界法、割平面法 3.0-1整数规划 4.指派问题
1.整数规划的数学模型及解的特点

整数规划数学模型的一般形式
一部分或全部决策变量取整数值的规划问题 ——整数规划 整数规划中不考虑整数条件是对应的规划问题 ——该整数规划的松弛问题 松弛问题为线性规划的整数规划问题 ——整数线性规划
(0,1,0,0,0)
Z8=2< Z5 ,不可 行,不可行子域, 停止分支。
Z7=9> Z5 ,停止分支。
(0,1,0,0,0)
4. 指派问题(assignment

problem)
4.1指派问题的标准 形式及其数学模型 4.2匈牙利解法 4.3一般的指派问题


指派问题的标准形式的提出?

在我们现实生活中,常有 各种性质的指派问题。例 如:应如何分配若干项工 作给若干个人(或部门) 来完成,以达到总体的最 佳效果等等。由于指派问 题的多样性,我们有必要 定义指派问题的标准形式 。
x2 2
x2 1.57 z 0 z 2 341 z 349
x2 3
z 340 z 341
B3 : x1 4.00 x2 2.00 z3 340
B4 : x1 1.42 x2 3.00 z 4 327
x2 1
*
x2 2
B5 : x1 5.44 B : 6 z z 340 x2 1.00 z5 308 无可行解

(4) 检验解是否可行。如可行,已得一个可行解,计算并
记下它的z值,并停止分枝,若子域都检验过,转步骤(7) ,否则转步骤(6)。因继续分枝,即使得到可行解,目标 函数值也比记下的z值大,不会是最优解;如不可行,进行 步骤(5)。

运筹学第五章 整数规划

运筹学第五章 整数规划

2、0-1型变量常用来表示是否处于某个特定状态
例5.6
有三种资源被用于生产三种产品,资源量、产 品单件可变费用及售价、资源单耗量及组织三种产品 生产的固定费用见下表。要求制定一个生产计划,使 总收益最大。
0-1型变量常用来表示两个选项中非此即彼的选择

例5.7 用4台机床加工3件产品。各产品的机床加工顺序,以及产品在机 床上的加工工时见下表,且要求工件二的总工时不超过d。现要求确定 各件产品在机床上的加工方案,使在最短的时间内加工完全部产品.
A 甲 15 B 17 C 21 D 24

丙 丁
19
26 19
23
17 21
22
16 23
18
19 17
解:令 xij=
1 若指派第i 人做第j 事 (i, j=1, …, n) 0 若不指派第i 人做第j 事
每个人只能完 成一项任务
满足约束条件的可行解 也可写成矩阵形式,称 为解矩阵。如例5.9的一 个可行解矩阵是:
每行减该行最小数
0 1 10 2
2 5 1 4
6 4 0 6
9 0 3 0
每列减该列最小数
0 1 10 2
1 4 0 3
6 4 0 6
产品1
产品2
产品3
a11 机床1 a21 机床1
a22 机床2 a32 机床2
a13 机床3
a33 机床3
a14 机床4 a24 机床4
xij表示第i种产品在第j台机床上加工的开始时间。 同一件产品在下一台机床上加工的开始时间不得早 1 同一 于在上一台机床上加工的结束时间 件产品 产品1:x11+a11x13 及 x13+a13x14 在不同 机床上 产品2:x21+a21x22 及 x22+a22x24 的加工 产品3:x32+a32x33 顺序

第五章整数规划报告

第五章整数规划报告

2. 用观察法找问题ILP的一个整数可行解,求得其目标函 数值,并记作 Z ,以Z*表示ILP的最优目标函数值,则
Z Z* Z
分支,如松弛问题有一个最优解xj为非整数值bj,则可以构造两个 分支。 xj≤[bj] xj≥[bj]+1 定界,以每个后继问题为一分支表明求解的结果。
2018/10/15
8
1.整数线性规划(ILP)的类型
整数线性规划的一般形式: Max (min) z=CX AX≤(≥,=)b X ≥0 X中部分或全部为整数 X为0或1


纯ILP: Xj全为整数
混合ILP:部分Xj为整数

0-1 ILP:Xj为0或1
2018/10/15 浙江科技学院经济管理学院管工系 9
2.整数线性规划(ILP)实例
1.割平面法
割平面束构造:
设具有最大真分数部分的非整分量所在行为:
x i a ik x k bi
将该约束方程所在系数和常数分解为整数N和正
真分数f之和,即:
x i ( N ik f ik ) x k N bi f bi
则该约束方程等价于:
f ik xk
2018/10/15
-4/5 0 -6/5 0 -1/5 0 0 0 5/4 -1
1 1 0
X1 x3 δj
0 -4/5 1
X2 16/5
0 -3/2 1 -5/4
由上面结果构造割平面束
4 4 x5 5 5
2018/10/15
δj
0
0
0
0
0 -1/4
X * (0,4,2,0,1,0)T
浙江科技学院经济管理学院管工系

整数规划

整数规划


√ × √
×
√ × ×

√ √ √

√ √ √ √ 8 8
(二)0-1 整数规划——隐枚举法
首先,找到一个可行解,并计算其目标函数值;然后,以其目标值作为
一个过滤条件,优于其值的再判断约束条件,直到找到最优解。
满足约束条件(是∨ x1 . x2. x3 ( 0. ( 0. 0. 0. 0 ) 1) √ √ (1) √ √ (2) √ √ (3) √ √ 否×) (4)
目标函数: Max z = 2x1 +3 x2 约束条件: 195 x1 + 273 x2 ≤1365 4 x1 + 40 x2 ≤140 x1 ≤4 x1≥3 x2≥3 x1,x2 ≥ 0
无可行解
(四)比较子问题的最优解,判断是否还要继续分枝 因为Z21=14大于Z1=13.90,所以x1=3,x2=2是原 问题的最优整数解
过滤 条件
0 5 -2 3 3
max Z 3 x1 2 x2 5 x3 x1 2 x2 x3 2 (1) x1 4 x2 x3 4 (2) 3 (3) x1 x2 4 x2 x3 6 (4) x1 , x2 , x3 0或1
第五章 整数规划
在整数规划中,如果所有的变量都为非负整数,则 称为纯整数规划问题;如果有一部分变量为负整数,则 称之为混合整数规划问题。在整数规划中,如果变量的 取值只限于0和1,这样的变量我们称之为0-1变量。在 纯整数规划和混合整数规划问题中,如果所有的变量都 为0-1变量,则称之为0-1规划。 求整数解的线性规划问题,不是用四舍五入法或去 尾法对线性规划的非整数解加以处理都能解决的,而要 用整数规划的方法加以解决。

第五章 整数规划

第五章 整数规划

令 x3′=1-x3, x4′=1-x4, x5′=1-x5,得 Max z=2x2+4x3′+5x5′+7x4′+8x1-16 3x2- x3′- 3x5′- 2x4′+3x1≤-2 ① 3x2+2x3′- x5′+ x4′+5x1≤6 ② x2, x3′,x5′,x4′,x1 =0或1
z=8,不可行 x2 =x3′=x5′ = x4
若某行(列)已有0元素,那就不必再减了。例1的计算为:
2 15 10 4 ) 9 14 8 7 4 14 15 16 13 11 9 13
( c ij
-2 -4 -9 -7
0 6 0 0
13 0 0 1
11 10 7 4
2 11 4 2
R0: z0=356 x1=4.81 x2=1.82
x1 ≤4
x1≥5
R2:z2=341 x1=5.00 x2=1.57 x1 ≤1 x1≥2
R1:z1=349 问题R2为: x1=4.00 Max z=40x1+90x2 x2=2.10 9x1+7x2≤56 7x1+20x2 ≤ 70 x1 ≥ 5 x2 ≤2 x2≥3 x1,x2 ≥ 0
指派问题的数学模型可写成如下页形式:
min z

i1 j1
n
n
c ij x ij
第j项工作由 一个人做 第i人做 一项工作

i1
n
x ij 1 x ij 1
( j 1 , , n)

j1
n
( i 1 , , n ) (i 1, , n; j 1, , n)

运筹学课件 第5章:整数规划

运筹学课件 第5章:整数规划

依照决策变量取整要求的不同,整数规划可分为纯 整数规划/全整数规划、混合整数规划、0-1整数规划
整数规划解的性质
求解整数规划问题
max Z 3 x1 2 x2 2 x1 x2 9 ( IP)2 x1 3 x2 14 x1 , x2 0且为整数
分析:考虑对应的线性规划问题(LP)
b
x1
2
2 3
x2
1
3 2
x3
1
0 0
x4
0
1 0
b
x1
1
0 0
x2
0
1 0
x3
3/4
-1/2
x4
-1/4 1/2
0
0
x3 9 x4 14
9/2
14/2
3
2
x1 13/4 x2 5/2
-5/4
-1/4
初始表
最终表
可见,最优解为x1=3.25 x2=2.5 z(0) =59/4=14.75
选 x2 进行分枝,即增加两个约束x2≤2 和x2 ≥3 ,则
max Z 3 x1 2 x2 2 x1 x2 9 2 x 3 x 14 2 ( IP1) 1 x2 2 x1 , x2 0且为整数
max Z 3 x1 2 x2 2 x1 x2 9 2 x 3 x 14 2 ( IP2) 1 x2 3 x1 , x2 0且为整数
b
7/2 2 1 3 -29/2 7/2 2 1 -1/2 -29/2
x1
1 0 0 1 0 1 0 0 0 0
x2
0 1 0 0 0 0 1 0 0 0
x3
1/2 0 -1 0 -3/2 1/2 0 -1 -1/2 -3/2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章整数规划§1整数规划的数学模型及特点要求一部分或全部决策变量必须取整数值得规划问题称为整数规划。

其模型为:Max(或min)z=s.t若要求决策变量只能取值0或1的整数规划称为0-1型整数线性规划。

§5 指派问题一.指派问题的标准形式及数学模型在现实生活中,有各种性质的指派问题。

例如,有若干项工作需要分配给若干人(或部门)来完成;有若干项合同需要选择若干个投标者来承包;有若干班级需要安排在各教室上课等等。

诸如此类的问题,它们的基本要求是在满足特定的指派要求条件下,使指派方案的总体效果最佳。

由于指派问题的多样性,有必要定义指派问题的标准形式。

指派问题的标准形式(以人和事为例)是:有n个人和n件事,已知第i个人作第j件事的费用为,要求确定人和事之间的一一对应的指派方案,是完成这n件事的总费用最少。

为了建立标准指派问题的数学模型,引入个0-1变量:这样,问题的数学模型可写成(5.1)s.t (5.3)其中,(5.1)表示每件事必优且只有一个人去做,(5.2)表示每个人必做且只做一件事。

注:○1指派问题是产量()、销量()相等,且==1,i,j=1,2,…n的运输问题。

○2有时也称为第i个人完成第j件工作所需的资源数,称之为效率系数(或价值系数)。

并称矩阵C= =(5.5)为效率矩阵(或价值系数矩阵)。

并称决策变量排成的n×n矩阵X== (5.6)为决策变量矩阵。

(5.6)的特征是它有n个1,其它都是0。

这n个1位于不同行、不同列。

每一种情况为指派问题的一个可行解。

共n!个解。

其总的费用 z =C⊙X这里的⊙表示两矩阵对应元素的积,然后相加。

问题是:把这n个1放到X的个位置的什么地方可使耗费的总资源最少?(解最优)例1已知效率矩阵C=则X(1)=,X(2)=都是指派问题的最优解例12/P-149:某商业公司计划开办五家新商店。

为了尽早建成营业,商业公司决定由5家建筑公司分别承建。

已知建筑公司A i(i=1,2,…5)对新商店B j(1,2,…5)的建造费用的报价(万元)为(i,j=1,2,…5),见表5-9。

商业公司应当对5家建筑公司怎样分派建筑任务,才能使总的建筑费用最少?0-1变量=则问题的数学模型为Min z=4+8+…+10+6s.t若看成运输问题,且如上所述,则表5-9为当然,第一行的1应放在(1,1)位置,此位置同时是第一列的费用最小。

但一般情况下没有这么好。

需找一适合一般的方法。

二.匈牙利解法原理:虽然指派问题是一类特殊的整数规划问题,又是特殊的0-1规划问题和特殊的运输问题,因此,它可以用多种相应的解法来求解。

但是,这些解法都没有充分利用指派问题的特殊性质,有效地减少计算量。

1955年,库恩(W.W.Kuhn)提出了匈牙利法。

定理1:设指派问题的效率矩阵为C=,若将该矩阵的某一行(或某一列)的各个元素都减去统一常数t(t可正可负),得到新的效率矩阵,则以为效率矩阵的新的指派问题与原指派问题的最优解相同。

但其最优解比原最优解之减少t.证明:设式(5.1)~(5.4)为原指派问题。

现在C矩阵的第k行个元素东减去同一常数t,记新的指派问题的目标函数为.则有==+=+=+-t=-t·1=Z-t因此有Min =min(Z-t)=minZ-t而新问题的约束方程同原指派问题。

因此其最优解比相同,而最优解差一个常数。

推论:若将指派问题的效率矩阵每一行即每一列分别减去各行及各列的最小元素,则得到新指派问题与原指派问题有相同的最优解。

证明:结论是显然的。

只要反复运用定理1便可得证。

当将效率矩阵的每一行都减去各行的最小元素,将所得的矩阵的每一列在减去当前列中最小元素,则最后得到新效率矩阵中必然出现一些零元素。

设=0,从第i行来看,它表示第i个人去干第j项工作效率(相对)最好。

而从第j列来看,这个0表示第j项工作以第i 人来干效率(相对)最高。

定义:在效率矩阵C中,有一组在不同行不同列的零元素,称为独立零元素组,此时每个元素称为独立零元素。

例2:已知C=则{=0,=0,=0,=0}是一个独立零元素组,=0,=0,=0,=0分别称为独立零元素。

{=0,=0,=0,=0}也是一个独立零元素组,而{=0,=0,=0,=0}就不是一个独立零元素组,因为=0与=0这两个零元素位于同一列中。

根据以上对效率矩阵中零元素的分析,对效率矩阵C中出现的的独立零元素组中零元素所处的位置,在决策变量矩阵中令相应的=1,其余的=0。

就可找到指派问题的一个最优解。

就上例中X(1)=,就是一个最优解。

同理X(2)=也是一个最优解。

但是在有的问题中发现效率矩阵C中独立零元素的个数不够n个,这样就无法求出最优指派方案,需作进一步的分析。

首先给出下述定理。

定理2效率矩阵C中独立零元素的最多个数等于能覆盖所有零元素的最少直线数。

我们不证它,说一下意思:例3:已知矩阵C1=,C2=,C3=分别用最少直线去覆盖各自矩阵中的零元素:C1=,C2=,C3=可见,C1最少需要4条线,C2最少需要4条线,C3最少需要5条线,方能划掉矩阵中所有的零。

即它们独立零元素组中零元素最多分别为4,4,5。

三.匈牙利法求解步骤:我们以例题来说明指派问题如何求解:例4给定效率矩阵C=求解该指派问题。

解:ⅰ)变换效率矩阵,将各行各列都减去当前各行、各列中最小元素。

C= =这样得到的新矩阵中,每行每列都必然出现零元素。

ⅱ)用圈0法求出新矩阵中独立零元素。

(1)进行行检验对进行逐行检验,对每行只有一个未标记的零元素时,用○记号将该零元素圈起。

然后将被圈起的零元素所在的列的其它未标记的零元素用记号×划去。

如中第2行、第3行都只有一个未标记的零元素,用○分别将它们圈起。

然后用×划去第1列其它未被标记的零元素(第2列没有),见=在第i行只有一个零元素=0时,表示第i人干第j件工作效率最好。

因此优先指派第i人干第j项工作,而划去第j列其它未标记的零元素,表示第j项工作不再指派其它人去干(即使其它人干该项工作也相对有最好的效率)。

重复行检验,直到每一行都没有未被标记的零元素或至少有两个未被标记的零元素时为止。

本题中第1行此时也只有1个未被标记的零元素。

因此圈起中第1行第4列的零元素,然后用×划去第4列中未被标记的零元素。

这是第4行也只有一个未被标记的零元素,再用○圈起,见=(2)进行列检验与进行行检验相似,对进行了行检验的矩阵逐列进行检验,对每列只有一个未被标记的零元素,用记号○将该元素圈起,然后技改元素所在行的其他未被标记的零元素打×。

重复上述列检验,直到每一列都没有未被标记的零元素或有两个未被标记的零元素为止。

这时可能出现以下三种情况:○1每一行均有圈0出现,圈0的个数m恰好等于n,即m=n.○2存在未标记的零元素,但他们所在的行和列中,为标记过的零元素均至少有两个。

○3不存在未被标记过的零元素,当圈0的个数m< n.ⅲ) 进行试指派若情况○1出现,则可进行试指派:令圈0为止的决策变量取值为1,其他决策变量取值均为零,得到一个最优指派方案,停止计算。

上例中得到后,出现了情况○1,可令=1, =1,=1,=1,其余=0。

即为最优指派。

若情况○2出现,则在对每行、每列的其它未被标记的零元素任选一个,加上标记○,即圈上该零元素。

然后给同行、同列的其它未被标记的零元素加标记×。

然后再进行行、列检验,可能出现情况○1或○3,出现情况○1则由上述得到一最优指派,停止计算。

若情况○3出现,则要转入下一步。

ⅳ):做最少直线覆盖当前所有零元素。

我们还以例12来说明过程:已知例12指派问题的系数矩阵为:先对各行元素分别减去本行的最小元素,然后对各列也如此,即C =此时,中各行各列都已出现零元素。

为了确定中的独立零元素,对加圈,即=由于只有4个独立零元素,少于系数矩阵阶数n=5,不能进行指派,为了增加独立零元素的个数,需要对矩阵作进一步的变换,变换步骤如下:(1)对中所有不含圈0元素的行打√,如第3行。

(2)对打√的行中,所有零元素所在的列打√,如第1列。

(3)对所有打√列中圈0元素所在行打√,如第2行。

(4)重复上述(2),(3)步,直到不能进一步打√为止。

(5)对未打√的每一行划一直线,如第1,3,5行。

对已打√的每一列划一纵线,如第1列,既得到覆盖当前0元素的最少直线数。

见。

= =Ⅴ):对矩阵作进一步变换,以增加0元素。

在未被直线覆盖过的元素中找最小元素,将打√行的各元素减去这个最小元素,将打√裂的各元素加上这个最小元素(以避免打√行中出现负元素),这样就增加了零元素的个数。

如中未被直线覆盖过的元素中,最小元素为==1,对打√的第2,3行各元素都减去2,对打√的第1列各元素都加上1,得到矩阵。

=Ⅵ):回到步骤Ⅱ),对已增加了零元素的矩阵,再用圈0法找出独立零元素组。

=中已有5个独立零元素,故可确定指派问题的最优方案。

本例的最优解为X*=也就是说,最优指派方案是:让A1B3A2 B2A3 B1A4 B4A5 B5这样按排能使总的建造费最少,为z=7+9+6+6+6=34(万元)四.一般的指派问题在实际应用中,常会遇到非标准形式,解决的思路是:先化成标准形式,然后再用匈牙利法求解。

1.最大化的指派问题其一般形式为s.t处理办法:设最大化的指派问题的系数矩阵为C=,m=max{},令B==,则以B为系数矩阵的最小化指派问题和以C为系数矩阵的原最大化指派问题有相同的最优解。

例5:某工厂有4名工人A1,A2,A3,A4,分别操作4台车床B1,B2,B3,B4。

每小时单产量解:C==,m=max{10,9,8,7,…5,6}=10,B=== ==中的◎数=n=4, 所以X=(5。

7)即为最优解。

从而产值最大的分配方案也为(5.7),最大产值为Z=10+6+1+5=222.人数和事数不等的指派问题。

○1若人数<事数,添一些虚拟的“人”,此时这些虚拟的“人”做各件事的费用系数取为0,理解为这些费用实际上不会发生。

○2若人数>事数,添一些虚拟的“事”,此时这些虚拟的“事”被各个人做的费用系数同样也取为0。

解:添加虚拟人A5,构造标准耗时阵:C= =所圈0数=4< 5=n,下找最少覆盖0的直线。

=从未划去的元素中找最小者:{4,3,7,5,1,4,7,9}=1。

未划去的行减去此最小者1,划去的列加上次最小者1,得。

=◎个数=n,从而的一最优指派:=从而最少耗时为 z=2+7+6+7=223.一个人可做几件事的指派问题。

若某人可作几件事,则可将该人化作相同的几个“人”来接受指派。

这几个“人”做同一件事的费用系数当然一样。

例6:对例12的指派问题,为了保证工程质量,经研究决定,舍弃建筑公司A4和A5,让技术力量较强的建筑公司A1、A2、A3来承建。

相关文档
最新文档