5章换热器解析

合集下载

《食品工程原理》第五章 传热

《食品工程原理》第五章   传热
第五章
传热
Heat Transfer
第一节 传热概述 第二节 热传导 第三节 对流传热 第四节 热交换 第五节 辐射传热
.
第一节 传热概述
5-1 传热的基本概念
1.传热基本方式
(1)热传导(conduction)
当物体内部或两直接接触的物体间有温度差时, 温度较高处的分子与相邻分子碰撞,并将能量的 一部分传给后者。
G P r 6 r .1 2 6 0 0 6 .4 7 .0 1 4 60 3
查表5-3 a = 0.53, m = 1/4
Nu=a(Pr·Gr)m
N u aL 0. 5(3 4 .1 460 )3 1/ 424.3 λ
αN λ u 24 0.3 .0 7 3.04 W 512/K (m ) L 0.1
δ1
δ2
.
本次习题
p.195
2. 5.
.
5-4 通过圆筒壁的稳态导热
5.4A 通过单层圆筒壁的稳态导热
Φλ2πrLdT
dr
Φ 2π
r2
Lr1
drλT2
r
T1
dT
Φ
2πLλ
lnr2 (T1
T2
)
r1

rmΦ rl2n2δ π rr12r1 m/rLλ T1T δln2rr12r2rδrm1
令 Am 2π rm L
.
M 3 Θ 1 L 1 a L T b M T 1 T 1 c M 3 Θ L 1 d M 3 L e L 2 T 2 Θ 1 f L L T 2 g
按因次一致性原则
对质量M 1 = c + d + e 对长度L 0 = a + b – c + d – 3e + 2f + g

换热器的工作原理及分类(动图演示)

换热器的工作原理及分类(动图演示)

换热器的工作原理及分类一、概述换热器(heatexchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。

换热器在化工、石油、动力、食品及其它许多工业生产中占有重要地位,其在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用广泛。

二、分类适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下:(一)按传热原理分类1.间壁式换热器间壁式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。

间壁式换热器有管壳式、套管式和其他型式的换热器。

间壁式换热器是目前应用最为广泛的换热器。

2.蓄热式换热器蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。

蓄热式换热器有旋转式、阀门切换式等。

3.流体连接间接式换热器流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。

4.直接接触式换热器又被称为混合式换热器,这种换热器是两种流体直接接触,彼此混合进行换热的设备,例如,冷水塔、气体冷凝器等。

5.复式换热器兼有汽水面式间接换热及水水直接混流换热两种换热方式的设备。

同汽水面式间接换热相比,具有更高的换热效率;同汽水直接混合换热相比具有较高的稳定性及较低的机组噪音。

(二)按用途分类1.加热器加热器是把流体加热到必要的温度,但加热流体没有发生相的变化。

2.预热器预热器预先加热流体,为工序操作提供标准的工艺参数。

3.过热器过热器用于把流体(工艺气或蒸汽)加热到过热状态。

4.蒸发器蒸发器用于加热流体,达到沸点以上温度,使其流体蒸发,一般有相的变化。

(三)按结构分类可分为:浮头式换热器、固定管板式换热器、U形管板换热器、板式换热器等。

传热学-第五章 对流换热(Convection Heat Transfer)

传热学-第五章 对流换热(Convection Heat Transfer)
根据傅里叶定律:
[ ] qw,x
=
−λ⎜⎜⎝⎛
∂t ∂y
⎟⎟⎠⎞w , x
W m2
注意和第三类边 界条件的区别
根据牛顿冷却公式
[ ] qw,x = hx (tw -t∞ ) W m2
根据能量守恒
对流换热过程 微分方程式
[ ] hx
=

tw
λ
− t∞
⎜⎜⎝⎛
∂t ∂y
⎟朝下
自然对流
(5) 流体的热物理性质
热导率 λ [w/(m℃)]
比热容 c [J/(kg℃)]
密 度 ρ [kg/m3]
动力粘度 η [Ns/m2] 运动粘度 ν =η/ρ [m2/s] 体积胀系数 α [1/K]
α
=
1 ⎜⎛ v⎝
∂v ∂T
⎟⎞ ⎠p
=

1
ρ
⎜⎛ ⎝
∂ρ
∂T
⎟⎞ ⎠p
λ↑ ⇒ h↑流体内部和流体与壁面间导热热阻小
第五章 对流换热(Convection Heat Transfer)
§5-1 对流换热概说
1. 对流换热的定义和性质
定义:对流换热是指 流体流经固体时流体 与固体表面之间的 热量传递现象。
对流换热与热对流不同,既有热对流,也有导热;不是 基本传热方式 对流换热实例:(1) 暖气管道; (2) 电子器件冷却;(3) 换热器
ρ、c↑ ⇒ h↑单位体积流体能携带更多能量
η ↑ ⇒ h↓有碍流体流动、不利于热对流 α ↑ ⇒ h↑自然对流换热增强
综上所述,表面传热系数是众多因素的函数:
h = f (u, tw , tf , λ, cp , ρ, α ,η, l )
对流换热分类小结

南京工业大学ASPEN学习第五章换热器设计教程

南京工业大学ASPEN学习第五章换热器设计教程
第 30 页
HeatX—详细计算
压降 ( Pressure Drop )
• 分别指定热侧和冷侧的出口压力
( Outlet pressure )
• 根据几何结构计算
( Calculated from geometry )
第 31 页
HeatX—详细计算 总传热系数方法 ( U methods )
• 常数 ( Constant )
第 16 页
HeatX — 换热器设定
6. 冷物流出口温度 (Cold stream outlet temperature) 7. 冷物流出口温升 (Cold stream outlet temperature increase) 8. 冷物流出口温差 (Cold stream outlet temperature approach) 9. 冷物流出口过热度 (Cold stream outlet degrees superheat) 10. 冷物流出口蒸汽分率 (Cold stream outlet vapor fraction)
5.1 ASPEN PLUS的换热器模型
两股物流的换热器
MHeatX Hetran Aerotran
多股物流的换热器
在多股物流之间换热
管壳式换热器 空冷换热器
提供B-JAC Hetran管壳 管壳式换热器,包括釜 式换热器程序界面 式再沸器 提供B-JAC Aerotran空 冷换热器程序界面 错流式换热器包括空气 冷却器 第 2 页
第 25 页
HeatX——结果查看 概况表单给出了冷、热物流的 进、出口温度、压力、蒸汽分率 (Vapor fraction),以及换热器的热负 荷(Heat duty)。
第 26 页

《传热学》资料第五章传热过程与传热器

《传热学》资料第五章传热过程与传热器

《传热学》资料第五章传热过程与传热器一、名词解释1.传热过程:热量从高温流体通过壁面传向低温流体的总过程.2.复合传热:对流传热与辐射传热同时存在的传热过程.3.污垢系数:单位面积的污垢热阻.4.肋化系数: 肋侧表面面积与光壁侧表面积之比.5.顺流:两种流体平行流动且方向相同6.逆流: 两种流体平行流动且方向相反7.效能:换热器实际传热的热流量与最大可能传热的热流量之比.8.传热单元数:传热温差为1K时的热流量与热容量小的流体温度变化1K所吸收或放出的热流量之比.它反映了换热器的初投资和运行费用,是一个换热器的综合经济技术指标.9.临界热绝缘直径:对应于最小总热阻(或最大传热量)的保温层外径.二、填空题1.与的综合过程称为复合传热。

(对流传热,辐射传热)2.某燃煤电站过热器中,烟气向管壁传热的辐射传热系数为20 W/(m2.K),对流传热系数为40 W/(m2.K),其复合传热系数为。

(60W/(m2.K))3.肋化系数是指与之比。

(加肋后的总换热面积,未加肋时的换热面积)4.一传热过程的热流密度q=1.8kW/m2,冷、热流体间的温差为30℃,则传热系数为,单位面积的总传热热阻为。

(60W/(m2.K),0.017(m2.K)/W)5.一传热过程的温压为20℃,热流量为lkW,则其热阻为。

(0.02K/W)6.已知一厚为30mm的平壁,热流体侧的传热系数为100 W/(m2.K),冷流体侧的传热系数为250W/(m2.K),平壁材料的导热系数为0.2W/(m·K),则该平壁传热过程的传热系数为。

(6.1W/(m2.K))7.在一维稳态传热过程中,每个传热环节的热阻分别是0.01K/W、0.35K/W和0.009lK /W,在热阻为的传热环节上采取强化传热措施效果最好。

(0.35K/W)8.某一厚20mm的平壁传热过程的传热系数为45W/(m2.K),热流体侧的传热系数为70W/(m2K),冷流体侧的传热系数为200W/(m2.K),则该平壁的导热系数为。

化工原理第五章传热过程计算与换热器

化工原理第五章传热过程计算与换热器

5.4 传热效率和传热单元数
• 当传热系数K和比热cpc为常数时,积分上式可得
• 式中NTUc(Number of Transfer Unit)称为对冷流体而言的传热单 元数,Dtm为换热器的对数平均温差。
• 同理,以热流体为基准的传热单元数可表 示
• 在换热器中,传热单元数定义 为
5.4 传热效率和传热单元数
• 2.由选定的换热器型式计算传热系数K;
• 3.由规定的冷、热流体进出口温度计算参数e、CR; • 4.由计算的e、CR值确定NTU。由选定的流动排布型
式查取e—NTU算图。可能需由e—NTU关系反复计算 NTU;
• 5.计算所需的传热面积

5.5 换热器计算的设计型和操作型问题
• 例5-2 一列管式换热器中,苯在换热器的管内 流动,流量为1.25 kg/s,由80℃冷却至30℃; 冷却水在管间与苯呈逆流流动,冷却水进口温 度为20℃,出口温度不超过50℃。若已知换热 器的传热系数为470 W/(m2·℃),苯的平均 比热为1900 J/(kg·℃)。若忽略换热器的散 热损失,试分别采用对数平均温差法和传热效 率—传热单元数法计算所需要的传热面积。
• 如图5-4所示,按照冷、热流 体之间的相对流动方向,流体之 间作垂直交叉的流动,称为错流 ;如一流体只沿一个方向流动, 而另一流体反复地折流,使两侧 流体间并流和逆流交替出现,这
种情况称为简单折流。
•图 P2
•55
5.3 传热过程的平均温差计算
•通常采用图算法,分三步: •① 先按逆流计算对数平均温差Dtm逆; •② 求出平均温差校正系数φ;
•查图 φ
•③ 计算平均传热温差: • 平均温差校正系数 φ <1,这是由于在列管式换热器内增设了

换热器的原理及应用

换热器的原理及应用

换热器的原理及应用一、换热器的基本原理换热器是一种热交换设备,用于将热量从一个介质传递到另一个介质中。

其基本原理是利用不同温度的两种流体(或气体)之间的热传导,使它们在多个细小通道中进行流动,并通过这些通道的壁与介质之间进行换热。

换热器通常由两个主要部分组成:热源端和热载体端。

热源端是传递热量的一侧,热载体端是吸收热量的一侧。

换热器的基本工作原理如下:1.传热方式:换热器主要通过对流、传导和辐射的方式进行热传导。

2.热源端:热源端的流体吸收热量,并传递给换热器中的壁面。

3.热载体端:热载体端的流体通过与换热器的壁面接触,吸收热量进行传递。

4.换热器壁面:换热器壁面起到隔离两边流体的作用,并通过壁面的传导和对流换热,将热量从热源端传递到热载体端。

5.换热流体状态:换热器可以处理不同物态的流体,包括气体、液体和气液两相流体。

二、换热器的应用领域换热器是广泛应用于工业生产中的关键设备,其作用多种多样。

以下是一些典型的换热器应用领域的列举:1.供暖系统:供暖系统中的换热器将锅炉中的热水或蒸汽传递给房间内的暖气设备,用于供暖。

2.汽车冷却系统:汽车发动机冷却系统中的散热器,通过冷却剂的循环来降低发动机温度,保证发动机正常运行。

3.空调系统:空调系统中的蒸发器和冷凝器,通过制冷剂的循环工作,实现对空气的冷却或加热。

4.石油化工:在石油化工生产过程中,换热器用于原油加热、冷却和重整等工序。

5.核能领域:核电站中的换热器被用于冷却核反应堆中的燃料,并产生蒸汽驱动涡轮发电机。

6.食品加工:食品加工行业中的换热器,用于热交换、杀菌、蒸煮和冷却等工艺。

7.航空航天:飞机和火箭中的换热器,用于控制燃料温度和提供舒适的空调环境。

8.造纸业:造纸过程中,使用换热器来调节纸浆的温度,以实现最佳的造纸质量。

三、换热器的类型根据换热器的结构和工作原理,可以将其划分为多种类型。

以下是常见的几种换热器类型的介绍:1.管壳式换热器:管壳式换热器由一个外壳和许多平行或螺旋排列的管子组成。

换热器工作原理讲解

换热器工作原理讲解

换热器工作原理讲解换热器是一种常见的热交换设备,用于在不同的流体之间传递热量。

它广泛应用于化工、石油、电力、冶金等行业中,具有节能、高效的特点。

本文将详细介绍换热器的工作原理。

一、换热器的基本结构换热器一般由壳体、管束和传热介质组成。

其中,壳体通常由钢板制成,具有一定的强度和密封性。

管束是换热器的核心部分,由一系列的管子组成,通过它们与介质进行热交换。

传热介质则是传递热量的介质,可以是液体、气体或蒸汽等。

二、换热器的传热方式换热器的传热方式有三种:对流换热、传导换热和辐射换热。

1. 对流换热对流换热是指通过流体的对流传热进行热量交换。

换热器内的流体分为两种:一个是工作介质,即需要传热或降温的流体;另一个是传热介质,即用于传递热量的流体。

工作介质在管束内流动,而传热介质在壳体外流动。

当两者经过接触面时,热量会从高温流体传递到低温流体。

2. 传导换热传导换热是指通过固体的传导传递热量。

换热器中的管束和壳体都是由金属材料制成,金属具有较好的导热性。

当工作介质在管子内流动时,由于管子与管子之间有热交换,热量会通过管材的导热传递到周围环境。

3. 辐射换热辐射换热是指通过电磁波的辐射传递热量。

当换热器的温度较高时,会向周围空间发射电磁波,这些电磁波会被其他物体吸收并转化为热能。

这种换热方式在高温和真空环境下较为常见。

三、换热器的工作过程换热器的工作过程可以分为三个步骤:加热、传热和冷却。

1. 加热首先,工作介质进入换热器的一个侧面,经过管子的内部流动。

同时,传热介质从壳体进入,通过管束的外部流动。

此时,传热介质的高温和工作介质的低温之间存在温差,导致热量向工作介质传递,使工作介质得到加热。

2. 传热在传热过程中,热量通过对流、传导和辐射的方式在工作介质和传热介质之间进行交换。

工作介质经过管束内流动,热量会通过管材的导热传递到管壁上。

而传热介质在壳体外流动,热量则通过壳体与传热介质之间进行传导和对流传热。

3. 冷却最后,经过传热后的工作介质会变热,而传热介质则会冷却下来。

化工原理第五章传热过程计算与换热器

化工原理第五章传热过程计算与换热器

一.恒温差传热
T
t
tm T t
t
二.变温差传热
T
t1 0
T1
t1 浙江大学0本科生课程
过程工程原理
t
并流 t
0
T1 t2
t
A0 T1
T2 t2 t2
t
逆流 t
A0 第五章 传热过程计算与换热器
A T2
A T2 t1
A
13/25
§5.2.4 tm的计算
T1 t1
以冷、热流体均无相变、逆流流动为例:
t
T
11/2t5
1 1 b 1
T
KA 1 A1 Am 2 A2
Tw tw
考虑到实际传热时间壁两侧还有污垢热
阻,则上式变为:
t
1 1
KA 1 A1
Ra1
b
Am
Ra2
1
2 A2
浙江大学本科生课程 过程工程原理
第五章 传热过程计算与换热器
12/25
§5.2.4 tm的计算
Q KAtm
T1
T
浙江大学本科生课程 过程工程原理
第五章 传热过程计算与换热器
25/25
幻灯片2目录
习题课
浙江大学本科生课程 化工原理
第五章 传热过程计算与换热器
26/14
设 计 型
习题课 操作型 t1
LMTD法:
对数平均温差法
Q Ktm A
(1) T1
T2
Q mhc ph T1 T2 (2)
Q mc c pc t2 t1
浙江大学本科生课程
过程工程原理
第五章 传热过程计算与换热器
14/25
§5.2.4 tm的计算

换热器的工作原理

换热器的工作原理

换热器的工作原理引言:换热器是一种重要的热交换设备,广泛应用于工业生产和能源系统中。

它可以将热能从一个流体传递到另一个流体,实现热量的有效利用。

本文将详细介绍换热器的工作原理及其五个关键部份。

一、热交换原理1.1 热传导换热器通过热传导实现热量的传递。

当两个温度不同的流体通过换热器的热传导面接触时,热量会从高温流体传递到低温流体。

这种热传导过程是通过份子之间的碰撞和传递能量实现的。

1.2 对流换热对流换热是指通过流体的对流传热来实现热量的传递。

当两个流体在换热器内部流动时,它们之间会形成对流层,热量会通过对流层的传递实现从一个流体到另一个流体的传热。

1.3 辐射换热辐射换热是指通过辐射传热来实现热量的传递。

换热器内部的高温表面会辐射出热量,低温表面则会吸收这些热量。

辐射换热不需要介质,可以在真空中传热。

二、换热器的五个关键部份2.1 热交换管道热交换管道是换热器中的核心部份,用于容纳流体并实现热量的传递。

它通常由金属材料制成,具有良好的导热性和耐腐蚀性。

2.2 管束管束是将多个热交换管道固定在一起的部件,通常由支撑板和固定件组成。

管束的设计和创造对换热器的性能和效率有重要影响。

2.3 壳体壳体是换热器的外壳,用于容纳热交换管道和管束。

它通常由金属材料制成,具有足够的强度和密封性,以承受高压和高温环境。

2.4 冷却介质冷却介质是指通过换热器来吸收热量的流体。

它可以是空气、水、油等不同的介质,根据具体应用需求选择合适的冷却介质。

2.5 加热介质加热介质是指通过换热器来释放热量的流体。

它可以是蒸汽、热水、燃气等不同的介质,根据具体应用需求选择合适的加热介质。

三、换热器的工作过程3.1 冷却过程在冷却过程中,冷却介质从外部环境吸收热量,通过换热器的热交换管道和壳体,将热量传递给加热介质,使其温度升高。

3.2 加热过程在加热过程中,加热介质通过换热器的热交换管道和壳体,释放热量给冷却介质,使其温度降低。

3.3 温差调节换热器可以通过调节冷却介质和加热介质的流量和温度来实现温差的调节,以满足不同的工艺需求。

第5章 夹点技术设计换热网络

第5章  夹点技术设计换热网络

组合曲线的构造过程
例题:三个冷物流,构造组合曲线。
5.1.3 在T-H图上描述夹点
夹点 两曲线的垂直距离=ΔTmin
凡是等于P点温度的热流体部位和等于Q点温度的冷流体部位都
是夹点。热流体的夹点温度与冷流体的夹点温度相பைடு நூலகம்ΔTmin。
夹点描述所得信息: (1)过程系统的最小传热温差,夹点部位的传热温差最小; (2)最小的公用工程加热负荷QH ,min ; (3)最小的公用工程冷却负荷QC, min ; (4)系统最大的热回收量QR,max ; (5)夹点将系统分为热端和冷端,热端在夹点温度以上,只需 要公用工程加热(热阱); (6)冷端在夹点温度以下,只需要冷公用工程冷却(热源)。 夹点温度差的影响: ΔT min大,QH, min、QC ,min 增大,QR,max减小
SN6
对子网络进行热衡算:
Ok=I k-D k
D k=(∑CPC- ∑CPH )(T k-T k+1)
k=1,(温度间隔为 150~145 ℃)
D 1=(0-2) ×(150-145) = -10
(负赤字表示有剩余热量10kW) I 1 = 0 (无外界输入热量) O1= I 1 - D 1= 0 -(-10) = 10 O1为正值,说明子网络 1(SN1) 有剩余热量供给子网络2(SN2)
80 100
87.5 0 135 25
100 87.5
0 135 25 12.5
结果比较:
选用不同 △Tmin 值计算结果的比较
△Tmin /℃ QH,min / kW QC,min / kW
20 15 107.5 80 40 12.5
夹点位置 / ℃ 热物流 冷物流
90 90 70 75

换热器工作原理讲解

换热器工作原理讲解

换热器工作原理讲解换热器是一种用于传递热量的设备,广泛应用于工业生产和日常生活中。

它能够将热量从一个流体传递到另一个流体,实现能量的转移和利用。

本文将深入探讨换热器的工作原理,帮助读者更好地理解和应用这一设备。

一、传热方式换热器的工作原理涉及到传热方式的选择。

常见的传热方式包括对流传热、辐射传热和传导传热。

在换热器中,主要采用对流传热和传导传热两种方式。

1. 对流传热对流传热是指通过流体的对流来传递热量。

流体可以是液体或气体,通过流体流动,热量会从高温区域传递到低温区域。

在换热器中,流体通常通过管道或管束流动,通过管壁和另一个流体间接传热。

对流传热可分为强制对流和自然对流两种方式,具体的选择取决于应用需求和工艺条件。

2. 传导传热传导传热是指热量通过物质的直接接触和分子振动传递。

当换热器中的两个流体之间有实体接触或通过固体壁分隔时,传导传热就会发挥作用。

这种传热方式通常在板式换热器中使用,效果较好。

二、换热器的基本构成换热器通常由两个流体的流动通道、壳体和传热面组成。

下面将详细介绍每个部分的作用和结构。

1. 流动通道换热器中的流动通道是流体流动的通道,用于传递热量。

通常有两种类型的流动通道:单相流体通道和多相流体通道。

单相流体通道适用于同一种流体的换热,如冷却水或蒸汽。

多相流体通道适用于两种或两种以上具有不同性质的流体之间的换热,如水-气、水-油等。

多相流体通道通常采用板式换热器的形式,能够实现高效传热。

2. 壳体换热器的壳体是容纳流动通道的外部壳体,起到支撑和保护作用。

壳体通常由金属或塑料制成,具有良好的强度和密封性。

3. 传热面传热面是流体之间进行热量传递的界面。

传热面可以是管壁、板式换热器中的板片,也可以是螺旋形或螺旋环形的结构。

传热面的设计和选择对换热器的传热效果起着重要的影响。

三、不同类型的换热器根据换热器的结构和工作原理的不同,可以将其分为多种类型。

下面将介绍常见的几种换热器类型及其特点。

化工原理讲稿(中国石油大学)第五章 传热3

化工原理讲稿(中国石油大学)第五章  传热3
以套管换热器为例:
热流体放出热量: Q1 m1[ 1 c p ,1 T1 T2 ] 冷流体吸收热量: Q2 m2 [ 2 c p , 2 t 2 t1 ] 能量守恒: Q1=Q2+Qf
Qf=0
Q1=Q2
第五节 两流体间的传热计算
例: 在一套管换热器中,用冷却水将1.25kg/s的
第五节 两流体间的传热计算
四、 总传热系数K
总传热系数 K 综合反映传热设备性能,流动状况和流体物 性对传热过程的影响。
物理意义:
Q K A t m
表征间壁两侧流体传热过程的强弱程度。 K = f(流体物性、操作条件、换热器本身特性等)
第五节 两流体间的传热计算
㈠ 传热系数K 的确定方法
T t m Q
1 K x Ax
推动力 阻力
--传热速率方程式
Q K x Ax T t m
第五节 两流体间的传热计算
1 1 1 K x A x i Ai Am o Ao
平壁:Ai=Am=Ao
Q = K· A· △tm
圆筒壁:Ai≠Am≠Ao
Q = Ki· Ai· △tm= Km· Am· △tm =Ko· Ao· △ tm
1 1 Ko o

Ko o
若αo >>αi,1/αo可忽略,此时有:
1 1 Ki i

Ki i
第五节 两流体间的传热计算
结论:
称1/αo 或1/αi 称为控制热阻,即α小一侧的热阻对传热起决定性作用, 如水蒸汽和空气换热;
当存在控制性热阻时,K 值总是接近α小的值; 当存在控制性热阻,壁温(Tw、tw)总是接近于α大的流体主体温度 欲有效提高 K 值,应采取措施提高控制性热阻侧的α。

图文并茂讲解换热器

图文并茂讲解换热器

图文并茂讲解换热器本文内容源自设计院网并经作者整理,如有出入请留言补充和修订换热器作为工艺过程必不可少的单元设备,广泛地应用于石油、化工、动力、轻工、机械、冶金、交通、制药等工程领域中。

据统计,在现代石油化工企业中,换热器投资约占装置建设总投资的30%~40%;在合成氨厂中,换热器约占全部设备总台数的40%。

由此可见,换热器对整个企业的建设投资及经济效益有着重要的影响。

一.换热器的分类1.按换热器的用途分类(1)加热器:加热器用于把流体加热到所需的温度,被加热流体在加热过程中不发生相变。

(2)预热器:预热器用于流体的预热,以提高整套工艺装置的效率。

(3)过热器:过热器用于加热饱和蒸汽,使其达到过热状态。

(4)蒸发器:蒸发器用于加热液体,使之蒸发汽化。

(5)再沸器:再沸器是蒸馏过程的专用设备,用于加热已冷凝的液体,使之再受热汽化。

(6)冷却器:冷却器用于冷却流体,使之达到所需要的温度。

(7)冷凝器:冷凝器用于冷凝饱和蒸汽,使之放出潜热而凝结液化。

2.按换热器传热面形状和结构分类(1)管式换热器:管式换热器通过管子壁面进行传热,按传热管的结构不同,可分为列管式换热管、套管式换热器、蛇管式换热器等几种。

管式换热器应用最广。

(2)板式换热器:板式换热器通过板面进行传热,按传热板的结构形式,可分为平板式换热器、螺旋板式换热器、板翅式换热器和热板式换热器。

3.按换热器所用材料分类(1)金属材料换热器:金属材料换热器是由金属材料制成,常用金属材料有碳钢、合金钢、铜及铜合金、铝及铝合金、钛及钛合金等。

由于金属材料的热导率较大,故该类换热器的传热效率较高,生产中用到的主要是金属材料换热器。

(2)非金属材料换热器:非金属材料换热器由非金属材料制成,常用非金屑材料有石墨、玻璃、塑料以及陶瓷等。

该类换热器主要用于具有腐蚀性的物料由于非金属材料的热导率较小,所以其传热效率较低。

二.换热器结构与性能特点(一)管式换热器的结构形式1.管壳式换热器管壳式换热器又称列管式换热器,是一种通用的标准换热设备。

换热器原理知识点总结

换热器原理知识点总结

换热器原理知识点总结一、换热器的基本原理(一)热传导和对流传热换热器的换热过程主要涉及到热传导和对流传热两种方式。

热传导是指热量通过物体内部的传递方式,对流传热则是指流体与物体表面发生热量交换的过程。

在换热器中,通过这两种方式实现两种流体之间的热量传递。

(二)换热器的热力学基础换热器的热力学基础主要涉及热平衡、温度差、热传导等概念。

在换热器中,不同流体之间必须达到热平衡,即两种流体的温度相等。

换热器的有效性取决于流体之间的温差,温差越大,热量传递效率越高。

此外,热传导是换热的主要方式之一,它取决于物体的热导率、厚度和传热面积等因素。

二、换热器的分类(一)按换热方式分类按照换热方式的不同,换热器可以分为直接接触换热器和间接换热器。

直接接触换热器是指两种流体直接接触并交换热量,常见的有冷凝器和蒸发器;间接换热器则是指通过换热表面将两种流体的热量传递,常见的有管壳式换热器和板式换热器等。

(二)按换热器结构分类换热器的结构形式有很多种,常见的包括管式换热器、壳管式换热器、板式换热器、螺旋板片换热器等。

不同的结构形式适用于不同的工艺条件和换热要求。

(三)按换热性能分类换热器的性能可分为传热效率、压降、热应力等,这些性能指标对换热器的运行稳定性、能效和安全性有重要影响。

传热效率是衡量换热器性能的重要指标,不同的流体、流速、换热面积等因素都会影响传热效率。

三、换热器的性能参数(一)传热系数传热系数是衡量换热器性能的重要参数之一,它表示单位时间内单位换热面积上的传热量。

传热系数的大小直接影响着换热效率和设备尺寸,传热系数越大,换热器的性能越好。

(二)压降压降是指流体在换热器中通过程中的压力损失,它与设备的阻力、流体速度、管道布局等因素有关。

理想的换热器应该具有较小的压降,以降低能耗和提高设备效率。

(三)换热面积换热面积是指换热器传热表面的总面积,它是决定传热效率的重要因素之一。

通过增加换热面积可以提高传热效率,但也会增加设备成本和维护难度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 隔板使换热器内形成两个矩形通道。冷流 体由顶部接管进入,沿通道向中央部分流 动,由中央冷流体接管流出 • 而热流体由中央接管进入换热器,与冷流 体作逆向流动,由底部接管流出
3.板翅式换热器
• 通常由隔板、翅片、封条、导流片组成。在相邻两隔 板间放置翅片、导流片以及封条组成一夹层,称为通 道, • 将这样的夹层根据流体的不同方式叠置起来,钎焊成 一整体便组成板束,板束是板翅式换热器的核心,配 以必要的封头、接管、支撑等就组成了板翅式换热器
(4)填料函式换热器
• 填料函式换热器的优点是结构较浮头式换 热器简单,制造方便,耗材少,造价低; 管束可从壳体内抽出,管内、管间均能进 行清洗,维修方便 • 其缺点是填料函耐压不高,一般小于 4.0MPa • 壳程介质可能通过填料函外漏,对易燃、 易爆、有毒和贵重的介质不适用
(5)釜式换热器
2.蛇管式换热器
• 结构:壳体、管束、管板、折流挡板和封 头。 一种流体在管内流动,其行程称为管 程;另一种流体在管外流动,其行程称为 壳程。管束的壁面即为传热面。 • 分类:固定管板式、浮头式、填料函式和U 型管式。
• 折流挡板:为提高壳程流体流速,往往在 壳体内安装一定数目与管束相互垂直的折 流挡板。折流挡板不仅可防止流体短路、 增加流体流速,还迫使流体按规定路径多 次错流通过管束,使湍动程度大为增加。
4.热板式换热器
三、热管换热器
第三节 换热器传热过程的强化
一、传热过程的强化途径 1.增大传热面积
• (1)翅化面 • (2)异形表面 • (3)多孔物质结构
2.增大平均温度差
• 取决于两流体的温度条件和两流体在换热器中的流动形式
3.增大总传热系数(减少各项热阻)
• 提高流体的速度;增强流体的扰动;在流体中加固体颗粒; 在气流中喷入液滴;采用短管换热器;防止结垢和及时清 除垢层
二、管壳式换热器的设计与选型
第四节换热设备操作与维护
(3)U形管式换热器
• 其结构特点是只有一个管板, • 换热管为 U 型,管子两端固定在同一管板 上。管束可以自由伸缩,当壳体与 U 型换 热管有温差时,不会产生温差应力。
• U 型管式换热器的优点是结 构简单,只有一个管板,密 封面少,运行可靠造价低; 管束可以抽出,管间清洗方 便。 • 其缺点是管内清洗比较困难; 由于管子需要有一定的弯曲 半径,故管板的利用率较低; 管束最内层管间距小,壳程 易短路;内层管子坏了不能 更换,因而报废率较高。
蛇管式换热器是管式换热器中结构最简单、操作最方便、 成本最低的一种换热设备。常见的蛇管式换热器有沉浸式和
喷淋式两类。
⑴沉浸式蛇管换热器
沉浸式蛇管换热器是由蛇管、加热 (冷却)池等部件构成。 沉浸式蛇管换热器的主要缺点是: 体积大、换热效率不高,常需在换热 池中增加搅拌系统,耗能较高。
⑵喷淋式蛇管换热器
第五章 换热器 第一节 换热器的分类
• 1.按作用原理分类
(1)间壁式换热器(表面式换热器) (2)直接接触式换热器(或混合式换热器) (3)蓄热式换热器(或回热式换热器) (4)中间载热体式换热器 • 2.按用途分类加热器、冷却器、冷凝器、再沸器等
• 3.按传热面形状和结构分类管壳式、板式、新型材
料、热管
• 4.按换热器所用材料
第二节 换热器的基本结构
• 一、管式换热器 • 1.管壳式换热器
管壳式换热器又称为列管式换热器,是最典型的间 壁式换热器,历史悠久,占据主导作用。 优点:单位体积设备所能提供的传热面积大,传热 效果好,结构坚固,可选用的结构材料范围宽广, 操作弹性大,大型装置中普遍采用。
(2)浮头式换热器
• 浮头式换热器两端的管板,一端不与壳体 相连,该端称浮头。管子受热时,管束连 同浮头可以沿轴向自由伸缩,完全消除了 温差应力。
• 浮头式换热器的管束可以拉出,便于拉出。 管束的膨胀不受壳体的约束。管壁与壳壁的 温差可大于50℃,冷热流体的温度可超过 110 ℃
浮头式换热器的缺点是结 构复杂,价格较贵,而且 浮头端小盖在操作时无法 知道泄漏情况,所以装配 时一定要注意密封性能。
(1)固定管板式换热器
• 封头与壳体用法兰连接,管束两端的管板与壳体是 采用焊接的方法连接在一起,具有壳体排列管子多 的优点; • 壳程不易机械清洗,可能产生较大的热应力; • 使用场合:壳程流体不易结垢或容易化学清洗,壳 体与传热管壁温度之差小于50℃否则加膨胀节(低 于60~70℃,压力低于7kg/cm² )
• 板片由各种材料的制成的薄板用各种不同形式的磨具压成形状各 异的波纹,并在板片的四个角上开有角孔,用于介质的流道。板 片的周边及角孔处用橡胶垫片加以密封。 • 框架由固定压紧板、活动压紧板、上下导杆和夹紧螺栓等构成。
2.螺旋板式换热器
• 螺旋板式换热器是在中心隔板上,焊接两 张平行金属薄板,然后卷制成螺旋状而构 成传热壁面
4.翅片管式换热器
在翅片管式换热器中,由于增加了翅片,使得其结构相对较
复杂,设备费相对前面三种增加。
翅片管
翅片式换热器
二、板式换热器
• 包括平板式换热器、螺旋板式换热器、板 翘式换热器定波纹形状的金 属片叠装而成的一种新型高效换热器。 • 各种板片之间形成薄矩形通道,通过半片进行热 量交换。
• 喷淋式蛇管换热设备多用于对管内流体进行冷却, 主要由蛇管、蛇管固定架、喷淋装置、循环池 (底盘)等部件构成。 • 喷淋式蛇管换热器的换热效果较沉浸式蛇管换 热器好,但其体积庞大、占地面积较大、冷却剂 用量大、耗能较高。
3.套管式换热器
套管式换热器是由两种不同直径的直管套在一起组成同
心套管,其内管一般以U形肘管顺次连接,外管与内管连接 而成。
相关文档
最新文档