【中考真题】2017年云南省中考数学试卷含答案(Word版)

合集下载

云南省中考数学试卷(样卷)(含解析)

云南省中考数学试卷(样卷)(含解析)

2017年云南省中考数学试卷(样卷)一、填空题(本题共6小题,每小题3分,共18分,请将正确的选项填在答题卡上)1.﹣的倒数的绝对值是.2.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C= °.3.分解因式:3x2﹣12= .4.小明用S2= [(x1﹣2)2+(x2﹣2)2+…+(x10﹣2)2]计算一组数据的方差,那么x1+x2+x3+…+x10= .5.若方程3x2﹣5x﹣2=0有一根是a,则6a2﹣10a= .6.如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=100m,则河宽AB为m(结果保留根号).二、选择题(本部分共8小题,每小题4分,共32分.每小题给出4个选项,其中只有一个选项是正确的,请将正确的选项填在答题卡上)7.下列运算正确的是()A.4a2﹣4a2=4a B.(﹣a3b)2=a6b2 C.a+a=a2D.a2•4a4=4a88.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为()A.312×104B.0.312×107C.3.12×106D.3.12×1079.如图是由5个底面直径与高度相等的大小相同的圆柱搭成的几何体,其左视图是()A.B.C.D.10.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A.B.C.D.11.式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x≤1 C.x>0 D.x>112.要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为()A.288°B.144°C.216°D.120°13.下列命题正确是()A.点(1,3)关于x轴的对称点是(﹣1,3)B.函数 y=﹣2x+3中,y随x的增大而增大C.若一组数据3,x,4,5,6的众数是3,则中位数是3D.同圆中的两条平行弦所夹的弧相等14.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.21 B.24 C.27 D.30三、解答题(共9小题,70分)15.计算:2cos60°﹣(﹣3)﹣3+(π﹣)0﹣|﹣2|.16.先化简,再求值:(1﹣)÷,其中a=﹣1.17.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?18.如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?19.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是;扇形统计图中的圆心角α等于;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.20.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE 的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.21.随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?22.如图,AB是⊙O的直径,点C是⊙O上一点,AD和过点C的切线互相垂直,垂足为D,直线DC与AB的延长线相交于P.弦CE平分∠ACB,交直径AB于点F,连结BE.(1)求证:AC平分∠DAB;(2)探究线段PC,PF之间的大小关系,并加以证明;(3)若tan∠PCB=,BE=,求PF的长.23.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1.tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.2017年云南省中考数学试卷(样卷)参考答案与试题解析一、填空题(本题共6小题,每小题3分,共18分,请将正确的选项填在答题卡上)1.﹣的倒数的绝对值是.【考点】15:绝对值;17:倒数.【分析】由倒数的定义得,﹣的倒数是﹣,再由绝对值的性质得出其值.【解答】解:∵﹣的倒数是﹣,﹣的绝对值是,∴﹣的倒数的绝对值是.2.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C= 30 °.【考点】JA:平行线的性质.【分析】首先根据平行线的性质可得∠1=∠B,∠2=∠C,再根据AD是∠EAC的平分线,可得∠1=∠2.利用等量代换可得∠B=∠C=30°.【解答】解:∵AD∥BC,∴∠1=∠B,∠2=∠C,又∵AD平分∠EAC,∴∠1=∠2,∴∠C=∠B=30°,故答案为:30°3.分解因式:3x2﹣12= 3(x﹣2)(x+2).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取3,再利用平方差公式分解即可.【解答】解:原式=3(x2﹣4)=3(x+2)(x﹣2).故答案为:3(x+2)(x﹣2).4.小明用S2= [(x1﹣2)2+(x2﹣2)2+…+(x10﹣2)2]计算一组数据的方差,那么x1+x2+x3+…+x10= 20 .【考点】W7:方差.【分析】根据方差计算公式确定这组数据的平均数,计算即可.【解答】解:∵S2= [(x1﹣2)2+(x2﹣2)2+…+(x10﹣2)2],∴这组数据的平均数是2,∴x1+x2+x3+…+x10=2×10=20,故答案为:20.5.若方程3x2﹣5x﹣2=0有一根是a,则6a2﹣10a= 4 .【考点】A3:一元二次方程的解.【分析】将a代入方程3x2﹣5x﹣2=0,得到3a2﹣5a=2,等式的两边都扩大为原来的2倍,问题可求.【解答】解:由题意,把是a的根代入3x2﹣5x﹣2=0,得:3a2﹣5a=2,∴2×(3a2﹣5a)=2×2,∴6a2﹣10a=4.6.如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=100m,则河宽AB为50m(结果保留根号).【考点】T8:解直角三角形的应用.【分析】先根据三角形外角的性质求出∠CAD的度数,判断出△ACD的形状,再由锐角三角函数的定义即可求出AB的值.【解答】解:∵∠ACB=30°,∠ADB=60°,∴∠CAD=30°,∴AD=CD=100m,在Rt△ABD中,AB=AD•sin∠ADB=100×=50(m).故答案是:50.二、选择题(本部分共8小题,每小题4分,共32分.每小题给出4个选项,其中只有一个选项是正确的,请将正确的选项填在答题卡上)7.下列运算正确的是()A.4a2﹣4a2=4a B.(﹣a3b)2=a6b2 C.a+a=a2D.a2•4a4=4a8【考点】49:单项式乘单项式;35:合并同类项;47:幂的乘方与积的乘方.【分析】A、原式合并得到结果,即可做出判断;B、原式利用积的乘方运算法则计算得到结果,即可做出判断;C、原式合并得到结果,即可做出判断;D、原式利用单项式乘单项式运算法则计算得到结果,即可做出判断.【解答】解:A、4a2﹣4a2=0,故选项错误;B、(﹣a3b)2=a6b2,故选项正确;C、a+a=2a,故选项错误;D、a2•4a4=4a6,故选项错误.故选:B.8.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为()A.312×104B.0.312×107C.3.12×106D.3.12×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3120000=3.12×106,故选C.9.如图是由5个底面直径与高度相等的大小相同的圆柱搭成的几何体,其左视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】先细心观察原立体图形四个圆柱体的位置关系,结合四个选项选出答案.【解答】解:由图可知,左视图有二行,最下一层2个小正方体,上面左侧有一个小正方体,故选:D.10.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()A.B.C.D.【考点】H2:二次函数的图象;F3:一次函数的图象;G2:反比例函数的图象.【分析】本题需要根据抛物线的位置,反馈数据的信息,即a+b+c,b,b2﹣4ac的符号,从而确定反比例函数、一次函数的图象位置.【解答】解:由抛物线的图象可知,横坐标为1的点,即(1,a+b+c)在第四象限,因此a+b+c<0;∴双曲线的图象在第二、四象限;由于抛物线开口向上,所以a>0;对称轴x=>0,所以b<0;抛物线与x轴有两个交点,故b2﹣4ac>0;∴直线y=bx+b2﹣4ac经过第一、二、四象限.故选:D.11.式子在实数范围内有意义,则x的取值范围是()A.x≥1 B.x≤1 C.x>0 D.x>1【考点】72:二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,解不等式即可.【解答】解:根据题意得:x﹣1≥0,即x≥1时,二次根式有意义.故选:A.12.要制作一个圆锥形的烟囱帽,使底面圆的半径与母线长的比是4:5,那么所需扇形铁皮的圆心角应为()A.288°B.144°C.216°D.120°【考点】MP:圆锥的计算.【分析】根据底面圆的半径与母线长的比设出二者,然后利用底面圆的周长等于弧长列式计算即可.【解答】解:∵底面圆的半径与母线长的比是4:5,∴设底面圆的半径为4x,则母线长是5x,设圆心角为n°,则2π×4x=,解得:n=288,故选A.13.下列命题正确是()A.点(1,3)关于x轴的对称点是(﹣1,3)B.函数 y=﹣2x+3中,y随x的增大而增大C.若一组数据3,x,4,5,6的众数是3,则中位数是3D.同圆中的两条平行弦所夹的弧相等【考点】O1:命题与定理.【分析】根据关于x轴的对称点的特征,一次函数的性质,众数是,中位数的定义,圆的性质矩形判断即可.【解答】解:A、点(1,3)关于x轴的对称点是(1,﹣3),故错误;B、函数 y=﹣2x+3中,y随x的增大而减小,故错误;C、若一组数据3,x,4,5,6的众数是3,则中位数是4.5,故错误;D、同圆中的两条平行弦所夹的弧相等,正确,故选:D.14.下列图形都是由同样大小的小圆圈按一定规律组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为()A.21 B.24 C.27 D.30【考点】38:规律型:图形的变化类.【分析】仔细观察图形,找到图形中圆形个数的通项公式,然后代入n=7求解即可.【解答】解:观察图形得:第1个图形有3+3×1=6个圆圈,第2个图形有3+3×2=9个圆圈,第3个图形有3+3×3=12个圆圈,…第n个图形有3+3n=3(n+1)个圆圈,当n=7时,3×(7+1)=24,故选B.三、解答题(共9小题,70分)15.计算:2cos60°﹣(﹣3)﹣3+(π﹣)0﹣|﹣2|.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】直接利用特殊角的三角函数值以及零指数幂的性质以及负整数指数幂的性质化简求出即可.【解答】解:2cos60°﹣(﹣3)﹣3+(π﹣)0﹣|﹣2|=2×++1﹣2=.16.先化简,再求值:(1﹣)÷,其中a=﹣1.【考点】6D:分式的化简求值.【分析】先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.17.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【考点】KD:全等三角形的判定与性质.【分析】(1)根据AAS即可推出△ABE和△DCE全等;(2)根据三角形全等得出EB=EC,推出∠EBC=∠ECB,根据三角形的外角性质得出∠AEB=2∠EBC,代入求出即可.【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.18.如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?【考点】G7:待定系数法求反比例函数解析式;G6:反比例函数图象上点的坐标特征;H7:二次函数的最值.【分析】(1)当F为AB的中点时,点F的坐标为(3,1),由此代入求得函数解析式即可;(2)根据图中的点的坐标表示出三角形的面积,得到关于k的二次函数,利用二次函数求出最值即可.【解答】解:(1)∵在矩形OABC中,OA=3,OC=2,∴B(3,2),∵F为AB的中点,∴F(3,1),∵点F在反比例函数y=(k>0)的图象上,∴k=3,∴该函数的解析式为y=(x>0);(2)由题意知E,F两点坐标分别为E(,2),F(3,),∴S△EFA=AF•BE=×k(3﹣k),=k﹣k2=﹣(k2﹣6k+9﹣9)=﹣(k﹣3)2+,在边AB上,不与A,B重合,即0<<2,解得0<k<6,∴当k=3时,S有最大值.S最大值=.19.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是30 ;扇形统计图中的圆心角α等于144°;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;X8:利用频率估计概率.【分析】(1)根据题意列式求值,根据相应数据画图即可;(2)根据题意列表,然后根据表中数据求出概率即可.【解答】解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144°;故答案为:30,144°;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,记小红和小花抽在相邻两道这个事件为A,∴.20.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE 的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【考点】KD:全等三角形的判定与性质;KP:直角三角形斜边上的中线;L9:菱形的判定.【分析】(1)根据AAS证△AFE≌△DBE,推出AF=BD,即可得出答案;(2)得出四边形ADCF是平行四边形,根据直角三角形斜边上中线性质得出CD=AD,根据菱形的判定推出即可.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中∴△AFE≌△DBE(AAS),∴AF=BD,∴AF=DC.(2)四边形ADCF是菱形,证明:AF∥BC,AF=DC,∴四边形ADCF是平行四边形,∵AC⊥AB,AD是斜边BC的中线,∴AD=BC=DC,∴平行四边形ADCF是菱形.21.随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?【考点】AD:一元二次方程的应用;B7:分式方程的应用.【分析】(1)设每台B种空气净化器为x元,A种净化器为(x+300)元,根据用6000元购进B种空气净化器的数量与用7500元购进A种空气净化器的数量相同,列方程求解;(2)根据总利润=单件利润×销量列出一元二次方程求解即可.【解答】解:(1)设每台B型空气净化器为x元,A型净化器为(x+300)元,由题意得, =,解得:x=1200,经检验x=1200是原方程的根,则x+300=1500,答:每B型空气净化器、每台A型空气净化器的进价分别为1200元,1500元;(2)设B型空气净化器的售价为x元,根据题意得;(x﹣1200)(4+)=3200,解得:x=1600,答:如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为1600元.22.如图,AB是⊙O的直径,点C是⊙O上一点,AD和过点C的切线互相垂直,垂足为D,直线DC与AB的延长线相交于P.弦CE平分∠ACB,交直径AB于点F,连结BE.(1)求证:AC平分∠DAB;(2)探究线段PC,PF之间的大小关系,并加以证明;(3)若tan∠PCB=,BE=,求PF的长.【考点】MC:切线的性质;S9:相似三角形的判定与性质.【分析】(1)连接OC,根据切线的性质可得OC⊥CD,则AD∥OC,根据等边对等角,以及平行线的性质即可证得;(2)根据圆周角定理以及三角形的外角的性质定理证明∠PFC=∠PCF,根据等角对等边即可证得;(3)证明△PCB∽△PAC,根据相似三角形的性质求得PB与PC的比值,在直角△POC中利用勾股定理即可列方程求解.【解答】解:(1)连接OC.∵OA=OC,∴∠OAC=∠OCA.∵PC是⊙O的切线,AD⊥CD,∴∠OCP=∠D=90°,∴OC∥AD.∴∠CAD=∠OCA=∠OAC.即AC平分∠DAB.(2)PC=PF.证明:∵AB是直径,∴∠ACB=90°,∴∠PCB+∠ACD=90°又∵∠CAD+∠ACD=90°,∴∠CAB=∠CAD=∠PCB.又∵∠ACE=∠BCE,∠PFC=∠CAB+∠ACE,∠PCF=∠PCB+∠BCE.∴∠PFC=∠PCF.∴PC=PF.(3)连接AE.∵∠ACE=∠BCE,∴=,∴AE=BE.又∵AB是直径,∴∠AEB=90°.AB=,∴OB=OC=5.∵∠PCB=∠PAC,∠P=∠P,∴△PCB∽△PAC.∴.∵tan∠PCB=tan∠CAB=.∴=.设PB=3x,则PC=4x,在Rt△POC中,(3x+5)2=(4x)2+52,解得x1=0,.∵x>0,∴,∴PF=PC=.23.如图,在直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1.tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,①设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求出当△CEF与△COD相似时,点P的坐标;②是否存在一点P,使△PCD得面积最大?若存在,求出△PCD的面积的最大值;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由三角函数的定义可求得OB,再结合旋转可得到A、B、C的坐标,利用待定系数法可求得抛物线解析式;(2)①△COD为直角三角形,可知当△CEF与△COD相似时有两种情况,即∠FEC=90°或∠EFC=90°,当PE⊥CE时,则可得抛物线的顶点满足条件,当PE⊥CD时,过P作PG⊥x轴于点G,可证△PGE∽△COD,利用相似三角形的性质可得到关于t的方程,可求得P点坐标;②可求得直线CD的解析式,过P作PN⊥x轴于点N,交CD于点M,可用t表示出PM的长,当PM取最大值时,则△PCD的面积最大,可求得其最大值.【解答】解:(1)∵OA=1.tan∠BAO=3,∴=3,解得OB=3,又由旋转可得OB=OC=3,∴A(1,0),B(0,3),C(﹣3,0),设抛物线解析式为y=ax2+bx+c,把A、B、C三点的坐标代入可得,解得,∴抛物线解析式为y=﹣x2﹣2x+3,(2)①由(1)可知抛物线对称轴为x=﹣1,顶点坐标为(﹣1,4),∵△COD为直角三角形,∴当△CEF与△COD相似时有两种情况,即∠FEC=90°或∠EFC=90°,若∠FEC=90°,则PE⊥CE,∵对称轴与x轴垂直,∴此时抛物线的顶点即为满足条件的P点,此时P点坐标为(﹣1,4);若∠EFC=90°,则PE⊥CD,如图,过P作PG⊥x轴于点G,则∠GPE+∠PEG=∠DCO+∠PEG,∴∠GPE=∠OCD,且∠PGE=∠COD=90°,∴△PGE∽△COD,∴=,∵E(﹣1,0),G(t,0),且P点横坐标为t,∴GE=﹣1﹣t,PG=﹣t2﹣2t+3,∴=,解得t=﹣2或t=3,∵P点在第二象限,∴t<0,即t=﹣2,此时P点坐标为(﹣2,3),综上可知满足条件的P点坐标为(﹣1,4)或(﹣2,3);②设直线CD解析式为y=kx+m,把C、D两点坐标代入可得,解得,∴直线CD解析式为y=x+1,如图2,过P作PN⊥x轴,交x轴于点N,交直线CD于点M,∵P点横坐标为t,∴PN=﹣t2﹣2t+3,MN=t+1,∵P点在第二象限,∴P点在M点上方,∴PM=PN﹣MN=﹣t2﹣2t+3﹣(t+1)=﹣t2﹣t+2=﹣(t+)2+,∴当t=﹣时,PM有最大值,最大值为,∵S△PCD=S△PCM+S△PDM=PM•C N+PM•NO=PM•OC=PM,∴当PM有最大值时,△PCD的面积有最大值,∴(S△PCD)max=×=,综上可知存在点P使△PCD的面积最大,△PCD的面积有最大值为.。

2017年云南昆明市数学中考试题(含答案) 精品

2017年云南昆明市数学中考试题(含答案) 精品

ABCD E1正面 昆明市2007年高中(中专)招生统一考试数 学 试 卷(本试卷共三大题25小题,共6页。

考试时间120分钟,满分120分)参考公式 ① 弧长公式180n Rl π=,其中l 是弧长,R 是半径,n 是圆心角得度数; ② 二次函数2(0)y ax bx c a =++≠图象得顶点坐标是24()24b ac b a a--, 一、选择题:(每小题3分,满分27分。

在每小题给出得四个选项中,只有一项是正确的;每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号的小框涂黑。

) 1、2的倒数是( )A 、2B 、-2C 、12 D 、12- 2、我省大力开展节能增产活动,开发利用煤矿安全“杀手”煤层瓦斯发电。

经测算,我省深层煤层瓦斯资源量可发电1400亿千瓦时以上,1400亿千瓦时用科学记数法表示为( )A 、121.410⨯千瓦时 B 、111.410⨯千瓦时 C 、101.410⨯千瓦时 D 、101410⨯千瓦时3、如图,△ABC 中,点D 、E 分别在AB 、BC 边上,DE ∥AC ,∠B =50°,∠C =70°,那么∠1的度数是( )A 、70°B 、60°C 、50°D 、40°4、下列运算中,正确的是( )A 、326a a a ⋅=B 、22(3)6a a -=C=D 、22(3)(3)9a b a b a b -+=-5、左下图是由几个小正方体组成的一个几何体,这个几何体的左视图是( )6、点A (2,m )在反比例函数12y x=-的图象上,则m 的值为( ) A 、24 B 、-24 C 、6 D 、-67、初三某班10名男同学“引体向上”的测试成绩(单位:次数)分别是9,14,10,15,7,9,16,10,11,9,这组数据的众数、中位数、平均数依次是( ) A 、9,10,11 B 、10,11,9 C 、9,11,10 D 、10,9,11A B CDB8、如果只用一种正多边形进行镶嵌,那么在下面的正多边形中,不能镶嵌成一个平面的是( )A 、正三角形B 、正方形C 、正五边形D 、正六边形9、如图,在钝角三角形ABC 中,AB =6cm ,AC =12cm ,动点D 从A 点出发到B 点为止,动点E 从C 点出发到A 点为止。

2017云南省中考数学试卷含答案解析(word版)

2017云南省中考数学试卷含答案解析(word版)

2017年XX 省中考数学试卷(解析版)〔全卷三个大题,共23个小题;满分120分〕一、填空题〔本大题共6个小题,每小题3分,共18分〕 1.2的相反数是______________. [考点]相反数 [答案]-2;2.已知关于x 的方程2501,x x a x a ++==已知关于的方程的解是则的值为__________ [考点]方程的解 [答案]-73.如图,在△ABC 中,D 、E 分别为AB ,AC 上的点,若DE ∥BC ,AD 13AB =, 则AD+DE+AE=AB+BC+AC______________.[考点]相似三角形,等比性质 [解析]等比性质a c e a c e k k b d f b d f ++====++若,则 等比性质的原理是,a bk,c dk,e fk a c ek b d f======设则 a c e bk dk fkk b d f b d f++++==++++,故本题答案为134.9______________.x x -使有意义的的取值范围为 [考点]二次根式 [答案]9x ≤5.如图,边长为4的正方形ABCD 外切于圆O ,切点分别为E 、F 、G 、H ,则图中阴影部分的面积为____________________.[考点]多边形内切圆,切线长定理。

阴影部分面积[解析]方法很多,又是选择题,要求没有那么严谨,只要看出分割,就可以完成 [答案]42π+6.5(,)y A a b x=已知点在双曲线上,若a 、b 都是正整数,则图像经过 B(a,0)C(0,b)、两点的一次函数的解析式〔也称关系式〕为_______________.[考点]反比例函数,一次函数,待定系数法 [解析]因为5(,)y A a b x=点在双曲线上,所以ab=5 又因为a 、b 都是正整数,所以1551a ab b ==⎧⎧⎨⎨==⎩⎩或 所以分两种情况:①B 〔1,0〕,C 〔0,5〕,由此可得一次函数解析式为55y x =-+ ②B 〔5,0〕,C 〔0,1〕,由此可得一次函数解析式为155y x =-+二、选则题〔本大题共8个小题,每小题只要一个正确选项,每小题4分,共32分〕 7.作为世界文化遗产的长城,其总长大约为6700000m ,将6700000用科学计数法表示为〔〕 A .56.710⨯ B. 66.710⨯ C. 70.6710⨯ D. 86710⨯ [考点]科学计算法 [答案]选B8.下面长方体的主视图〔主视图也称正视图〕是〔〕[考点]三视图 [答案]选C9.下列计算正确的是〔〕A .236a a a ⨯= B.()3326a a -=- C.623a a a ÷= D.326()a a -=[考点]整式乘除、幂的性质 [答案]选D10. 若一个多边形的内角和为900°,则这个多边形是〔〕 A.五边形 B.六边形 C.七边形 D.八边形 [考点]多边形内角和 [答案]选C11. sin60°的值为〔〕 A .3 B.32 C.22 D.12[考点]特殊角三角函数[答案]选B12. 下列说法正确的是〔〕A .要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B .4为同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C .甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62,则乙的表现较甲更稳定 D.某次抽奖活动中,中奖的概率为150表示每抽奖50次就有一次中奖 [考点]统计概率小综合[解析]B 选项中位数应为102.5;C 选项根据方差甲更稳定;D 这种事情是常识大家都懂, 故选A13.正如我们小学学过的圆锥体积公式213V r h π=〔π表示圆周率,r 表示圆锥的底面半径,h 表示圆锥的高〕一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后第7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确。

2017云南中考数学解析(黄启胜+郑荣国)

2017云南中考数学解析(黄启胜+郑荣国)

2017年云南省初中学业水平考试数学试题卷(全卷三个大题,共23个小题,共8页;满分120分,考试用时120分钟)注意事项:1.本卷为试题卷.考生必须在答题卡上解题作答.答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卡一并交回.一、填空题(本大题共6个小题,每小题3分,共18分) 1.(2017云南,1,3分)|-3|= . 【答案】3 【逐步提示】本题考查了绝对值的计算,解题的关键是-3是负数,负数的绝对值是它的相反数.①确定-3是负数;②负数的绝对值是它的相反数;③化简. 【详细解答】解:∵-3<0 |a |=⎩⎪⎨⎪⎧ a (a >0) 0 (a =0) -a (a <0)∴|-3|=-(-3)=3,故答案为3.【解后反思】绝对值是这个数到原点的距离,所以不可能是负数,像这样数字的绝对值,不要管符号,直接等于即可.需要注意的是:1.正确理解相反数的概念:若有理数a 、b 互为相反数,则用数学式子可表示为a +b =0;若a +b =0,那么a 、b 互为相反数.2.正确理解绝对值的意义:绝对值具有非负性,当a ≥0时,|a |=a ;当a ≤0时,|a |=-a .【关键词】绝对值;相反数;2.(2017云南,2,3分)如图,直线a ∥b ,直线c 与直线a 、b 分别相交于A 、B 两点.若∠1=60度,则∠2= 度.【答案】60 【逐步提示】本题考查了平行线的性质:三线八角“Z ”“F ”“U ”型位置关系.解题的关键是熟练找到三线八角.①找到角的位置关系,对顶角和同位角的关系;②根据两直线平行,同位角相等;得到结果. 【详细解答】解:∵a //b ,∴∠1=∠3=60°,∴∠2=∠3=60°,故答案为60.【解后反思】本题主要是记住同位角、内错角、同旁内角等位置关系,阅图能力也是重点.用到的知识点是:两直线平行,同位角相等;对顶角相等. 【关键词】平行线的性质;对顶角;3.(2017云南,3,3分)分解因式:x 2-1= . 【答案】(x +1)(x -1)【逐步提示】本题考查了因式分解公式法的a 2-b 2=(a +b )(a -b ),解题的关键是1可以写成12.①写出a 2-b 2的形式x 2-12;②分清楚a ,b 代表的是什么.1 AB 2ba 3c 1AB 2ba c【详细解答】解:x2-1=x2-12=(x+1)(x-1),故答案为(x+1)(x-1).【解后反思】因式分解的一般次序:一提(提取公因式法);二套(套公式法).一直分解到不能分解为止.因式分解的方法:(1) 提公因式法;(2) 公式法.公因式的确定:第一,确定系数(取各项整数系数的最大公约数);第二,确定字母或因式底数(取各项的相同字母);第三,确定字母或因式的指数(取各相同字母的最低次幂).提公因式法:ma+mb+mc=m(a+b+c).公式法:(1)a2-b2=(a+b)(a-b);(2)a2+2ab+b2=(a+b)2;(3)a2-2ab +b2=(a-b)2.(4)x2+(p+q)x+p•q=(x+p)(x+q).【关键词】因式分解;平方差公式;4.(2017云南,4,3分)若一个多边形的边数为6,则这个多边形的内角和为度.【答案】720【逐步提示】本题考查了多边形的内角和公式,解题的关键是记住n边形的内角和为(n-2)•180°.①写出公式(n-2)•180°;②n=6代入公式计算.【详细解答】解:∵n=6,∴(n-2)•180°=(6-2)×180°=4×180°=720°,故答案为720.【解后反思】此种类型的题目比较简单,属于识记题目,这样记住相应的公式即可作出.但要注意多边形的外角和与边数无关,是360°.【关键词】多边形;多边形的内角和;5.(2017云南,5,3分)如果关于x的一元二次方程x2+2ax+a+2=0有两个相等的实数根,那么实数a的值为.【答案】2或-1【逐步提示】本题考查了一元二次方程ax2+bx+c=0根的判别式Δ=b2-4ac,解题的关键是列出Δ=b2-4ac=0的相应式子.①确定一元二次方程ax2+bx+c=0中a,b,c对应的代数式;②代入Δ=b2-4ac;③解一元二次方程.【详细解答】解:∵x2+2ax+a+2=0有两个相等的实数根,∴(2a)2-4×1×(a+2)=0,化简为a2-a-2=0,∴(a -2)(a+1)=0,a1=2,a2=-1故答案为2或-1.【解后反思】本题要熟记关于x的一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2-4ac.(1)Δ>0⇔方程ax2+bx+c=0(a≠0)有两个不相等的实数根;(2)Δ=0⇔方程ax2+bx+c=0(a≠0)有两个相等的实数根;(3)Δ<0⇔方程ax2+bx+c=0(a≠0)没有实数根;其次用到一元二次方程的因式分解法:如果一元二次方程ax2+bx+c=0(a≠0)可通过因式分解化为(mx+p)(nx+q)=0,则x1=-pm,x2=-qn.此题中左边实际上是因式分解中的x2+(p+q)x+p•q=(x+p)(x+q).此类题型都是写出相应根的判别式,然后解方程.【关键词】一元二次方程;一元二次方程根的判别式;6.(2017云南,6,3分)如果圆柱的侧面展开图是相邻两边长分别为6、16π的长方形,那么这个圆柱的体积等于.【答案】144或384π【逐步提示】本题考查了圆柱的侧面展开图,解题的关键是侧面展开图是长方形,哪一边是高,题目没有说,所以此题要分成两种可能来解答.①分类解答,6或者16π为圆柱底面圆展开的长;②计算出底面圆的半径;③写出体积公式V圆柱=S底圆h=π(r底圆)2h,代入相应的值进行计算.【详细解答】解:①6为圆柱底面圆展开的长,∵2πr底圆=6,∴r底圆=3π,V圆柱=S底圆h=π(r底圆)2h=π23π⎛⎫⎪⎝⎭×16π=144.②16π为圆柱底圆展开的长,∵2πr底圆=16π,∴r底圆=8,V圆柱=S底圆h=π(r底圆)2h=π82×6=384π.故答案为144或384π.【解后反思】圆柱的体积公式:V圆柱=S底圆h=πr2h.(其中r为底圆的半径,h为圆柱的高),此类题型主要是考察考生的分类思想,部分学生会想当然的认为16π为圆柱底面圆展开的长,只做出一个结果,所以读题是关键.【关键词】几何体展开图及其应用;圆柱的体积;分类讨论思想;二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,共32分)7.(2017云南,7,4分)据《云南省生物物种名录(2017版)》介绍,在素有“动植物王国”之美称的云南,已经发现的动植物有25434种.25434用科学记数法表示为( )A .2.5434×103B .2.5434×104C .2.5434×10-3D .2.5434×10-4 【答案】B【逐步提示】本题考查了科学记数法,解题的关键是n 的确定,此题n 等于原数的整数位数减1.①确定a ×10n 形式中的a 是2.5434;②25434的整数部分是5位,5-1=4,所以确定n 是4. 【详细解答】解:25434有5位,所以n =4,故选择B .【解后反思】大数的记法和小数的记法,只有n 的值不一样,计大数是n 是正整数,计小数时,n 是负整数.科学记数法:把一个数表示成 a ×10n 的形式,其中1≤|a |<10,n 是整数.科学记数法主要是确定n ,要注意把一个数N 用科学记数法表示时,若N 的绝对值大于10,n 等于原数的整数位数减1;若原数的绝对值小于1,n 等于原数左边第一个非零数字前的所有零的个数(包含小数点前的零).对一些带单位的数据要注意看是否需要化单位. 【关键词】科学记数法;8.(2017云南,8,4分)函数y =12x -的自变量x 的取值范围为( ) A .x >2 B .x <2 C .x <2 D .x ≠2 【答案】D【逐步提示】本题考查了分式有意义的条件,解题的关键是分母不等于0.①确定分式中的分母;②分母不为0,即x -2≠0;③解不等式.【详细解答】解:∵x -2≠0,解不等式得x ≠2,故选择 D . 【解后反思】整式A 除以整式B ,可以表示成A B 形式,如果除式B 中含有字母,那么AB (B ≠0)称为分式.隐含条件B ≠0,否则就没有意义了.取自变量范围的要注意分式的分母不为0a ≥0;假如此题分母中是根式x -2>0,即x >2,【关键词】分式;求字母的取值范围;9.(2017云南,9,4分)若一个几何体的主视图、左视图、俯视图是半径相等的圆,则这个几何体是( ) A .圆柱 B .圆锥 C .球 D .正方体 【答案】C【逐步提示】本题考查了三视图,解题的关键是知道常见几何体的三种视图.①三视图相同的只有球、正方体等;②三视图是半径相等的圆的几何体只有球.【详细解答】解:因为球的三视图都是半径相等的圆,故选择C . 【解后反思】1.常见几何体的三种视图:2.掌握画三视图的方法(1)主视图与俯视图的长要相等,主视图与左视图的高要相等,左视图与俯视图的宽要相等,可以简记为“长对正,高平齐,宽相等”.(2)通常左视图在主视图的右边,俯视图在主视图的下边. 【关键词】三视图;三视图的反向思维;10.(2017云南,10,4分)下列计算,正确的是( )A .(-2)-2=4 B .2C .46÷(-2)6=64 D【答案】C【逐步提示】本题考查了实数的相关计算,解题的关键是熟记公式与定义.①写出相关公式a -n =1a n (a ≠0,n 为正整数).a 2=|a |=⎩⎪⎨⎪⎧ a (a >0) 0 (a =0) -a (a <0).a m ÷a n = a m -n (a ≠0,m 、n 都是正整数,且m >n ).②按照公式计算.【详细解答】解:A.(-2)-2=212⎛⎫- ⎪⎝⎭=14B|-2|=2C.46÷(-2)6=46÷26=642⎛⎫⎪⎝⎭=26=64DC.【解后反思】此题的公式比较多,考生要熟记才可以解答.容易出错的是负指数幂,和C选项的处理,46可以写成26×26,(ab)n=a n b n(n是正整数).二次根式的加减:①先把各个二次根式化成最简二次根式;②再把同类二次根式分别合并,合并时,仅合并根号前的“系数”,被开方数不变.【关键词】有理数的乘方;二次根式的化简;有理数的除法法则;二次根式的加减法;11.(2017云南,11,4分)位于第一象限的点E在反比例函数y=kx的图象上,点F在x轴的正半轴上,O是坐标原点.若EO=EF,△EOF的面积等于2,则k=()A.4B.2C.1D.-2【答案】B【逐步提示】本题考查了反比例函数的性质,解题的关键是理解反比例函数k的几何意义和题目已知k>0.①确定k>0;②画出草图,确定四边形的面积.【详细解答】解:如图:过E作ED⊥y轴于点D,过E作ED⊥x轴于点H,∵EO=EF,∴△OEH≌△FEH≌△ODE,∵△EOF的面积等于2,∴四边形OHED的面积为2,即k=2.故选择B.【解后反思】反比例函数:一般地,如果两个变量x,y之间的关系可以表示成y=kx或y=kx-1或k=xy (k为常数,k≠0)的形式,那么就称y是x的反比例函数.此类题目,运用数形结合思想,借助于图形分析就变得简单了.1.正确理解反比例函数y=kx(k≠0)的比例系数k的几何意义.如图,设P(x0,y0)是双曲线y=kx(k为常数,k≠0)上任意一点:(1)过点P作x轴的垂线,垂足为A,则S△AOP=12·OA·AP=12|x0·y0|=|k|2.(2)过点P分别作x轴、y轴的垂线,垂足为A、B,则S矩形OAPB=OA·AP=|x0·y0|=|k|.【关键词】反比例函数;几何意义;12.(2017云南,12,4分)某校随机抽查了10名参加2017年云南省初中学业水平考试学生的体育成绩,得到的结果如下表:A .这10名同学的体育成绩的众数为50B .这10名同学的体育成绩的中位数为48C .这10名同学的体育成绩的方差为50D .这10名同学的体育成绩的平均数为48 【答案】A【逐步提示】本题考查了众数、中位数、方差、平均数,解题的关键是表中的数据阅读.①从简单的入手;②确定众数为50.【详细解答】解:从表中可以看出成绩50出现的次数是4次,出现次数最多,所以众数是50,故选择A .【解后反思】理解众数和中位数:众数和中位数都有单位,众数可以有两个以上.求中位数时一定不要忘记排序,奇数个数据时为最中间一个数据,偶数个数据时为最中间两个数据的平均数.理解极差、方差、标准差:极差、方差、标准差是用来表示数据离散程度和波动情况的.当数据的平均水平一致时,我们往往根据极差、方差、标准差来判断数据的稳定性,它们的值越小,波动性越小. 【关键词】 众数;中位数;方差;平均数;13.(2017云南,13,4分)下列交通标志中,是轴对称图形但不是中心对称图形的是( )A. B . C . D . 【答案】A【逐步提示】本题考查了轴对称图形、中心对称图形,解题的关键是两个定义的性质与区别.①找出轴对称图形;②在轴对称图形中看看是否是中心对称图形.【详细解答】解:A 和D 是轴对称图形;D 是中心对称图形,故选择A .【解后反思】此题要正确理解中心对称图形与轴对称图形的特征,熟记定义.轴对称图形:如果一个图形沿一条直线折叠后,直线两边的部分能够 完全重合 ,那么这个图形叫做轴对称图形,这条直线叫做 对称轴 .中心对称图形定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,常见的中心对称图形:线段、平行四边形、圆、矩形、菱形,边数为偶数的正多边形等. 【关键词】 轴对称图形;中心对称图形;14.(2017云南,14,4分)如图,D 是△ABC 的边BC 上一点,AB =4,AD =2,∠DAC =∠B ,如果△ABD 的面积为15,那么△ACD 的面积为( ) A .15 B .10 C .152D .5【答案】D【逐步提示】本题考查了相似三角形的判定,解题的关键是△ACD ∽△BCA .①确定两个三角形相似;②利用对应边的比确定面积比的值;③求出面积. 【详细解答】解:在△ACD 和△BCA 中, DAC BC C ∠∠⎧⎨∠∠⎩==, ∴△ACD ∽△BCA ,BDCA∴ADCBACS S=2AD AB ⎛⎫ ⎪⎝⎭.∵AB =4,AD =2,∴ADC BAD ADC S S S +=14, ∵△ABD 的面积为15, ∴S △ACD =5,故选择 D .【解后反思】此类型的题主要是证明三角形相似,知道面积比等于相似比的平方. 【关键词】 相似三角形;三、解答题(本大题共9个小题,共70分)15.(2017云南,15,6分)解不等式组()231021x x xì+ïíï+î>>.【逐步提示】本题考查了不等式的解法和解集的取法,解题的关键是熟记解不等式的方法和不等式解集的取法.①分别解出不等式的解集;②取不等式组的解集. 【详细解答】解:()2310 21 x x x >①>②ì+ïíï+î, 由①得:2x +6>10, 2x >4, x >2,由②得:2x -x >-1, x >-1,∴不等式组的解集为:x >2.【解后反思】解一元一次不等式的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.解一元一次不等式组时,应该先分别求出不等式组中的每个不等式的解集,再求出它们的公共部分,就得到不等式组的解集.注意由两个一元一次不等式组成的不等式组的解集有四种情况(a <b ):(1)⎩⎪⎨⎪⎧x >a ,x >b 的解集是x >b(2)⎩⎪⎨⎪⎧x <a ,x <b 的解集是x <a(3)⎩⎪⎨⎪⎧x >a ,x <b 的解集是a <x <b(4)⎩⎪⎨⎪⎧x <a ,x >b 的解集是无解【关键词】 不等式组的解集;16.(2017云南,16,6分)如图,点C 是AE 的中点,∠A =∠ECD ,AB =CD .求证:∠B =∠D .【逐步提示】本题考查了三角形全等的判定和性质,解题的关键是熟记判定定理.①已知一角一边,利用中点求出另一边相等;②利用“边角边”证明两三角形全等;③根据全等三角形的性质得到角相等. 【详细解答】解:A BCDE证明:∵点C 是AE 的中点, ∴EC =CA ,在△CAB 和△ECD 中, ===CA EC A ECD AB CD ⎧⎪∠∠⎨⎪⎩, ∴△CAB ≌△ECD (SAS ), ∴∠B =∠D .【解后反思】本题主要考查三角形全等,此类型的题主要看已知,并熟悉三角形全等的判定.分别有: 1. 边角边(SAS):有两条边和它们的夹角对应相等的两个三角形全等. 2. 角边角(ASA):有两个角和它们的夹边对应相等的两个三角形全等. 3. 角角边(AAS):有两角和其中一角的对边对应相等的两个三角形全等. 4. 边边边(SSS):三边对应相等的两个三角形全等. 5. 直角三角形全等的判定(1)可以用一般三角形的所有判定;(2)HL 公理:斜边和一条直角边对应相等的两个直角三角形全等. 还可能考查全等三角形的性质及应用:(1)全等三角形的对应边、对应角、对应中线、对应高、对应角平分线、周长、面积等都分别相等. (2)对证明线段与线段、角与角相等或倍数关系起着“桥梁”的作用. 【关键词】 全等三角形;17.(2017云南,17,8分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体无害而且有利于食品的储存和运输.为提高质量,做进一步研究.某饮料加工厂需生产A 、B 两种饮料共100瓶,需加入同种添加剂270克,其中A 饮料每瓶需加该添加剂2克,B 饮料每瓶需加该添加剂3克,饮料加工厂生产了A 、B 两种饮料各多少瓶?【逐步提示】本题考查了列方程解应用题,解题的关键是找相等关系.①确定设一元还是二元;②设未知数;③找等量关系:A 、B 两种饮料共100瓶,加入同种添加剂270克.【详细解答】解:设饮料加工厂生产了A 种饮料x 瓶,B 种饮料y 瓶,根据题意得 10023270x y x y +=⎧⎨+=⎩, 解得3070x y =⎧⎨=⎩,答:饮料加工厂生产了A 种饮料30瓶,B 种饮料70瓶.【解后反思】此题简单,可以是一元或者是二元,不管怎样,找相等关系才是做题的重点.其次,此类型的题还需要注意:1.列方程(组)解应用题的一般步骤审:审清题意,分清题中的已知量、未知量.设:设未知数,设其中某个未知量为x ,并注意单位.对于含有两个未知数的问题,需要设两个未知数. 列:根据题意寻找等量关系列方程(组). 解:解方程(组).验:检验方程(组)的解是否符合题意. 答:写出答案(包括单位). 2. 正确理解消元法.一般来说,代入法和加减法可以解任意方程组.当方程组中两个方程的某个未知数的系数的绝对值为1或有一个方程的常数项是0时,用代入法较简便;当两个方程中的同一个未知数的系数的绝对值相等或成整数倍,或系数的绝对值不等也不成整数倍时,用加减法较为简便.3. 掌握二元一次方程组解决实际问题时应找清已知量与未知量,找准反映题目含义的两个等量关系.4.本题也可以设一个未知数,列出一元一次方程求解.【关键词】 列方程解应用题;二元一次方程的实际应用——分配问题;18.(2017云南,18,6分)如图,菱形ABCD 的对角线AC 与BD 交于点O ,∠ABC ︰∠BAD =1︰2,BE ∥AC ,CE ∥BD .(1)求tan ∠DBC 的值;(2)求证:四边形OBEC 是矩形.【逐步提示】本题考查了菱形的性质和矩形的判定,解题的关键是菱形性质的应用.(1)①已知∠ABC ︰∠BAD =1︰2,求出两角的值;②利用菱形的性质,知道对角线平分对角;③确定∠DBC 的值;④确定tan ∠DBC .(2)①菱形的对角线互相垂直;②利用已知的平行条件,得到另外两个角也是直角;③三个角是直角的四边形是矩形. 【详细解答】解:(1)解:∵四边形ABCD 是菱形,∴AD ∥BC ,∠DBC =12∠ABC , ∴∠ABC +∠BAD =180°, 又∵∠ABC ︰∠B =1︰2, ∴∠ABC =60°,∵四边形ABCD 是菱形, ∴∠DBC =12∠ABC =30°, ∴tan ∠DBC =tan30°. (2)证明:∵四边形ABCD 是菱形, ∴∠BOC =90°,∵BE ∥AC ,CE ∥BD ,∴∠OBE =∠BOC =∠OCE =90°, ∴四边形OBEC 是矩形.【解后反思】此类型的题只要考查四边形相关的性质与判定,所以熟知一下知识是必要的. 1.菱形的性质和判定:一组邻边相等的平行四边形叫做菱形.2.菱形的性质:菱形的四边都相等;菱形对角相等,邻角互补;菱形的对角线垂直且互相平分;菱形是轴对称图形,其对称轴有两条;菱形又是中心对称图形,其对称中心是对角线的交点;菱形的面积为底×高或两对角线乘积的一半.3.矩形的判定:(1)有一个角是直角的平行四边形是矩形; (2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形. 4. 理解矩形、菱形、正方形的对称性.矩形、菱形、正方形都是中心对称图形,其对称中心是对角线的交点,它们也是轴对称图形,分别有2条、2条、4条对称轴.5. 正确理解平行四边形、矩形、菱形、正方形的关系.OADCBE(1)矩形、菱形、正方形都是特殊的平行四边形,它们都具有平行四边形的性质,但又有它们独特的性质;(2)正方形既是特殊的菱形又是特殊的矩形,因此它既具有菱形的性质又具有矩形的性质. 【关键词】 菱形的性质;矩形的判定;19.(2017云南,19,7分)某中学为了丰富学生的校园体育锻炼生活,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用.因此学校随机抽取了部分同学就体育兴趣爱好情况进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n 名学生,直接写出n 的值; (2)请你在答题卡上补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳.【逐步提示】本题考查了统计图的应用,解题的关键是从图中获取数据.(1)根据其中一个已知组的频数与该组频数占样本容量的百分比,即可算出总数;(2)总人数×羽毛球所占百分比=羽毛球的人数;(3) 根据该校学生总数×喜欢跳绳所占百分比的结果,可以估计喜欢跳绳的总人数. 【详细解答】解: 解:(1) n =10÷10%=100 (人)学校这次调查共抽取了100名学生. (2)爱好羽毛球的人数为: 100×20%=20 (人)补全条形统计图如图所示:(3)1200×20%=240 (人)该校共有学生1200名,估计该校有240名学生喜欢跳绳.【解后反思】记住相关计算方法是解题的核心,此类型的题要求学生熟知统计与处理的相关概念. 【关键词】扇形统计图;条形统计图;统计图表型;20.(2017云南,20,8分)如图,AB 为⊙O 的直径,C 是⊙O 上一点,过点C 的直线交AB 的延长线于点D ,AE ⊥DC ,垂足为E ,F 是AE 与⊙O 的交点,AC 平分∠BAE . (1)求证:DE 是⊙O 的切线; (2)设AE =6,∠D =30°,求图中阴影部分的面积.兴趣爱好 足球 篮球 羽毛球 乒乓球 跳绳兴趣爱好足球 篮球 羽毛球 乒乓球 跳绳 20% 25%足球10% 篮球25%羽毛球 乒乓球 跳绳20%【逐步提示】本题考查了切线的判定和阴影部分面积的计算,解题的关键是连半径和利用割补法计算面积.(1)①连接半径;②利用已知和半径相等条件,求出平行;③同位角相等,得到直角,从而判断出切线;(2)①确定S 阴影=S △OCD -S 扇形BOC ;②计算圆心角度数;③在直角三角形中利用三角函数求出边DC 和OC 的长. 【详细解答】解: (1)证明:连接OC , ∵AC 平分∠BAE , ∴∠OAC =∠CAE , 又∵OC =OA ,∴∠OCA =∠OAC ,∴∠OAC =∠CAE =∠OCA , ∴OC ∥AE , 又∵AE ⊥DC , ∴OC ⊥DE ,∵C 是⊙O 上一点,即OC 是⊙O 的半径, ∴DE 是⊙O 的切线.(2) ∵∠D =30°,AE ⊥DC ,AC 平分∠BAE ,OC=OA , ∴∠D =∠OAC =∠CAE =∠OCA =30°, ∴∠BOC =60°, 在Rt △AEC 中,∵AE ⊥DC ,AE =6, ∴AC =DC = 在Rt △OCD 中, ∵∠D =30°, ∴OC =4,∵S 阴影=S △OCD -S 扇形BOC , S △OCD =12DC •OC =12×4= S 扇形BOC =260360OC π⋅⋅=2604360π⨯⋅=83π,∴S 阴影=S △OCD -S 扇形BOC =83π,∴图中阴影部分的面积为83π. 【解后反思】此题切线证明比较常规,连接半径是常考的辅助线方式;阴影部分的面积采用的是割补法,一般不可能直接计算出,多用割补法计算面积.此类型的题用到的知识点多半是以下:1.切线的判定方法(1)和圆只有一个公共点的直线是圆的切线; (2)到圆心的距离等于半径的直线是圆的切线;(3)过半径外端点且和这条半径垂直的直线是圆的切线. 2.切线的性质(1)切线的性质定理:圆的切线垂直于过切点的半径. (2)推论1:经过切点且垂直于切线的直线必经过圆心. (3)推论2:经过圆心且垂直于切线的直线必经过切点. 3. 圆的面积为πr 2,1°的圆心角所在的扇形面积为πr 2360,n °的圆心角所在的扇形面积为S =nπr 2360=12lr .4.圆中常用的几种辅助线作法:①有切线,做半径;②有平分,想垂径. 5.阴影部分的面积(1)规则图形:按规则图形的面积公式去求. (2)不规则图形:采用“转化”的数学思想方法.把不规则图形的面积采用“割补法”、“等积变形法”、“平移法”等转化为规则图形的面积. 【关键词】 切线的判定与性质;扇形;21.(2017云南,21,8分)某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和.若两次所得数字之和为8,则可获得50元代金券一张;若所得数字之和为6,则可获得30元代金券一张;若所得数字之和为5,则可获得15元代金券一张,其他情况都不中奖.(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来; (2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P .【逐步提示】本题考查了列表或树状图以及求概率,解题的关键是列表或画树状图.用到的知识点有:事件A 的概率=事件A 出现的次数总的次数.①先画树状图或者列表;②计算当天一次抽奖活动,能中奖的概率P .【详细解答】解:(1)树状图(树形图)如下:由列表或画树状图可知,所有可能结果一共有16种,并且每种出现的可能性都相等.1 2 3 4 2 3 4 5 1 2 3 开始4 1 2 3 4 3 456 1 2 3 44 5 6 71 2 3 4 5 6 7 8和 第一次 第二次(2)其中两次所得数字之和为8,6,5的结果有8种,所以抽取一次中奖的概率P =816=12. 【解后反思】(1)用列表法或画树状图法求概率,应注意两种方法的特点:列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.(2)当一次试验涉及到两个因素或步骤,且出现的结果较多时,为了不重复不遗漏列出所有可能的情况,通常采用列表法,一个因素为行标,一个因素为列标.(3)当一次试验中涉及到两个或两个以上的步骤(或因素)时,通常借助画树形图的方法列举所有情况. 【关键词】 列表法;树状图法;求概率的方法;22.(2017云南,22,9分)草莓是云南多地盛产的一种水果.今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元.经试销发现,销售量y (千克)与销售单价x (元)符合一次函数关系,下图是y 与x 的函数关系图象. (1)求y 与x 的函数解析式(也称关系式),请直接写出x 的取值范围; (2)设该水果销售店试销草莓获得的利润为W 元,求W 的最大值.【逐步提示】本题考查了待定系数法求一次函数解析式和二次函数最值的求解,解题的关键是列方程组和二次函数的顶点式.(1)①设解析式;②如图所知的点的坐标代入解析式;③解方程组;④写出解析式,写出自变量的取值范围;(2)①根据“总利润=销售量×单件利润”,列出解析式;②把解析式化为顶点式;③根据取值范围,写出何时值最大.【详细解答】解:(1)设y 与x 的函数解析式(也称关系式)为y =kx +b , 由图可知函数图象经过点(20,300) ,(30,280), 所以有2030030280k b k b +=⎧⎨+=⎩,解得2340k b =-⎧⎨=⎩,∴y 与x 的函数解析式(也称关系式)为y =-2x +340,x 的取值范围(20≤x ≤40)(2) 该水果销售店试销草莓获得的利润为W 元, W =y (x -20),W =(-2x +340)(x -20), W =-2x 2+380x -6800, W =-2(x -95)2+11250,∵-2<0,∴当x ≤95时,W 随x 的增大而增大, ∵20≤x ≤40,∴当x =40时,W 最大,最大值W =-2(40-95)2+11250=5200(元). 【解后反思】1.因为在一次函数y =kx +b (k ≠0)中有两个未知数k 和b ,所以,要确定其关系式,一般需要两个条件,常见的是已知两点坐标P 1(a 1,b 1),P 2(a 2,b 2)代入得⎩⎪⎨⎪⎧b 1=a 1k +b ,b 2=a 2k +b ,求出k ,b 的值即可,这种方法叫做待定系数法.步骤:(1)设y =kx +b (k ≠0);(2)代入已知点;(3)解方程组求出k 、b ;(4)得到一次函数解析式. 2.解决一次函数应用问题的一般步骤: a .分析问题:)。

(完整word版)2017年云南省中考数学试卷(含答案解析版),推荐文档

(完整word版)2017年云南省中考数学试卷(含答案解析版),推荐文档

2017年云南省中考数学试卷一、填空题(本大题共6个小题,每题3分,共18分)1.(3分)2的相反数是 .2.(3分)已知关于x 的方程2x +a +5=0的解是x=1,则a 的值为 .3.(3分)如图,在△ABC 中,D 、E 分别为AB 、AC 上的点,若DE ∥BC ,AD AB =13,则AD+DE+AE AB+BC+AC= .4.(3分)使√9−x 有意义的x 的取值范围为 .5.(3分)如图,边长为4的正方形ABCD 外切于⊙O ,切点分别为E 、F 、G 、H .则图中阴影部分的面积为 .6.(3分)已知点A (a ,b )在双曲线y=5x上,若a 、b 都是正整数,则图象经过B (a ,0)、C (0,b )两点的一次函数的解析式(也称关系式)为 .二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.(4分)作为世界文化遗产的长城,其总长大约为6700000m .将6700000用科学记数法表示为( )A .6.7×105B .6.7×106C .0.67×107D .67×108 8.(4分)下面长方体的主视图(主视图也称正视图)是( )A .B .C .D .9.(4分)下列计算正确的是( )A .2a ×3a=5aB .(﹣2a )3=﹣6a 3C .6a ÷2a=3aD .(﹣a 3)2=a 610.(4分)已知一个多边形的内角和是900°,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形11.(4分)sin60°的值为( )A .√3B .√32 C .√22 D .1212.(4分)下列说法正确的是( ) A .要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B .4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C .甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D .某次抽奖活动中,中奖的概率为150表示每抽奖50次就有一次中奖 13.(4分)正如我们小学学过的圆锥体积公式V=13πr 2h (π表示圆周率,r 表示圆锥的地面半径,h 表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习. 下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9√3π,则这个圆锥的高等于( )A .5√3πB .5√3C .3√3πD .3√314.(4分)如图,B 、C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E 、F 两点,与线段AC 交于D 点.若∠BFC=20°,则∠DBC=( )A .30°B .29°C .28°D .20°三、解答题(共9个小题,满分70分)15.(6分)如图,点E 、C 在线段BF 上,BE=CF ,AB=DE ,AC=DF .求证:∠ABC=∠DEF .16.(6分)观察下列各个等式的规律:第一个等式:22−12−12=1,第二个等式:32−22−12=2,第三个等式:42−32−12=3… 请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的.17.(8分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?18.(6分)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.19.(7分)在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.20.(8分)如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.21.(8分)已知二次函数y=﹣2x 2+bx +c 图象的顶点坐标为(3,8),该二次函数图象的对称轴与x 轴的交点为A ,M 是这个二次函数图象上的点,O 是原点.(1)不等式b +2c +8≥0是否成立?请说明理由;(2)设S 是△AMO 的面积,求满足S=9的所有点M 的坐标.22.(9分)在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A 、B 两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量 租金单价 A30人/辆 380元/辆 B 20人/辆 280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A 型号客车x 辆,租车总费用为y 元,求y 与x 的函数解析式(也称关系式),请直接写出x 的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?23.(12分)已知AB 是⊙O 的直径,PB 是⊙O 的切线,C 是⊙O 上的点,AC ∥OP ,M 是直径AB 上的动点,A 与直线CM 上的点连线距离的最小值为d ,B 与直线CM 上的点连线距离的最小值为f .(1)求证:PC 是⊙O 的切线;(2)设OP=32AC ,求∠CPO 的正弦值; (3)设AC=9,AB=15,求d +f 的取值范围.2017年云南省中考数学试卷参考答案与试题解析一、填空题(本大题共6个小题,每题3分,共18分)1.(3分)(2017•云南)2的相反数是﹣2.【考点】14:相反数.【分析】根据相反数的定义可知.【解答】解:﹣2的相反数是2.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.(3分)(2017•云南)已知关于x的方程2x+a+5=0的解是x=1,则a的值为﹣7.【考点】85:一元一次方程的解.【分析】把x=1代入方程计算即可求出a的值.【解答】解:把x=1代入方程得:2+a+5=0,解得:a=﹣7,故答案为:﹣7.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.(3分)(2017•云南)如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,ADAB=13,则AD+DE+AEAB+BC+AC=13.【考点】S9:相似三角形的判定与性质.【分析】直接利用相似三角形的判定方法得出△ADE∽△ABC,再利用相似三角形的周长比等于相似比进而得出答案.【解答】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴AD AB =AD+DE+AE AB+BC+AC =13. 故答案为:13. 【点评】此题主要考查了相似三角形的判定与性质,正确得出相似三角形是解题关键.4.(3分)(2017•云南)使√9−x 有意义的x 的取值范围为 x ≤9 .【考点】72:二次根式有意义的条件.【分析】二次根式的被开方数是非负数,即9﹣x ≥0.【解答】解:依题意得:9﹣x ≥0.解得x ≤9.故答案是:x ≤9.【点评】考查了二次根式的意义和性质.概念:式子√a (a ≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.(3分)(2017•云南)如图,边长为4的正方形ABCD 外切于⊙O ,切点分别为E 、F 、G 、H .则图中阴影部分的面积为 2π+4 .【考点】MC :切线的性质;LE :正方形的性质;MO :扇形面积的计算.【分析】连接HO ,延长HO 交CD 于点P ,证四边形AHPD 为矩形知HF 为⊙O 的直径,同理得EG 为⊙O 的直径,再证四边形BGOH 、四边形OGCF 、四边形OFDE 、四边形OEAH 均为正方形得出圆的半径及△HGF 为等腰直角三角形,根据阴影部分面积=12S⊙O+S△HGF可得答案.【解答】解:如图,连接HO,延长HO交CD于点P,∵正方形ABCD外切于⊙O,∴∠A=∠D=∠AHP=90°,∴四边形AHPD为矩形,∴∠OPD=90°,又∠OFD=90°,∴点P于点F重合,则HF为⊙O的直径,同理EG为⊙O的直径,由∠B=∠OGB=∠OHB=90°且OH=OG知,四边形BGOH为正方形,同理四边形OGCF、四边形OFDE、四边形OEAH均为正方形,∴BH=BG=GC=CF=2,∠HGO=∠FGO=45°,∴∠HGF=90°,GH=GF=√GC2+CF2=2√2则阴影部分面积=12S⊙O+S△HGF=12•π•22+12×2√2×2√2=2π+4,故答案为:2π+4.【点评】本题主要考查切线的性质及扇形面积的计算,熟练掌握切线的性质、矩形的判定得出圆的半径是解题的关键.6.(3分)(2017•云南)已知点A(a,b)在双曲线y=5x上,若a、b都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为y=﹣5x +5或y=﹣15x +1 . 【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数图象上点的坐标特征得出ab=5,由a 、b 都是正整数,得到a=1,b=5或a=5,b=1.再分两种情况进行讨论:当a=1,b=5;②a=5,b=1,利用待定系数法即可求解.【解答】解:∵点A (a ,b )在双曲线y=5x上, ∴ab=5,∵a 、b 都是正整数,∴a=1,b=5或a=5,b=1.设经过B (a ,0)、C (0,b )两点的一次函数的解析式为y=mx +n .①当a=1,b=5时,由题意,得{m +n =0n =5,解得{m =−5n =5, ∴y=﹣5x +5;②当a=5,b=1时,由题意,得{5m +n =0n =1,解得{m =−15n =1, ∴y=﹣15x +1. 则所求解析式为y=﹣5x +5或y=﹣15x +1. 故答案为y=﹣5x +5或y=﹣15x +1. 【点评】本题考查了反比例函数图象上点的坐标特征,待定系数法求一次函数的解析式.正确求出a 、b 的值是解题的关键.二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.(4分)(2017•云南)作为世界文化遗产的长城,其总长大约为6700000m .将6700000用科学记数法表示为( )A .6.7×105B .6.7×106C .0.67×107D .67×108【考点】1I:科学记数法—表示较大的数.【专题】17 :推理填空题.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:6700000=6.7×106.故选:B.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.8.(4分)(2017•云南)下面长方体的主视图(主视图也称正视图)是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据正视图是从物体正面看到的平面图形,据此选择正确答案.【解答】解:长方体的主视图(主视图也称正视图)是故选C.【点评】本题主要考查了长方体的三视图,解题的关键是掌握正视图的含义,此题基础题.9.(4分)(2017•云南)下列计算正确的是()A.2a×3a=5a B.(﹣2a)3=﹣6a3C.6a÷2a=3a D.(﹣a3)2=a6【考点】4I:整式的混合运算.【分析】根据整式的混合运算即可求出答案.【解答】解:(A )原式=6a 2,故A 错误;(B )原式=﹣8a 3,故B 错误;(C )原式=3,故C 错误;故选(D )【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.10.(4分)(2017•云南)已知一个多边形的内角和是900°,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形【考点】L3:多边形内角与外角.【专题】11 :计算题.【分析】设这个多边形是n 边形,内角和是(n ﹣2)•180°,这样就得到一个关于n 的方程组,从而求出边数n 的值.【解答】解:设这个多边形是n 边形,则(n ﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.故本题选C .【点评】根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.11.(4分)(2017•云南)sin60°的值为( )A .√3B .√32C .√22D .12【考点】T5:特殊角的三角函数值.【分析】直接根据特殊角的三角函数值进行计算即可.【解答】解:sin60°=√32. 故选B .【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.(4分)(2017•云南)下列说法正确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D.某次抽奖活动中,中奖的概率为150表示每抽奖50次就有一次中奖【考点】X3:概率的意义;V2:全面调查与抽样调查;W1:算术平均数;W4:中位数;W7:方差.【分析】分别根据全面调查与抽样调查的意义、中位数的定义、方差的定义及概率的意义对各选项进行逐一判断即可.【解答】解:A、∵要了解灯泡的使用寿命破坏性极大,∴只能采用抽样调查的方法,故本选项正确;B、∵4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为102.5,故本选项错误;C、甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差不能确定,故本选项错误;D、某次抽奖活动中,中奖的概率为150表示每抽奖50次可能有一次中奖,故本选项错误.故选A.【点评】本题考查的是概率的意义,熟知全面调查与抽样调查的意义、中位数的定义、方差的定义及概率的意义是解答此题的关键.13.(4分)(2017•云南)正如我们小学学过的圆锥体积公式V=13πr2h(π表示圆周率,r表示圆锥的地面半径,h表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9√3π,则这个圆锥的高等于()A.5√3πB.5√3 C.3√3πD.3√3【考点】MP:圆锥的计算.【分析】设母线长为R,底面圆半径为r,根据弧长公式、扇形面积公式以及圆锥体积公式即可求出圆锥的高【解答】解:设母线长为R,底面圆半径为r,圆锥的高为h,由于圆锥的侧面展开图是个半圆∴侧面展开图的弧长为:180πR180=πR,∵底面圆的周长为:2πr,∴πR=2πr,∴R=2r,∴由勾股定理可知:h=√3r,∵圆锥的体积等于9√3π∴9√3π=13πr2h,∴r=3,∴h=3√3故选(D)【点评】本题考查圆锥的计算,解题的关键是熟练运用圆锥的计算公式,本题属于基础中等题型.14.(4分)(2017•云南)如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A 交于E、F两点,与线段AC交于D点.若∠BFC=20°,则∠DBC=()A.30°B.29°C.28°D.20°【考点】M5:圆周角定理;KG:线段垂直平分线的性质.【分析】利用圆周角定理得到∠BAC=40°,根据线段垂直平分线的性质推知AD=BD,然后结合等腰三角形的性质来求∠ABD、∠ABC的度数,从而得到∠DBC.【解答】解:∵∠BFC=20°,∴∠BAC=2∠BFC=40°,∵AB=AC,∴∠ABC=∠ACB=180°−40°2=70°.又EF是线段AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故选:A.【点评】本题考查了圆周角定理,线段垂直平分线的性质.注意掌握数形结合思想的应用.三、解答题(共9个小题,满分70分)15.(6分)(2017•云南)如图,点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF .【考点】KD :全等三角形的判定与性质.【分析】先证明△ABC ≌△DEF ,然后利用全等三角形的性质即可求出∠ABC=∠DEF .【解答】解:∵BE=CF ,∴BE +EC=CF +EC ,∴BC=EF ,在△ABC 与△DEF 中,{AB =DE BC =EF AC =DF∴△ABC ≌△DEF (SSS )∴∠ABC=∠DEF【点评】本题考查全等三角形的判定与性质,解题的关键是熟练运用全等三角形的判定,本题属于基础题型.16.(6分)(2017•云南)观察下列各个等式的规律:第一个等式:22−12−12=1,第二个等式:32−22−12=2,第三个等式:42−32−12=3… 请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的.【考点】37:规律型:数字的变化类.【分析】(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n 等式并加以证明.【解答】解:(1)由题目中式子的变化规律可得,第四个等式是:52−42−12=4; (2)第n 个等式是:(n+1)2−n 2−12=n ,证明:∵(n+1)2−n2−12=[(n+1)+n][(n+1)−n]−12=2n+1−12=2n 2=n,∴第n个等式是:(n+1)2−n2−12=n.【点评】本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子.17.(8分)(2017•云南)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据百分比=所占人数总人数计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问题;【解答】解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人九年级被抽到的志愿者:50×20%=10人,条形图如图所示:(2)该校共有志愿者600人,则该校九年级大约有600×20%=120人,答:该校九年级大约有120名志愿者【点评】本题考查条形图、扇形统计图、样本估计总体等知识,解题的关键是掌握基本概念,熟练应用所学知识解决问题.18.(6分)(2017•云南)某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】12 :应用题.【分析】(1)首先根据题意,设该商店第一次购进水果x 千克,则第二次购进水果2x 千克,然后根据:(1000第一次购进水果的重量+2)×第二次购进的水果的重量=2400,列出方程,求出该商店第一次购进水果多少千克即可.(2)首先根据题意,设每千克水果的标价是x 元,然后根据:(两次购进的水果的重量﹣20)×x +20×0.5x ≥两次购进水果需要的钱数+950,列出不等式,求出每千克水果的标价是多少即可.【解答】解:(1)设该商店第一次购进水果x 千克,则第二次购进水果2x 千克, (1000x+2)×2x=2400 整理,可得:2000+4x=2400解得x=100经检验,x=100是原方程的解答:该商店第一次购进水果100千克.(2)设每千克水果的标价是x 元,则(100+100×2﹣20)×x +20×0.5x ≥1000+2400+950整理,可得:290x ≥4350解得x ≥15∴每千克水果的标价至少是15元.答:每千克水果的标价至少是15元.【点评】此题主要考查了分式方程的应用,以及一元一次不等式的应用,要熟练掌握,注意建立不等式要善于从“关键词”中挖掘其内涵.19.(7分)(2017•云南)在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P .【考点】X6:列表法与树状图法.【分析】(1)根据题意先画出树状图,得出所有可能出现的结果数;(2)根据(1)可得共有9种情况,两次取出小球上的数字相同有3种:(6,6)、(﹣2,﹣2)、(7,7),再根据概率公式即可得出答案.【解答】解:(1)根据题意画图如下:所有可能出现的结果共有9种;(2)∵共有9种情况,两次取出小球上的数字相同的有3种情况,∴两次取出小球上的数字相同的概率为39=13. 【点评】此题可以采用列表法或者采用树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)(2017•云南)如图,△ABC 是以BC 为底的等腰三角形,AD 是边BC 上的高,点E 、F 分别是AB 、AC 的中点.(1)求证:四边形AEDF 是菱形;(2)如果四边形AEDF 的周长为12,两条对角线的和等于7,求四边形AEDF 的面积S .【考点】LA :菱形的判定与性质;KH :等腰三角形的性质.【分析】(1)先根据直角三角形斜边上中线的性质,得出DE=12AB=AE ,DF=12AC=AF ,再根据AB=AC ,点E 、F 分别是AB 、AC 的中点,即可得到AE=AF=DE=DF ,进而判定四边形AEDF 是菱形;(2)设EF=x ,AD=y ,则x +y=7,进而得到x 2+2xy +y 2=49,再根据Rt △AOE 中,AO 2+EO 2=AE 2,得到x 2+y 2=36,据此可得xy=132,进而得到菱形AEDF 的面积S . 【解答】解:(1)∵AD ⊥BC ,点E 、F 分别是AB 、AC 的中点,∴Rt △ABD 中,DE=12AB=AE , Rt △ACD 中,DF=12AC=AF , 又∵AB=AC ,点E 、F 分别是AB 、AC 的中点,∴AE=AF ,∴AE=AF=DE=DF ,∴四边形AEDF 是菱形;(2)如图,∵菱形AEDF 的周长为12,∴AE=3,设EF=x ,AD=y ,则x +y=7,∴x 2+2xy +y 2=49,①∵AD ⊥EF 于O ,∴Rt △AOE 中,AO 2+EO 2=AE 2,∴(12y )2+(12x )2=32, 即x 2+y 2=36,②把②代入①,可得2xy=13,∴xy=132, ∴菱形AEDF 的面积S=12xy=134.【点评】本题主要考查了菱形的判定与性质的运用,解题时注意:四条边相等的四边形是菱形;菱形的面积等于对角线长乘积的一半.21.(8分)(2017•云南)已知二次函数y=﹣2x 2+bx +c 图象的顶点坐标为(3,8),该二次函数图象的对称轴与x 轴的交点为A ,M 是这个二次函数图象上的点,O 是原点.(1)不等式b +2c +8≥0是否成立?请说明理由;(2)设S 是△AMO 的面积,求满足S=9的所有点M 的坐标.【考点】HA :抛物线与x 轴的交点;H4:二次函数图象与系数的关系.【分析】(1)由题意可知抛物线的解析式为y=﹣2(x ﹣3)2+8,由此求出b 、c 即可解决问题.(2)设M (m ,n ),由题意12•3•|n |=9,可得n=±6,分两种情形列出方程求出m 的值即可;【解答】解:(1)由题意抛物线的顶点坐标(3,8),∴抛物线的解析式为y=﹣2(x ﹣3)2+8=﹣2x 2+12x ﹣10,∴b=12,c=﹣10,∴b +2c +8=12﹣20+8=0,∴不等式b +2c +8≥0成立.(2)设M (m ,n ),由题意12•3•|n |=9, ∴n=±6,①当n=6时,6=﹣2m 2+12m ﹣10,解得m=2或4,②当n=﹣6时,﹣6=﹣2m 2+12m ﹣10,解得m=3±√7,∴满足条件的点M 的坐标为(2,6)或(4,6)或(3+√7,﹣6)或(3﹣√7,﹣6).【点评】本题考查抛物线与x 轴的交点、二次函数图象与系数的关系等知识,解题的关键是熟练掌握二次函数的三种形式,学会利用参数构建方程解决问题.22.(9分)(2017•云南)在学习贯彻习近平总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式(也称关系式),请直接写出x的取值范围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?【考点】FH:一次函数的应用;C9:一元一次不等式的应用.【分析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;(2)列出不等式,求出自变量x的取值范围,利用函数的性质即可解决问题;【解答】解:(1)由题意:y=380x+280(62﹣x)=100x+17360.∵30x+20(62﹣x)≥1441,∴x≥20.1,∴21≤x≤62.(2)由题意100x+17360≤21940,∴x≤45.8,∴21≤x≤45,∴共有25种租车方案,x=21时,y有最小值=175700元.【点评】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.23.(12分)(2017•云南)已知AB 是⊙O 的直径,PB 是⊙O 的切线,C 是⊙O 上的点,AC ∥OP ,M 是直径AB 上的动点,A 与直线CM 上的点连线距离的最小值为d ,B 与直线CM 上的点连线距离的最小值为f .(1)求证:PC 是⊙O 的切线;(2)设OP=32AC ,求∠CPO 的正弦值; (3)设AC=9,AB=15,求d +f 的取值范围.【考点】MR :圆的综合题.【分析】(1)连接OC ,根据等腰三角形的性质得到∠A=∠OCA ,由平行线的性质得到∠A=∠BOP ,∠ACO=∠COP ,等量代换得到∠COP=∠BOP ,由切线的性质得到∠OBP=90°,根据全等三角形的性质即可得到结论;(2)过O 作OD ⊥AC 于D ,根据相似三角形的性质得到CD•OP=OC 2,根据已知条件得到OC OP =√33,由三角函数的定义即可得到结论; (3)连接BC ,根据勾股定理得到BC=√AB 2−AC =12,当M 与A 重合时,得到d +f=12,当M 与B 重合时,得到d +f=9,于是得到结论.【解答】解:(1)连接OC ,∵OA=OC ,∴∠A=∠OCA ,∵AC ∥OP ,∴∠A=∠BOP ,∠ACO=∠COP ,。

2017年云南省中考数学真题及答案 精品

2017年云南省中考数学真题及答案 精品

2017年云南省中考数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)(2017年云南省)|﹣|=()A.﹣B.C.﹣7 D.7考点:绝对值.分析:根据负数的绝对值是它的相反数,可得答案.解答:解:|﹣|=,故选:B.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2017年云南省)下列运算正确的是()A.3x2+2x3=5x6B.50=0 C.2﹣3=D.(x3)2=x6考点:幂的乘方与积的乘方;合并同类项;零指数幂;负整数指数幂.分析:根据合并同类项,可判断A,根据非0的0次幂,可判断B,根据负整指数幂,可判断C,根据幂的乘方,可判断D.解答:解:A、系数相加字母部分不变,故A错误;B、非0的0次幂等于1,故B错误;C、2,故C错误;D、底数不变指数相乘,故D正确;故选:D.点评:本题考查了幂的乘方,幂的乘方底数不变指数相乘是解题关键.3.(3分)(2017年云南省)不等式组的解集是()A.x>B.﹣1≤x<C.x<D.x≥﹣1考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>,由②得,x≥﹣1,故此不等式组的解集为:x>.故选A.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.(3分)(2017年云南省)某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方体C.球D.圆锥考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为三角形判断出是锥体,根据俯视图是圆形可判断出这个几何体应该是圆锥,故选D.点评:主视图和左视图的大致轮廓为三角形的几何体为锥体,俯视图为圆就是圆锥.5.(3分)(2017年云南省)一元二次方程x2﹣x﹣2=0的解是()A.x1=1,x2=2 B.x1=1,x2=﹣2 C.x1=﹣1,x2=﹣2 D.x1=﹣1,x2=2考点:解一元二次方程-因式分解法.分析:直接利用十字相乘法分解因式,进而得出方程的根解答:解:x2﹣x﹣2=0(x﹣2)(x+1)=0,解得:x1=﹣1,x2=2.故选:D.点评:此题主要考查了十字相乘法分解因式解方程,正确分解因式是解题关键.6.(3分)(2017年云南省)据统计,2013年我国用义务教育经费支持了13940000名农民工随迁子女在城市里接受义务教育,这个数字用科学计数法可表示为()A. 1.394×107B.13.94×107C.1.394×106D.13.94×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:13 940 000=1.394×107,故选:A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.(3分)(2017年云南省)已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为()A.B.2πC.3πD.12π考点:弧长的计算.分析:根据弧长公式l=,代入相应数值进行计算即可.解答:解:根据弧长公式:l==3π,故选:C.点评:此题主要考查了弧长计算,关键是掌握弧长公式l=.8.(3分)(2017年云南省)学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:成绩(分)9.40 9.50 9.60 9.70 9.80 9.90人数 2 3 5 4 3 1则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.60考点:众数;中位数.分析:根据中位数和众数的概念求解.解答:解:∵共有18名同学,则中位数为第9名和第10名同学成绩的平均分,即中位数为:=9.60,众数为:9.60.故选B.点评:本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.二、填空题(本大题共6个小题,每小题3分,满分18分)9.(3分)(2017年云南省)计算:﹣= .考点:二次根式的加减法.分析:运用二次根式的加减法运算的顺序,先将二次根式化成最简二次根式,再合并同类二次根式即可.解答:解:原式=2﹣=.故答案为:.点评:合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.10.(3分)(2017年云南省)如图,直线a∥b,直线a,b被直线c 所截,∠1=37°,则∠2= 143°.考点:平行线的性质.分析:根据对顶角相等可得∠3=∠1,再根据两直线平行,同旁内角互补列式计算即可得解.解答:解:∠3=∠1=37°(对顶角相等),∵a∥b,∴∠2=180°﹣∠3=180°﹣37°=143°.故答案为:143°.点评:本题考查了平行线的性质,对顶角相等的性质,熟记性质并准确识图是解题的关键.11.(3分)(2017年云南省)写出一个图象经过一,三象限的正比例函数y=kx(k≠0)的解析式(关系式)y=2x .考点:正比例函数的性质.专题:开放型.分析:根据正比例函数y=kx的图象经过一,三象限,可得k>0,写一个符合条件的数即可.解答:解:∵正比例函数y=kx的图象经过一,三象限,∴k>0,取k=2可得函数关系式y=2x.故答案为:y=2x.点评:此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y 随x的增大而减小.12.(3分)(2017•天津)抛物线y=x2﹣2x+3的顶点坐标是(1,2).考点:二次函数的性质.专题:计算题.分析:已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.解答:解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3的顶点坐标是(1,2).点评:此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,此题还考查了配方法求顶点式.13.(3分)(2017年云南省)如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD= 18°.考点:等腰三角形的性质.分析:根据已知可求得两底角的度数,再根据三角形内角和定理不难求得∠DBC的度数.解答:解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°.∵BD⊥AC于点D,∴∠CBD=90°﹣72°=18°.故答案为:18°.点评: 本题主要考查等腰三角形的性质,解答本题的关键是会综合运用等腰三角形的性质和三角形的内角和定理进行答题,此题难度一般.14.(3分)(2017年云南省)观察规律并填空(1﹣)=•=;(1﹣)(1﹣)=•••==(1﹣)(1﹣)(1﹣)=•••••=•=;(1﹣)(1﹣)(1﹣)(1﹣)=•••••••=•=; …(1﹣)(1﹣)(1﹣)(1﹣) (1))=.(用含n 的代数式表示,n 是正整数,且n ≥2)考点: 规律型:数字的变化类.分析: 由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1﹣)和(1+)相乘得出结果. 解答: 解:(1﹣)(1﹣)(1﹣)(1﹣) (1))=••••••…=.故答案为:.点评:此题考查算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.三、解答题(本大题共9个小题,满分60分)15.(5分)(2017年云南省)化简求值:•(),其中x=.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,将x的值代入计算即可求出值.解答:解:原式=•=x+1,当x=时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.16.(5分)(2017年云南省)如图,在△ABC和△ABD中,AC与BD 相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.考点:全等三角形的判定与性质.专题:证明题.分析:根据“SAS”可证明△ADB≌△BAC,由全等三角形的性质即可证明AC=BD.解答:证明:在△ADB和△BAC中,,∴△ADB≌△BAC(SAS),∴AC=BD.点评:本题考查了全等三角形的判定和性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.17.(6分)(2017年云南省)将油箱注满k升油后,轿车科行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=(k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式);(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?考点:反比例函数的应用.分析:(1)将a=0.1,s=700代入到函数的关系S=中即可求得k 的值,从而确定解析式;(2)将a=0.08代入求得的函数的解析式即可求得s的值.解答:解:(1)由题意得:a=0.1,s=700,代入反比例函数关系S=中,解得:k=sa=70,所以函数关系式为:s=;(2)将a=0.08代入s=得:s===875千米,故该轿车可以行驶多875米;点评:本题考查了反比例函数的应用,解题的关键是从实际问题中抽象出反比例函数模型.18.(9分)(2017年云南省)为了解本校九年级学生期末数学考试情况,销量在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)抽查人数可由C等所占的比例为50%,根据总数=某等人数÷比例来计算;(2)可由总数减去A、C、D的人数求得B等的人数,再补全条形统计图;(3)用样本估计总体.用总人数1200乘以样本中测试成绩等级在80分(含80分)以上的学生所占百分比即可.解答:解:(1)20÷50%=40(人),答:这次随机抽取的学生共有40人;(2)B等级人数:40﹣5﹣20﹣4=11(人)条形统计图如下:(3)1200××100%=480(人),这次九年级学生期末数学考试成绩为优秀的学生人数大约有480人.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(7分)(2017年云南省)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.考点:游戏公平性;列表法与树状图法.分析:(1)用列表法将所有等可能的结果一一列举出来即可;(2)求得两人获胜的概率,若相等则公平,否则不公平.解答:解:(1)根据题意列表得:1 2 3 41 2 3 4 52 3 4 5 63 4 5 6 74 5 6 7 8(2)由列表得:共16种情况,其中奇数有8种,偶数有8种,∴和为偶数和和为奇数的概率均为,∴这个游戏公平.点评:本题考查了游戏公平性及列表与列树形图的知识,难度不大,是经常出现的一个知识点.20.(6分)(2017年云南省)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?考点:分式方程的应用.分析:设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.解答:解:设第一批盒装花的进价是x元/盒,则2×=,解得 x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.点评:本题考查了分式方程的应用.注意,分式方程需要验根,这是易错的地方.21.(6分)(2017年云南省)如图,小明在M处用高1米(DM=1米)的测角仪测得旗杆AB的顶端B的仰角为30°,再向旗杆方向前进10米到F处,又测得旗杆顶端B的仰角为60°,请求出旗杆AB的高度(取≈1.73,结果保留整数)考点:解直角三角形的应用-仰角俯角问题.分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造三角关系,进而可求出答案.解答:解:∵∠BDE=30°,∠BCE=60°,∴∠CBD=60°﹣∠BDE=30°=∠BDE,∴BC=CD=10米,在Rt△BCE中,sin60°=,即=,∴BE=5,AB=BE+AE=5+1≈10米.答:旗杆AB的高度大约是10米.点评:主要考查解直角三角形的应用,本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.(7分)(2017年云南省)如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=MN.考点:平行四边形的判定与性质.专题:证明题.分析:(1)根据平行四边形的性质,可得AD与BC的关系,根据MD与NC的关系,可得证明结论;(2)根据根据等边三角形的判定与性质,可得∠DNC的度数,根据三角形外角的性质,可得∠DBC的度数,根据正切函数,可得答案.解答:证明:(1)∵ABCD是平行四边形,∴AD=BC,AD∥BC,∵M、N分别是AD、BC的中点,∴MD=NC,MD∥NC,∴MNCD是平行四边形;(2)如图:连接ND,∵MNCD是平行四边形,∴MN=DC.∵N是BC的中点,∴BN=CN,∵BC=2CD,∠C=60°,∴△NVD是等边三角形.∴ND=NC,∠DNC=60°.∵∠DNC是△BND的外角,∴∠NBD+∠NDB=∠DNC,∵DN=NC=NB,∴∠DBN=∠BDN=∠DNC=30°,∴∠BDC=90°.∵tan,∴DB=DC=MN.点评:本题考查了平行四边形的判定与性质,利用了一组对边平行且相等的四边形是平行四边形,等边三角形的判定与性质,正切函数.23.(9分)(2017年云南省)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点.(1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式);(2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由;(3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由.考点:圆的综合题;待定系数法求一次函数解析式;垂线段最短;勾股定理;切线长定理;相似三角形的判定与性质.专题:综合题;存在型;分类讨论.分析:(1)只需先求出AC中点P的坐标,然后用待定系数法即可求出直线DP的解析式.(2)由于△DOM与△ABC相似,对应关系不确定,可分两种情况进行讨论,利用三角形相似求出OM的长,即可求出点M的坐标.(3)易证S△PED=S△PFD.从而有S四边形DEPF=2S△PED=DE.由∠DEP=90°得DE2=DP2﹣PE2=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE也最短,对应的四边形DEPF的面积最小.借助于三角形相似,即可求出DP⊥AC时DP的值,就可求出四边形DEPF面积的最小值.解答:解:(1)过点P作PH∥OA,交OC于点H,如图1所示.∵PH∥OA,∴△CHP∽△COA.∴==.∵点P是AC中点,∴CP=CA.∴HP=OA,CH=CO.∵A(3,0)、C(0,4),∴OA=3,OC=4.∴HP=,CH=2.∴OH=2.∵PH∥OA,∠COA=90°,∴∠CHP=∠COA=90°.∴点P的坐标为(,2).设直线DP的解析式为y=kx+b,∵D(0,﹣5),P(,2)在直线DP上,∴∴∴直线DP的解析式为y=x﹣5.(2)①若△DOM∽△ABC,图2(1)所示,∵△DOM∽△ABC,∴=.∵点B坐标为(3,4),点D的坐标为(0.﹣5),∴BC=3,AB=4,OD=5.∴=.∴OM=.∵点M在x轴的正半轴上,∴点M的坐标为(,0)②若△DOM∽△CBA,如图2(2)所示,∵△DOM∽△CBA,∴=.∵BC=3,AB=4,OD=5,∴=.∴OM=.∵点M在x轴的正半轴上,∴点M的坐标为(,0).综上所述:若△DOM与△CBA相似,则点M的坐标为(,0)或(,0).(3)∵OA=3,OC=4,∠AOC=90°,∴AC=5.∴PE=PF=AC=.∵DE、DF都与⊙P相切,∴DE=DF,∠DEP=∠DFP=90°.∴S△PED=S△PFD.∴S四边形DEPF=2S△PED=2×PE•DE=PE•DE=DE.∵∠DEP=90°,∴DE2=DP2﹣PE2.=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE取到最小值,四边形DEPF的面积最小.∵DP⊥AC,∴∠DPC=90°.∴∠AOC=∠DPC.∵∠OCA=∠PCD,∠AOC=∠DPC,∴△AOC∽△DPC.∴=.∵AO=3,AC=5,DC=4﹣(﹣5)=9,∴=.∴DP=.∴DE2=DP2﹣=()2﹣=.∴DE=,∴S四边形DEPF=DE=.∴四边形DEPF面积的最小值为.点评:本题考查了相似三角形的判定与性质、用待定系数法求直线的解析式、切线长定理、勾股定理、垂线段最短等知识,考查了分类讨论的思想.将求DE的最小值转化为求DP的最小值是解决第3小题的关键.另外,要注意“△DOM与△ABC相似”与“△DOM∽△ABC “之间的区别.。

2017年云南省中考数学试卷-答案

2017年云南省中考数学试卷-答案

【解析】DE BC ∥【提示】直接利用相似三角形的判定方法得出而得出答案.【考点】相似三角形的判定与性质【答案】9x ≤,正方形90,90,又90∠,∴点90OHB ∠且OH OG =均为正方形,BH BG ∴=45,,则阴影部分面积211π2222O S S ++⨯△OSS +△【解析】点,a=,解得n2)180900n-,这样就得到一个关于(2)1803=602【提示】直接根据特殊角的三角函数值进行计算即可【考点】特殊角的正弦值项,要了解灯泡的使用寿命破坏性极大,4,底面圆的周长为,【解析】20BFC∠=,40∴∠,AB AC=18040702-=,又EF是线段AB的垂直平分线,AD BD∴=,40A ABD∴∠=∠=,704030DBC ABC ABD∴∠=∠-∠=-=.40,根据线段垂直平分线的性质推知的度数,从而得到【答案】BE CF=DEF SSS≌△(DEF∠.【提示】先证明ABC△【考点】全等三角形的判定和性质证明:2 (1)2n+-1)][(2n n++112-到的志愿者:5020%10⨯=人,条形图如图所示:【解析】(1)根据题意画图如下:)共有⊥)AD BC=,又AB ACAF=AEDF是菱形;如图,菱形⊥①,AD EF②代入①,可得224111n=,3||92m-,解得1210)由题意可知抛物线的解析式为1n=,可得3||92【考点】二次函数的图象与性质17360,且x是正整数)要使租车总费用不超过21940,一共有3020(62x+,又x(2)由题意小值19460=【提示】((2)列出不等式,求出自变量,OA OC=,AC OP∥,PB是⊙O的切线,的直径,90∴∠,在△COP BOP≌△90OBP=,∴PC是⊙O的切线;,90ODC∴∠,1CD AC=,DCO∠=2CD OP OC=,32OP AC=AC∴=13CD OP∴=2OP OP OC=33OCCPOOP∠==;,AB是⊙O的直径,AC∴,9AC=,15AB=,22AB AC-= AM,f BM=,15d f BM∴+==,当M0=,d∴+d f∴+的取值范围是915d f≤+≤.90,根据全等三角形的性质即可得到结论;2CD OP OC=,当M与A重合时,得到重合时,得到9d f +=,于是得到结论.【考点】圆的性质,全等三角形和相似三角形的判定和性质,圆的切线的判定和性质,勾股定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年省中考数学试卷一、填空题(本大题共6个小题,每题3分,共18分)1.2的相反数是.2.已知关于x的方程2x+a+5=0的解是x=1,则a的值为.3.如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC, =,则= .4.使有意义的x的取值围为.5.如图,边长为4的正方形ABCD外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为.6.已知点A(a,b)在双曲线y=上,若a、b都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为.二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A.6.7×105 B.6.7×106 C.0.67×107D.67×1088.下面长方体的主视图(主视图也称正视图)是()A.B.C.D.9.下列计算正确的是()A.2a×3a=5a B.(﹣2a)3=﹣6a3C.6a÷2a=3a D.(﹣a3)2=a610.已知一个多边形的角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形11.sin60°的值为()A.B. C. D.12.下列说确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D.某次抽奖活动中,中奖的概率为表示每抽奖50次就有一次中奖13.正如我们小学学过的圆锥体积公式V=πr2h(π表示圆周率,r表示圆锥的地面半径,h表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9π,则这个圆锥的高等于()A.B.C.D.14.如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A交于E、F两点,与线段AC交于D点.若∠BFC=20°,则∠DBC=()A.30° B.29° C.28° D.20°三、解答题(共9个小题,满分70分)15.如图,点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF.16.观察下列各个等式的规律:第一个等式: =1,第二个等式: =2,第三个等式:=3…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.17.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?18.某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.19.在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.20.如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.21.已知二次函数y=﹣2x2+bx+c图象的顶点坐标为(3,8),该二次函数图象的对称轴与x轴的交点为A,M是这个二次函数图象上的点,O是原点.(1)不等式b+2c+8≥0是否成立?请说明理由;(2)设S是△AMO的面积,求满足S=9的所有点M的坐标.22.在学习贯彻总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式(也称关系式),请直接写出x的取值围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?23.已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=AC,求∠CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值围.2017年省中考数学试卷参考答案与试题解析一、填空题(本大题共6个小题,每题3分,共18分)1.2的相反数是﹣2 .【考点】14:相反数.【分析】根据相反数的定义可知.【解答】解:﹣2的相反数是2.2.已知关于x的方程2x+a+5=0的解是x=1,则a的值为﹣7 .【考点】85:一元一次方程的解.【分析】把x=1代入方程计算即可求出a的值.【解答】解:把x=1代入方程得:2+a+5=0,解得:a=﹣7,故答案为:﹣7.3.如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC, =,则= .【考点】S9:相似三角形的判定与性质.【分析】直接利用相似三角形的判定方法得出△ADE∽△ABC,再利用相似三角形的周长比等于相似比进而得出答案.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==.故答案为:.4.使有意义的x的取值围为x≤9 .【考点】72:二次根式有意义的条件.【分析】二次根式的被开方数是非负数,即9﹣x≥0.【解答】解:依题意得:9﹣x≥0.解得x≤9.故答案是:x≤9.5.如图,边长为4的正方形ABCD外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为2π+4 .【考点】MC:切线的性质;LE:正方形的性质;MO:扇形面积的计算.【分析】连接HO,延长HO交CD于点P,证四边形AHPD为矩形知HF为⊙O的直径,同理得EG为⊙O的直径,再证四边形BGOH、四边形OGCF、四边形OFDE、四边形OEAH均为正方形得出圆的半径及△HGF为等腰直角三角形,根据阴影部分面积=S⊙O+S△HGF可得答案.【解答】解:如图,连接HO,延长HO交CD于点P,∵正方形ABCD外切于⊙O,∴∠A=∠D=∠AHP=90°,∴四边形AHPD为矩形,∴∠OPD=90°,又∠OFD=90°,∴点P于点F重合,则HF为⊙O的直径,同理EG为⊙O的直径,由∠B=∠OGB=∠OHB=90°且OH=OG知,四边形BGOH为正方形,同理四边形OGCF、四边形OFDE、四边形OEAH均为正方形,∴BH=BG=GC=CF=2,∠HGO=∠FGO=45°,∴∠HGF=90°,GH=GF==2则阴影部分面积=S⊙O+S△HGF=•π•22+×2×2=2π+4,故答案为:2π+4.6.已知点A(a,b)在双曲线y=上,若a、b都是正整数,则图象经过B(a,0)、C(0,b)两点的一次函数的解析式(也称关系式)为y=﹣5x+5或y=﹣x+1 .【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据反比例函数图象上点的坐标特征得出ab=5,由a、b都是正整数,得到a=1,b=5或a=5,b=1.再分两种情况进行讨论:当a=1,b=5;②a=5,b=1,利用待定系数法即可求解.【解答】解:∵点A(a,b)在双曲线y=上,∴ab=5,∵a、b都是正整数,∴a=1,b=5或a=5,b=1.设经过B(a,0)、C(0,b)两点的一次函数的解析式为y=mx+n.①当a=1,b=5时,由题意,得,解得,∴y=﹣5x+5;②当a=5,b=1时,由题意,得,解得,∴y=﹣x+1.则所求解析式为y=﹣5x+5或y=﹣x+1.故答案为y=﹣5x+5或y=﹣x+1.二、选择题(本大题共8个小题,每小题只有一个正确答案,每小题4分,共32分)7.作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A.6.7×105 B.6.7×106 C.0.67×107D.67×108【考点】1I:科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:6700000=6.7×106.故选:B.8.下面长方体的主视图(主视图也称正视图)是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】根据正视图是从物体正面看到的平面图形,据此选择正确答案.【解答】解:长方体的主视图(主视图也称正视图)是故选C.9.下列计算正确的是()A.2a×3a=5a B.(﹣2a)3=﹣6a3C.6a÷2a=3a D.(﹣a3)2=a6【考点】4I:整式的混合运算.【分析】根据整式的混合运算即可求出答案.【解答】解:(A)原式=6a2,故A错误;(B)原式=﹣8a3,故B错误;(C)原式=3,故C错误;故选(D)10.已知一个多边形的角和是900°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形【考点】L3:多边形角与外角.【分析】设这个多边形是n边形,角和是(n﹣2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.【解答】解:设这个多边形是n边形,则(n﹣2)•180°=900°,解得:n=7,即这个多边形为七边形.故本题选C.11.sin60°的值为()A.B. C. D.【考点】T5:特殊角的三角函数值.【分析】直接根据特殊角的三角函数值进行计算即可.【解答】解:sin60°=.故选B.12.下列说确的是()A.要了解某公司生产的100万只灯泡的使用寿命,可以采用抽样调查的方法B.4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为100C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62D.某次抽奖活动中,中奖的概率为表示每抽奖50次就有一次中奖【考点】X3:概率的意义;V2:全面调查与抽样调查;W1:算术平均数;W4:中位数;W7:方差.【分析】分别根据全面调查与抽样调查的意义、中位数的定义、方差的定义及概率的意义对各选项进行逐一判断即可.【解答】解:A、∵要了解灯泡的使用寿命破坏性极大,∴只能采用抽样调查的方法,故本选项正确;B、∵4位同学的数学期末成绩分别为100、95、105、110,则这四位同学数学期末成绩的中位数为102.5,故本选项错误;C、甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差不能确定,故本选项错误;D、某次抽奖活动中,中奖的概率为表示每抽奖50次可能有一次中奖,故本选项错误.13.正如我们小学学过的圆锥体积公式V=πr2h(π表示圆周率,r表示圆锥的地面半径,h表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9π,则这个圆锥的高等于()A.B.C.D.【考点】MP:圆锥的计算.【分析】设母线长为R,底面圆半径为r,根据弧长公式、扇形面积公式以及圆锥体积公式即可求出圆锥的高【解答】解:设母线长为R,底面圆半径为r,圆锥的高为h,由于圆锥的侧面展开图是个半圆∴侧面展开图的弧长为:=πR,∵底面圆的周长为:2πr,∴πR=2πr,∴由勾股定理可知:h=r,∵圆锥的体积等于9π∴9π=πr2h,∴r=3,∴h=3故选(D)14.如图,B、C是⊙A上的两点,AB的垂直平分线与⊙A交于E、F两点,与线段AC交于D点.若∠BFC=20°,则∠DBC=()A.30° B.29° C.28° D.20°【考点】M5:圆周角定理;KG:线段垂直平分线的性质.【分析】利用圆周角定理得到∠BAC=40°,根据线段垂直平分线的性质推知AD=BD,然后结合等腰三角形的性质来求∠ABD、∠ABC的度数,从而得到∠DBC.【解答】解:∵∠BFC=20°,∴∠BAC=2∠BFC=40°,∵AB=AC,∴∠ABC=∠ACB==70°.又EF是线段AB的垂直平分线,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故选:A.三、解答题(共9个小题,满分70分)15.如图,点E、C在线段BF上,BE=CF,AB=DE,AC=DF.求证:∠ABC=∠DEF.【考点】KD:全等三角形的判定与性质.【分析】先证明△ABC≌△DEF,然后利用全等三角形的性质即可求出∠ABC=∠DEF.【解答】解:∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC与△DEF中,∴△ABC≌△DEF(SSS)∴∠ABC=∠DEF16.观察下列各个等式的规律:第一个等式: =1,第二个等式: =2,第三个等式:=3…请用上述等式反映出的规律解决下列问题:(1)直接写出第四个等式;(2)猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.【考点】37:规律型:数字的变化类.【分析】(1)根据题目中的式子的变化规律可以写出第四个等式;(2)根据题目中的式子的变化规律可以猜想出第n等式并加以证明.【解答】解:(1)由题目中式子的变化规律可得,第四个等式是:;(2)第n个等式是:,证明:∵====n,∴第n个等式是:.17.某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.(1)请补全条形统计图;(2)若该校共有志愿者600人,则该校九年级大约有多少志愿者?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据百分比=计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问题;【解答】解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人九年级被抽到的志愿者:50×20%=10人,条形图如图所示:(2)该校共有志愿者600人,则该校九年级大约有600×20%=120人,答:该校九年级大约有120名志愿者18.某商店用1000元人民币购进水果销售,过了一段时间,又用2400元人民币购进这种水果,所购数量是第一次购进数量的2倍,但每千克的价格比第一次购进的贵了2元.(1)该商店第一次购进水果多少千克?(2)假设该商店两次购进的水果按相同的标价销售,最后剩下的20千克按标价的五折优惠销售.若两次购进水果全部售完,利润不低于950元,则每千克水果的标价至少是多少元?注:每千克水果的销售利润等于每千克水果的销售价格与每千克水果的购进价格的差,两批水果全部售完的利润等于两次购进水果的销售利润之和.【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【分析】(1)首先根据题意,设该商店第一次购进水果x千克,则第二次购进水果2x千克,然后根据:( +2)×第二次购进的水果的重量=2400,列出方程,求出该商店第一次购进水果多少千克即可.(2)首先根据题意,设每千克水果的标价是x元,然后根据:(两次购进的水果的重量﹣20)×x+20×0.5x≥两次购进水果需要的钱数+950,列出不等式,求出每千克水果的标价是多少即可.【解答】解:(1)设该商店第一次购进水果x千克,则第二次购进水果2x千克,(+2)×2x=2400整理,可得:2000+4x=2400解得x=100经检验,x=100是原方程的解答:该商店第一次购进水果100千克.(2)设每千克水果的标价是x元,则×x+20×0.5x≥1000+2400+950整理,可得:290x≥4350解得x≥15∴每千克水果的标价至少是15元.答:每千克水果的标价至少是15元.19.在一个不透明的盒子中,装有3个分别写有数字6,﹣2,7的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;(2)求两次取出的小球上的数字相同的概率P.【考点】X6:列表法与树状图法.【分析】(1)根据题意先画出树状图,得出所有可能出现的结果数;(2)根据(1)可得共有9种情况,两次取出小球上的数字相同有3种:(6,6)、(﹣2,﹣2)、(7,7),再根据概率公式即可得出答案.【解答】解:(1)根据题意画图如下:所有可能出现的结果共有9种;(2)∵共有9种情况,两次取出小球上的数字相同的有3种情况,∴两次取出小球上的数字相同的概率为=.20.如图,△ABC是以BC为底的等腰三角形,AD是边BC上的高,点E、F分别是AB、AC的中点.(1)求证:四边形AEDF是菱形;(2)如果四边形AEDF的周长为12,两条对角线的和等于7,求四边形AEDF的面积S.【考点】LA:菱形的判定与性质;KH:等腰三角形的性质.【分析】(1)先根据直角三角形斜边上中线的性质,得出DE=AB=AE,DF=AC=AF,再根据AB=AC,点E、F分别是AB、AC的中点,即可得到AE=AF=DE=DF,进而判定四边形AEDF是菱形;(2)设EF=x,AD=y,则x+y=7,进而得到x2+2xy+y2=49,再根据Rt△AOE中,AO2+EO2=AE2,得到x2+y2=36,据此可得xy=,进而得到菱形AEDF的面积S.【解答】解:(1)∵AD⊥BC,点E、F分别是AB、AC的中点,∴Rt△ABD中,DE=AB=AE,Rt△ACD中,DF=AC=AF,又∵AB=AC,点E、F分别是AB、AC的中点,∴AE=AF,∴AE=AF=DE=DF,∴四边形AEDF是菱形;(2)如图,∵菱形AEDF的周长为12,∴AE=3,设EF=x,AD=y,则x+y=7,∴x2+2xy+y2=49,①∵AD⊥EF于O,∴Rt△AOE中,AO2+EO2=AE2,∴(y)2+(x)2=32,即x2+y2=36,②把②代入①,可得2xy=13,∴xy=,∴菱形AEDF的面积S=xy=.21.已知二次函数y=﹣2x2+bx+c图象的顶点坐标为(3,8),该二次函数图象的对称轴与x轴的交点为A,M是这个二次函数图象上的点,O是原点.(1)不等式b+2c+8≥0是否成立?请说明理由;(2)设S是△AMO的面积,求满足S=9的所有点M的坐标.【考点】HA:抛物线与x轴的交点;H4:二次函数图象与系数的关系.【分析】(1)由题意可知抛物线的解析式为y=﹣2(x﹣3)2+8,由此求出b、c 即可解决问题.(2)设M(m,n),由题意•3•|n|=9,可得n=±6,分两种情形列出方程求出m的值即可;【解答】解:(1)由题意抛物线的顶点坐标(3,8),∴抛物线的解析式为y=﹣2(x﹣3)2+8=﹣2x2+12x﹣10,∴b=12,c=﹣10,∴b+2c+8=12﹣20+8=0,∴不等式b+2c+8≥0成立.(2)设M(m,n),由题意•3•|n|=9,∴n=±6,①当n=6时,6=﹣2m2+12m﹣10,解得m=2或4,②当n=﹣6时,﹣6=﹣2m2+12m﹣10,解得m=3±,∴满足条件的点M的坐标为(2,6)或(4,6)或(3+,﹣6)或(3﹣,﹣6).22.在学习贯彻总书记关于生态文明建设系列重要讲话精神,牢固树立“绿水青山就是金山银山”理念,把生态文明建设融入经济建设、政治建设、文化建设、社会建设各个方面和全过程,建设美丽中国的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式(也称关系式),请直接写出x的取值围;(2)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案最省钱?【考点】FH:一次函数的应用;C9:一元一次不等式的应用.【分析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;(2)列出不等式,求出自变量x的取值围,利用函数的性质即可解决问题;【解答】解:(1)由题意:y=380x+280(62﹣x)=100x+17360.∵30x+20(62﹣x)≥1441,∴x≥20.1,∴21≤x≤62.(2)由题意100x+17360≤21940,∴x≤45.8,∴21≤x≤45,∴共有25种租车方案,x=21时,y有最小值=175700元.23.已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.(1)求证:PC是⊙O的切线;(2)设OP=AC,求∠CPO的正弦值;(3)设AC=9,AB=15,求d+f的取值围.【考点】MR:圆的综合题.【分析】(1)连接OC,根据等腰三角形的性质得到∠A=∠OCA,由平行线的性质得到∠A=∠BOP,∠ACO=∠COP,等量代换得到∠COP=∠BOP,由切线的性质得到∠OBP=90°,根据全等三角形的性质即可得到结论;(2)过O作OD⊥AC于D,根据相似三角形的性质得到CD•OP=OC2,根据已知条件得到=,由三角函数的定义即可得到结论;(3)连接BC,根据勾股定理得到BC==12,当M与A重合时,得到d+f=12,当M与B重合时,得到d+f=9,于是得到结论.【解答】解:(1)连接OC,∵OA=OC,∴∠A=∠OCA,∵AC∥OP,∴∠A=∠BOP,∠ACO=∠COP,∴∠COP=∠BOP,∵PB是⊙O的切线,AB是⊙O的直径,∴∠OBP=90°,在△POC与△POB中,,∴△COP≌△BOP,∴∠OCP=∠OBP=90°,∴PC是⊙O的切线;(2)过O作OD⊥AC于D,∴∠ODC=∠OCP=90°,CD=AC,∵∠DCO=∠COP,∴△ODC∽△PCO,∴,∴CD•OP=OC2,∵OP=AC,∴AC=OP,∴CD=OP,∴OP•OP=OC2∴=,∴sin∠CPO==;(3)连接BC,∵AB是⊙O的直径,∴AC⊥BC,∵AC=9,AB=15,∴BC==12,当M与A重合时,d=0,f=BC=12,∴d+f=12,当M与B重合时,d=9,f=0,∴d+f=9,∴d+f的取值围是:9≤d+f≤12.。

相关文档
最新文档