勾股定理的培优专题

合集下载

培优专题12 闪耀在勾股定理中的数学思想方法

培优专题12 闪耀在勾股定理中的数学思想方法

AC2=32+42=25,所以 AC =5dm,所以这圈金属丝的最小长度为2 AC =10dm.
类型四:面积法
6. 如图,在△ ABC 中, AB = AC =13, BC =10,点 D 为 BC 的中点, DE ⊥ AB ,
垂足为点 E ,则 DE 等于(

A.


B.

D )

C.
∠ ACB =90°,∠ ACD =90°,所以 AB2- BC2= AC2, AD2- CD2= AC2,所以
AB2
- BC2= AD2- CD2,即172-(9+ x )2=102- x2,解得 x =6,所以 CD =6,所

AC2= AD2- CD2=64,所以 AC =8.
4. 如图,在△ ABC 中, AD ⊥ BC 于点 D ,且 AC + AD =32, BD =5, CD =
16,
求 AB 的长.
◉答案
解:设 AD = x ,则 AC =32- x .在△ ACD 中,因为∠ ADC =90°,所以
AD2+ CD2= AC2,即 x2+162=(32- x )2,解得 x =12,所以 AD =12.在△
ABD
中,因为∠ ADB =90°,所以 AD2+ BD2= AB2.所以 AB2=122+52=169,所以 AB
=13.
类型三:转化思想
5. [空间观念]如图,已知圆柱底面周长为8dm,高为3dm,在圆柱的侧面上,点 A
和点 C 相对,过点 A 和点 C 嵌有一圈金属丝,求这圈金属丝的最小长度.
◉答案
解:如图,把圆柱的侧面展开,则这圈金属丝的最小长度为2 AC 的长度.因
为圆柱底面的周长为8dm,圆柱高为3dm,所以 AB =3dm, BC =BC'=4dm,所

勾股定理的培优专题

勾股定理的培优专题

1勾股定理培优专题一、本节基础知识1、勾股定理:直角三角形 的平方和等于 的平方,即:a 2+b 2=c 2。

公式变形:a 2 = ; b 2= 。

( a=22b c - ;22b c b -=;22b a c +=)2、勾股定理的逆定理:如果三角形的三边长:a 、b 、c 满足 ,那么这个三角形是直角三角形。

3、满足222c b a =+的三个 ,称为勾股数。

请你写出几组勾股数:___________,_________,____________,____________,_______________,4、巩固练习:1.如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是_________三角形,我们把这个定理叫做勾股定理的_________.2.分别以下列四组数为一个三角形的边长:(1)6、8,10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有_________.(填序号) 3.若△ABC 中,(b -a )(b +a )=c 2,则∠B =_________;4.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是________三角形.5.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、a +2为边的三角形的面积为________.二、经典例题、针对训练、考点一 证明三角形是直角三角形例1、已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,满足a 2+b 2+c 2+338=10a+24b+26c.试判断△ABC 的形状.例2:(如图) 在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且EC=41BC ,求证:∠EFA=90︒.AB DCFE2例3:已知△ABC 中,AB=20,AC=15,BC 边上的高为12,求△ABC 的周长。

例4:一直角三角形的一直角边长为7,另两条边长为两连续整数,求这个直角三角形的周长。

培优二培优勾股定理专题

培优二培优勾股定理专题

GCBAD八下培优训练(二)勾股定理一.勾股定理中方程思想的运用例题1.如左图所示,有一张直角三角形纸片,两直角边AC=5cm,BC=10cm,将△ABC折叠,使点B与点A重合,折痕为DE,求CD的长。

1.如图,折叠长方形的一边AD,使点D落在BC边的点F处,若AB=3,BC=4,求EC的长。

2.如图折叠长方形ABCD,先折出对角线BD,再折叠AD边与BD重合,得到折痕DG.若AB=12,AD=9,求AG的长.二.勾股定理中类比思想的运用例题2.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1、S2、S3表示,则不难证明S1=S2+S3(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,那么S1、S2、S3之间有什么关系?(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个等边三角形,其面积分别用S1、S2、S3表示,请你确定S1、S2、S3之间的关系并加以证明CEFBD三.勾股定理中整体思想的运用例题3.在直线l 上依次摆放着七个正方形(如图).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=_____.四.勾股定理中数型结合思想的运用例题4. 如果△ABC 的三边a 、b 、c 满足(a-b)(a 2+b 2-c 2)=0,那么△ABC 一定是( )A.等腰直角三角形B.等腰三角形C.直角三角形D.等腰三角形或直角三角形4. 已知a 、b 、c 为△ABC 的三边长,且满足条件:a 2+b 2+c 2+50=6a+8b+10c, 试判断△ABC 的形状.5.△ABC 中,AB=17cm ,BC=16cm ,BC 边上的中线AD=15cm ,试判断△ABC 是什么三角形。

6.在一棵树的10m 高处有两只猴子,其中一只爬下树直奔离树20m 的池塘,而另一只爬到树顶后直扑池塘,如果两只猴子经过的距离相等,问这棵树有多高?例5:(最短路径问题)有一个长宽高分别为2cm ,1cm ,3cm 的长方体,有一只小蚂蚁想从点A 爬到点C 1处,求它爬行的最短路程为多少?7.如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30 千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?A BCDLC B A CBACDBFBA练习题 一、选择题1.直角三角形的两直角边分别为5、12,则斜边上的高为( )A .6 B.8 C.1380D.13602.已知R t △ABC 中,∠C=90°,若a+b=14cm,c=10cm,则R t △ABC 的面积为( ) A.24cm 2 B. 36cm 2 C.48cm 2 D.60cm 23.等腰三角形底边上的高为8,周长为32,则三角形的面积为(A.56B.48C.40D.324.如图△ABC 中,∠B=90°,两直角边AB=7,BC=24,三角形内有一点P 到各边的距离相等,则这个距离为( )A.1B.3C.4D.55.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( ) A .90° B .60° C .45° D .30°6.在△ABC 中,∠A,∠B,∠C 的对边分别为a,b,c.下列说法错误的是( ) A.∠C -∠B =∠A ,那么∠C=90° B.如果∠C=90°,则c 2- b 2= a 2 C.如果(a+b )(a-b )= c 2,那么∠C=90° D.如果∠A=30°,∠B=60°那么二、填空题7.已知一三角形三边分别为5k,12k,13k,8. 如图是一长方体长4、宽3、高12,则图中阴影部分的三角形的周长为__________9.以a,b,c 为三边的三角形,其三边满足a 2+b 2=25,a 2-b 2=7,且c=5,则这个三角形的最长边是___,这条边上的高为___.10.在△ABC 中,AB=20,AC=15,BC 边上的高为12,则△ABC 的周长为_________。

勾股定理的培优专题

勾股定理的培优专题

勾股定理的培优专题勾股定理培优专题一、基础知识1.勾股定理的逆定理是:如果三角形的三边长 a、b、c 满足 a+b=c,那么这个三角形是直角三角形。

2.勾股定理的逆定理和勾股定理的题设和结论相反,被称为互逆命题。

3.如果一个定理的逆命题经过证明是正确的,它也是一个定理,称这两个定理互为逆定理。

4.能够成为直角三角形三条边长的三个正整数3、4、5 等,称为勾股数。

巩固练:1.如果三角形的三边长 a、b、c 满足 a+b=c,那么这个三角形是直角三角形,这个定理叫做勾股定理的逆定理。

2.如果两个命题中,第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题。

如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。

3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有 1、2、3 号。

4.若△ABC 中,(b-a)(b+a)=c,则∠B=90°。

5.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是直角三角形。

6.若一个三角形的三边长分别为1、a、8(其中a为正整数),则以 a-2、a、a+2 为边的三角形的面积为 6(a-1)。

7.写出下列命题的逆命题,并判断逆命题的真假。

1) 两直线平行,同位角相等。

逆命题为:同位角相等,则两直线平行。

真。

2) 若 a>b,则 a>b。

逆命题为:若a≤b,则a≤b。

假。

二、例题和训练考点一:证明三角形是直角三角形例1:已知:如图,在△ABC 中,CD 是 AB 边上的高,且 CD=AD·BD。

求证:△ABC 是直角三角形。

训练:已知:在△ABC 中,∠A、∠B、∠C 的对边分别是 a、b、c,满足a+b+c+3√3=10a+24b+26c。

试判断△ABC 的形状。

例2:如图,在直角△ABC 中,∠B=90°,BD 垂直于AC,且 AD=CD。

专题01 勾股定理的证明(专项培优训练)(教师版)

专题01 勾股定理的证明(专项培优训练)(教师版)

专题01 勾股定理的证明(专项培优训练)试卷满分:100分考试时间:120分钟难度系数:0.57一、选择题(本大题共10小题,每小题2分,共20分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在括号内)1.(2分)(2023•南康区一模)如图,四个全等的直角三角形围成正方形ABCD和正方形EFGH,连接AC,分别交EF,GH于点M,N.已知AH=3DH,正方形ABCD的面积为24,则图中阴影部分的面积之和为( )A.4B.4.5C.4.8D.5解:∵S正方形ABCD=24,∴AB2=24,设DH=x,则AH=3DH=3x,∴x2+9x2=24,∴,根据题意可知:AE=CG=DH=x,CF=AH=3x,∴FE=FG=CF﹣CG=3x﹣x=2x,∴S△FGN =2S△CGN,∵S△AEM =S△CGN,∴S△FGN =S△AEM+S△CGN,∴阴影部分的面积之和为:====2x2==4.8.故选:C.2.(2分)(2022春•延津县期中)如图所示的是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=5,BE=13,则EF2的值是( )A.128B.64C.32D.144解:∵AE=5,BE=13,∴AB===,∴小正方形的面积为:()2﹣×4=194﹣130=64,由图可得,EF2的值等于小正方形的面积的2倍,∴EF2的值是64×2=128,故选:A.3.(2分)(2021秋•卢龙县期末)如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是( )A.76B.72C.68D.52解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169所以x=13所以“数学风车”的周长是:(13+6)×4=76.故选:A.4.(2分)(2022秋•衡东县期末)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若ab=24,大正方形的面积为129.则小正方形的边长为( )A.12B.11C.10D.9解:由题意可知:中间小正方形的边长为:a﹣b,∵ab=24,a2+b2=129,∴(a﹣b)2=a2+b2﹣2ab=129﹣2×24=81,而a﹣b>0,∴a﹣b=9,故选:D.5.(2分)(2022秋•南岸区校级期中)我国是最早了解勾股定理的国家之一,根据《周髀算经》的记载,勾股定理的公式与证明是在商代由商高发现的,故又称之为“商高定理”.三国时代的蒋铭祖对《蒋铭祖算经》勾股定理作出了详细注释,并给出了另外一种证明.下面四幅图中,不能证明勾股定理的是( )A.B.C.D.解:A、大正方形的面积为:c2;也可看作是4个直角三角形和一个小正方形组成,则其面积为:ab×4+(b﹣a)2=a2+b2,∴a2+b2=c2,故A选项能证明勾股定理;B、大正方形的面积为:(a+b)2;也可看作是4个直角三角形和一个小正方形组成,则其面积为:ab×4+c2=2ab+c2,∴(a+b)2=2ab+c2,∴a2+b2=c2,故B选项能证明勾股定理;C、梯形的面积为:(a+b)(a+b)=(a2+b2)+ab;也可看作是2个直角三角形和一个等腰直角三角形组成,则其面积为:ab×2+c2=ab+c2,∴ab+c2=(a2+b2)+ab,∴a2+b2=c2,故C选项能证明勾股定理;D、大正方形的面积为:(a+b)2;也可看作是2个矩形和2个小正方形组成,则其面积为:a2+b2+2ab,∴(a+b)2=a2+b2+2ab,∴D选项不能证明勾股定理.故选:D.6.(2分)(2023春•涧西区期中)在学习勾股定理时,甲同学用四个相同的直角三角形(直角边长分别为a,b,斜边长为c)构成如图所示的正方形;乙同学用边长分别为a,b的两个正方形和长为b,宽为a的两个长方形构成如图所示的正方形,甲、乙两位同学给出的构图方案,可以证明勾股定理的是( )A.甲B.乙C.甲,乙都可以D.甲,乙都不可以解:甲同学的方案:∵大正方形的面积=小正方形的面积+直角三角形的面积×4,∴(a+b)2=c2+ab×4,∴a2+b2+2ab=c2+2ab,∴a2+b2=c2,因此甲同学的方案可以证明勾股定理;乙同学的方案:∵大正方形的面积=矩形的面积×2+两个小正方形的面积,∴(a+b)2=a2+2ab+b2,∴得不到a2+b2=c2,因此乙同学的方案不可以证明勾股定理.故选:A.7.(2分)(2023春•樊城区期末)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若ab=24,大正方形的面积为129,则小正方形的边长为( )A.9B.10C.11D.12解:由题意知小正方形的边长是a﹣b,由勾股定理得:a2+b2=129,∵(a﹣b)2=a2+b2﹣2ab=129﹣2×24=81,∴a﹣b=9(a>b),∴小正方形的边长为9.故选:A.8.(2分)(2022秋•榕城区期中)勾股定理是一个古老的数学定理,它有很多种证明方法,如图所示四幅几何图形中,不能用于证明勾股定理的是( )A.B.C.D.解:A.根据图形可知:=2ab+b2﹣2ab+a2=a2+b2,∵,∴a2+b2=c2;故A选项不符合题意;B.不能用于证明勾股定理,故B选项符合题意;C.根据图形可知:S=4×ab+c2=2ab+c2,大正方形S=(a+b)2=a2+2ab+b2,大正方形∴2ab+c2=a2+2ab+b2,∴a2+b2=c2,故C选项不符合题意;D.根据图形可知:S=c2,大正方形S大正方形=(b+b+a)×b+(a+b+a)×a﹣2×ab=a2+b2,∴a2+b2=c2,故D选项不符合题意,故选:B.9.(2分)(2021秋•新绛县期末)意大利著名画家达•芬奇用一张纸片剪拼出不一样的空洞,而两个空洞的面积是相等的,如图所示的左图和右图,证明了勾股定理.若设左边图中空白部分的面积为S1,右边图中空白部分的面积为S2,则下列对S1,S2所列等式正确的是( )A.S1=a2+b2+2ab B.S1=a2+b2+abC.S2=c2D.S2=c2+ab解:观察图形可知:S1=S2=a2+b2+ab=c2+ab,故选:B.10.(2分)(2022春•南浔区期末)赵爽弦图由四个全等的直角三角形所组成,形成一个大正方形,中间是一个小正方形(如图所示).某次课后服务拓展学习上,小浔绘制了一幅赵爽弦图,她将EG延长交CD于点I.记小正方形EFGH的面积为S1,大正方形ABCD的面积为S2,若DI=2,CI=1,S2=5S1,则GI的值是( )A.B.C.D.解:如图,连接DG,∵赵爽弦图由四个全等的直角三角形所组成,形成一个大正方形,中间是一个小正方形,∴AE=BF=CG=DH,AF=BG=CH=DE,CH⊥DE,∵DI=2,CI=1,∴CD=DI+CI=2+1=3,∵大正方形ABCD的面积为S2,∴S 2=CD 2=32=9,又∵小正方形EFGH 的面积为S 1,S 2=5S 1,∴S 1=,∴EF =FG =GH =HE =,∵将EG 延长交CD 于点I ,∴∠HGE =45°,在Rt △EHG 中,由勾股定理得:EG ==,设AE =BF =CG =DH =x ,则AF =BG =CH =DE =x +,在Rt △CDH 中,由勾股定理得:CD 2=DH 2+CH 2,即9=x 2+(x +)2,解得:x 1=,x 2=﹣(不合题意,舍去),即AE =BF =CG =DH =x =,∴DH =EH =,∴CH 垂直平分ED ,∴DG =EG =,∴∠DGH =∠HGE =45°,∴∠DGE =45°+45°=90°,∴∠DGI =90°,在Rt △DGI 中,由勾股定理得:GI ===,故选:A .二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请将正确答案填写在横线上)11.(2分)(2023春•路北区期中)如图是一个“赵爽弦图”,它是由四个全等的直角三角形围成一个大正方形,中空的部分也是一个小正方形,若大正方形的边长为7,小正方形的边长为3,直角三角形的两直角边分别为a ,b ,则ab 的值为 20 .解:∵“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,∴直角三角形的面积=(大正方形面积﹣小正方形面积)÷4=(72﹣32)÷4=10,即ab =10,∴ab =20,故答案为:20.12.(2分)(2022秋•巴州区期末)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNPQ 的面积分别为S 1,S 2,S 3,若S 1+S 2+S 3=45,则S 2的值是 15 .解:设全等的直角三角形的两条直角边为a 、b 且a >b ,由题意可知:,因为S 1+S 2+S 3=45,即(a +b )2+a 2+b 2+(a ﹣b )2=45,3(a 2+b 2)=45,所以3S 2=45,∴S 2的值是15.故答案为:15.13.(2分)(2020秋•温州期中)如图1是我国古代著名的“赵爽 弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC =2.5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD 的周长是15,则这个风车的外围周长是 38 .解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,AC=y,则x2=4y2+2.52,∵△BCD的周长是15,∴x+2y+2.5=15则x=6.5,y=3.∴这个风车的外围周长是:4(x+y)=4×9.5=38.故答案为:38.14.(2分)(2018•遵义一模)如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是 76 .解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,AC=y,则x2=4y2+52,∵△BCD的周长是30,∴x+2y+5=30则x=13,y=6.∴这个风车的外围周长是:4(x+y)=4×19=76.故答案为:76.15.(2分)(2018春•越秀区校级期中)如图,由四个直角三角形拼成2个正方形,则4个直角三角形面积+小正方形面积=大正方形面积,即 4×ab + (b﹣a)2 = c2 化简得:a2+b2=c2.解:如图所示,4个直角三角形面积+小正方形面积=大正方形面积,即 4×ab+(b﹣a)2=c2故答案为:4×ab、(b﹣a)2、c2.16.(2分)(2023春•无棣县期中)如图所示,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②xy=2,③2xy+4=49,④x+y=9,其中说法正确的结论有 ①③ (填序号).解:∵大正方形面积为49,∴大正方形边长为7,在直角三角形中,x2+y2=72=49,故说法①正确;∵小正方形面积为4,∴小正方形边长为2,∴x﹣y=2,∴(x﹣y)2=x2+y2﹣2xy=49﹣2xy=4,∴xy=,故说法②错误;∵大正方形面积等于小正方形面积与四个直角三角形面积之和,∴4×xy+4=49,∴2xy+4=49,故说法③正确;∵2xy+4=49,∴2xy=45,∵x2+y2=49,∴x2+y2+2xy=49+45,∴(x+y)2=94,∴x+y=,故说法④错误;故答案为:①③.17.(2分)(2021秋•成华区期末)如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.如果直角三角形较长直角边为a,较短直角边为b,若ab=8,大正方形的面积为25,则小正方形的边长为 3 .解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3,故答案为:318.(2分)(2021•高新区一模)如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为S1,空白部分的面积为S2,大正方形的边长为m,小正方形的边长为n,若=,则的值为 .解:∵=,大正方形面积为m2,∴.设图2中AB=x,依题意则有:,即4××x2=,解得:(负值舍去).在Rt△ABC中,AB2+CB2=AC2,∴,解得:(负值舍去).∴.故答案为:.19.(2分)(2020春•济南期末)如图所示,“赵爽弦图”是由8个全等的直角三角形拼接而成的,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,已知S1+S2+S3=10,则S2的值是  .解:将四边形MNKT的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=10,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=10,故3x+12y=10,x+4y=,所以S2=x+4y=,故答案为:.20.(2分)(2019秋•秦都区校级月考)在如图的弦图中,已知正方形EFGH的顶点E、F、G、H分别在正方形ABCD的边DA、AB、BC、CD上.若正方形ABCD的面积=16,AE=1;则正方形EFGH的边长=  .解:∵四边形EFGH是正方形,∴EH=FE,∠FEH=90°,∵∠AEF+∠AFE=90°,∠AEF+∠DEH=90°,∴∠AFE=∠DEH,∵在△AEF和△DHE中,,∴△AEF≌△DHE(AAS),∴AF=DE,∵正方形ABCD的面积为16,∴AB=BC=CD=DE=4,∴AF=DE=AD﹣AE=4﹣1=3,在Rt△AEF中,EF===,故正方形EFGH的边长是.故答案为:.三、解答题(本大题共8小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(6分)(2023•滕州市校级开学)如图是我国数学家赵爽在《周髀算经》中给出的图案,人们称它为“赵爽弦图”.图中四个全等的直角三角形可以围成一个大正方形,直角三角形两直角边长分别为a,b,斜边长为c,中间的部分是一个小正方形.若大正方形的面积是100,小正方形的面积是4,求(a+b)2的值.解:∵大正方形的面积是100,小正方形的面积是4,∴a2+b2=c2=100,(a﹣b)2=4,∴a2+b2﹣2ab=4,即100﹣2ab=4,∴2ab=96,∴(a+b)2=a2+b2+2ab=100+96=196.22.(6分)(2022秋•屯留区期末)阅读与思考阅读下列材料,完成后面的任务:赵爽“弦圈”与完全平方公式三国时期吴国的数学家赵爽创建了一幅“弦图”,利用面积法给出了勾股定理的证明.实际上,该“弦图”与完全平方公式有着密切的关系,如图2,这是由8个全等的直角边长分别为a ,b ,斜边长为c 的三角形拼成的“弦图”.由图可知,1个大正方形ABCD 的面积=8个直角三角形的面积+1个小正方形PQMN 的面积.任务:(1)在图2中,正方形ABCD 的面积可表示为 (a +b )2 ,正方形PQMN 的面积可表示为 (a ﹣b )2 .(用含a ,b 的式子表示)(2)根据S 正方形ABCD =8S 直角三角形+S 正方形PQMN ,可得(a +b )2,ab ,(a ﹣b )2之间的关系为 (a +b )2=4ab +(a ﹣b )2 .(3)根据(2)中的等量关系,解决问题:已知a +b =5,ab =4,求(a ﹣b )2的值.解:(1)∵大正方形边长为(a +b ),小正方形边长为(a ﹣b ),∴大正方形面积为(a +b )2,小正方形面积为(a ﹣b )2;故答案为:(a +b )2;(a ﹣b )2.(2)根据S 正方形ABCD =8S 直角三角形+S 正方形PQMN ,可得,故答案为:(a +b )2=4ab +(a ﹣b )2.(3)∵a +b =5,ab =4,∴52=4×4+(a ﹣b )2,∴(a ﹣b )2=9,∴(a ﹣b )2的值为9.23.(8分)(2023春•前郭县期末)【阅读理解】我国古人运用各种方法证明勾股定理,如图①,用四个直角三角形拼成正方形,通过证明可得中间也是一个正方形.其中四个直角三角形直角边长分别为a 、b,斜边长为c.图中大正方形的面积可表示为(a+b)2,也可表示为c2+4×ab,即(a+b)2=c2+4×ab,所以a2+b2=c2.【尝试探究】美国第二十任总统伽菲尔德的“总统证法”如图②所示,用两个全等的直角三角形拼成一个直角梯形BCDE,其中△BCA≌△ADE,∠C=∠D=90°,根据拼图证明勾股定理.【定理应用】在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边长分别为a、b、c.求证:a2c2+a2b2=c4﹣b4.证明:【尝试探究】梯形的面积为S=(a+b)(b+a)=ab+(a2+b2),利用分割法,梯形的面积为S=S△ABC +S△ABE+SADE=ab+c2+ab=ab+c2,∴ab+(a2+b2)=ab+c2,∴a2+b2=c2;【定理应用】∵a2c2+a2b2=a2(c2+b2),c4﹣b4=(c2+b2)(c2﹣b2)=(c2+b2)a2,∴a2c2+a2b2=c4﹣b4.24.(8分)(2022秋•宝山区期末)如图,直角三角形ACB,直角顶点C在直线l上,分别过点A、B作直线l的垂线,垂足分别为点D和点E.(1)求证:∠DAC=∠BCE;(2)如果AC=BC.①求证:CD=BE;②若设△ADC的三边分别为a、b、c,试用此图证明勾股定理.证明:(1)∵∠ACB=90°,AD⊥DE于点D,∴∠DAC+∠ACD=90°,∠ADC+∠BCE=90°,∴∠DAC=∠BCE;(2)①∵AD⊥DE于点D,BE⊥DE于点E,∴∠ADC=∠CEB=90°,由(1)知:∠DAC=∠BCE,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS),∴CD=BE;②由图可知:S梯形ADEB =S△ADC+S△ACB+S△CEB,∴=,化简,得:a2+b2=c2.25.(8分)(2022秋•凌海市期中)我国数学家赵爽(又名婴,字君卿.三国时吴国人,一说魏晋人或汉人.籍贯、生卒年不详,约生活于公元3世纪初,数学家,天文学家)为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.根据此图证明勾股定理.(如图每个直角三角形斜边为c两个直角边分别为a、b)证明:∵,,∴,整理得a2+b2=c2.26.(8分)(2022春•广汉市期中)勾股定理是一条古老的数学定理,它有很多种证明方法.(1)请你根据图1填空;勾股定理成立的条件是 直角 三角形,结论是 a2+b2=c2 (三边关系)(2)以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图2),请你利用图2,验证勾股定理;解:(1)勾股定理指的是在直角三角形中,两直角边的平方的和等于斜边的平方.故答案为:直角;a2+b2=c2;(2)∵Rt△ABE≌Rt△ECD,∴∠AEB=∠EDC,又∵∠EDC+∠DEC=90°,∴∠AEB+∠DEC=90°,∴∠AED=90°.∵S梯形ABCD =SRt△ABE+SRt△DEC+SRt△AED,∴.整理,得a2+b2=c2.27.(8分)(2022秋•宝丰县期中)在学习勾股定理时,我们学会运用图(I)验证它的正确性:图中大正方形的面积可表示为:(a+b)2,也可表示为:c2+4•(ab),即(a+b)2=c2+4•(ab)由此推出勾股定理a2+b2=c2,这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.(1)请你用图(Ⅱ)(2002年国际数字家大会会标)的面积表达式验证勾股定理(其中四个直角三角形全等);(2)请你用(Ⅲ)提供的图形进行组合,用组合图形的面积表达式验证(x+y)2=x2+2xy+y2.解:(1)由图可得:大正方形的面积为:c2,中间小正方形面积为:(b﹣a)2,四个直角三角形面积和为:4×ab,由图形关系可知:大正方形面积=小正方形面积+四直角三角形面积,则有:c2=(b﹣a)2+4×ab=b2﹣2ab+a2+2ab=a2+b2,即:c2=a2+b2.(2)如图示:大正方形边长为(x+y)所以面积为:(x+y)2,因为它的面积也等于两个边长分别为x,y和两个长为x宽为y的矩形面积之和,即x2+2xy+y2,所以有:(x+y)2=x2+2xy+y2成立.28.(8分)(2022秋•南海区校级月考)如图,将直角三角形分割成一个正方形和两对全等的直角三角形,如图,直角三角形ABC 中,∠ACB =90°,直角三角形ADE 与直角三角形AGE 全等,直角三角形BFE 与直角三角形BGE 全等,BC =a ,AC =b ,AB =c ,正方形DEFC 中,DE =EF =CF =CD =x .小明发明了一种求正方形边长的方法:由题意可得BF =BG =a ﹣x ,AD =AG =b ﹣x ,因为AB =BG +AG ,所以a ﹣x +b ﹣x =c ,解得x =.(1)小亮也发现了另一种求正方形边长的方法:利用S △ABC =S △AEB +S △AEC +S △BEC 可以得到x 与a 、b 、c 的关系,请根据小亮的思路完成他的求解过程;(2)请结合小明和小亮得到的结论验证勾股定理.(1)解:连接EC ,如图,∵Rt △BEF ≌Rt △BEG ,Rt △AED ≌Rt △AEG ,∴ED =EG =EF =x ,∴S △AEC =bx ,S △BEC =ax ,S △AEB =cx ,S △ABC =ab ,∵S △ABC =S △AEB +S △AEC +S △BEC ,∴bx +ax +cx =ab ,即(a +b +c )x =ab ,∴x =;(2)证明:∵x =,x =,∴=,∴(a +b +c )(a +b ﹣c )=2ab ,∴(a +b )2﹣c 2=2ab ,∴(a +b )2﹣2ab =c 2,∴a 2+b 2+2ab ﹣2ab =c 2,故a2+b2=c2.。

勾股定理培优讲义全

勾股定理培优讲义全

勾股定理培优讲义全c b a HGFED CB Abacbac cabcab a bc c baED CBA勾股定理知识点汇总⼀、基础知识点:1.勾股定理:直⾓三⾓形两直⾓边的平⽅和等于斜边的平⽅;表⽰⽅法:如果直⾓三⾓形的两直⾓边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明勾股定理的证明⽅法很多,常见的是拼图的⽅法⽤拼图的⽅法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,⾯积不会改变②根据同⼀种图形的⾯积不同的表⽰⽅法,列出等式,推导出勾股定理常见⽅法如下:⽅法⼀:4EFGH S S S ?+=正⽅形正⽅形ABCD ,2214()2ab b a c ?+-=,化简可证.⽅法⼆:四个直⾓三⾓形的⾯积与⼩正⽅形⾯积的和等于⼤正⽅形的⾯积.四个直⾓三⾓形的⾯积与⼩正⽅形⾯积的和为221 422S ab c ab c =?+=+ ⼤正⽅形⾯积为222()2S a b a ab b =+=++所以222a b c +=⽅法三:1()()2S a b a b =+?+梯形,2112S 222ADE ABE S S ab c ??=+=?+梯形,化简得证222a b c +=3.勾股定理的适⽤范围勾股定理揭⽰了直⾓三⾓形三条边之间所存在的数量关系,它只适⽤于直⾓三⾓形,对于锐⾓三⾓形和钝⾓三⾓形的三边就不具有这⼀特征。

4.勾股定理的应⽤①已知直⾓三⾓形的任意两边长,求第三边在ABC ?中,90C ∠=?,则22c a b =+,22b c a =-,22a c b =-②知道直⾓三⾓形⼀边,可得另外两边之间的数量关系③可运⽤勾股定理解决⼀些实际问题5.勾股定理的逆定理如果三⾓形三边长a ,b ,c 满⾜222a b c +=,那么这个三⾓形是直⾓三⾓形,其中c 为斜边。

①勾股定理的逆定理是判定⼀个三⾓形是否是直⾓三⾓形的⼀种重要⽅法,它通过“数转化为形”来确定三⾓形的可能形状,在运⽤这⼀定理时,可⽤两⼩边的平⽅和22a b +与较长边的平⽅2c 作⽐较,若它们相等时,以a ,b ,c 为三边的三⾓形是直⾓三⾓形;②若222a b c +<,时,以a ,b ,c 为三边的三⾓形是钝⾓三⾓形;若222a b c +>,时,以a ,b ,c 为三边的三⾓形是锐⾓三⾓形;③定理中a ,b ,c 及222a b c +=只是⼀种表现形式,不可认为是唯⼀的,如若三⾓形三边长a ,b ,c 满⾜222a c b +=,那么以a ,b ,c 为三边的三⾓形是直⾓三⾓形,但是b 为斜边该定理在应⽤时,同学们要注意处理好如下⼏个要点:①已知的条件:某三⾓形的三条边的长度.②满⾜的条件:最⼤边的平⽅=最⼩边的平⽅+中间边的平⽅.③得到的结论:这个三⾓形是直⾓三⾓形,并且最⼤边的对⾓是直⾓. ④如果不满⾜条件,就说明这个三⾓形不是直⾓三⾓形。

勾股定理培优(教案)

勾股定理培优(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“勾股定理在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理指的是直角三角形中,斜边的平方等于两个直角边平方和的数学关系。它是解决直角三角形相关问题的重要工具,广泛应用于建筑、工程等领域。
2.案例分析:接下来,我们来看一个具体的案例。通过测量三角形形的边长,应用勾股定理计算斜边长度,展示其在实际中的应用。
五、教学反思
在上完这节勾股定理培优课后,我对教学过程进行了深入的思考。首先,我发现学生在理解勾股定理的推导和应用过程中存在一定难度。在今后的教学中,我需要更加注重引导学生从具体的实例中抽象出数学规律,帮助他们理解并掌握勾股定理。
在讲授新课的过程中,我尝试通过生动的案例和实际操作,让学生感受勾股定理在实际生活中的应用。这种教学方法得到了学生的积极响应,他们表现出浓厚的兴趣。但同时,我也发现部分学生在将理论知识应用到实际问题解决时仍显得有些吃力。针对这一点,我计划在接下来的教学中,增加一些更具挑战性的实际问题,让学生在解决问题的过程中,提高勾股定理的应用能力。
三、教学难点与重点
1.教学重点
(1)勾股定理的表述及证明:让学生掌握勾股定理的表述,理解其证明过程,并能够运用定理解决相关问题。
举例:a² + b² = c²,其中c为直角三角形的斜边,a、b为两个直角边。

勾股定理培优题

勾股定理培优题

勾股定理一、知识要点1、勾股定理勾股定理在西方又被称为毕达哥拉斯定理,它有着悠久的历史,蕴含着丰富的文化价值,勾股定理是数学史上的一个伟大的定理,在现实生活中有着广泛的应用,被人誉为“千古第一定理” .勾股定理反映了直角三角形(三边分别为a 、b 、c ,其中c 为斜边)的三边关系,即a 2+b 2=c 2,它的变形式为c 2-a 2=b 2或c 2-b 2=a 2.勾股定理是平面几何中最重要的几何定理之一,在几何图形的计算和论证方面,有着重要的应用,它沟通了形与数,将几何论证转化为代数计算,是一种重要的数学方法. 2、勾股定理的逆定理如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,则这个三角形是以c 为斜边的直角三角形.勾股定理的逆定理给出了判定一个三角形是直角三角形的方法,这种方法与前面学过的一些判定方法不同,它是通过代数运算“算”出来的,实际上利用计算证明几何问题在几何里也是很重要的,这是里体现了数学中的重要思想——数形结合思想,突破了利用角与角之间的转化计算直角的方法,建立了通过求边与边的关系来判断直角的新方法,它将数形之间的联系体现得淋漓尽致.因此也有人称勾股定理的逆定理为“数形结合的第一定理”.二、基本知识过关测试1.如果直角三角形的两边为3,4,则第三边a 的值是 .2.如图,图形A 是以直角三角形直角边a 为直径的半圆,阴影S A = .3.如图,有一个圆柱的高等于12cm ,底面半径3cm ,一只蚂蚁要从下底面上B 点处爬至上底与B 点相对的A 点处,所需爬行的最短路程是 .4.如图.在 △ABC 中,CD ⊥AB 于D ,AB =5,CD=BCD =30° ,则AC = . 5.的线段.6.在下列各组数中 ①5,12,13 ;②7,24,25;③32,42,52;④3a ,4a ,5a ;⑤a 2+1,a 2-1,2a (a >1);⑥m 2-n 2,2mn ,m 2+n 2(m >n >0)可作直角三角形三边长的有 组.7.如图,四边形ABCD 中,AB =1,BC =2,CD =2,AD =3,AB ⊥BC ,则四边形ABCD 的面积是 .第2题图 第3题图 第4题图 第7题图8.如图,在正方形ABCD 中,F 为DC 中点,E 为BC 上一点,且EC =14BC ,试判断△ AEF 的形状.三、综合.提高.创新BADCBADCBAFE DCB A【例1】(1)在三角形纸片ABC 中,∠C =90°,∠A =30°,AC =3,折叠该纸片,使点A 与点B 重合,折痕与AB 、AC 分别相交于点D 和点E (如图),折痕DE 的长是多少?(2)如图,在矩形ABCD 中,AB =8,AD =10,按如图所示折叠,使点D 落在BC 上的点E 处,求折痕AF 的长.(3)如图,正三角形ABC 的边长为2,M 是AB 边上的中点,P 是BC 边上任意一点,PA +PM 的最大值和最小值分别记作S 和T ,求S 2-T 2的值.【练】如图,四边形ABCD 是长方形,把△ACD 沿AC 折叠到△ACD ′,AD ′与BC 交于E ,若AD =4,DC =3,求BE .【例2】(1)如图,△ABC 中,∠C =60°,AB =70,AC =30,求BC 的长.EDC BAFEDCBAPMCAD 'EDCB A(2)如图,在四边形ABCD 中,AB =2,CD =1,∠A =60°, ∠B =∠D =90°,求四边形ABCD 的面积.【练】如图,△ABC 中,A =150°,AB =2,BCAC 的长.【例3】(1)如图,△ABC 中,AB =AC =20,BC =32,D 为BC 上一点,AD ⊥AB ,求CD .(2)如图,在Rt △ABC 中,∠C =90°,D 、E 分别是BC 、AC 中点,AD =5,BE=,求AB .【例4】如图,△ABC 中,∠ACB =90°,CD ⊥AB 于D ,设AC =b ,BC =a ,AB =c ,CD =h ,求证:CBADCBACBADCBAEDC BA(1)222111a b h +=; (2)a +b <c +h ;(3)以a +b ,h 和c +h 为边的三角形是直角三角形.【例5】(1)如图,ABCD 为矩形,P 为矩形ABCD 所在平面上一点,求证:PA 2-PB 2=PD 2 -PC 2.(2)锐角△ABC 中,AD ⊥BC 于D ,若∠B =2∠C ,求证:AC 2=AB 2+AB ·BC .变式:如图,AM 是△ABC 的BC 边上的中线,求证:AB 2+AC 2=2(AM 2+BM 2).(3)如图,△ABC 中,AB =AC ,P 为线段BC 上一动点,试猜想AB 2,AP 2, PB ,PC 有何关系,并加以证明.D CBAPDCB ADCBAM BA变式:若点P 在BC 的延长线上,如图,(3)中结论是否仍然成立?并证明.(4)在等腰Rt △ABC 的斜边AB 所在的直线上取点P 并设s =AP 2+BP 2,试探求P 点位置变化时,s 与2CP 2的大小关系,并证明.变式:若点P 在BA 的延长线上,如图中,(4)中结论是否仍然成立?并证明.【例6】(1)如图,△ABC 中,D 为BC 边上的中点,以D 为顶点作∠EDF =90°,DE 、DF 分别交AB 、AC 于E 、F ,且BE 2+FC 2=EF 2,求证:∠BAC =90°.P CB APC APCBACBAFED(2)在Rt△ABC中,∠BAC=90°,AB=AC,E,F分别是BC上两点,若∠EAF=45°,试推断BE,CF,EF之间的关系,并证明.AB C变式一:将(2)中△AEF旋转至如图所示,上述结论是否仍然成立?试证明.AE变式二:如图,△AEF中∠EAF=45°,AG⊥EF于G,且GF=2,GE=3,求S△AEF.AG【例7】(1)在△ABC中,∠ACB=90°,AC=BC,P为△ABC内一点,且PA=3,PB=1,PC=2,求∠BPC的度数.(2)如图,在四边形ABCD 中,∠ABC =30°,∠ADC =60°,AD =CD ,求证BD 2=AB 2+BC 2.【例8】在等腰△ABC 中,AB =AC ,边AB 绕点A 逆时针旋转角度m ,得到线段AD . (1)如图1,若∠BAC =30°,30°<m <80°,连接BD ,请用含m 的式子表示∠DBC ;(2)如图2,若∠BAC =90°,0°<m <360°,射线AD 与直线BC 相交于点E ,是否存在旋转角度m,使AEBE若存在,求出所有符合条件的m 的值;若不存在,请说明理由.【例9】(1)已知点P 在一、三象限的角平分线上,且点P 到点A (3,6)的距离为PA =15,求点P 的坐标;PCBADCBADCB AE DCBA(2)已知直角坐标平面内的△ABC三个顶点的坐标分别为A(-1,4),B(-4,-2),C(2,-2),试判断△ABC的形状;(3的最小值;(4)已知a>0,b>0.自我归纳:四、课后练习1.如图,一艘货轮向正北方向航行,在点A处测得灯塔M在北偏西30°,货轮以每小时20海里的速度航行,1小时后到达B处,测得灯塔M在北偏西45°,问该货轮到达灯塔正东方向D处时,货轮与灯塔M的距离是多少?2.在△ABC 中,A =30°,B =45°,BC =10cm ,求AB ,AC 及△ABC 的面积.3.(1)如图,把长方形沿ABCD 对角线折叠,重合部分为△EBD . 1)求证和:△EBD 为等腰三角形; 2)若AB =2,BC =8,求AE .(2)如图,折叠长方形ABCD 的一边AD ,使点D 落在BC 边上,已知AB =8cm ,CE =4cm ,求AD .4.如图,△ABC 是等腰三角形,∠BAC =90°,AB =AC ,D .E .是BC 上的两点,且∠DAE =45°,若BD =6,EC =8,求DE 的长.MDB A北C 'EDCB AFED CBA5.如图,在等腰三角形中,AB=AC,D是斜边BC的中点,E、F分别为AB,AC边上的点,且DE⊥DF. (1)求证:BE2+CF2=EF2;(2)若BE=12,CF=5,试求△DEF的面积.6.如图,等腰Rt△ABC中,∠A=90°,P为△ABC内一点,PA=1,PB=3,PC,求∠CPA.7.(1)如图1,已知点P是矩形ABCD内一点,求证:PA2+PC2=PB2+PD2. (2)①如果点P移动到矩形的一边或顶点时,如图2,(1)中结论仍成立;C BAEDFC BAEPCB AAB CDP②如果点P移动到矩形ABCD的外部时,如图3,(1)中结论仍成立.请在以上两个结论中任选一个并给出证明.归纳结论:8.如图,△ABC中,AD是BC边的中点,AE是BC边上的高,求证:AB2-AC2=2BC·DE.9.10.试判断,三边长分别为2n2+2n,2n+1,2n2+2n+1(n>0)的三角形是否为直角三角形?11.已知a,b,x,y.PDCBAPDCBAED C BA12.如图,Rt△ABC的两直角边AB=4,AC=3,△ABC内有一点P,PD⊥BC于D,PE⊥AC于E,PF⊥AB于F,且AB PF+AC PE +BCPD=12,求PD、PE、PF的长.PFED CBA欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

完整版)勾股定理培优专项练习

完整版)勾股定理培优专项练习

完整版)勾股定理培优专项练习勾股定理练(根据对称求最小值)基本模型:已知点A、B为直线m同侧的两个点,请在直线m上找一点M,使得AM+BM有最小值。

1、已知边长为4的正三角形ABC上一点E,AE=1,AD⊥BC于D,请在AD上找一点N,使得EN+BN有最小值,并求出最小值。

解:由于AE=1,所以DE=√3.连接BE,设∠EBN=x,则∠EBD=∠ABE-x=60°-x。

由正弦定理得:EN/ sinx = BN/sin(60°-x)。

=。

EN/BN = sinx/sin(60°-x)由于sinx/sin(60°-x)在[0,1]内单调递增,所以EN/BN最小值对应的x值也是最小值。

又由于XXX,所以问题转化为:在直线AD上找一点N,使得MN+EB最小。

连接AC,设交点为F,则∠ABF=∠FBD=30°,BF=AB/2=2.由于AF=AD-DF=√3-DF,所以MN+EB=BF+MN+EF=BF+FN。

由于FN=AF-AN=AF-AE=√3-1,所以MN+EB=2+MN+√3-1=MN+3+√3.因此,EN+BN的最小值为3+√3,此时x=30°。

2、已知边长为4的正方形ABCD上一点E,AE=1,请在对角线AC上找一点N,使得EN+BN有最小值,并求出最小值。

解:连接BE,设∠EBN=x,则∠EBD=∠ABE-x=45°-x。

由正弦定理得:EN/sinx = BN/sin(45°-x)。

=。

EN/BN = sinx/sin(45°-x)由于sinx/sin(45°-x)在[0,1]内单调递增,所以EN/BN最小值对应的x值也是最小值。

又由于XXX,所以问题转化为:在对角线AC上找一点N,使得MN+EB最小。

连接BD,设交点为F,则∠ABF=∠FBD=45°,BF=AB/√2=2√2.由于AF=AD-DF=4-DF,所以MN+EB=BF+MN+EF=BF+FN。

勾股定理专题培优学案(勾股定理和几何计算、勾股定理和几何证明和勾股弦图)

勾股定理专题培优学案(勾股定理和几何计算、勾股定理和几何证明和勾股弦图)

勾股定理辅助线一、本章概述本章共分为勾股定理与几何计算、勾股定理与几何证明和勾股弦图三部分,都是勾股定理的重难点内容二、知识回顾1.勾股定理(1)直角三角形两直角边的平方和等于斜边c的平方和。

(即:)2.勾股定理的逆定理(2)如果三角形的三边长:。

满足关系,那么这个三角形是直角三角形。

3.勾股定理的证明:(3)勾股定理的证明方法很多,常见的是拼图方法,用拼图的方法验证勾股定理的思路是:①图形进行割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

(4)常见方法如下:方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积。

方法三:美国第二十任总统伽菲尔德的“总统证法”.1. 勾股定理与几何计算一、本节概述本节主要讲解勾股定理常见的三个辅助线模型,将斜三角形问题,转化为直角三角形问题。

当遇到三角形内的几何计算,特别是长度计算时,可以考虑用勾股定理解决。

在没有直角三角形时,我们就构造直角三角形,方法就是作高。

要尽量作与题中条件有关系的高,总有一条适合你的,比如特殊角所对的高。

二、典例精析知识点:勾股定理与几何计算【例1】如图,已知AC=2,思路分析:标记条件,题目中给出三角形的两个角和一条边,符合“AAS”,故三角形形状固定,可通过作高转化为勾股定理来解决,作高的时候,要充分利用特殊角。

作AB角形问题。

解:,先从右边已知一边和一角的直角三角形入手,这是个()的特殊直角三角形。

得到CD后,再看左边已知一边和一角的直角三角形,这是个()的特殊直角三角形。

方法总结这是利用勾股定理时常见的辅助线做法之一:三角形给出的条件满足“AAS”,作高的时候要充分利用特殊角,使分割后得到的直角三角形可求解即可,此例题是垂线在三角形内,并获得特殊直角三角形的例子。

【例2】思路分析:标记条件,给出的三角形符合“SAS”,故形状固定,可通过作高解决,作高时要充分利用特殊三角形,因为给出的特殊角是钝角,故可利用它的补角。

专题勾股定理培优版(综合)

专题勾股定理培优版(综合)

专题 勾股定理在动态几何中的应用一.勾股定理与对称变换 (一)动点证明题1.如图,在△ABC 中,AB =AC ,(1)若P 为边BC 上的中点,连结AP ,求证:BP ×CP =AB 2-AP 2;(2)若P 是BC 边上任意一点,上面的结论还成立吗?若成立请证明,若不成立请说明理由;(3)若P 是BC 边延长线上一点,线段AB 、AP 、BP 、CP 之间有什么样的关系?请证明你的结论.(二)最值问题2.如图,E 为正方形ABCD 的边AB 上一点,AE =3 ,BE =1,P 为AC 上的动点,则PB +PE 的最小值是ABPCBCPADPED C C将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM. (1)求证:△AMB ≌△ENB ;(2)①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由;(3)当AM +BM +CM 的最小值为13 时,求正方形的边长.D C CD C C长.小明同学的解题思路是:利用轴对称,把△ADC 进行翻折,再经过推理、计算使问题得到解决. (1)请你回答:图中BD 的长为 ;(2)参考小明的思路,探究并解答问题:如图②,在△ABC 中,D 是BC 边上的一点,若∠BAD=∠C=2∠DAC=30°,DC=2,求BD 和AB 的长.图① 图②DB C图2图1A'PPA ABCBC5.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC (其中∠BAC 是一个可以变化的角)中,AB=2,AC=4,以BC 为边在BC 的下方作等边△PBC ,求AP 的最大值。

小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B 为旋转中心将△ABP 逆时针旋转60°得到△A ’BC,连接A A ',当点A 落在C A '上时,此题可解(如图2).请你回答:AP 的最大值是 .参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt △ABC .边AB=4,P 为△ABC 内部一点, 则AP+BP+CP 的最小值是 .(结果可以不化简)6.如图,P 是等边三角形ABC 内一点,AP=3,BP=4,CP=5,求∠APB的度数. BAC图3CABP变式1:∆ABC 中, ∠ACB=90º,AC=BC ,点P 是∆ABC 内一点,且PA=6,PB=2,PC=4,求∠BPC 的度数变式2:问题:如图1,P 为正方形ABCD 内一点,且PA ∶PB ∶PC =1∶2∶3,求∠APB 的度数.小娜同学的想法是:不妨设PA=1, PB=2,PC=3,设法把PA 、PB 、PC 相对集中,于是他将△BCP 绕点B 顺时针旋转90°得到△BAE (如图2),然后连结PE ,问题得以解决. 请你回答:图2中∠APB 的度数为 . 请你参考小娜同学的思路,解决下列问题:如图3,P 是等边三角形ABC 内一点,已知∠APB=115°,∠BPC=125°.(1)在图3中画出并指明以PA 、PB 、PC 的长度为三边长的一个三角形(保留画图痕迹); (2)求出以PA 、PB 、PC 的长度为三边长的三角形的各内角的度数分别等于 .EDDPPPCCCBBBAAA图1 图2 图3CBAPCA BEF MN图① 7. 已知Rt △ABC 中,∠ACB =90°,CA =CB ,有一个圆心角为︒45,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N .(1)当扇形CEF 绕点C 在∠ACE 的内部旋转时,如图①,求证:222BN AM MN +=;(2)当扇形CEF 绕点C 旋转至图②的位置时,关系式222BN AM MN +=是否仍然成立?若成立,请证明;若不成立,请说明理由.变式1:如图,在Rt ABC ∆中, 90,,45BAC AC AB DAE ∠=︒=∠=︒ 且3BD =,4CE =,则DE =变式2:如图,在Rt △ABC 中,AB AC =,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC 绕 点A 顺时针旋转90︒后,得到△AFB ,连接EF ,下列结论: ①△AED ≌△AEF ; ②△ABE ≌△ACD ; ③BE DC DE +=;④222BE DC DE +=其中正确的是( ) CABE F MN 图②BCDEFA(三)其它应用7. 在ABC △中,AB 、BC 、AC 三边的长分别为5、10、13,求这个三角形的面积.小宝同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC △(即ABC △三个顶点都在小正方形的顶点处),如图1所示.这样不需求ABC △的高,而借用网格就能计算出它的面积.(1)请你将ABC △的面积直接填写在横线上__________________; 思维拓展:(2)我们把上述求ABC △面积的方法叫做构图法....若ABC △三边的长分别为2a 、13a 、17a (0a >),请利用图2的正方形网格(每个小正方形的边长为a )画出相应的ABC △,并求出它的面积填写在横线上__________________; 探索创新:(3)若ABC △中有两边的长分别为2a 、10a (0a >),且ABC △的面积为22a ,试运用构图..法.在图3的正方形网格(每个小正方形的边长为a )中画出所有符合题意的ABC △(全等的三角形视为同一种情况),并求出它的第三条边长填写在横线上__________________.8.已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连结QE并延长交BP于点F.(1)如图1,若AB=32,点A、E、P恰好在一条直线上时,求此时EF的长(直接写出结果);(2)如图2,当点P为射线BC上任意一点时,猜想EF与图中的哪条线段相等(不能添加辅助线产生新的线段),并加以证明;(3)若AB=32,设BP=x,以QF为边的等边三角形的面积y,求y关于x的关系式.。

勾股定理的培优专题

勾股定理的培优专题

勾股定理培优专题一、本节基础知识1、勾股定理的逆定理:如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.2、命题与原命题:勾股定理的逆定理的题设和结论恰好与勾股定理的题设和结论相反,我们把像这样的两个命题叫做互逆命题,如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

3、逆定理:一般地,如果一个定理的逆命题经过证明是正确的,它也是一个定理,称这两个定理互为逆定理。

4、勾股数:3、4、5这样,能够成为直角三角形三条边长的三个正整数,称为勾股数。

巩固练习:1.如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是_________三角形,我们把这个定理叫做勾股定理的_________.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做_________如果把其中一个命题叫做原命题,那么另一个命题叫做它的_________.3.分别以下列四组数为一个三角形的边长:(1)6、8,10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有_________.(填序号)4.若△ABC中,(b-a)(b+a)=c2,则∠B=_________;5.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC是________三角形.6.若一个三角形的三边长分别为1、a、8(其中a为正整数),则以a-2、a、a+2为边的三角形的面积为________.7.写出下列命题的逆命题,并判断逆命题的真假.(1)两直线平行,同位角相等.(2)若a>b,则a2>b.二、经典例题、针对训练、延伸训练考点一证明三角形是直角三角形例1、已知:如图,在△ABC中,CD是AB边上的高,且CD2=AD·BD.求证:△ABC是直角三角形.针对训练:1、已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,满足a 2+b 2+c 2+338=10a+24b+26c.试判断△ABC 的形状.2(如图) 在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且EC=41BC ,求证:∠EFA=90︒.3、如图,已知:在ΔABC 中,∠C=90︒,M 是BC 的中点,MD ⊥AB 于D ,求证:AD 2=AC 2+BD 2.考点二 运用勾股定理的逆定理进行计算 例、如图,等腰△ABC 中,底边BC =20,D 为AB 上一点,CD =16,BD =12,求△ABC 的周长。

勾股定理与实际问题十大类型大题专练(分层培优30题)

勾股定理与实际问题十大类型大题专练(分层培优30题)

2022-2023学年八年级数学下学期复习备考高分秘籍【人教版】专题2.4勾股定理与实际问题十大类型大题专练(分层培优30题)类型一、勾股定理与梯子问题1.(2022秋·陕西西安·八年级校考期中)如图,一架长10米的梯子AB,斜靠在竖直的墙上,这时梯子底端离墙(BO)6米(1)此时梯子顶端A离地面多少米?(2)若梯子顶端A下滑3米到C处,那么梯子底端B将向左滑动多少米到D处?2.(2022秋·山西晋中·八年级统考期中)如图,小巷左右两侧是竖直的高度相等的墙,一根竹竿斜靠在左墙时,竹竿底端O到左墙角的距离OC为0.7米,顶端B距墙顶的距离AB为0.6米若保持竹竿底端位置不动,将竹竿斜靠在右墙时,竹竿底端到右墙角的距离OF为1.5米,顶端E距墙项D的距离DE为1米,点A、B、C 在一条直线上,点D、E、F在一条直线上,AC⊥CF,DF⊥CF.求:(1)墙的高度;(2)竹竿的长度.【答案】(1)墙高3米(2)竹竿的长2.5米【分析】(1)设墙高x米,在RtΔBCO,RtΔEFO根据勾股定理即可表示出竹竿长度的平方,联立即可得到答案;(2)把(1)中的x代入勾股定理即可得到答案.【详解】(1)解:设墙高x米,∵AC⊥CF,DF⊥CF,∴∠BCO=∠EFO=90°,在RtΔBCO,RtΔEFO根据勾股定理可得,B O2=(x−0.6)2+0.72,O E2=(x−1)2+1.52,∵BO=OE,3.(2022秋·江苏扬州·八年级校联考期中)一架梯子AB长25米,如图斜靠在一面墙上,梯子底端B离墙7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子底部在水平方向滑动了4米吗?为什么?(2)梯子底部不是水平方向滑动了由题意得:A A′=4米,∴A′C=24−4=20米,∴B′C=252−202=15(米)类型二、勾股定理与旗杆高度问题4.(2022秋·山东济南·七年级校考期中)如图,有一只摆钟,摆锤看作一个点,当它摆动到离底座最近时,摆锤离底座的垂直高度DE=4cm,当它来回摆动到离底座的距离最高与最低时的水平距离为8cm时,摆锤离底座的垂直高度BF=6cm,求钟摆AD的长度.【答案】15cm【分析】根据勾股定理可知A B2=A C2+B C2列方程即可请求解.【详解】解:设AB=x cm,依题意得:BC=8cm,CD=CE−DE=6−4=2(cm),AC=AD−CD=(x−2)(cm),∵∠ACB=90°,∴A B2=A C2+B C2,即(x−2)2+82=x2,解得:x=15答:钟摆AD的长15cm【点睛】本题考查了利勾股定理解决实际问题,正确构造直角三角形利用勾股定理列方程是解题的关键.5.(2022秋·山东济宁·七年级校考期中)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度(滑轮上方的部分忽略不计).【答案】17m【分析】根据题意画出示意图,设旗杆高度为x米,可得AC=AD=x(m),AB=(x−2)(m),而BC=8m,在Rt△ABC中利用勾股定理可求出x即可.【详解】解:如图,设旗杆高度为x米,则AC=AD=x(m),AB=(x−2)(m),而BC=8m,在Rt△ABC中,A B2+B C2=A C2,即(x−2)2+82=x2,解得:x=17(m),即旗杆的高度为17m.【点睛】本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.6.(2022秋·山东枣庄·八年级统考期中)如图,为预防新冠疫情,某小区人口的正上方A处装有红外线激光测温仪,测温仪离地面的距离AB=2.4米,当人体进入感应范围内时,测温仪就会自动测温并报告人体体温.当身高为1.8米的市民CD正对门缓慢走到离门0.8米的地方时(即BC=0.8米),测温仪自动显示体温,求此时人头顶离测温仪的距离AD.∵AB=2.4米,BE=∴AE=AB−BE=2.4−1.8在Rt△ADE中,由勾股定理得到:AD=AE2+DE2=类型三、勾股定理与大树折断问题7.(2022春·广东江门·八年级校考期中)如图所示,一棵大树在一次强烈台风中于离地面9米处折断倒下,树顶落在离树根12米处,大树在折断之前高多少米?【答案】24【分析】先根据大树离地面部分、折断部分及地面正好构成直角三角形利用勾股定理求出折断部分的长,进而可得出结论.【详解】解:根据题意:大树离地面部分、折断部分及地面正好构成直角三角形,且折断部分是斜边,8.(2022秋·陕西渭南·八年级统考期中)如图,一根垂直于地面的旗杆高8m,因刮大风旗杆从点C处折断,顶部B着地且离旗杆底部的距离AB=4m.(1)求旗杆折断处C点距离地面的高度AC;(2)工人在修复的过程中,发现在折断点C的下方1.25m的点D处,有一明显裂痕,若下次大风将修复好的旗杆从点D处吹断,旗杆的顶点落在水平地面上的B′处,形成一个直角△AD B′,请求出A B′的长.【点睛】本题考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图9.(2022秋·陕西咸阳·八年级统考期中)如图,一根直立的旗杆高8m,因刮大风旗杆从点C处折断,顶部B着地且离旗杆底部A的距离为4m.(1)求旗杆距地面多高处折断(AC);(2)工人在修复的过程中,发现在折断点C的下方1m的点D处,有一条明显裂痕,将旗杆修复后,若下次大风将旗杆从点D处吹断,则距离旗杆底部周围多大范围内有被砸伤的风险?因为点D距地面AD=3−1=2(m)类型四、勾股定理与筷子问题10.(2021春·云南红河·八年级校考期中)将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为ℎcm,求h的取值范围【点睛】本题考查了勾股定理的应用,正确求出11.(2022春·内蒙古巴彦淖尔·八年级统考期中)我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭(jiā)生其中,出水一尺.引葭赴岸(丈、尺是长度单位,1丈10尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,它高出水面1尺(即BC=1尺).如果把这根芦苇拉向水池一边的中点,它的顶端B恰好到达池边的水面D处,问水的深度是多少?【答案】12尺【分析】设水深为h尺,则芦苇长为(h+1)尺,根据勾股定理列方程,解出h即可.【详解】解:设水深为h尺,则芦苇长为(h + 1)尺,根据勾股定理列方程,解出h即可.设水深为h尺,则芦苇长为(h+ 1)尺,根据勾股定理,得(h+ 1)2-h2=52解得h = 12,∴水深为12尺,故答案是:12尺.【点睛】本题主要考查勾股定理的应用,熟练根据勾股定理列出方程是解题的关键.12.(2022秋·山东菏泽·八年级统考期中)如图,一个直径为20cm的杯子,在它的正中间竖直放一根小木棍,木棍露出杯子外2cm,当木棍倒向杯壁时(木棍底端不动),木棍顶端正好触到杯口,求木棍长度.【答案】26cm【分析】设杯子的高度是x cm,那么小木棍的高度是(x+2)cm,因为直径为20cm的杯子,可根据勾股定理列方程求解.【详解】解:设杯子的高度是x cm,那么小木棍的高度是(x+2)cm,∵杯子的直径为20cm,∴杯子半径为10cm,∴x2+102=(x+2)2,即x2+100=x2+4x+4,解得:x=24,24+2=26(cm).答:小木棍长26cm.【点睛】本题考查了勾股定理的运用,解题的关键是看到构成的直角三角形以及各边的长.类型五、勾股定理与航海问题13.(2022春·黑龙江哈尔滨·八年级哈尔滨市第四十七中学校考期中)如图,海中有一小岛P,它的周围12海里内有暗礁,渔船跟踪鱼群由西向东航行,在M处测得小岛P在北偏东60°方向上,航行16海里到N处,这时测得小岛P在北偏东30°方向上.(1)求M点与小岛P的距离;(2)如果渔船不改变航线继续向东航行,是否有触礁危险,并说明理由.14.(2022秋·江苏·八年级期中)位于苏州乐园的漂流项目深受欢迎,在景区游船放置区,工作人员把偏离的游船从点A拉回点B的位置(如图).在离水面垂直高度为8m的岸上点C,工作人员用绳子拉船移动,开始时绳子AC的长为17m,工作人员以0.35米/秒的速度拉绳子,经过20秒后游船移动到点D的位置,问此时游船移动的距离AD的长是多少?【答案】此时游船移动的距离AD的长是9m15.(2022秋·广东深圳·八年级深圳市高级中学校考期中)如图所示,一艘轮船由A港口沿着北偏东60°的方向航行100km到达B港口,然后再沿北偏西30°方向航行100km到达C港口.(1)求A,C两港口之间的距离;(结果保留根号)(2)C港口在A港口的什么方向.类型六、勾股定理与宽度问题16.(2022春·安徽·八年级校联考期中)如图,沿AC方向开山修路.为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B取∠ABD=120°,BD=400米,∠D=30°.那么另一边开挖点E离D多远正好使A、C、E.732,结果精确到1米)?17.(2020秋·四川成都·八年级统考期中)如图,在一条东西走向河流的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,电C到A的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H(A、H、B在同一条直线上),并新修一条路CH,已知CB=CH=2千米,HB=1千米.(1)CH是否为从村庄C到河边的最近路?请通过计算加以说明.(2)求新路CH比原路CA少多少千米?(2)设AC=AB=x,∵BH=1千米,18.(2022春·湖南长沙·八年级长沙市长郡梅溪湖中学校考期中)去年某省将地处A,B两地的两所大学合并成了一所综合性大学,为了方便A,B两地师生的交往,学校准备在相距2.732km的A,B两地之间修筑一条笔直公路(即图中的线段AB),经测量,在A地的北偏东60度方向、B地的西偏北45度方向C处有一个半径为0.7km≈1.732)类型七、勾股定理与超速问题19.(2022秋·广东佛山·八年级统考期中)“某市道路交通管理条例”规定:小汽车在城市道路上行驶速度不得超过70千米/时,如图,一辆小汽车在城市道路BC上直道行驶,某一时刻刚好行驶到车速检测仪A正前方60米的C处,过了4秒后到达B处(BC⊥AC),此时测得小汽车与车速检测仪间的距离AB为100米,请问这辆小汽车是否超速?20.(2022春·湖北宜昌·八年级统考期中)超速行驶是引发交通事故的主要原因.上周末,小威等三位同学在幸福大道段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100m的P处.这时,一辆红旗轿车由西向东匀速驶来,测得此车从A处行驶到B处所用的时间为3s,并测得∠APO=60°,∠BPO=45°,(1)求AP的长?(2)试判断此车是否超过了80km/h 1.732)【答案】(1)AP的长为200m(2)此车超过了80km/h的限制速度21.(2022春·福建福州·八年级福建省福州第八中学校考期中)“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h(约为19.4m/s).如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方40m的C处(即AC=40m),过了2s后,行驶到B处,测得小汽车与车速检测仪间距离AB为50m,问:这辆小汽车超速了吗?类型八、勾股定理与台风影响问题22.(2021秋·浙江嘉兴·八年级期中)如图,小明家位于笔直的公路MN一侧的点A处,且到公路MN的距离AB为600m,现有一广播车在公路MN上以250m/min的速度沿MN方向行驶,已知广播车周围1000m以内都能听到广播宣传,则小明家是否能听到广播宣传?若能,请求出小明家共能听到多长时间的广播宣传?若不能,请说明理由.∴在Rt△ABP中,由勾股定理,得BP=∵AB⊥PQ,AP=AQ,∴PQ=2BP=1600m.∴小明家共能听到广播宣传的时间为1600÷250=6.4min.【点睛】本题主要考查了勾股定理,等腰三角形的性质,熟练掌握勾股定理,等腰三角形的性质是解题的关键.23.(2022秋·浙江宁波·九年级校联考期中)台风是一种自然灾害,它以台风中心为圆心在周围数十千米的范围内形成气旋风暴,有极强的破坏力,据气象观测,距沿海某城市A的正南方向220km的B处有一台风中心,该台风中心现在正以15km/h的速度沿北偏东30°方向移动,若在距离台风中心130km范围内都要受到影响.(结果精确到0.01)≈1.414 1.732 2.236)(1)该城市是否会受到这次台风的影响?说明理由.(2)若会受到台风影响,那么台风影响该城市的持续时间有多长?在直角△ABD中,∵∠ABD=30°,AB=AB=110km∴AD=12∵110<13024.(2022秋·广西贵港·九年级统考期中)如图,某货船以20海里/小时的速度将一批重要物资由A处运往正西方向的目的地B处,经16小时的航行到达,到达后立即开始卸货,这时接到气象部门的通知,一台风中心正以40海里/小时的速度由A向北偏西60°方向移动,距台风中心200海里的圆形区域(包括边界)都会受到影响.(1)问B处是否会受到台风的影响请说明理由;(2)为避免受到台风的影响,该船应在多少小时内卸完货物?(结果保留根号)【答案】(1)会受台风影响,理由见解析;∵在Rt△ABD中,∠BACAB,∴BD=12∵AB=20×16=320∴BD=1AB=1×320=160在Rt△ADB中,AB=∴AD=1603海里,∵要使卸货不受台风影响,∴必须在点B距台风中心第一次为类型九、勾股定理与选址问题25.(2019春·山东济宁·八年级校考期中)为了丰富少年儿童的业余生活,某社区要在如图中的AB所在的直线上建一图书室,本社区有两所学校所在的位置在点C和点D处,CA⊥AB于A,DB⊥AB于B,已知,AB=2.5 km,CA=1.5 km,DB=1.0 km,试问,图书室E应该建在距点A多少km知处.才能使它到两所学校的距离相等?【答案】图书室E应该建在距A点1km处,才能使它到两所学校的距离相等【分析】根据题意表示出AE,EB的长,进而利用勾股定理求出即可.【详解】由题意可得:设AE=x km,则EB=(2.5−x)km.∵A C2+A E2=E C2,B E2+D B2=E D2,EC=DE,∴A C2+A E2=B E2+D B2,∴ 1.52+x2=(2.5−x)2+12,解得:x=1.答:图书室E应该建在距A点1km处,才能使它到两所学校的距离相等.【点睛】本题主要考查了勾股定理的应用,得出A C2+A E2=B E2+D B2是解题的关键.26.(2022秋·山东东营·七年级统考期中)如图,某电信公司计划在A,B两乡镇间的E处修建一座5G信号塔,且使C,D两个村庄到E的距离相等.已知AD⊥AB于点A,BC⊥AB于点B,AB=80km,AD=50km,BC=30km,求5G信号塔E应该建在离A乡镇多少千米的地方?【答案】30km【分析】设AE=x km,则BE=(80−x)km,根据勾股定理可得,D E2=A D2+A E2,C E2=B E2+B C2,结合DE=CE得到关于x的方程,求解即可.【详解】解:设AE=x km,则BE=(80−x)km,∵AD⊥AB,BC⊥AB,∴△ADE和△BCE都是直角三角形,在Rt△ADE中,D E2=A D2+A E2,在Rt△BCE中,C E2=B E2+B C2,∵AD=50km,BC=30km,DE=CE,∴502+x2=(80−x)2+302,解得x=30,答:信号塔应该建在距离A乡镇30km的地方.【点睛】本题考查了勾股定理的实际应用,根据题意列出方程是解题的关键.27.(2022秋·江苏·八年级统考期中)“三农”问题是关系国计民生的根本问题,实施乡村振兴战略是建设美丽中国的关键举措.如图,公路上A、B两点相距50km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=30km,CB=20km,现在要在公路AB上建一个土特产品市场E,使得C、D两村庄到市场E的距离相等,则市场E应建在距A多少千米处?并判断此时ΔDEC的形状,请说明理由.【答案】市场E应建在距A的20千米处;ΔDEC是等腰直角三角形,理由见解析.【分析】可以设AE=x,则BE=50−x,在直角△ADE中根据勾股定理可以求得DE,在直角△BCE中根据勾股定理可以求得CE,根据CE=DE可以求得x的值,即可求得AE的值.【详解】解:设AE=x,则BE=50−x,在直角△ADE中,D E2=302+x2,在直角△BCE中,C E2=(50−x)2+202,∴302+x2=(50−x)2+202,解得:x=20,即AE=20km;∴市场E应建在距A的20千米处;∵AE=BC=20km,BE=50−20=30km,在△DAE和△EBC中,AE=BC∠DAE=∠EBC,AD=BE可得△DAE≌△EBC(SAS),∴∠AED=∠BCE,又∵∠BEC+∠BCE=90°,∴∠BEC+∠AED=90°,∴∠DEC=90∘又∵DE=EC,∴△DEC是等腰直角三角形.【点睛】本题考查了勾股定理在直角三角形中的应用,本题中根据D E2=302+x2和C E2=(50−x)2+202求x的值是解题的关键.类型十、勾股定理与最短路径28.(2022秋·陕西汉中·八年级校考期中)如图,一只蜘蛛从长方体的一个顶点A爬到另一顶点B,已知长方体的长、宽高分别是AC是8cm,CD是7cm,BD是8cm,求这只蜘蛛爬行的最短距离是多少?29.(2022秋·甘肃酒泉·八年级统考期中)如图,一个圆柱体,高等于12cm,底面半径等于3cm,一只蚂蚁在点A处,它要吃到上底面上与A点相对的点B处的食物,沿圆柱体侧面爬行的最短路程是多少cm(π取3)【答案】15cm由题意可知:BC=12cm30.(2022秋·江苏扬州·八年级校考期中)如图a,圆柱的底面半径为4cm,圆柱高AB为2cm,BC是底面直径,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线.小明设计了两条路线:路线1:高线AB+底面直径BC,如图a所示,设长度为l1.路线2:侧面展开图中的线段AC,如图b所示,设长度为l2.(1)你认为小明设计的哪条路线较短?请说明理由;(2)小明对上述结论有些疑惑,于是他把条件改成:“圆柱底面半径为2cm,高AB为4cm”继续按前面的路线进行计算.(结果保留π)①此时,路线1的长度l1=,路线2的长度l2=;②所以选择哪条路线较短?试说明理由.。

人教版八年级数学下册 第17章《勾股定理》培优试题

人教版八年级数学下册 第17章《勾股定理》培优试题

第17章《勾股定理》培优试题一.选择题1.一个直角三角形的直角边是24,斜边是25,则斜边上的高为()A.7 B.C.168 D.252.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.3 B.4 C.15 D.7.23.如图.在Rt△ARC中,∠ABC=90°,以Rt△ARC的三条边分别向外作等边三角形,其面积分别为S1、S2、S3,那么S1、S2、S3的关系是()A.S2+S3=S1B.S2+S3>S1C.S2+S3<S1D.S22+S32=S124.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+C.12或7+D.以上都不对5.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,CD⊥AB于D,则CD的长是()A.6 B.C.D.6.如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A .B .C .D .7.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为( ) A .4B .16C .D .4或8.设a 、b 是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab 的值是( ) A .1.5B .2C .2.5D .39.下列各组数中,能构成直角三角形的是( ) A .4,5,6B .1,1,C .6,8,11D .5,12,2310.给出下列长度的四组线段:①1,,;②3,4,5;③6,7,8;④a ﹣1,a +1,4a (a >1).其中能构成直角三角形的有 ( ) A .①②③B .②③④C .①②D .①②④11.下列各组数中是勾股数的是( ) A .4,5,6 B .0.3,0.4,0.5C .1,2,3D .5,12,1312.如图,在一个高为5m ,长为13m 的楼梯表面铺地毯,则地毯长度至少应是( )A .13mB .17mC .18mD .25m13.如图,在Rt △ABC 中,∠C =90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC =4,BC =2时,则阴影部分的面积为( )A .4B .4πC .8πD .814.由线段a ,b ,c 组成的三角形不是直角三角形的是( ) A .a =3,b =4,c =5 B .a =12,b =13,c =5C .a =15,b =8,c =17D .a =13,b =14,c =1515.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm2 16.如图,将矩形MNPQ放置在矩形ABCD中,使点M,N分别在AB,AD边上滑动,若MN=6,PN=4,在滑动过程中,点A与点P的距离AP的最大值为()A.4 B.2C.7 D.817.在平面直角坐标系中,已知定点A(﹣,3)和动点P(a,a),则PA的最小值为()A.2B.4 C.2D.418.如图,△ABC中,AB=AC,AB=5,BC=8,AD是∠BAC的平分线,则AD的长为()A.5 B.4 C.3 D.2二.填空题19.如图,在Rt△ABC中,∠ACB=90°,AB=1O,BC=6,则AC=,若CD ⊥AB,则CD=.⊥OP,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,20.如图,OP=1,过P作PP得OP=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP=.201221.勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,我国古代三国时期吴国的数学家赵爽创造的弦图,是最早证明勾股定理的方法,所谓弦图是指在正方形的每一边上各取一个点,再连接四点构成一个正方形,它可以验证勾股定理.在如图的弦图中,已知:正方形EFGH的顶点E、F、G、H分别在正方形ABCD的边DA、AB、BC、CD上.若正方形ABCD的面积=16,AE=1;则正方形EFGH的面积=.22.如图,一架云梯长10米,斜靠在一面墙上,梯子顶端离地面6米,要使梯子顶端离地面8米,则梯子的底部在水平面方向要向左滑动米.23.某风景名胜区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得∠EAC=30°,两山峰的底部BD相距900米,则缆车线路AC的长为米.24.小明想知道学校旗杆有多高,他发现旗杆上的绳子垂到地面还余1m,当他把绳子下端拉开5m后,发现下端刚好接触地面,则旗杆高度为米.三.解答题25.阅读材料并解答问题:我们已经知道,如图①完全平方公式(a+b)2=a2+2ab+b2可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示.(1)如图②是由以边长为a和b的正方形和几个全等的长方形所拼成的大长方形,请根据图中意思写出所表示的代数恒等式:;(2)如图③已知四个全等的直角三角形直角边分别为a、b,斜边为c,现将四个直角三角形拼凑成如图的正方形ABCD,且四边形EFGH也为正方形,请利用面积法推恒等式方法,推出直角三角形三边a、b、c的关系.(3)应用(2)中结论:已知直角三角形ABC中,a2﹣b2=28,a﹣b=2,其中直角边为a、b,斜边为c,求三角形斜边c.26.细心观察图形,认真分析各式,然后解答问题:12+1=2,S1=,+1=3,S2=,+1=4,S3=(1)请用含有n(n为正整数)的等式表示上述变化规律.(2)推算出OA10的长.(3)求出S12+S22+S32+…+S1002的值.27.大家在学完勾股定理的证明后发现运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.学有所用:在等腰三角形ABC中,AB=AC,其一腰上的高为h,M是底边BC上的任意一点,M到腰AB、AC的距离分别为h、h2.1(1)请你结合图形来证明:h1+h2=h;(2)当点M在BC延长线上时,h1、h2、h之间又有什么样的结论.请你画出图形,并直接写出结论不必证明;28.如图,点C在线段BD上,AC⊥BD,CA=CD,点E在线段CA上,且满足DE=AB,连接DE并延长交AB于点F.(1)求证:DE⊥AB;(2)若已知BC=a,AC=b,AB=c,设EF=x,则△ABD的面积用代数式可表示为;S=c(c+x)你能借助本题提供的图形,证明勾股定理吗?试一试吧.△ABD29.如图,四边形ABCD中,∠C=90°,BD平分∠ABC,AD=3,E为AB上一点,AE =4,ED=5,求CD的长.30.如图,梯子AB斜靠在墙上,梯子的顶端A到地面的距离AC为8m,梯子的底端B 距离墙角C为6m.(1)求梯子AB的长;(2)当梯子的顶端A下滑2m到点A′时,底端B向外滑动到点B′,求BB′的长.参考答案一.选择题1.解:设斜边上的高h,由勾股定理得,直角三角形的另一条直角边==7,则×24×7=×25×h,解得,h=,故选:B.2.解:在Rt△ABC中,∠C=90°,则有AC2+BC2=AB2,∵BC=12,AC=9,∴AB==15,∵S△ABC=AC•BC=AB•h,∴h==7.2,故选:D.3.解:设AB=c,AC=b,BC=a,根据勾股定理得:c2=a2+b2,∵S1=c2,S2=a2,S3=b2,∴S1=S2+S3,即S2+S3=S1.故选:A.4.解:设Rt△ABC的第三边长为x,①当4为直角三角形的直角边时,x为斜边,由勾股定理得,x=5,此时这个三角形的周长=3+4+5=12;②当4为直角三角形的斜边时,x为直角边,由勾股定理得,x=,此时这个三角形的周长=3+4+,故选:C.5.解:∵∠ACB=90°,AC=8,AB=10,∴BC==6,△ABC的面积=×AB×CD=×AC×BC,即×10×CD=×8×6,解得,CD=,故选:C.6.解:如图所示:S=×BC×AE=×BD×AC,△ABC∵AE=4,AC==5,BC=4即×4×4=×5×BD,解得:BD=.故选:C.7.解:当3和5都是直角边时,第三边长为:=;当5是斜边长时,第三边长为:=4.故选:D.8.解:∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5,①∵a、b是直角三角形的两条直角边,∴a2+b2=2.52,②由②得a2+b2=(a+b)2﹣2ab=2.52∴3.52﹣2ab=2.52ab=3,故选:D.9.解:A、∵42+52≠62,∴不能构成直角三角形,故A错误;B、∵12+12=,∴能构成直角三角形,故B正确;C、∵62+82≠112,∴不能构成直角三角形,故C错误;D、∵52+122≠232,∴不能构成直角三角形,故D错误.故选:B.10.解:∵①12+2=2,故能构成直角三角形;②42+32=52,故能构成直角三角形;③62+72≠82,故不能构成直角三角形;④(a﹣1)2+(a+1)2≠(4a)2,故不能构成直角三角形.∴能构成直角三角形的是①②.故选:C.11.解:A、∵52+42≠62,∴这组数不是勾股数;B、∵0.32+0.42=0.52,但不是整数,∴这组数不是勾股数;C、∵12+22≠32,∴这组数不是勾股数;D、∵52+122=132,∴这组数是勾股数.故选:D.12.解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17米.故选:B.13.解:由勾股定理得,AB2=AC2+BC2=20,则阴影部分的面积=×AC×BC+×π×()2+×π×()2﹣×π×()2=×2×4+×π××(AC2+BC2﹣AB2)=4,故选:A.14.解:A、32+42=52,符合勾股定理的逆定理,是直角三角形;B、52+122=132,符合勾股定理的逆定理,是直角三角形;C、152+82=172,符合勾股定理的逆定理,是直角三角形;D、132+142≠152,不符合勾股定理的逆定理,不是直角三角形.故选:D.15.解:∵a+b=14∴(a+b)2=196∴2ab=196﹣(a2+b2)=96∴ab=24.故选:A.16.解:如图所示,取MN中点E,当点A、E、P三点共线时,AP最大,在Rt△PNE中,PN=4,NE=MN=3,根据勾股定理得:PE==5,在Rt△AMN中,AE为斜边MN上的中线,∴AE=MN=3,则AP的最大值为AE+EP=5+3=8.故选:D.17.解:PA===,∴PA的最小值为=4,故选:B.18.解:∵AB=AC,AD是∠BAC的平分线,∴BD=BC=4,AD⊥BC,由勾股定理得,AD==3,故选:C.二.填空题(共6小题)19.解:∵∠ACB=90°,AB=1O,BC=6,∴AC===8,∵CD⊥AB,∴S△ABC=AB•CD=AC•BC,即×10•CD=×8×6,解得CD=4.8.故答案为:8,4.8.==,20.解:由勾股定理得:OP∵OP=;得OP2=;=,依此类推可得OP=,∴OP故答案为:.21.解:∵四边形EFGH是正方形,∴EH=FE,∠FEH=90°,∵∠AEF+∠AFE=90°,∠AEF+∠DEH=90°,∴∠AFE=∠DEH,∵在△AEF和△DHE中,,∴△AEF≌△DHE,∴AF=DE,∵正方形ABCD的面积为16,∴AB=BC=CD=DE=4,∴AF=DE=AD﹣AE=4﹣1=3,在Rt△AEF中,EF==,故正方形EFGH的面积=×=10.故答案为:10.22.解:由题意可知梯子的长是不变的,由云梯长10米,梯子顶端离地面6米,可由勾股定理求得梯子的底部距墙8米.当梯子顶端离地面8米时,梯子的底部距墙为6米,则梯子的底部在水平面方向要向左滑动8﹣6=2(米).23.解:过点C作CO⊥AB,垂足为O,∵BD=900,∴OC=900,∵∠EAC=30°,∴∠ACO=30°.在Rt△AOC中,∵AC=2OA,设OA=x,则AC=2x,(2x)2﹣x2=OC2=9002,∴x2=270000,∴x=300∴AC=600米.故答案为600.24.解:设旗杆高xm,则绳子长为(x+1)m,∵旗杆垂直于地面,∴旗杆,绳子与地面构成直角三角形,由题意列式为x2+52=(x+1)2,解得x=12m.三.解答题(共6小题)25.解:(1)因为长方形面积=(2a+b)(a+2b)=2a2+5ab+2b2,故答案为=2a+b)(a+2b)=2a2+5ab+2b2;(2)因为正方形的面积=c2=4×ab+(b﹣a)2=a2+b2,所以直角三角形的三边关系为:a2+b2=c2.(3)∵a2﹣b2=28,a﹣b=2,∴a+b=14,∴a=8,b=6,∴c2=82+62=100,∵c>0,∴c=10.26.解:(1)结合已知数据,可得:OA n2=n;S n=;(2)∵OA n2=n,∴OA 10=.(3)S+S+S+…+S=+++…===.27.(1)证明:连接AM,由题意得h1=ME,h2=MF,h=BD,∵S△ABC=S△ABM+S△AMC,S△ABM=×AB×ME=×AB×h1,S△AMC=×AC×MF=×AC×h2,又∵S△ABC=×AC×BD=×AC×h,AB=AC,∴×AC×h=×AB×h1+×AC×h2,∴h1+h2=h.(2)解:如图所示:h1﹣h2=h.28.(1)证明:在Rt△ABC和Rt△DCE中,∴Rt△ABC≌Rt△DCE(HL)∴∠BAC=∠EDC(全等三角形的对应角相等),∵∠AEF=∠DEC(对顶角相等),∠EDC+∠DEC=90°(直角三角形两锐角互余),∴∠BAC+∠AEF=∠EDC+∠DEC=90°.∴∠AFE=180°﹣(∠BAC+∠AEF)=90°.∴DE⊥AB.(2)解:由题意知:S=S△BCE+S△ACD+S△ABE=a2+b2+cx,△ABD∵,∴.∴a2+b2=c2.29.解:∵AD=3,AE=4,ED=5,∴AD2+AE2=ED2.∴∠A=90°.∴DA⊥AB.∵∠C=90°.∴DC⊥BC.∵BD平分∠ABC,∴DC=AD.∵AD=3,∴CD=3.30.解:(1)∵∠C=90°,AC=8m,BC=6m,∴AB===10m;(2)∵梯子的顶端A下滑2m,∴CA′=8﹣2=6m,∴CB′===8(m),∴BB′=B′C﹣BC=8﹣6=2(m).。

勾股定理经典培优题及答案

勾股定理经典培优题及答案

勾股定理经典培优题类型之一勾股定理的验证1.小明利用如图17-X -1①所示的图形(三个正方形和一个直角三角形)验证勾股定理验证勾股定理,,他的方法如下:过点D 作直线FG ∥AC ,过点E 作直线GH ∥BC ,直线FG 与直线GH 交于点G ,与直线BC 交于点F ,直线GH 与直线AC 交于点H ,如图②所示.请你回答:(1)△ABC 与△BDF ,△DEG ,△EAH 有什么关系?为什么?(2)用含a ,b 的代数式表示正方形CFGH 的面积;(3)你能否根据图形面积之间的关系找到a ,b ,c 之间的数量关系?(4)你能得到什么结论?图17-X -1 2.勾股定理神秘而美妙勾股定理神秘而美妙,,它的证法多样它的证法多样,,其巧妙各有不同其巧妙各有不同,,其中的“面积法”给了小明灵感其中的“面积法”给了小明灵感,,他惊喜地发现他惊喜地发现,,当四个全等的直角三角形如图17-X -2摆放时摆放时,,可以用“面积法”来证明a 2+b 2=c 2.(请你写出证明过程) 图17-X -2 类型之二勾股定理及其应用3.等腰三角形的底边长为6,底边上的中线长为4,则它的腰长为() A .7 B .6 C .5 D .4 4.我国汉代数学家赵爽为了证明勾股定理我国汉代数学家赵爽为了证明勾股定理,,创制了一幅“弦图”创制了一幅“弦图”,,后人称其为“赵爽弦图”.如图17-X -3是由弦图变化得到的是由弦图变化得到的,,它由八个全等的直角三角形拼接而成.记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1,S 2,S 3.若正方形EFGH 的边长为2,则S 1+S 2+S 3=________. 图17-X -3 图17-X -4 5.图17-X -4①是我国古代著名的“赵爽弦图”的示意图①是我国古代著名的“赵爽弦图”的示意图,,它是由四个全等的直角三角形围成的.若AC =12,BC =10,将四个直角三角形中边长为12的直角边分别向外延长一倍的直角边分别向外延长一倍,,得到图②所示的数学“风车”得到图②所示的数学“风车”,,则这个数学“风车”的外围周长是________.6.知识回顾:在学习《二次根式》时知识回顾:在学习《二次根式》时,,我们知道:2+3≠5; 在学习《勾股定理》时在学习《勾股定理》时,,由于2,3,5满足(2)2+(3)2=(5)2,因此以2,3,5为三边长能构成直角三角形.三角形.探索思考:请通过构造图形来说明:a +b ≠a +b (a >0,b >0).(画出图形并进行解释) 7.在△ABC 中,AB =15,AC =20,D 是直线BC 上的一个动点上的一个动点,,连接AD ,如果线段AD 的长度最短是12,请你求△ABC 的面积.的面积.类型之三 勾股定理的逆定理及其应用8.已知三组数据:①2,3,4;②3,4,5;③1,3,2.分别以每组数据中的三个数为三角形的三边长分别以每组数据中的三个数为三角形的三边长,,能构成直角三角形的有( ) A .②B .①②.①②C .①③.①③D .②③.②③ 9.如果△ABC 的三边长分别是m 2-1,m 2+1,2m (m >1),那么下列说法中正确的是( ) A .△ABC 是直角三角形是直角三角形,,且斜边长为m 2+1 B .△ABC 是直角三角形是直角三角形,,且斜边长为2m C .△ABC 是直角三角形是直角三角形,,且斜边长为m 2-1 D .△ABC 不是直角三角形不是直角三角形10.若△ABC 的三边长a ,b ,c 满足关系式(a +2b -60)2+|b -18|+c -30=0,则△ABC 是________三角形.类型之四 勾股定理及其逆定理的综合应用图17-X -5 11.如图17-X -5,E 是正方形ABCD 内的一点内的一点,,连接AE ,BE ,CE ,将△ABE 绕点B 顺时针旋转90°到△CBE ′的位置.若AE =1,BE =2,CE =3,则∠BE ′C =________°. 12.如图17-X -6,在4×3的正方形网格中有从点A 出发的四条线段AB ,AC ,AD ,AE ,它们的另一个端点B ,C ,D ,E 均在格点上(正方形网格的交点).(1)若每个正方形的边长都是1,分别求出AB ,AC ,AD ,AE 的长度(结果可以保留根号);(2)在AB ,AC ,AD ,AE 四条线段中四条线段中,,是否存在三条线段是否存在三条线段,,它们能构成直角三角形?如果存在它们能构成直角三角形?如果存在,,请指出是哪三条线段条线段,,并说明理由.并说明理由.图17-X -6 类型之五 勾股定理在实际生活中的应用图17-X -7 13.如图17-X -7是矗立在高速公路旁水平地面上的交通警示牌是矗立在高速公路旁水平地面上的交通警示牌,,经测量得到如下数据:AM =4米,AB =8米,∠MAD =45°,∠MBC =30°,则警示牌的高CD 为________米(结果精确到0.1米,参考数据:2≈1.41,3≈1.73).14.如图17-X -8,A ,B 两地之间有一座山两地之间有一座山,,汽车原来从A 地到B 地需经过C 地沿折线ACB 行驶行驶,,现开通隧道后隧道后,,汽车直接沿直线AB 行驶.已知AC =10千米千米,,∠A =30°,∠B =45°则隧道开通后则隧道开通后,,汽车从A 地到B 地比原来少走多少千米?(结果保留根号) 图17-X -8 。

人教版八下数学勾股定理专题培优

人教版八下数学勾股定理专题培优

第十七章 勾股定理 7.勾股定理(一)基础题训练01.在Rt △ABC 中,∠C =90°,a =3,b =4,则c =______. 【解答】:c =502. 在Rt △ABC 中,∠C =90°,a =6, c =10,则b =______. 【解答】:b =803. 在△ABC 中, ∠C =90°, ∠A=30°,则其三边a :b :c =__________ 【解答】:a :b :c =1:3:204. 在Rt △ABC 中,∠C =90°,∠A ,∠B , ∠C 的对边分别为a ,b ,c ,则下列结论正确的是( ) A.222a cb =+ B. 222c b a =- C. 222b c a -= D. 222b c a =- 【解答】:C05.一个直角三角形的三边为三个连续偶数,则它的三边分别为( )A.2、4、6B.4、6、8C.6、8、10D.3、4、5 【解答】:C06.等腰直角三角形的直角边为2,则斜边的长为( ) A.2 B. 22 C.1 D.2【解答】:B07.已知等边三角形的边长为2cm,则等边三角形的面积为()A. 32B.3 C.1 D. 2【解答】:B08.如图,在△ABC 中,∠C =90°,AB =15,则两个正方形面积的和为()A.150B.200C.225D.350【解答】:C09. 在△ABC 中, ∠C =90°,c =20, a :b =3:4,则a =_____. 【解答】:12ABC10. 如图,在△ABC 中,AB =AC =10cm ,高AD =8cm ,求BC 的长及S △ABC .【解答】:BC =12,S △ABC =48. 11.(2013·资阳)如图,点E 在正方形内,∠AEB = 90°,AE =6,BE =8,求阴影部分的面积.【解答】:S 阴 = 76.12. 如图,在△ABC 中,AD ⊥BC 于D ,AB =3,BD =2,DC =1,求AC 的长.【解答】:AC=6.中档题训练13.已知直角三角形的两边为2和3,则第三边的长为 【解答】(答案13或5)14.如图,已知直角△ABC 中,∠C =90°,3BC =,4AC =,CD ⊥AB 于D .()1求AB 的长;()2 求CD 的长.DCBAABCDECBDA[解析] (1)5AB =;(2) 由面积法可求 125CD =15.已知直角△ABC 的周长为12cm ,一直角边的长为4cm ,求斜边的长? [解析] 设另一直角边为x ,则斜边为8-x ,在Rt △ABC 中,2224(8x x +=-) ∴ 3x =, ∴ 斜边为835-= 16.如图在△ABC 中,AB BC =,∠ABC =90°,D 为AC 的中点,DE ⊥DF ,DE 交AB 于E ,DF BC 交于F1() 求证:BE CF =;(2) 若3AE =,1CF =,求EF 的长[解析] 1() 证△BED ≌△CFD (2) 10EF =综合题训练17.如图CA CB =,CD CE = ,∠ACB =∠ECD 90=°,D 为AB 边上一点.若1AD =,3BD =,求CD 的长.[解析] 由△ACE ≌△BCD 可得,∠EAC =∠45B =°,∠90EAD =°,2222210DE AD AE AD BD =+=+=,10DE =5CD =8. 勾股定理(二)基础训练01.在直角坐标系中,点P(-2,3)到原点的距离为【解答】:1302.如图,∠ACB=∠ABD=90,AC=2,BC=1,AD=14,则BD=【解答】303.已知△ABC中,AB=AC=10,BD是AC边上的高,CD=2,则BD为()A.4B.6C.8D.210【解答】B04.如图,每个小正方形的边长为1,ABC中边长为无理数的边共有()条A.0B.1C.2D.3【解答】C05.一座建筑物发生了火灾,消防车到达现场后,发现最多只能靠近建筑物底端5米,消防车的云梯最大升长为13米,则云梯可以达到该建筑物的最大高度是()A.12米B.13米C.14米D.15米【解答】A06.把三角形的两条直角边同时扩大到原来的2倍,则其斜边扩大到原来的()A.1倍B.2倍C.3倍D.4倍【解答】B07.如图,在水塔的东北方向32m 处有一抽水站A,在水塔的东南方向24m 处有一建筑工地B,在A,B间建一条水管,则水管AB的长为()A.45mB.40mC.50mD.60m【解答】B08.一直角三角形的斜边长比一直角边的长大2,另一直角边长为6,则斜边长为()A.4B.8C.10D.12【解答】C09.如图,有两棵树,一棵树高10米,另一棵树高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行( )A.8米B.10米C.12米D.14米 【解答】B10.如图,将一个有45°角的三角板ABC 的直角顶点C 放在一张宽为3cm 的纸带边沿上,另一顶点B 在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,求三角板最大边AB 的长。

培优专题11 勾股定理与折叠问题

培优专题11 勾股定理与折叠问题
= CF = CE = AE .
(2)设 AE = a , ED = b , DC = c .请写出一个 a , b , c 三者之间的数量关系式.
◉答案 解:(2) a , b , c 三者之间的数量关系式为 a2= b2+ c2.理
由:由(1)得 CE = AE . 因为四边形 ABCD 是长方形,所以∠ D =
A. 1cm
A )
B. 1.5cm
C. 2cm
D. 3cm
第1题图
2. (烟台莱州期中)如图,Rt△ ABC 中, AB =9, BC =6,∠ B =90°,将△
ABC 折叠,使 A 点与 BC 的中点 D 重合,折痕为 MN ,则线段 BN 的长为 4
第2题图
.

3. 如图,在边长为6的正方形 ABCD 中, E 是边 CD 的中点,将△ ADE 沿 AE 对折至
90°.因为 AE = a , ED = b , DC = c ,所以 CE = AE = a .在Rt△
DCE 中, CE2= ED2+ DC2,所以 a , b , c 三者之间的数量关系式
为 a2= b2+ c2.
FG = x ,则 GC =6- x .因为 E 为 CD 的中点,所以 CE = DE = EF
=3,所以 EG =3+ x .在Rt△ CEG 中,32+(6- x )2=(3+ x )2,
解得 x =2,所以 BG 的长为2.
类型二:巧用折叠求图形面积
4. (威海文登区期中)如图,在四边形 ABCD 中,∠ A =90°, AB =4cm, AD =
第三章 勾股定理
培 优 专 题 11 : 勾 股 定 理 与 折 叠 问 题
类型一:巧用折叠求线段长
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理培优专题一、本节基础知识1、勾股定理的逆定理:如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形•2、命题与原命题:勾股定理的逆定理的题设和结论恰好与勾股定理的题设和结论相反,我们把像这样的两个命题叫做互逆命题,如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

3、逆定理:一般地,如果一个定理的逆命题经过证明是正确的,它也是一个定理,称这两个定理互为逆定理。

4、勾股数:3、4、5这样,能够成为直角三角形三条边长的三个正整数,称为勾股数。

巩固练习:1如果三角形的三边长a、b、c满足a2+ b2= c2,那么这个三角形是_______________ 三角形, 我们把这个定理叫做勾股定理的____________ •2 •在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做___________ 如果把其中一个命题叫做原命题,那么另一个命题叫做它的____________ •3. 分别以下列四组数为一个三角形的边长:(1)6、8, 10, (2)5、12、13, (3)8、15、17, (4)4、5、6,其中能构成直角三角形的有______________ .(填序号)4. ______________________________________________ 若△ ABC中, (b—a)( b+ a) = c2,则/ B= ____________________________________ ;5. 如图,正方形网格中,每个小正方形的边长为1,则网格上的△ ABC是_______ 三角形.6. 若一个三角形的三边长分别为1、a、8(其中a为正整数),则以a—2、a、a+2为边的三角形的面积为___________7 .写出下列命题的逆命题,并判断逆命题的真假.(1) 两直线平行,同位角相等.(2) 若a>b,则a2>b.二、经典例题、针对训练、延伸训练考点一证明三角形是直角三角形例1、已知:如图,在△ ABC中,CD是AB边上的高,且C E J=AD- BD.求证:△ ABC是直角三角形.针对训练: 1、已知:在厶 ABC 中,/ A 、/ B 、/ C 的对边分别是 a 、b 、c ,满足 2 2 2a +b +c +338=10a+24b+26c.试判断△ ABC 的形状.2(如图)在正方形 ABCD 中, F 为DC 的中点,E 为BC 上一点,且EC=4 BC,求证:.EFA=90 .3、如图,已知:在△ ABC 中,乙C=90 , M 是BC 的中点,MDAB 于D,求证:A D=A C+BE J .考点二运用勾股定理的逆定理进行计算例、如图,等腰△ ABC 中,底边 BC= 20, D 为 AB 上一点,CD= 16, BD= 12, 求厶ABC 的周长。

ADBE CB C针对训练:1、•已知:如图,四边形ABCD AD// BC, AB=4, BC=6 CD=5 AD=3.求:四边形ABCD的面积•3.已知:如图,DE=m,BC=n, EBC^ . DCB互余,求B D+C D.考点三、与勾股定理逆定理有关的探究和应用例1•阅读下列解题过程:已知a、b、c ABC的三边,且满足a2c2- b2c2=a4- b4,试判断△ ABC的形状•2 2 .2 2 4 .4 22.2、Z2.2、Z2 . 2 2 2.2Z解:.a c — b c =a — b , (A) • • c (a — b )=(a +b )(a — b ) , (B) • • c =a +b , ( C) - •△ ABC 是直角三角形•问:①上述解题过程是从哪一步开始出现错误的?请写出该步的代号____________ ;②错误的原因是_________________ ;③本题的正确结论是_____________ •例2.学习了勾股定理以后,有同学提出“在直角三角形中,三边满足a2b2=c2,或许其他的三角形三边也有这样的关系”•让我们来做一个实验!(1) 画出任意的一个锐角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a = _____ mm;b =_______ mm 较长的一条边长C= _________ mm比较a2+b2____________ c2(填写“〉”,“v”,或“=”);(2) 画出任意的一个钝角三角形,量出各边的长度(精确到1毫米),较短的两条边长分别是a =______ mm b=_________ mm 较长的一条边长 C = _________ mm比较a2+b2_______ c2(填写“〉”,“v” ,或“=”);(3) 根据以上的操作和结果,对这位同学提出的问题,你猜想的结论是:_________________________________________________________ ;O⑷对你猜想a2b2与c2的两个关系,任选其中一个结论利用勾股定理证明。

例3.如图,南北向MN为我国的领海线,即MN以西为我国领海,以东为公海.上午9时50分,我国反走私艇A发现正东方有一走私艇C以每小时13海里的速度偷偷向我领海开来,便立即通知正在线上巡逻的我国反走私艇B密切注意.反走私艇A通知反走私艇B:A和C 两艇的距离是13海里,A B两艇的距离是5海里.反走私艇B测得距离C艇是12海里,若走私艇C的速度不变,最早会在什么时间进入我国领海?针对训练:1 观察下列各式:32+ 42= 52; 82+ 62= 102; 152+ 82= 172; 24?+ 102= 262…,你有没有发现其中的规律?请用含n的代数式表示此规律并证明,再根据规律写出接下来的式子.2、如图所示,有一块塑料模板ABCD长为10叫宽为4叫将你手中足够大的直角三角板PHF的直角顶点P落在AD边上(不与A、D重合)并在AD上平行移动:①能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时AP的长;若不能,请说明理由.②再次移动三角板位置,使三角板顶点P在AD上移动,直角边PH始终通过点B,另一直角边PF与DC的延长线交于点Q与BC交于点E,能否使CE=2c m?若能,请你求出这时AP的长;若不能,请说明理由.3.喜欢爬山的同学都知道,很多名山上都有便于游人观光的索道 ,如图所示,山的高度 AC 为800 m,从山上A 与山下B 处各建一索道口 ,且BC=1 500 m, 一游客从山下索道口坐缆车到 山顶,知缆车每分钟走 50 m,那么大约多长时间后该游客才能到达山顶?说明理由•延伸训练:如图,在△ ABC 中,/ ACB=90 , AC=BC P 是厶ABC 内的一点,且 PB=1, PC=2 PA=3,求/ BPC 的度数.总结提高: 1.满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为 1 : 2 : 3B. 三边长的平方之比为 1 : 2 : 3C.三边长之比为 3 : 4 : 5D. 三内角之比为 3 : 4 : 5 2.如图18-2 — 4所示,有一个形状为直角梯形的零件ABCD AD// BC,斜腰DC 的长为10 cm,/ D=120°,则该零件另一腰 AB 的长是 ____________ cm (结果不取近似值)3.如图18— 2 — 5,以Rt △ ABC 的三边为边向外作正方形,其面积分别为 S 、S 2、S,且S=4,S2=8,贝U AB 的长为 ________ .14. 如图18— 2 — 6,已知正方形 ABCD 的边长为4, E 为AB 中点,F 为AD 上的一点,且AF —AD,4试判断△ EFC 的形状.图 18 — 2— 4图 18 — 2— 5 图 18— 2— 6A DB E C5. 一个零件的形状如图 18-2-7,按规定这个零件中/ A 与/ BDC 都应为直角,工人师傅量6. 已知△ ABC 的三边分别为 k 2- 1, 2k , k 2+1 ( k > 1),求证:△ ABC 是直角三角形7. 已知a 、b 、c 是Rt △ ABC 的三边长,△ ABQ 的三边长分别是 2a 、2b 、2c ,那么△ A i B i C 是直角三角形吗?为什么?8、.如图18-2 — 9所示,在平面直角坐标系中, 点A 、B 的坐标分别为 A( 3 , 1) , B( 2 , 4),△ OAB 是直角三角形吗?借助于网格,证明你的结论1r4t2/OAX9、若△ ABC 的三边长为a 、b 、c ,根据下列条件判断△ ABC 的形状。

(1 )222322223a +b +c +200=12a +16b +20c (2) a - a b +ab — ac +bc — b =010.如图,在厶 ABC 中 , D 为 BC 边上的一点,已知 AB= 13 , AD= 12 , AC= 15 , BD= 5,求得零件各边尺寸:AD=4 AB=3,BD=5,-2 - 7CD 的长.11.已知:如图,四边形ABCDK ABL BC, AB= 1, BC= 2, CD= 2, AD= 3,求四边形ABCD 的面积.14•已知:如图,在正方形ABCD中, F为DC的中点,E为CB的四等分点且CE =^CB,求4 证:AF L FE15•写出下列命题的逆命题,并判断逆命题的真假.2 2(1)若a = b,贝V a= b.⑵如果△ ABC^A ABC,那么BC= B C , AC= AC,/ B=Z B'.(3) 全等三角形的三组对应角相等.精品文档欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求1欢迎下载11。

相关文档
最新文档