二次函数专题_角度问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数专题:角度
一、有关角相等
1、已知抛物线2
y ax bx c =++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点(0C ,3),过点C
作x 轴的平行线与抛物线交于点D ,抛物线的顶点为M ,直线5y x =+经过D 、M 两点.
(1) 求此抛物线的解析式;
(2)连接AM 、AC 、BC ,试比较MAB ∠和ACB ∠的大小,并说明你的理由.
对于第(2)问,比较角的大小
a 、 如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系就清楚了
b 、 如果这两个角可以转化成某个三角形的一个外角和一个不相邻的角,那么大小关系就确定了
c 、 如果稍难一点,这两个角转化成某个三角形的两个角,根据大边对大角来判断角的大小
d 、 除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢,全等三角形、相似三角形
和简单三角函数,从这个题来看,很明显没有全等三角形,剩下的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等
2、在平面直角坐标系xOy 中,抛物线2
3y ax bx =++经过点N (2,-5),过点N 作x 轴的平行线交此抛物线左侧
于点M ,MN =6.
(1)求此抛物线的解析式;
(2)点P (x ,y )为此抛物线上一动点,连接MP 交此抛物线的对称轴于点D ,当△DMN 为直角三角形时,求点P 的
坐标;
(3)设此抛物线与y 轴交于点C ,在此抛物线上是否存在点Q 说明理由.
3、已知:如图,二次函数y =a (x +1)2-4的图象与x 轴分别交于A 、B 两点,与y 轴交于点D ,点C 是二次函数y =a (x +1)
2
-4的图象的顶点,CD =2. (1)求a 的值.
(2)点M 在二次函数y =a (x +1)2
-4图象的对称轴上,
且∠AMC =∠BDO ,求点M 的坐标.
4、(2013年潍坊市压轴题)如图,抛物线c bx ax y ++=2
关于直线1=x 对称,与坐标轴交于C B A 、、三点,且
4=AB ,点⎪⎭
⎫
⎝⎛232,D 在抛物线上,直线是一次函数()02≠-=k kx y 的图象,点O 是坐标原点.
(1)求抛物线的解析式;
(2)若直线平分四边形OBDC 的面积,求k 的值.
(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?若存在,求出P 点坐标;若不存在,请说明理由.
二、特殊角 (一)、450角
1、如图,在平面直角坐标系xoy 中,点P 为抛物线2x y =上一动点,点A 的坐标为(4,2),若点P 使∠AOP =450,
请求出点P 的坐标。
2、二次函数图象经过点A (-3,0)、B (-1,8)、C (0,6),直线23
2
+=x y 与y 轴交于点D ,点P 为二次函数图象上一动点,若∠PAD =450
,求点P 的坐标。
3、已知,抛物线c bx ax y ++=2与x 轴交于点A (-2,0)、B (8,0),与y 轴交于点C (0,-4)。直线y=x+m 与抛物线交于点D 、E (D 在E 的左侧),与抛物线的对称点交于点F 。 (1)求抛物线的解析式;
(2)当m=2时,求∠DCF 的大小;
(3)若在直线y=x+m 下方的抛物线上存在点P ,使∠DPF =450
,且满足条件的点P 只有两个,则m 的值为___________________.(第(3)问不要求写解答过程)
4、(2013省压轴题)如图,抛物线2
y x bx c =-++与直线1
22
y x =
+交于,C D 两点,其中点C 在y 轴上,点D 的坐标为7
(3,)2
。点P 是y 轴右侧的抛物线上一动点,过点P 作PE x ⊥轴于点E ,交CD 于点F .
(1)求抛物线的解析式;
(2)若点P 的横坐标为m ,当m 为何值时,以,,,O C P F 为顶点的四边形是平行四边形?请说明理由。 (3)若存在点P ,使45PCF ∠=︒,请直接写出相应的点P 的坐标
(二)、900角
例题1:已知二次函数
2
()4
y a x p
=++的图象是由函数
2
1
2
2
y x x q
=++
的图象向左平移一个单位得到.反比例
函数
m
y
x
=
与二次函数
2
()4
y a x p
=++的图象交于点A(1,)n.
(1)求
,,,,
a p q m n的值;
(2)要使反比例函数和二次函数
2
()4
y a x p
=++在直线x t=的一侧都是y随着x的增大而减小,求t的最大值;
(3)记二次函数
2
()4
y a x p
=++图象的顶点为B,以AB为边构造矩形ABCD,边CD与函数
m
y
x
=
相交,且直线
AB与CD
,求出点D,C的坐标.
例题:2:如图,对称轴为直线
7
2
x=的抛物线经过点A(6,0)和 B(0,4).
(1)求抛物线解析式及顶点坐标;
(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形.求平行四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值围;
①当平行四边形OEAF的面积为24时,请判断平行四边形OEAF是否为菱形?
②是否存在点E,使平行四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.
练习1、在如图的直角坐标系中,已知点A(0, 3)、点C(1, 0)B在抛物线21
y ax ax
=--上.