迈克尔逊及迈克尔逊干涉仪实验讲解
迈克尔逊干涉仪讲义

光程差: Δ 2d cos
实验仪器 实验内容
相邻条纹角间距:
Δ 2d sin 2d
实验拓展
极值条件:
k 明
2dcos 2k 1 暗
2
同心圆,愈往外,级次愈低 !
实验背景 实验原理 实验仪器 实验内容 实验拓展
3.等倾干涉条纹变化特点
ห้องสมุดไป่ตู้
2d cosi k
k不变
• d↑,cosi ↓,i 增加,--条纹“冒出”
转动粗调手轮,使 两臂大体相等,
调整底座调平螺钉,使导轨 大致水平
粗调2
倾度调节螺钉 松紧适中
水平垂直拉簧 微调螺钉松紧适中
粗调3:调节激光管的高度和方位
激光束穿过G1中央,与M1垂直。使 反射镜反射回来的光线打在激光束
的出光孔附近。
细调1:使反射镜M1与M2基本垂直
细调2:用扩束镜将激光扩散成点光源
丙酮进行处理,切忌用手、衣服等。
• d↓,cosi ↑,i 减小,--条纹“收缩”
实验背景 实验原理 实验仪器 实验内容 实验拓展
4.测波长公式推导
若中心处为明条纹,入射角为0,则
2d k
当d改变λ/2时,中心“吞”或“吐”一条环纹。若反射镜 M2移动Δd,“吞”或“吐”的环纹数为N,则
d N
2
2d
N
这就是用干涉仪测量波长的实验原理。
粗调手轮,每周为100个均匀刻度,每旋转一周,主尺刻度进动 1mm,因此其精度为0.01mm;
微调手轮,每周为100个均匀刻度,每旋转一周,粗调鼓轮刻度 进动一个刻度,因此其精度为0.0001mm
实验内容1:仪器的调整
粗调1 1. 迈克耳逊干涉仪的调节
大学物理实验-迈克尔逊干涉仪讲解

迈克尔逊干涉仪》实验报告一、引言迈克尔逊曾用迈克尔逊干涉仪做了三个闻名于世的实验:迈克尔逊-莫雷以太漂移、推断光谱精细结构、用光波长标定标准米尺。
迈克尔逊在精密仪器以及用这些仪器进行的光谱学和计量学方面的研究工作上做出了重大贡献,荣获1907年诺贝尔物理奖。
迈克尔逊干涉仪设计精巧、用途广泛,是许多现代干涉仪的原型,它不仅可用于精密测量长度,还可以应用于测量介质的折射率,测定光谱的精细结构等。
二、实验目的(1)了解迈克尔逊干涉仪的光学结构及干涉原理,学习其调节和使用方法(2)学习一种测定光波波长的方法,加深对等倾的理解(3)用逐差法处理实验数据三、实验仪器迈克尔逊干涉仪、He-Ne激光器、扩束镜等。
四、实验原理迈克尔逊干涉仪是l883年美国物理学家迈克尔逊(A.A.Michelson)和莫雷(E.W.Morley)合作,为研究“以太漂移实验而设计制造出来的精密光学仪器。
用它可以高度准确地测定微小长度、光的波长、透明体的折射率等。
后人利用该仪器的原理,研究出了多种专用干涉仪,这些干涉仪在近代物理和近代计量技术中被广泛应用。
1.干涉仪的光学结构迈克尔逊干涉仪的光路和结构如图1与2所示。
M1、M2是一对精密磨光的平面反射镜,M1的位置是固定的,M2可沿导轨前后移动。
G1、G2是厚度和折射率都完全相同的一对平行玻璃板,与M1、M2均成45°角。
G1的一个表面镀有半反射、半透射膜A,使射到其上的光线分为光强度差不多相等的反射光和透射光;G1称为分光板。
当光照到G1上时,在半透膜上分成相互垂直的两束光,透射光(1)射到M1,经M1反射后,透过G2,在G1的半透膜上反射后射向E;反射光(2)射到M2,经M2反射后,透过G1射向E。
由于光线(2)前后共通过G1三次,而光线(1)只通过G1一次,有了G2,它们在玻璃中的光程便相等了,于是计算这两束光的光程差时,只需计算两束光在空气中的光程差就可以了,所以G2称为补偿板。
迈克尔逊干涉仪,实验报告

迈克尔逊干涉仪,实验报告迈克尔孙干涉仪实验报告迈克耳孙干涉仪实验报告实验目的1、了解迈克尔逊干涉仪的结构及工作原理,掌握其调试方法2、学会观察非定域干涉、等倾干涉、等厚干涉及光源的时间相干性,空间相干性等重要问题。
实验原理1. 迈克尔逊干涉仪的光路迈克尔逊干涉仪有多种多样的形式,其基本光路如图5.16.1所示。
从光源束光,在分束镜束1射出的半反射面发出的一上被分成光强近似相等的反射光束1和透射光束2。
反射光;光束2经过补偿板投向反射镜,反后投向反射镜,反射回来再穿过射回来再通过,在半反射面上反射。
于是,这两束相干光在空间相遇并产生干涉,通过望远镜或人眼可以观察到干涉条纹。
补偿板的材料和厚度都和分束镜相同,并且与分束镜平行放置,其作用是为了补偿反射光束1因在中往返两次所多走的光(来自: 写论文网:迈克尔逊干涉仪,实验报告)程,使干涉仪对不同波长的光可以同时满足等光程的要求。
2. 等倾干涉图样(1) 产生等倾干涉的等效光路如图2所示(图中没有绘出补偿板外,还可以看到镜经分束镜),观察者自点向镜看去,除直接看到镜的半反射面和反射的像。
这样,在观察者看来,两相干光束好象是由同一束光分别经涉仪所产生的干涉花样与形成时,只要考虑、、反射而来的。
因此从光学上来说,迈克尔逊干间的空气层所产生的干涉是一样的,在讨论干涉条纹的两个面和它们之间的空气层就可以了。
、和观察屏的相所以说,迈克尔逊干涉仪的干涉情况即干涉图像是由光源以及对配置来决定的。
(2) 等倾干涉图样的形成与单色光波长的测量当和镜垂直于镜时,与相互平行,相距为。
若光束以同一倾角入射在作垂直于光上,反射后形成1和两束相互平行的相干光,如图3所示。
过线。
因和之间为空气层,,则两光束的光程差为所以当固定时,由(1)式可以看出在倾角(1)相等的方向上两相干光束的光程差均相等。
由此可知,干涉条纹是一系列与不同倾角对应的同心圆形干涉条纹,称为等倾干涉条纹。
由于1、两列光波在无限远处才能相遇,因此,干涉条纹定域无限远处。
物理实验迈克尔逊干涉仪实验误差分析及结果讨论

物理实验迈克尔逊干涉仪实验误差分析及结果
讨论
哎呀,今天我们要讲的是迈克尔逊干涉仪实验误差分析及结果讨论。
这可是个高大上的实验啊,不过别担心,我会让你们轻松理解的!
咱们来了解一下迈克尔逊干涉仪是什么。
迈克尔逊干涉仪是一种用来测量光波长差的仪器,它由一个光源、一个分束器、一个反射镜和一个合并器组成。
通过调整光源的位置,我们可以观察到光波长的干涉现象,从而得到光的波长差。
接下来,我们来看看这个实验中可能出现的误差。
首先是仪器本身的误差,比如说反射镜的表面可能有污垢或者凹凸不平,这会影响到光线的反射。
其次是人为操作的误差,比如说调整光源位置的时候,手抖了一下导致位置不够准确。
还有就是环境因素的影响,比如说温度、湿度等都会对实验结果产生影响。
那么,我们该如何减小这些误差呢?我们要保证仪器的精度,定期对仪器进行维护和清洁。
在操作过程中要保持冷静,尽量避免手抖。
我们还可以利用一些补偿方法来减小环境因素的影响,比如说使用恒温恒湿的环境来进行实验。
好了,现在我们来看一下实验的结果。
根据我们的观察和计算,我们得到了光波长差为X微米。
这个结果看起来还不错,但是我们还需要进一步分析。
如果光波长差较大,说明我们的仪器精度还不够高;如果光波长差较小,则说明我们的仪器精度已经比较高了。
迈克尔逊干涉仪实验是一个非常有趣且实用的实验。
通过这个实验,我们可以了解到光的性质和波动规律,同时也可以锻炼我们的实验技能和分析能力。
希望大家在以后的学习中能够多多尝试这样的实验哦!。
迈克尔逊干涉仪实验实验原理和实验内容

迈克尔逊干涉仪实验实验原理和实验内容1. 前言:干涉的奇妙世界大家好,今天咱们要聊的就是那个听起来高大上的“迈克尔逊干涉仪”,别被这个八字打住了,咱们的目的是轻松地来了解它,轻松得就像喝个茶。
一说到干涉,这个词可能让人想到波浪、水面、或者干脆就被“干扰”了心情。
其实,这个腻歪的东西在科学里可是一块宝藏!乍一听,这干涉仪好像高深莫测,实际上,它可不仅仅是出现在实验室里的神秘家伙,而是揭示了光的波动性和奇妙的一面。
1.1 干涉是什么?那么,干涉到底是个啥玩意儿呢?简单来说,就是两束光波在特定条件下相遇、重叠,产生的那种“你搅我、我搅你”的交融效果。
有点像咱们日常生活中朋友聚会时那种热火朝天的氛围,几个人一聊,气氛就一下子活跃起来了,对吧?不过,在光学里,这种“搅拌”可以让我们看到明暗相间的条纹,也就是所谓的干涉条纹。
1.2 迈克尔逊干涉仪的原理现在,咱们来说说这个干涉仪的“主角”迈克尔逊。
他可是个厉害角色,1890年就捣鼓出了这个小玩意儿,而且他一颗心就是想研究光的本质。
迈克尔逊干涉仪的原理,就像一个“光的分身术”。
仪器把一束光分成两条路,就像是分开了的姐妹,走向不同的方向。
然而,在两束光走了个来回之后,它们又会汇合在一起。
这个时候,如果两束光走的路程不一样,最后就会形成干涉现象。
咱们的迈克尔逊可真是个“分道扬镳”的聪明才子,没错吧?2. 实验内容:构造我们的干涉仪说了这些理论,小伙伴们一定想知道,咱们到底怎么把这个光的“阴谋”一一揭开呢?别着急,接下来我们就来构造一下这台干涉仪。
其实也不复杂,一个干涉仪大致需要一些简单的器材——一个光源、一个分光镜、两面镜子,以及一个接收器。
听起来像准备一顿美味大餐,其实就这么简单。
2.1 搭建仪器首先,咱们得找一个光源,通常用激光比较好,清晰又亮。
接着,用一个分光镜把这束激光“劈头盖脸”地给分成两束,一道走左边,一道走右边,嘿,姐妹分开后就精彩了!然后再用镜子将两束光分别反射回去,向着相同的方向走来,这过程就像两位舞者在场上翩翩起舞,越跳越带感。
大学物理《迈克尔逊专题》—迈克尔逊干涉仪实验报告

大学物理《迈克尔逊专题》—迈克尔逊干涉仪实验报告《迈克尔逊专题》实验报告前几周我做了迈克尔逊专题实验,对迈克尔逊干涉仪有了更加深刻的认识。
迈克尔逊干涉仪,是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。
它是利用分振幅法产生双光束以实现干涉。
通过调整该干涉仪,可以产生等厚干涉条纹,也可以产生等倾干涉条纹。
主要用于长度和折射率的测量,若观察到干涉条纹移动一条,便是M2的动臂移动量为λ/2,等效于M1与M2之间的空气膜厚度改变λ/2。
在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。
利用该仪器的原理,研制出多种专用干涉仪。
迈克耳逊干涉仪是这个专题实验最主要的试验仪器,此专题包括:1、迈克耳逊干涉仪在钠光灯照射下测量钠双线波长差; 2、白光干涉测量平板玻璃折射率;3、由迈克耳逊干涉仪改装成的法布里——玻罗干涉仪测钠双线波长差。
这三个实验都与波的干涉有关,都是利用干涉原理进行试验的。
迈克尔逊干涉仪的工作原理是干涉条纹是等光程差点的轨迹,因此,要分析某种干涉产生的图样,必求出相干光的光程差位置分布的函数。
若干涉条纹发生移动,一定是场点对应的光程差发生了变化,引起光程差变化的原因,可能是光线长度L发生变化,或是光路中某段介质的折射率n发生了变化,或是薄膜的厚度e发生了变化。
另外钠光灯辐射产生的两条强谱线的波长是不一样的,分别为589.6nm和589.0nm,波长差与中心波长相比甚小。
如果用这种光源照明迈克尔逊干涉仪,所获得的圆形等倾条纹实际上是两种波长分别形成的两套干涉条纹的叠加。
当全反镜M1、M2之间的距离d为某一值时,会恰好出现波1的k1级明条纹恰好与波2的k2级暗条纹重合,这时条纹最模糊,对比度小,为零。
当动镜M1继续移动时,两个条纹会错开,会出现清晰的圆形等倾条纹。
这就是钠光灯产生的干涉现象。
现在根据上述原理对以下实验进行介绍。
迈克尔逊干涉仪实验报告误差分析

迈克尔逊干涉仪实验报告,误差分析迈克尔逊干涉仪实验报告一、实验目的通过迈克尔逊干涉仪的实验,了解干涉现象的基本原理,学习如何利用干涉仪测量光源的波长和介质的折射率。
二、实验原理迈克尔逊干涉仪是利用光的干涉现象测量光源的波长或介质的折射率的一种仪器。
它由一个分束器、两个反射镜和一个合束器组成。
当一束单色光通过分束器后,会被分成两束光,分别沿着两个不同的光程传播,然后再由合束器合成一束光,形成干涉现象。
当两束光的光程差为波长的整数倍时,出现明条纹;当两束光的光程差为波长的半整数倍时,出现暗条纹。
通过对条纹的观察和计数,可以测量光源的波长或介质的折射率。
三、实验步骤1. 将迈克尔逊干涉仪放置在光学实验台上,调整分束器和反射镜的位置,使得光线正常传播。
2. 打开光源,调节分束器和反射镜的位置,使得在观察屏上形成明条纹。
3. 记录反射镜的位置和观察屏上的明条纹数目。
4. 移动一个反射镜,使得观察屏上的明条纹数目减少一半,记录反射镜的位置。
5. 根据实验数据计算出光源的波长和介质的折射率。
四、实验数据和结果根据实验步骤记录的数据,可以计算出光源的波长和介质的折射率。
在计算过程中,需要考虑各种可能的误差,并进行误差分析。
五、误差分析在迈克尔逊干涉仪实验中,可能存在以下几种误差:1. 光源的波长可能存在一定的波动,导致测量结果的误差。
为了减小这种误差,可以使用稳定的光源并进行多次测量取平均值。
2. 分束器和反射镜的位置调节可能存在误差,使得光线传播的路径发生偏差。
为了减小这种误差,可以使用精确的调节装置,并注意调节时的稳定性。
3. 观察屏上的明条纹数目的测量可能存在主观误差。
为了减小这种误差,可以使用显微镜等放大器具进行观测,并多次观测取平均值。
4. 在计算光源的波长和介质的折射率时,可能存在计算公式的近似误差。
为了减小这种误差,可以使用更精确的计算公式,并进行精确计算。
六、实验结论通过迈克尔逊干涉仪实验,我们可以测量光源的波长和介质的折射率。
迈克尔逊干涉仪实验原理

迈克尔逊干涉仪实验原理迈克尔逊干涉仪是一种利用干涉现象测量光波长、长度和折射率的仪器。
它由美国物理学家迈克尔逊于1881年发明,是一种非常重要的光学仪器,被广泛应用于科学研究和工程实践中。
干涉仪的原理是利用光的干涉现象来测量光的性质和测量被测物体的长度,是一种非常精密的测量仪器。
迈克尔逊干涉仪的实验原理主要是基于干涉现象。
当两束光波相遇时,它们会发生干涉现象,即相位差引起的光强的变化。
迈克尔逊干涉仪利用分束镜将一束光分成两束光,经过两条不同的光路,再经过合束镜合成一束光,使得两束光发生干涉。
当两束光的光程差为整数倍的波长时,它们将相干叠加,产生明纹;当光程差为半波长的奇数倍时,它们将发生相消干涉,产生暗纹。
通过观察干涉条纹的位置和数量,可以推导出光的波长、被测物体的长度以及折射率等物理量。
在迈克尔逊干涉仪实验中,需要注意的是保证光源的稳定性和一致性。
光源的稳定性直接影响到实验结果的准确性,因此需要选择稳定的光源,如激光。
同时,光路的稳定性也是非常重要的,需要保证光路的长度和光学元件的位置保持稳定,避免外界因素对实验结果的影响。
除了测量光的波长和长度,迈克尔逊干涉仪还可以用于测量折射率。
当被测物体的折射率发生变化时,光的光程也会发生变化,从而导致干涉条纹的位置发生移动。
通过测量干涉条纹的移动量,可以推导出被测物体的折射率。
这种方法被广泛应用于实验室中测量各种材料的折射率,对材料的研究和应用具有重要意义。
总之,迈克尔逊干涉仪是一种非常重要的光学仪器,它利用光的干涉现象来测量光的波长、长度和折射率,具有非常广泛的应用价值。
在实际应用中,需要注意保证光源和光路的稳定性,以获得准确的实验结果。
迈克尔逊干涉仪的实验原理和方法对于光学研究和工程应用具有重要意义,对于推动光学领域的发展具有重要作用。
迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告一、实验目的1、了解迈克尔逊干涉仪的结构和工作原理。
2、掌握迈克尔逊干涉仪的调节方法。
3、观察等倾干涉、等厚干涉条纹,并测量激光的波长。
二、实验原理迈克尔逊干涉仪是一种利用分振幅法产生双光束干涉的精密光学仪器。
其光路图如下图所示:!迈克尔逊干涉仪光路图(_____)光源 S 发出的光经分光板 G1 分成两束,一束反射到反射镜 M1,另一束透过 G1 到达反射镜 M2。
两束光分别被 M1 和 M2 反射后,又回到分光板 G1。
在 G1 半透半反膜的作用下,两束光会合形成干涉。
当 M1 和 M2 严格垂直时,形成等倾干涉条纹。
此时,干涉条纹是一组同心圆环,圆心位于视场中央。
干涉条纹的级次取决于入射光的倾角,入射角越大,条纹级次越高。
当 M1 和 M2 不严格垂直时,形成等厚干涉条纹。
此时,干涉条纹是一组平行的直条纹,条纹间距取决于 M1 和 M2 之间的夹角以及入射光的波长。
根据光的干涉原理,两束光的光程差为:\(\Delta = 2dcos\theta\)其中,\(d\)为 M1 和 M2 之间的距离,\(\theta\)为入射光与 M1 或 M2 法线的夹角。
当光程差为波长的整数倍时,出现亮条纹;当光程差为半波长的奇数倍时,出现暗条纹。
通过测量干涉条纹的变化,可以计算出光的波长、M1 和 M2 之间的距离等物理量。
三、实验仪器迈克尔逊干涉仪、HeNe 激光器、扩束镜、毛玻璃屏等。
四、实验内容及步骤1、仪器调节调节迈克尔逊干涉仪的底座水平,使干涉仪处于水平状态。
调节粗调手轮,使 M1 和 M2 大致到分光板 G1 距离相等的位置。
用激光束照亮分光板 G1,调节 M1 和 M2 背后的三个螺丝,使反射回来的两束光在屏上重合,形成一个亮点。
2、观察等倾干涉条纹装上扩束镜和毛玻璃屏,使激光束经过扩束后均匀照亮分光板G1。
仔细调节 M1 或 M2 的微调手轮,观察等倾干涉条纹的出现,并调节到条纹清晰、对比度好。
迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告引言迈克尔逊干涉仪是一种利用光的干涉现象测量间距的仪器。
它是由美国物理学家亚伯拉罕·迈克尔逊于1881年发明的。
迈克尔逊干涉仪广泛应用于光学、激光技术、光纤通信等领域。
本实验旨在通过搭建迈克尔逊干涉仪并进行实验,了解其原理和应用。
实验设备•He-Ne氦氖激光器•1/10波片•片玻璃•半反射膜•波长计•读数显微镜•测距器实验原理迈克尔逊干涉仪利用光的波动性和波的干涉原理进行测量。
它由一个分束器、一面半反射镜、两面平行平板镜和一个光源组成。
光源发出的光经过分束器分为两束,一束经过半反射镜反射,另一束直接透射,然后它们分别在两面平行平板镜上反射,并最后再次汇聚在一起。
当两束光相遇时,会产生干涉现象。
通过调节其中一个平板镜的位置,可以使反射光程差发生变化,从而观察到干涉现象的变化。
实验步骤1.搭建迈克尔逊干涉仪。
安装好分束器、半反射镜和两面平行平板镜,并精确调整位置和方向。
2.打开He-Ne氦氖激光器,并调整光源位置和方向,使得光能够正常通过分束器。
3.将1/10波片放置在半反射镜旁边的光路上,调整它的角度,使得一部分光能够通过。
4.在反射光路上插入片玻璃,观察干涉条纹。
5.通过调整其中一个平板镜的位置,改变反射光程差,观察干涉条纹的变化。
6.使用读数显微镜和测距器,测量不同光程差下的干涉条纹的移动和位置。
实验结果与分析在实验中,我们观察到了干涉条纹的变化。
随着平板镜位置的调整,干涉条纹的位置发生了移动。
通过测量不同光程差下的干涉条纹的移动,我们得到了一组数据。
根据这组数据,我们可以计算出光的波长。
结论通过利用迈克尔逊干涉仪进行实验,我们成功观察到了干涉条纹的变化,并进行了测量。
实验结果证实了迈克尔逊干涉仪的原理,并且得到了光的波长的计算值。
迈克尔逊干涉仪在光学和激光技术中有着广泛的应用,了解和掌握它的原理和使用方法对于进一步研究和应用光学技术具有重要意义。
参考文献1.Smith, Robert W. (1998).。
迈克尔逊干涉仪的调节和使用ppt课件

2en2 2
对应条纹级次最高
物理实验教学中心
沈阳城市学院
• 迈干仪的干三涉实原验理测量原理
反射镜 M1
M1 移动导轨
M1 M2
扩束镜
反
单
射
色 光
镜
源
M2
分光板 G1
补偿板 G 2
G1//G 2 与 M1, M2 成 450角 物理实验教学中心
沈阳城市学院
M2 的像 M'2 反射镜 M1
d
迈克尔逊及其对物理学发展的主要贡献
• 1907年迈克尔逊因为“发明光学干涉仪并使用 其进行光谱学和基本度量学研究” 而成为美国 历史上第一位诺贝尔物理学奖获得者。 1910-1911年担任美国科学促进会主席。
• 1923-1927年担任美国科学院院长。 月球上的一个环形山是以他的名字命字。
• 1931年5月9日逝世于加利福尼亚的帕萨迪纳。
物理实验教学中心
沈阳城市学院
数据处理及分析
1.用逐差法计算He-Ne激光的波长.
di=di4 di
d
=
i
di 4
=2 di
k
2.将测得波长λ与公认值λs进行百分差比较. He-Ne激光:λs =632.8nm
3.计算钠双线的波长差,并与公认值Δλs进行百分差比较.
钠光平均波长:λ12=589.294nm钠光双线:Δλs=0.597nm
观察干涉圆环的环心,如增大d,k也增大,环 心的级次也增大,环心不断冒出环纹,环纹增多 变密;如减小d,则发生相反的情景,环心不断 缩入环纹,条纹减市学院
实 验 内容
物理实验教学中心
沈阳城市学院
一、调整迈克尔逊干涉仪及其光路
(1)粗调:① 将M1、M2方位螺钉和拉簧调至半松半紧状态 ② 调激光器方位,使反射光大致对 称分布
迈克尔逊干涉仪实验

迈克尔逊干涉仪实验
一、简介
迈克尔逊干涉仪是一种常见的光学仪器,用于测量光的干涉现象。
它基于干涉
现象原理,利用光程差的变化引起干涉条纹的移动,从而实现光波的干涉测量。
二、实验目的
通过迈克尔逊干涉仪实验,探究光的干涉现象,理解干涉原理,学习干涉仪的
构造和使用方法,提高实验操作能力。
三、实验原理
1.干涉现象:光程差导致两束光发生相对相位差,进而产生干涉现象。
2.干涉条纹:当两束光相干干涉,光强相加或相消形成明暗交替的干
涉条纹。
3.迈克尔逊干涉仪:由分束镜、反射镜、反射板等组成,用于观察光
的干涉现象。
四、实验步骤
1.准备迈克尔逊干涉仪及光源。
2.调整分束镜和反射镜的角度,使两束光交汇。
3.观察干涉条纹,在平移反射镜的同时调整角度,观察条纹的变化。
4.记录实验现象,分析干涉条纹的规律。
五、实验数据
根据实验记录,绘制干涉条纹图,并分析干涉条纹的间距及明暗交替规律。
六、实验结果
通过迈克尔逊干涉仪实验,观察到了清晰的干涉条纹,验证了光的干涉现象。
实验数据显示,干涉条纹的间距与光程差有关,明暗交替规律符合干涉原理。
七、实验结论
迈克尔逊干涉仪实验有效地展示了光的干涉现象,加深了对干涉原理的理解。
实验结果符合理论预期,为光学实验教学提供了有力支持。
八、实验意义
通过迈克尔逊干涉仪实验,提高了学生对光的干涉现象的认识,培养了实验操作能力和数据分析能力,拓展了光学实验的应用范围。
以上为迈克尔逊干涉仪实验的相关内容,希望可以帮助更好地理解光的干涉现象。
迈克尔逊干涉仪的实验报告

迈克尔逊干涉仪的实验报告迈克尔逊干涉仪的实验报告引言:迈克尔逊干涉仪是一种经典的光学实验仪器,它以其简单而精确的测量原理而闻名于世。
本实验旨在通过搭建迈克尔逊干涉仪并进行实际测量,探索干涉现象的原理以及应用。
实验装置:迈克尔逊干涉仪由一束光源、半透镜、分束镜和反射镜组成。
光源发出的光经过半透镜聚焦后,被分束镜分成两束光线,分别射向两个反射镜。
反射镜将光线反射回来,重新经过分束镜,最终在屏幕上形成干涉条纹。
实验过程:1. 搭建迈克尔逊干涉仪:首先,将光源放置在适当位置,并调整半透镜的位置和焦距,使光线能够通过分束镜。
然后,调整反射镜的位置和倾斜角度,使两束光线能够在屏幕上产生干涉条纹。
2. 测量干涉条纹的间距:通过移动一个反射镜,改变其中一束光线的光程差,观察屏幕上干涉条纹的变化。
使用尺子测量相邻两个亮纹或暗纹之间的距离,记录下来。
3. 分析干涉条纹的特点:观察干涉条纹的形状、亮度和间距,分析其特点。
根据干涉条纹的变化规律,可以推断出光程差的变化情况。
实验结果:在实验过程中,我们观察到干涉条纹呈现出明暗相间的特点。
亮纹和暗纹之间的间距随着光程差的增大而增大。
通过测量,我们发现相邻两个亮纹或暗纹之间的距离为X。
讨论与分析:迈克尔逊干涉仪的干涉现象是由于光线经过不同路径后再次叠加而产生的。
当两束光线相遇时,如果光程差为波长的整数倍,就会出现亮纹;如果光程差为波长的半整数倍,就会出现暗纹。
通过测量干涉条纹的间距,我们可以计算出光程差的大小,从而了解光线的传播特性。
迈克尔逊干涉仪的应用十分广泛。
例如,在光学测量中,可以利用干涉条纹的变化来测量物体的形状和表面质量。
在激光干涉仪中,迈克尔逊干涉仪被用于测量激光的相干性和波长。
此外,干涉仪还可以用于光学元件的测试和光学薄膜的表征等领域。
结论:通过本次实验,我们成功搭建了迈克尔逊干涉仪,并观察到了干涉条纹的特点。
通过测量干涉条纹的间距,我们进一步认识到光程差对干涉现象的影响。
物理实验迈克尔逊干涉仪实验误差分析及结果讨论

物理实验迈克尔逊干涉仪实验误差分析及结果讨论迈克尔逊干涉仪,这个名字听起来就像科学家的专属玩具。
其实,它是探索光波性质的一把利器。
干涉现象令人惊叹,让我们深入其中,看看这个实验背后的误差分析和结果讨论。
一、实验原理1.1 干涉的基本原理光波就像潮水,一波接一波。
当两束光相遇时,若相位相同,它们会相互叠加,形成明亮的条纹;若相位不同,则会相互抵消,变得暗淡。
想象一下海浪撞击岸边,有时波涛汹涌,有时却静若处子,这就是干涉的魔力。
1.2 干涉仪的构造迈克尔逊干涉仪的构造简单却精妙。
它由分束器、反射镜和屏幕组成。
分束器像个调皮的孩子,把光分成两条路径。
反射镜则是守护者,确保光线顺利回归。
最后,屏幕捕捉到这些光波的交响曲,形成美丽的干涉条纹。
二、误差分析2.1 设备误差实验设备的精确度直接影响结果。
若分束器有微小瑕疵,光线的分离就会受影响,导致条纹模糊。
这就像一部老旧的相机,拍出的照片总是有点糊,遗憾吧。
2.2 环境因素温度、湿度和空气质量都可能影响光波的传播。
比如,在不同的温度下,空气的折射率会变化。
就像夏天和冬天的风,各有各的性格,光波在其中穿行的感受也大相径庭。
2.3 操作误差实验人员的操作也是不可忽视的因素。
轻微的手抖、视角的偏差都会导致结果的不准确。
我们都知道,细节决定成败,尤其是在这种微观世界中,每个动作都至关重要。
三、结果讨论3.1 条纹的稳定性稳定的干涉条纹意味着实验成功。
它们的明暗变化如同音乐的节奏,优雅而动人。
理想情况下,条纹应当清晰而整齐,然而,实际实验中却常常因误差而显得杂乱无章。
3.2 数据的可靠性在收集数据时,要确保每次实验的条件尽量相同。
数据的可靠性是实验成功的关键,就像建房子需要坚实的地基。
若数据不稳定,最终的结果也无法令人信服。
四、总结迈克尔逊干涉仪的实验是一场光的盛宴,充满了挑战与惊喜。
通过仔细的误差分析,我们能更好地理解实验结果的深意。
科学探索就像一段旅程,有时我们会迷失,但每一次探索都让我们更接近真理。
迈克尔逊干涉仪(实验报告)-迈克尔逊的实验原理

迈克尔逊干涉仪(实验报告)一、实验目的1、掌握迈克尔逊干涉仪的调节方法并观察各种干涉图样。
2、区别等倾干涉、等厚干涉和非定域干涉,测定He-Ne 激光波长二、实验仪器迈克尔逊干涉仪、He-Ne 激光器及光源、小孔光阑、扩束镜(短焦距会聚镜)、毛玻璃屏等。
(图一)(图二)三、实验原理①用He-Ne 激光器做光源,使激光通过扩束镜会聚后发散,此时就得到了一个相关性很好的点光源,射到分光板P1和P2上后就将光分成了两束分别射到M1 和M2 上,反射后通过P1 、P2 就可以得到两束相关光,此时就会产生干涉条纹。
②产生干涉条纹的条件,如图 2 所示, B 、 C 是两个相干点光源,则到A 点的光程差δ=AB-AC=BCcosi , 若在A 点出产生了亮条纹,则δ =2dcosi=k λ (k 为亮条纹的级数) ,因为i 和k 均为不可测的量,所以取其差值,即λ =2 Δ d/ Δ k。
四、实验步骤1、打开激光电源,先不要放扩束镜,让激光照到分光镜P1 上,并调节激光的反射光照射到激光筒上。
2、调节M2 的位置使屏上两排光中最亮的两个光点重回,并调至其闪烁。
3、将扩束镜放于激光前,调节扩束镜的高度和偏角,使光能照在P1分光镜上,看显示屏上有没有产生同心圆的干涉条纹图案。
没有的话重复2 、3 步骤,直到产生同心圆的干涉条纹图案。
4、微调M2是干涉图案处于显示屏的中间。
5、转动微量读数鼓轮,使M1 移动,可以看到中心条纹冒出或缩进,若看不到此现象,先转动可度轮,再转动微量读数鼓轮。
记下当前位置的读数d0 ,转动微量读数鼓轮,看到中心条纹冒出或缩进30 次则记一次数据,共记录10 次数据即d0、d1 (9)6、关闭激光电源,整理仪器,处理数据。
五、实验数据处理数据记录:数据处理:Δd0=d5-d0=0.05202mm Δd1=d6-d1=0.05225mmΔd2=d7-d2=0.04077mm Δd3=d8-d3=0.04077mmΔd4=d9-d4=0.05071mmΔd(平均)=(Δd0+Δd1+Δd2+Δd3+Δd4)/5 =0.047304mmA类不确定度σ=5.99355*10-6mΔk=150所以λ(平均)=2Δd(平均)/Δk =630.72 nmB类不确定度:UΔB=0.5*10-7 m总不确定度:UΔd =6.01437*10-6 mUλ =2UΔd/Δk =80.1916 nm所以λ=λ(平均)+Uλ=630.72 + 80.1916 nmEλ=(632.8-630.72)/632.8 *100% =0.329%遇到失意伤心事,多想有一个懂你的人来指点迷津,因他懂你,会以我心,换你心,站在你的位置上思虑,为你排优解难。
迈克尔干涉仪实验报告

一、实验目的1. 了解迈克尔逊干涉仪的结构、原理和调节方法;2. 观察等倾干涉、等厚干涉现象;3. 利用迈克尔逊干涉仪测量He-Ne激光器的波长。
二、实验原理迈克尔逊干涉仪是利用分振幅法产生双光束以实现干涉的精密光学仪器。
其工作原理如下:1. 光源发出一束光,经过分束板(半透镜)分为两束光,一束光射向反射镜M1,另一束光射向反射镜M2;2. 从M1反射回来的光与从M2反射回来的光在观察屏E处相遇,产生干涉现象;3. 通过调节M1和M2的位置,可以改变两束光的光程差,从而观察到干涉条纹的变化。
三、实验仪器1. 迈克尔逊干涉仪;2. He-Ne激光器;3. 扩束镜;4. 观察屏;5. 小孔光阑;6. 测量尺。
四、实验步骤1. 将迈克尔逊干涉仪、He-Ne激光器、扩束镜、观察屏等仪器连接好;2. 打开He-Ne激光器,调整扩束镜,使激光束通过小孔光阑,射向分束板;3. 调节干涉仪的微调螺丝,使两束光在观察屏E处形成干涉条纹;4. 观察等倾干涉、等厚干涉现象,并记录干涉条纹的特点;5. 利用干涉条纹的变化,测量He-Ne激光器的波长。
五、实验结果与分析1. 观察到干涉条纹的特点:(1)等倾干涉:干涉条纹为同心圆环,条纹间距随入射角增大而增大;(2)等厚干涉:干涉条纹为平行线,条纹间距与光程差成正比;(3)非定域干涉:干涉条纹为弥散的光斑,光程差为0时出现亮斑。
2. 测量He-Ne激光器的波长:(1)首先调整干涉仪,使干涉条纹在观察屏E处清晰可见;(2)记录干涉条纹的半径r1和r2,以及干涉条纹的间距Δr;(3)根据公式λ = 2rΔr/n,计算He-Ne激光器的波长,其中n为干涉条纹的级数。
六、实验总结1. 迈克尔逊干涉仪是一种精密的光学仪器,可以观察到等倾干涉、等厚干涉现象,以及非定域干涉现象;2. 通过调整干涉仪,可以改变两束光的光程差,从而观察到干涉条纹的变化;3. 利用干涉条纹的变化,可以测量He-Ne激光器的波长。
大学物理实验迈克尔逊干涉仪讲义

迈克尔孙干涉仪1881 年美国物理学家迈克尔孙(A.A.Michelson )为测量光速,依据分振幅产生双光束实现干涉的原理精心设计了这种干涉测量装置。
迈克尔孙和莫雷(Morey )用此一起完成了在相对论研究中有重要意义的“以太”漂移实验。
迈克尔孙干涉仪设计精巧、应用广泛,许多现代干涉仪都是由它衍生发展出来的。
本实验的目的是了解迈克尔孙干涉仪的原理、结构和调节方法,观察非定域干涉条纹,测量氦氖激光的波长,并增强对条纹可见度和时间相干性的认识。
实验原理1.迈克尔孙干涉仪的结构和原理迈克尔孙干涉仪的原理图如图3.1.1-1所示,A 和B为材料、厚度完全相同的平行板,A 的一面镀上半反射膜,M 1、M 2为平面反射镜,M 2是固定的,M1 和精密丝杆相连,使其可前后移动,最小读数为10-4mm,可估计到10-5mm,M1 和M2 后各有几个小螺丝可调节其方位。
光源S 发出的光射向A 板而分成(1)、(2)两束光,这两束光又经M1和M2 反射,分别通过A 的两表面射向观察处O,相遇而发生干涉,B 作为补偿板的作用是使(1)、(2)两束光的光程差仅由M1、M2 与A 板的距离决定。
由此可见,这种装置使相干的两束光在相遇之前走过的路程相当长,而且其路径是互相垂直的,分的很开,这正是它的主要优点之一。
从O处向A处观察,除看到M 1镜外,还可通过A的半反射膜看到M2的虚像M'2,M 1与M2镜所引起的干涉,显然与M 1、M'2引起的干涉等效,M1和M'2 形成了空气“薄膜”,因M'2不是实物,故可方便地改变薄膜的厚度(即M1和M'2的距离),甚至可以使M1和M'2 重叠和相交,在某一镜面前还可根据需要放置其他被研究的物体,这些都为其广泛的应用提供了方便。
2.点光源产生的非定域干涉一个点光源S 发出的光束经干涉仪的等效薄膜表面M 1 和M'2 反射后,相当于由两个虚光源S1、S2发出的相干光束(图3.1.1-2)。
物理实验迈克尔逊干涉仪实验

物理实验迈克尔逊干涉仪实验迈克尔逊干涉仪是一种基于干涉现象的物理实验装置,由美国物理学家阿尔伯特·迈克尔逊于1881年发明。
通过迈克尔逊干涉仪实验,我们可以观察到光的干涉现象,并进一步了解光的波动性和光的性质。
在本文中,我们将介绍迈克尔逊干涉仪的实验原理、实验步骤和实验结果的分析。
实验原理:迈克尔逊干涉仪的实验原理基于光的干涉现象和分光反射镜的特性。
迈克尔逊干涉仪由两面相互垂直的镜子组成,其中一面是半透明的分光反射镜。
当光线照射到分光反射镜上时,一部分光线透射通过,一部分光线反射掉。
透射光线和反射光线沿不同的路径传播,最终再次相遇形成干涉现象。
实验步骤:1. 准备实验材料和仪器,包括迈克尔逊干涉仪、光源、干涉纹检测器等。
2. 将迈克尔逊干涉仪放置在水平台上,并确保镜子垂直地安装在支架上。
3. 将光源置于适当的位置,使得光线能够照射到分光反射镜上。
4. 调整分光反射镜的角度,使得反射光线和透射光线的路径长度相等。
5. 打开干涉纹检测器,观察干涉纹的出现和变化。
6. 调整迈克尔逊干涉仪的一面镜子的位置,观察干涉纹的变化,记录实验结果。
实验结果分析:通过迈克尔逊干涉仪的实验,我们可以观察到干涉纹的出现和变化。
干涉纹是由光的干涉产生的亮暗交替的条纹,用于表示光的波动性和光的相位变化。
在实验中,当两束平行光线从迈克尔逊干涉仪的分光反射镜射出后,经过两面镜子的反射和透射,再次相遇时,光线的相位差会引起干涉现象。
如果两束光线的光程差是波长的整数倍,将会有加强干涉现象的出现,形成明条纹;而如果光程差是波长的半整数倍,将会有干涉现象的减弱甚至消失,形成暗条纹。
通过观察干涉纹的出现和变化,我们可以判断出光线的相位差和波长的关系,从而进一步了解光的波动性和干涉现象。
总结:迈克尔逊干涉仪实验是一种基于光的干涉现象的物理实验。
通过观察干涉纹的出现和变化,我们可以了解光的波动性和光的性质。
在实验中,我们需要准备实验材料和仪器,并按照实验步骤进行操作。
“迈克尔逊干涉仪”实验报告

“迈克尔逊干涉仪”实验报告【引言】迈克尔逊干涉仪是美国物理学家迈克尔逊(A.A.Michelson)发明的。
1887年迈克尔逊和莫雷(Morley)否定了“以太”的存在,为爱因斯坦的狭义相对论提供了实验依据。
迈克尔逊用镉红光波长作为干涉仪光源来测量标准米尺的长度,建立了以光波长为基准的绝对长度标准,即1m=1 553 164.13个镉红线的波长。
在光谱学方面,迈克尔逊发现了氢光谱的精细结构以及水银和铊光谱的超精细结构,这一发现在现代原子理论中起了重大作用。
迈克尔逊还用该干涉仪测量出太阳系以外星球的大小。
因创造精密的光学仪器,和用以进行光谱学和度量学的研究,并精密测出光速,迈克尔逊于1907年获得了诺贝尔物理学奖。
【实验目的】(1)了解迈克尔逊干涉仪的原理和调整方法。
(2)测量光波的波长和钠双线波长差。
【实验仪器】迈克尔逊干涉仪、He-Ne激光器、钠光灯、扩束镜【实验原理】1.迈克尔逊干涉仪结构原理图1是迈克尔逊干涉仪光路图,点光源S发出的光射在分光镜G1,G1右表面镀有半透半反射膜,使入射光分成强度相等的两束。
反射光和透射光分别垂直入射到全反射镜M1和M2,它们经反射后再回到G1的半透半反射膜处,再分别经过透射和反射后,来到观察区域E。
如到达E处的两束光满足相干条件,可发生干涉现象。
G2为补偿扳,它与G1为相同材料,有相同的厚度,且平行安装,目的是要使参加干涉的两光束经过玻璃板的次数相等,波阵面不会发生横向平移。
M1为可动全反射镜,背部有三个粗调螺丝。
M2为固定全反射镜,背部有三个粗调螺丝,侧面和下面有两个微调螺丝。
2.可动全反镜移动及读数可动全反镜在导轨上可由粗动手轮和微动手轮的转动而前后移动。
可动全反镜位置的读数为:××.□□△△△ (mm)(1)××在mm刻度尺上读出。
(2)粗动手轮:每转一圈可动全反镜移动1mm ,读数窗口内刻度盘转动一圈共100个小格,每小格为0.01mm ,□□由读数窗口内刻度盘读出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②.迈克尔逊是第一个倡导用光波的波长作为 长度基准的科学家,1892年迈克尔逊利用特制的干 涉仪,以法国的米原器为标准,在温度15摄氏度、 压力760毫米汞柱的条件下,测定了镉红线波长是 6438.4696埃,于是,1米等于1553164倍镉红线波 长。这是人类首次获得了一种永远不变且毁坏不了 的非实物长度基准。
②、1884年著名物理学家开尔文访美, 并会见迈克尔逊,赞扬并鼓励他继续实验, 建议他和其助手莫雷合作实验。
1887年7月,进行第二次实验,用大石板 浮在水银槽上实验(可自由旋转方向,稳定 性好,精度高)共四天,结果仍然是零。
③、1897年,迈克尔逊第三次实验,将 干涉仪掉在天花板上,为防止空气的干扰, 光路用铁管密封,抽去空气,得到的仍然为 零结果。
t t t 2t
由此而引起的光程差为:
c t
从而引起干涉条纹移动的条数:
N
设
c
1
应用数学展开,略去高次项可得:
N 2d 2 ( c2 )
实验中用钠光源,λ=5.9×10-7m;
地球的轨道运动速率为:υ≈10-4c;
干涉仪光臂长度为11m; 应该移动的条纹为:
4、迈克尔逊的主要科学贡献
迈克尔逊一生在追求科学和真理,他主要从 事光学和光谱学方面的研究,他以毕生精力从事 光速的精密测量,在他的有生之年,一直是光速 测定的国际中心人物。主要科学贡献有:
①.迈克尔逊的第一个重大科学贡献是发明了 迈克尔逊干涉仪,并用它完成了著名的迈克-莫雷 实验. 这是一个最重大的否定性实验,这次实验的 结果否定了“以太”学说,动摇了经典物理学的 基础,为爱因斯坦狭义相对论的建立铺平了道路.
二、迈克尔逊干涉仪测光波波长
1、迈克尔逊干涉仪光路图
• M1与M2’之间形成的是
d
一个空气薄膜。迈克
尔逊干涉仪产生的干
涉,与M1、 M2’之间的 S 空气薄膜产生的干涉
是等效的。改变M1、 M2’ 的相对位置,就可以
迈克尔逊及迈克尔逊 干涉仪实验
陕西师范大学物理学与信息技术学院 吴**
一、迈克尔逊及其对物理学发展的主要贡献 二、迈克尔逊干涉仪及光波波长的测量 三、古老原理的现代应用
一、著名物理学家――阿尔伯特-迈克尔 逊及其对物理学发展的主要贡献
1. 阿尔伯特-迈克尔逊(Albert Abrahan Michelson,1852~ 1931)简介
3、迈克尔逊-莫雷实验
按经典理论地球在“以太”中绕太阳公 转,就象急驰的火车相对于周围空气运动而 产生一股风一样.也应有一股“以太风”。迈 克尔逊---------莫雷实验就是为了测量“以太 风”而设计的。
实验装置如图所示
迈 克 尔 孙 干 涉 仪 俯 视 图
测定“以太风”速率的实验设计思想
1907年迈克尔逊因为“发明光学干涉仪并使用 其进行光谱学和基本度量学研究” 而成为美国 历史上第一位诺贝尔物理学奖获得者。
1910-1911年担任美国科学促进会主席。
1923-1927年担任美国科学院院长。
月球上的一个环形山是以他的名字命字。
1931年5月9日逝世于加利福尼亚的帕萨迪纳。
2、“以太漂移”学说的提出
十八世纪后,惠更斯、杨氏双缝干涉实 验证明了光的波动性,并建立了光的波动理 论。人们为了解释光的传播而引入“以太” 的概念。设想“以太”是弥漫在整个宇宙空 间的一种物质。光借助“以太”这种介质传 播。“以太” 的提出是假设,被当时物理学 界所接受。但如何用实验验证“以太”的存在, 许多物理学家用不同的实验进行了检验,具 有代表性的是迈克尔逊的干涉仪实验最为著 名。
设计思想如图所示, 按照以太学说,光在以 太中传播速率是C,而以 太相对于地球的 速率为 υ。实验时观察相干条 纹,然后把仪器平稳转 动90°,再观察转动前 后干涉条纹的变化。若 干涉仪臂长
LMM1=LMM2=d
根据经典速度合成公式, 光由M→M1→ M 所需的时间为:
tx
tMM1
tM1M
N=2×11×(10-4)2/λ=0.4 干涉仪的灵敏度:可观察到的条纹数为0.01条。 而实验结果没有观察到条纹移动.
实验结果没有观察到条纹移动,即N 0 Fra bibliotek推出 0
即“以太漂移”速度 0
实验结果显示“以太”不存在。
迈克尔逊验证“以太”实验的主要阶段
①、1881年4月在 天文台的地下室进行 第一次实验后,得到 出乎意料的结果,实 验结果发表后,立即 引起物理学界的非议。 其本人承受巨大压力。
LMM1
c
LM1M
c
2dc
c2 2
光由M→M2→M所需的时间为:
ty tMM2 tM2M
LMM2
c2 2
LM2M
c2 2
2d
c2 2
故两束光到达T的时间差为:
t
tx
ty
2dc
c2 2
2d
c2 2
干涉仪转动90°前后时间差的改变为
美国著名实验物理学家:迈 克尔逊,1852 年12月19日出生于 波兰一个犹太商人家庭,1856年 随父母移居美国.1873年毕业于美 国海军学院。
1883年任俄亥俄州克 利夫兰市开斯应用科 学学院物理学教授
1889年成为麻省伍斯 特的克拉克大学的物 理学教授。
1892年到一个全新的 大学——芝加哥大学 任物理学系教授,并 成为该系第一任系主 任。
迈克尔逊是一位杰出的实验物理学家, 他所完成的实验都以设计精巧、精确度高而 闻名,爱因斯坦曾这样赞誉:
“我总认为迈克尔逊是科学中的艺术家, 他的最大乐趣似乎来自实验本身的优美和所 使用方法的精湛,他从来不认为自己在科学上 是个严格的‘专家’,但始终是个艺术家。”
重要的物理思想+巧妙的实验构思+精湛的实验技术 → 科学中的艺术
③.在光谱学方面,迈克尔逊发现了氢光谱的 精细结构以及水银和铊光谱的超精细结构,这一发 现在现代原子理论中起了重大作用,其成果对现代 分子物理学、原子光谱和激光光谱学等新兴学科都 产生了重大影响
由于创制了精密的光学仪器和 利用这些仪器所完成的光谱学和基 本度量学研究,迈克尔逊于1907年 获诺贝尔物理学奖。